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ABSTRACT

Many distributed services would benefit from control over

the flow of traffic to and from their users, to offer better

performance and higher reliability at a reasonable cost.

Unfortunately, although today’s cloud-computing plat-

forms offer elastic computing and bandwidth resources,

they do not give services control over wide-area routing.

We propose replacing the data center’s border router with

a Transit Portal (TP) that gives each service the illusion

of direct connectivity to upstream ISPs, without requir-

ing each service to deploy hardware, acquire IP address

space, or negotiate contracts with ISPs. Our TP proto-

type supports many layer-two connectivity mechanisms,

amortizes memory and message overhead over multiple

services, and protects the rest of the Internet from mis-

configured and malicious applications. Our implementa-

tion extends and synthesizes open-source software com-

ponents such as the Linux kernel and the Quagga routing

daemon. We also implement a management plane based

on the GENI control framework and couple this with our

four-site TP deployment and Amazon EC2 facilities. Ex-

periments with an anycast DNS application demonstrate

the benefits the TP offers to distributed services.

1. Introduction

Cloud-based hosting platforms make computational re-

sources a basic utility that can be expanded and con-

tracted as needed [10, 26]. However, some distributed

services need more than just computing and bandwidth

resources—they need control over the network, and par-

ticularly over the wide-area routes to and from their

users. More flexible route control helps improve perfor-

mance [7,8,12] and reduce operating costs [17]. For exam-

ple, interactive applications like online gaming want to se-

lect low-latency paths to users, even if cheaper or higher-

bandwidth paths are available. As another example, a ser-

vice replicated in multiple locations may want to use IP

anycast to receive traffic from clients and adjust where the

address block is announced in response to server failures

or shifts in load.

While flexible route control is commonplace for both

content providers and transit networks, today’s cloud-

based services do not enjoy the same level of control over

routing. Today, the people offering these kinds of dis-

tributed services have two equally unappealing options.

On the one hand, they could build their own network foot-
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Figure 1: Connecting services though the Transit Portal.

print, including acquiring address space, negotiating con-

tracts with ISPs, and installing and configuring routers.

That is, they could essentially become network operators,

at great expense and with little ability to expand their foot-

print on demand. On the other hand, they could contract

with a hosting company and settle for whatever “one size

fits all” routing decisions this company’s routers make.

This missed opportunity is not for a lack of routing

diversity at the data centers: for example, RouteViews

shows that Amazon’s Elastic Cloud Computing (EC2) has

at least 58 upstream BGP peers for its Virginia data center

and at least 17 peers at its Seattle data center [20]. Rather,

cloud services are stuck with a “one size fits all” model

because cloud providers select a single best route for all

services, preventing cloud-based applications from having

any control over wide-area routing.

To give hosted services control over wide-area rout-

ing, we propose the Transit Portal (TP), as shown in Fig-

ure 1. Each data center has a TP that gives each service

the appearance of direct connectivity to the ISPs of its

choice. Each service has a dedicated virtual router that

acts as a gateway for the traffic flowing to and from its

servers. The service configures its virtual router with its

own policies for selecting paths to its clients and announc-

ing routes that influence inbound traffic from its clients.

By offering the abstraction of BGP sessions with each up-

stream ISP, the TP allows each service to capitalize on

existing open-source software routers (including simple

lightweight BGP daemons) without modifying its appli-

cation software. That said, we believe extending TP to

offer new, programmatic interfaces to distributed services

is a promising avenue for future work.



Using the TP to control routing provides a hosted ser-

vice significantly more control over the flow of its traf-

fic than in today’s data centers. In addition, the services

enjoy these benefits without building their own network

footprint, acquiring address space and AS numbers, and

negotiating with ISPs. These are hurdles that we ourselves

faced in deploying TPs at four locations, obviating the

need for the services we host to do so. In addition, the TP

simplifies operations for the ISPs by offloading the sep-

arate connections and relationships with each application

and by applying packet and route filters to protect them

(and the rest of the Internet) from misconfigured or mali-

cious services.

The design and implementation of the TP introduces

several difficult systems challenges. In the control plane,

the TP must provide each virtual router the illusion of di-

rect BGP sessions to the upstream ISPs. In the data plane,

the TP must direct outgoing packets to the right ISP and

demultiplex incoming packets to the right virtual router.

Our solutions to these problems must scale with the num-

ber of services. To solve these problems, we introduce a

variety of techniques for providing layer-two connectiv-

ity, amortizing memory and message overhead, and fil-

tering packets and routes. Our prototype implementation

composes and extends open-source routing software— the

Quagga software router for the control plane and the Linux

kernel for the data plane—resulting in a system that is easy

to deploy, maintain, and evolve. We also built a manage-

ment system, based on the GENI control framework [16],

that automates the provisioning of new customers. Our TP

system is deployed and operational at several locations.

This paper makes the following contributions:

• We explain how flexible wide-area route control can

extend the capabilities of existing hosting platforms.

• We present the design and implementation of Tran-

sit Portal, and demonstrate that the system scales to

many ISPs and clients.

• We quantify the benefits of TP by evaluating a DNS

service that uses IP anycast and inbound traffic engi-

neering on our existing three-site TP deployment.

• We present the design and implementation of a man-

agement framework that allows hosted services to

dynamically establish wide-area connectivity.

• We describe how to extend the TP to provide better

forwarding performance and support a wider variety

of applications (e.g., virtual machine migration).

The remainder of the paper is organized as follows. Sec-

tion 2 explains how distributed services can make use of

wide-area route control. Section 3 presents the design and

implementation of the Transit Portal. Section 4 evaluates

our three-site deployment supporting an example service,

and Section 5 evaluates the scalability and performance of

our prototype. Section 6 presents our management frame-

work, and Section 7 describes possible extensions to the
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Figure 2: Reliable, low-latency distributed services: A service
provider that hosts authoritative DNS for some domain may wish

to provision both hosting and anycast connectivity in locations that

are close to the clients for that domain.

TP. Section 8 compares TP to related work, and the paper

concludes in Section 9.

2. A Case for WideArea Route Control

We aim to give each hosted service the same level of

routing control that existing networks have today. Each

service has its own virtual router that connects to the In-

ternet through the Transit Portal, as shown in Figure 1.

The Transit Portal allows each service to make a differ-

ent decision about the best way to exchange traffic with its

users. The Transit Portal also allows each service to an-

nounce prefixes selectively to different ISPs, or send dif-

ferent announcements for the same prefix to control the

flow of inbound traffic from its users.

2.1 How Route Control Helps Applications

This section describes three services that can benefit

from gaining more control over wide-area routing and

rapid connectivity provisioning. Section 4 evaluates the

first service we discuss—improving the reliability, latency,

and load balacing traffic for distributed services—in de-

tail, through a real deployment on Amazon’s EC2. We

do not evaluate the remaining applications with a deploy-

ment, but we explain how they might be deployed in prac-

tice.

Reliable, low-latency distributed services. The Domain

Name System (DNS) directs users to wide-area services

by mapping a domain name to the appropriate IP address

for that service. Service providers often use DNS for

tasks like load balancing. Previous studies have shown

that DNS lookup latency is a significant contributor to the

overall latency for short sessions (e.g., short HTTP re-

quests). Thus, achieving reliability and low latency for

DNS lookups is important. One approach to reducing

DNS lookup latency is to move the authoritative DNS

servers for a domain closer to clients using anycast. Any-

cast is a method where multiple distinct networks adver-

tise the same IP prefix; client traffic then goes to one of

these networks. Hosting authoritative name servers on

an anycasted IP prefix can reduce the round-trip time to

an authoritative name server for a domain, thus reducing

overall name lookup time.
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Figure 3: Using routing to migrate services: A service provider mi-

grates a service from a data center in North America to one in Asia,

to cope with fluctuations in demand. Today, service providers must

use DNS for such migration, which can hurt user performance and
does not permit the migration of a running service. A provider can

use route control to migrate a service and re-route traffic on the fly,

taking DNS out of the loop and enable migration of running services.

Although anycast is a common practice for DNS root

servers, setting up anycast is a tall order for an individ-

ual domain: each domain that wants to host its own au-

thoritative servers would need to establish colocation and

BGP peering at multiple sites and make arrangements. Al-

though a DNS hosting provider (e.g., GoDaddy) could

host the authoritative DNS for many domains and any-

cast prefixes for those servers, the domains would still not

be able to have direct control over their own DNS load-

balancing and replication. Wide-area route control allows

a domain to establish DNS-server replicas and peering in

multiple locations, and to change those locations and peer-

ing arrangements when load changes. Figure 2 shows such

a deployment. We have deployed this service [24] and will

evaluate it in Section 4.

Using routing to migrate services. Service providers,

such as Google, commonly balance client requests across

multiple locations and data centers to keep the latency for

their services as low as possible. To do so, they commonly

use the DNS to re-map a service name to a new IP ad-

dress. Unfortunately, relying on DNS to migrate client re-

quests requires the service provider to set low time-to-live

(TTL) values on DNS replies. These low TTL values help

a service provider quickly re-map a DNS name to a new

IP address, but they also prevent the client from caching

these records and can introduce significant additional la-

tency; this latency is especially troublesome for short-

lived sessions like Web search, where the DNS lookup

comprises a large fraction of overall response time. Sec-

ond, DNS-based re-mapping cannot migrate ongoing con-

nections, which is important for certain services that main-

tain long-lived connections with clients (e.g., VPN-based

services). Direct wide-area route control allows the ap-

plication provider to instead migrate services using rout-

ing: providers can migrate their services without chang-

ing server IP addresses by dynamically acquiring wide-

area connections and announcing the associated IP prefix

at the new data center while withdrawing it at the old one.

Figure 3 shows how this type of migration can be imple-

mented. This approach improves user-perceived perfor-

Figure 4: Flexible peering and hosting for interactive applications:
Direct control over routing allows services to expand hosting and up-
stream connectivity in response to changing demands. In this exam-

ple, a service experiences an increase in users in a single geographic

area. In response, it adds hosting and peering at that location to
allow customers at that location to easily reach the service.

mance by allowing the use of larger DNS TTL values and

supporting live migration of long-lived connections.

Flexible peering & hosting for interactive applications.

To minimize round-trip times, providers of interactive ap-

plications like gaming [3] and video conferencing [4, 5]

aim to place servers close to their customers to users and,

when possible, selecting the route corresponding to the

lowest-latency path. When traffic patterns change, due to

flash-crowds, diurnal fluctuations, or other effects, the ap-

plication provider may need to rapidly reprovision both

the locations of servers and the connectivity between those

servers and its clients. Figure 4 shows an example of an in-

teractive service that suddenly experiences a surge in users

in a particular region. In this case, the hosting facility will

not only need to provision additional servers for the inter-

active service provider, but it will also need to provision

additional connectivity at that location, to ensure that traf-

fic to local clients enter and leave at that facility.

2.2 Deployment Scenarios

Cloud providers can provide direct control over rout-

ing and traffic to hosted applications. A cloud service

such as Amazon’s EC2 can use direct wide-area route con-

trol to allow each application provider to control inbound

and outbound traffic according to its specific requirements.

Suppose that two applications are hosted in the same data

center. One application may be focused on maintaining

low-cost connectivity, while the other may want to achieve

low latency and good performance at any cost. Today’s

cloud services offer only “one size fits all” transit and do

not provide routing control to each hosted service or appli-

cation; the Transit Portal provides this additional control.

An enterprise can re-provision resources and peer-

ing as demands change. Web service providers such

as Google and Microsoft share a common infrastructure

across multiple applications (e.g., search, calendar, mail,

video) and continually re-provision these resources as

client demand shifts. Today, making application-specific

routing decisions in a data center (as shown in Figure 1) is

challenging, and re-routing clients to services in different
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data centers when demands change is even more difficult.

The Transit Portal can provide each application in a data

center control over routing and peering, allowing it to es-

tablish connectivity and select paths independently of the

other properties. This function also makes service migra-

tion easier, as we describe in further detail below.

A researcher can perform experiments using wide-

area routing. Although existing testbeds [14] allow re-

searchers to operate their own wide-area networks, they

generally do not offer flexible control over connectivity

to the rest of the Internet. Different experiments will, of

course, have different requirements for the nature of their

connectivity and routing, and researchers may even want

to experiment with the effects of different peering arrange-

ments on experimental services. As part of the GENI

project, we are building facilities for this level of route

control, by connecting Transit Portal to downstream vir-

tual networks to allow researchers to design and evaluate

networked services that require greater control over wide-

area routing.

3. Design and Implementation

This section describes the design and implementation

of a Transit Portal (TP); Section 6 completes the picture

by describing the management framework for a network

of TPs. The TP extends and synthesizes existing soft-

ware systems—specifically, the Linux kernel for the data

plane and the Quagga routing protocol suite for the control

plane. The rest of this section describes how our design

helps the TP achieve three goals: (1) transparent connec-

tivity between hosted services and upstream ISPs; (2) scal-

ability to many hosted services and upstream ISPs; and

(3) the ability to protect the rest of the Internet from acci-

dental or malicious disruptions. Table 1 summarizes our

design and implementation decisions and how they allow

us to achieve the goals of transparent connectivity, scala-

bility, and protection.

3.1 Transparent Connectivity

The TP gives client networks the appearance of direct

data- and control-plane connectivity to one or more up-

stream ISPs. This transparency requires each client net-

work to have a layer-two link and a BGP session for each

upstream ISP that it connects to, even though the link and

session for that client network actually terminate at the

TP. The client’s virtual routers are configured exactly as

they would be if they connected directly to the upstream

ISPs without traversing the Transit Portal. The TP has one

layer-two connection and BGP session to each upstream

ISP, which multiplexes both data packets and BGP mes-

sages on behalf of the client networks.

Different layer-two connections for different clients.

Connecting to an upstream ISP normally requires the

client to have a direct layer-two link to the ISP for car-

Client AS3ISP AS1

ISP AS2

Forwarding
Table AS1

Forwarding
Table AS2

Client AS4

S-IP
D-IPS-IP

D-IP

D-MAC
S-MAC

1. Frame 
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2. Policy routing 
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3. Destination 
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Figure 5: Forwarding incoming traffic: When a packet arrives at

the Transit Portal (Step 1), the TP uses the source MAC address (S-
MAC) to demultiplex the packet to the appropriate IP forwarding

table (Step 2). The lookup in that table (Step 3) determines the ap-

propriate tunnel to the client network (Step 4).

1 # arp -a

2 r o u t e r 1 . i s p . com ( 1 . 1 . 1 . 1 ) a t 0 : 0 : 0 : 0 : 0 : 1 1 on

e t h 0

3 # iptables -A PREROUTING -t mangle -i eth0 -m

mac --mac-source 0:0:0:0:0:11 -j MARK

--set-mark 1

4 # ip rule add fwmark 1 table 1

Figure 6: Linux policy routing de-multiplexes traffic into the appro-

priate forwarding table based on the packet’s source MAC address.

In this example, source address 0:0:0:0:0:11 de-multiplexes the
packet into forwarding table 1.

rying both BGP messages and data traffic. To support this

abstraction, the TP forms a separate layer-two connection

to the client for each upstream ISP. Our implementation

uses the Linux 2.6 kernel support for IP-IP tunnels, GRE

tunnels, EGRE tunnels, and VLANs, as well as UDP tun-

nels through a user-space OpenVPN daemon.

Transparent forwarding between clients and ISPs. The

TP can use simple policy routing to direct traffic from each

client tunnel to the corresponding ISP. Forwarding traffic

from ISPs to clients, however, is more challenging. A con-

ventional router with a single forwarding table would di-

rect the traffic to the client prefix over a single link (or use

several links in a round robin fashion if multipath routing

is enabled.) The TP, though, as shown in Figure 5 must en-

sure the packets are directed to the appropriate layer-two

link—the one the client’s virtual router associates with the

upstream ISP. To allow this, the TP maintains a virtual for-

warding table for each upstream ISP. Our implementation

uses the Linux 2.6 kernel’s support for up to 252 such ta-

bles, allowing the TP to support up to 252 upstream ISPs.

The TP can connect to an upstream ISP over a point-

to-point link using a variety of physical media or tun-

neling technologies. We also want to support deploy-

ment of Transit Portals at exchange points, where the TP

may connect with multiple ISPs over a local area net-

work via a single interface. Each ISP in such shared me-

dia setup sends layer-two frames using a distinct source

MAC address; the TP can use this address to correctly

identify the sending ISP. Figure 6 shows how such traffic

de-multiplexing is configured using policy routing rules.

The ISP router has an IP address 1.1.1.1 with a MAC
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Requirement Decision Implementation
Transparent Connectivity (Section 3.1)

Different layer-two connections Tunnels between TP and virtual router Tunneling technologies supported by the Linux kernel
Transparent traffic forwarding Isolated forwarding tables for ISPs Virtual forwarding tables and policy routing in Linux

Scalability (Section 3.2)
Scalable routing with the # of ISPs Isolated routing tables for ISPs BGP views feature in Quagga bgpd daemon
Scalable updates with # of clients Shared route update computation Peer-group feature in Quagga bgpd daemon
Scalable forwarding with # of ISPs Policy/default routing Modifications to the Quagga bgpd daemon

Protection (Section 3.3)
Preventing IP address spoofing Packet filtering on source IP address Linux iptables
Preventing prefix hijacking Route filtering on IP prefix Quagga prefix filters
Limiting routing instability Rate-limiting of BGP update messages Route-flap damping in Quagga bgpd daemon
Controlling bandwidth usage Traffic shaping on virtual interfaces Linux tc

Table 1: Design and implementation decisions.

address 0:0:0:0:0:11 and a dedicated forwarding ta-

ble, 1. Line 1 shows the TP learning the MAC address of

an upstream ISP when a new session is established. Then,

lines 3–4 establish a policy-routing rule that redirects all

the packets with this MAC address to a virtual forwarding

table serving a new upstream ISP.

Transparency is another important goal for connec-

tivity between client networks and the Transit Portal.

In other words, a client network’s connection to the

TP should appear as though it were directly connected

to the respective upstream networks. In the control

plane, achieving this goal involves (1) removing the ap-

pearance of an extra AS hop along the AS path; and

(2) passing BGP updates between client networks and up-

streams as quickly as possible. The first task is achieved

with the remove-private-as rewrite configura-

tion (line 10 in Figure 7(a)), and the second task is

achieved by setting the advertisement interval to a low

value (line 18 in Figure 7(a)).

The Transit Portal supports two types of clients based

on their AS number: 1) clients who own a public AS num-

ber, and 2) clients who use a private AS number. To en-

sure transparency for the clients with a public AS number,

the TP forwards the updates from such clients unmodi-

fied. Updates from clients with private AS numbers re-

quire rewriting.

3.2 Scalability

The TP maintains many BGP sessions, stores and dis-

seminates many BGP routes, and forwards packets be-

tween many pairs of clients and ISPs. Scaling to a large

number of ISPs and clients is challenging because each

upstream ISP announces routes for many prefixes (i.e.,

300,000 routes); each client may receive routes from many

(and possibly all) of these ISPs; and each client selects and

uses routes independently. We describe three design deci-

sions that we used to scale routing and forwarding at the

TP: BGP views, peer groups, and default routing.

Scalable routing tables using BGP views. Rather than

selecting a single best route for each destination prefix, the

TP allows each service to select among the routes learned

from all the upstream ISPs. This requires the Transit Por-

tal to disseminate routes from each ISP to the downstream

clients, rather than selecting a single best route. This could

be achieved by having the TP run a separate instance of

BGP for each upstream ISP, with BGP sessions with the

ISP and each of the clients. However, running multiple in-

stances of BGP—each with its own process and associated

state—would be expensive. Instead, the TP runs a single

BGP instance with a multiple “BGP views”—each with

its own routing table and decision process—for each up-

stream ISP. Using BGP views prevents the TP from com-

paring routes learned from different ISPs, while still capi-

talizing on opportunities to store redundant route informa-

tion efficiently. Any downstream client that wants to re-

ceive routing messages from a specific upstream ISP need

only establish a BGP session to the associated view. In

our implementation, we leverage the BGP view feature

in Quagga; in particular, Figure 7(a) shows the configu-

ration of a single “view” (starting in line 3) for upstream

ISP 1. Section 5.2 shows that using BGP views in Quagga

allows us to support approximately 30% more upstream

ISPs with the same memory resources compared to the

number of supported ISPs using plain BGP processes.

Scalable updates to clients with BGP peer groups.

Upon receiving a BGP update message from an upstream

ISP, the TP must send an update message to each client

that “connects” to that ISP. Rather than creating, storing,

and sending that message separately for each client, the

TP maintains a single BGP table and constructs a com-

mon message to send to all clients. Our implementation

achieves this goal by using the peer-group feature in

Quagga, as shown in Figure 7(a); in particular, line 14 as-

sociates Client A (CA) with the peer-group View1

for upstream ISP 1, as defined in lines 17–20. Note that al-

though this example shows only one peer-group member,

the real benefit of peer groups is achieved when multiple

clients belong to the same group. Section 5.3 shows that

peer-groups reduce CPU consumption threefold.

Smaller forwarding tables with default routes and pol-

icy routing. Despite storing and exchanging many BGP

routes in the control plane, the Transit Portal should try

to limit the amount of data-plane state for fast packet for-

warding. To minimize data-plane state, the TP does not in-

stall all of the BGP routes from each BGP view in the ker-
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(a) Quagga configuration.
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(b) Control-plane setup.

Figure 7: Example control-plane configuration and setup: The TP

is a hacked version of Quagga that installs non-default routes into

Forwarding Table 1.

nel forwarding tables. Instead, the TP installs the smallest

amount of state necessary for customized packet forward-

ing to and from each client. On each virtual forwarding

table the TP stores only a default route to an upstream ISP

associated with that table (to direct clients’ outbound traf-

fic through the ISP) and the BGP routes announced by the

clients themselves (to direct inbound traffic from the ISP

to the appropriate client). As shown in Section 5.2, this

arrangement allows us to save about one gigabyte of mem-

ory for every 20 upstream ISPs. To selectively install only

the routes learned from clients, rather than all routes in the

BGP view, we make modifications to the Quagga.

3.3 Protection

The TP must protect other networks on the Internet from

misbehavior such as IP address spoofing, route hijacking

or instability, or disproportionate bandwidth usage.

Preventing spoofing and hijacking with filters. The TP

should prevent clients from sending IP packets or BGP

route announcements for IP addresses they do not own.

The TP performs ingress packet filtering on the source

IP address and route filtering on the IP prefix, based on

the client’s address block(s). Our implementation filters

packets using the standard iptables tool in Linux and

filters routes using the prefix-list feature, as shown

in lines 16 and 22-26 of Figure 7(a). In addition to fil-

tering prefixes the clients do not own, the TP also pre-

vents clients from announcing smaller subnets (e.g., below

a /24) of their address blocks. Smaller subnets are also fil-

tered by default by most of the Internet carriers. Section 7

describes how TP can overcome this limitation.

Limiting routing instability with route-flap damping.

The TP should also protect the upstream ISPs and the In-

ternet as a whole from unstable or poorly managed clients.

These clients may frequently reset their BGP sessions

with the TP, or repeatedly announce and withdraw their

IP prefixes. The TP uses route-flap damping to prevent

such instability from affecting other networks. Our imple-

mentation enables route-flap damping (as shown in line

6 of Figure 7(a)) with the following parameters: a half-

life of 15 minutes, a 500-point penalty, a 750-point reuse

threshold, and a maximum damping time of 60 minutes.

These settings allow client to send the original update, fol-

lowed by an extra withdrawal and an update, which will

incur penalty of 500 points. Additional withdrawals or

updates in short time-frame will increase penalty above

reuse threshold and the route will be suppressed until the

penalty shrinks to 750 points (the penalty halves every 15

minutes). There is no danger that one client’s flapping will

affect other clients, as route damping on the Internet works

separately for each announced route.

Controlling bandwidth usage with rate-limiting. The

TP should prevent clients from consuming excessive band-

width, to ensure that all clients have sufficient resources to

exchange traffic with each upstream ISP. The TP prevents

bandwidth hoarding by imposing rate limits on the traf-

fic on each client connection. In our implementation, we

use the standard tc (traffic control) features in Linux to

impose a maximum bit rate on each client link.

4. Deployment

We have deployed Transit Portals in four locations.

Three TPs are deployed in the United States, in Atlanta,

Madison, and Seattle. We also have one Transit Portal

deployment in Tokyo, Japan. All Transit Portals are de-

ployed in universities and research labs, whose networks

act as a sole ISP in each location. Each ISP also provides

full transit for our prefix and AS number. We are actively

expanding this deployment: We are engaging with oper-

ators at two European research institutions and with one

commercial operator in the U.S. to deploy more Transit

Portals, and we are planning to expand our Seattle instal-

lation to connect to more ISPs.
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Figure 8: IP anycast experiment setup.

The TPs currently advertise BGP routes using origin

AS 47065 and IP prefix 168.62.16.0/21. Clients currently

use a private AS number, which the TP translates to the

public AS number, 47065, before forwarding an update.

Clients can also obtain their own AS number, in which

case the TP re-advertises the updates without modifica-

tion.

This section presents an operational deployment of a

distributed, anycasted DNS service—as we described in

Section 2—that uses the TP for traffic control, similar to

the service we described in Section 2 (Figure 2). In our

evaluation of this deployment, we demonstrate two dis-

tinct functions: (1) the ability to load balance inbound and

outbound traffic to and from the DNS service (including

the ability to control the number of clients that communi-

cate with each replica); (2) the ability to reduce latency for

specific subsets of clients with direct route control.

4.1 DNS With IP Anycast

In this section, we show how the TP delivers control and

performance improvements for applications that can sup-

port IP anycast, such as anycast DNS resolution. The TP

allows an IP anycast service to: 1) react to failures faster

than using DNS re-mapping mechanisms, 2) load-balance

inbound traffic, and 3) reduce the service response time.

We explain the experiment setup and the measurements

that show that adding IP anycast to services running on

Amazon EC2 servers can improve latency, failover, and

load-balance.

We deploy two DNS servers in Amazon EC2 data cen-

ters: one DNS server in the US-East region (Virginia)

and another in the US-West region (Northern California).

The servers are connected to two different TP sites and

announce the same IP prefix to enable IP anycast rout-

ing as shown in Figure 8. The US-East region is con-

nected to AS 2637 as an upstream provider, while the

US-West region is connected to AS 2381 as its upstream

provider. We measure the reachability and delay to these

DNS servers by observing the response time to the IP any-

cast address from approximately 600 clients on different

PlanetLab [21] nodes. Since our goal is to evaluate the

Figure 9: AS-level paths to an EC2 service sitting behind the Transit

Portal (AS 47065), as seen in RouteViews.

scenario where the TP is collocated with a cloud comput-

ing facility, we adjust the measurements to discount the

round-trip delay between the TP and the Amazon EC2

data centers.

The main provider of both upstreams is Cogent

(AS 174), which by default prefers a downstream link to

AS 2381. Cogent publishes a set of rules that allows Co-

gent’s clients (e.g., AS 2381, AS 2637, and their respective

clients) to affect Cogent’s routing choices [13]. The DNS

service hosted on an Amazon host runs a virtual router

and thus can apply these rules and control how incoming

traffic ultimately reaches the service.

Figure 9 shows a capture from the BGPlay tool [1],

which shows the initial routing state with the original BGP

configuration. Most of the Internet paths to AS 47065 tra-

verse Cogent (AS 174), which in turn prefers AS 2381 to

forward the traffic to the client. Note that the client is con-

figured with private AS number, but the TPs rewrite the

updates before re-advertising them to the Internet. This

rewriting causes the routers on the Internet to observe pre-

fixes from as if they were announced by AS 47065.

Failover. Today’s Internet applications use DNS name re-

mapping to shift services to active data centers in the case

of a data center or network failure. DNS name re-mapping

is a relatively slow process because it requires the DNS

entries to expire in DNS caches across the Internet. Ap-

plications that support IP anycast can rely on the routing

infrastructure to route traffic to active data centers. In our

experiment, we fail the server deployed in the US-West re-

gion and observe how quickly the clients converge to the

US-East region.

Figure 10 shows how the load changes as we introduce

failure. At 12 second mark we fail the US-West deploy-

ment and stop receiving requests at that site. After approx-

imately 30 seconds, the routing infrastructure reroutes the

traffic to the US-East site. The reaction to failure was auto-

matic, requiring no monitoring or intervention from either

the application or the TP operators.

Inbound traffic control. Assume that the DNS service

would prefer that most of its traffic is served via AS 2637,

rather than AS 2381. (The client network might prefer an

7
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Figure 10: Failover behavior with two IP anycast servers.
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(b) Route convergence after applying the route map.

Figure 11: Load balance: Applying a route map to outbound adver-
tisements to affect incoming traffic.

alternate route as a result of cost, security, reliability, de-

lay, or any other metric.) The Transit Portal clients can ap-

ply BGP communities to affect how upstream ISPs routes

to its customers. On August 14, we changed the client

configuration as shown in Figure 11(a) to add BGP com-

munity 174:10 to a route, which indicates to one of the

upstream providers, Cogent (AS 174), to prefer this route

less than other routes to the client network.

To see how fast the Internet converges to new route, we

analyze the route information provided by RouteViews.

Figure 11(b) shows the convergence of the Internet routes

to a new upstream. The dashed line shows the number of

networks on the Internet that use the AS 2381 link, while

the plain line shows the number of networks that use the

AS 2637 link to reach the client hosted in the Amazon data

center. (Note that the number of routes corresponds only

to the routes that we collected from RouteViews.)

IP anycast application performance. We evaluate three

DNS servicing scenarios: 1) US-East only server, 2) US-

West only server, and 3) both servers using inter-domain

Avg. Delay US-East US-West

US-East 102.09ms 100% 0%

US-West 98.62ms 0% 100%

Anycast 94.68ms 42% 58%

Table 2: DNS anycast deployment. Average round trip time to the

service and fraction of the load to each of the sites.

Figure 12: Outbound TE experiment setup.

IP anycast routing. We measure the delay the PlanetLab

clients observe to the IP anycast address in each of these

scenarios. Using IP anycast should route each client to the

closest active data center.

Table 2 shows the results of these experiments. Serv-

ing DNS using IP anycast provides 4-8ms improvement

compared to serving with any of the sites separately. The

improvement is not significant in our setup, since we use

the Midwest and East coast TP deployments are not far

from each other. We expect larger improvements when IP

anycast is used from more diverse locations.

4.2 Outbound traffic control

We now show how two different services in a single

data center can apply different outbound routing policies

to choose different exit paths from the data center. Fig-

ure 12 shows the demonstration setup. DNS and FTP

services run virtual routers configured as AS 65001 and

AS 65002 respectively; both services and the Transit Por-

tal are hosted at the same site as the ISP with an AS 2637.

The ISP with an AS 2381 is in a different location and, for

the sake of this experiment, the TP routes connections to

it via a tunnel.

Without a special configuration, the services would

choose the upstream ISP based on the shortest AS path. In

our setup, we use the route-map command combined

with a set local-preference setting to configure

AS 65001 (DNS service) to prefer AS 2637 as an upstream

and AS 65002 (FTP service) to prefer AS 2381 as an up-

stream. Figure 13 shows how the traceroutes to a remote

host differ because of this configuration. The first hop

in AS 65001 is a local service provider and is less than

1 millisecond away. AS 65002 tunnels are transparently
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1 AS65001−node : ˜ # traceroute -n -q 1 -A

133.69.37.5

2 t r a c e r o u t e t o 1 3 3 . 6 9 . 3 7 . 5

3 1 1 0 . 0 . 0 . 1 [∗ ] 0 ms

4 2 1 4 3 . 2 1 5 . 2 5 4 . 2 5 [ AS2637 ] 0 ms

5 [ s k i p p e d ]

6 8 2 0 3 . 1 8 1 . 2 4 8 . 1 1 0 [ AS7660 ] 187 ms

7 9 1 3 3 . 6 9 . 3 7 . 5 [ AS7660 ] 182 ms

(a) Traceroute from AS 65001 client.

1 AS65002−node : ˜ # traceroute -n -q 1 -A

133.69.37.5

2 t r a c e r o u t e t o 1 3 3 . 6 9 . 3 7 . 5

3 1 1 0 . 1 . 0 . 1 [∗ ] 23 ms

4 2 2 1 6 . 5 6 . 6 0 . 1 6 9 [ AS2381 ] 23 ms

5 [ s k i p p e d ]

6 9 1 9 2 . 2 0 3 . 1 1 6 . 1 4 6 [∗ ] 200 ms

7 10 1 3 3 . 6 9 . 3 7 . 5 [ AS7660 ] 205 ms

(b) Traceroute from AS 65002 client.

Figure 13: Traceroute from services co-located with TP East and

AS 2637.
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Figure 14: Average access speed from U.S. North East as packet loss

is introduced at Princeton site.

switched through a local TP and terminated at the remote

AS 2381, which introduces additional delay.

4.3 Performance optimization

TP can be used to optimize the Internet service ac-

cess performance. We simulate a video content provider

with video streaming services running in cloud sites at the

Princeton and the Atlanta locations. Bandwidth measure-

ments show that the Princeton site offers better speed for

clients in the U.S. North East region, while the Atlanta site

is preferred for the U.S. South East region.

Assume that, due to periodic congestion, Princeton ex-

periences intermittent packet loss every day around noon.

Since the packet loss is intermittent, the application op-

erator is reluctant to use DNS to re-map the clients. In-

stead of DNS, operator can use TP for service rerouting

when packet loss is detected. Figure 14 shows average ser-

vice access speed from the clients in the U.S. North East

as the loss at the Princeton site is increasing. As Prince-

ton reaches a 1.1% packet loss rate, the Atlanta site, with

its baseline speed of 1140 Kbps, becomes a better choice.

Application operators then can use methods described in

AS Prefixes Updates Withdrawals

RCCN (1930) 291,996 267,207 15,917
Tinet (3257) 289,077 205,541 22,809
RIPE NCC (3333) 293,059 16,036,246 7,067
Global Crossing (3549) 288,096 883,290 68,185
APNIC NCC (4608) 298,508 589,234 9,147
APNIC NCC (4777) 294,387 127,240 12,233
NIX.CZ (6881) 290,480 150,304 11,247
AT&T (7018) 288,640 1,116,576 904,051
Hutchison (9304) 296,070 300,606 21,551
IP Group (16186) 288,384 273,410 47,776

Table 3: RIPE BGP data set for September 1, 2009.

Section 4.1 and 4.2 to reroute their applications when they

observe losses in Princeton higher than 1.1%.

5. Scalability Evaluation

This section performs micro-benchmarks to evaluate

how the Transit Portal scales with the number of upstream

ISPs and client networks. Our goal is to demonstrate the

feasibility of our design by showing that a TP that is imple-

mented in commodity hardware can support a large num-

ber of upstream ISPs and downstream clients. Our evalua-

tion quantifies the number of upstream and client sessions

that the TP can support and shows how various design de-

cisions from Section 3 help improve scalability. We first

describe our evaluation setup; we then explore how the

number of upstream ISPs and downstream client networks

affect the TP’s performance for realistic routing workload.

Our findings are unsurprising but comforting: A single TP

node can support tens of upstream ISPs and hundreds of

client networks using today’s commodity hardware, and

we do not observe any nonlinear scaling phenomena.

5.1 Setup

Data. To perform repeatable experiments, we construct a

BGP update dataset, which we will use for all of our sce-

narios. We use BGP route information provided by RIPE

Route Information Service (RIS) [23]. RIPE RIS provides

two types of BGP update data: 1) BGP table dumps, and

2) BGP update traces. Each BGP table dump represents a

full BGP route table snapshot. A BGP update trace rep-

resents a time-stamped arrival of BGP updates from BGP

neighbors. We combine the dumps with the updates: Each

combined trace starts with the stream of the updates that

fill in the BGP routing table to reflect a BGP dump. The

trace continues with the time-stamped updates as recorded

by the BGP update trace. When we replay this trace, we

honor the inter-arrival intervals of the update trace.

Table 3 shows our dataset, which has BGP updates from

10 ISPs. The initial BGP table dump is taken on Septem-

ber 1, 2009. The updates are recorded in 24-hour pe-

riod starting on midnight September 2 and ending at mid-

night September 3 (UTC). The average BGP table size is

291,869.1 prefixes. The average number of updates during

a 24-hour period is 1,894,474.3, and the average number

of withdrawals is 111,998.3. There are more announce-
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ments than withdrawals (a withdrawal occurs only if there

is no alternate route to the prefix).

The data set contains two upstream ISPs with an un-

usually high number of updates: AS 3333 with more than

16 million updates, and AS 7018 with more than 900,000

withdrawals. It is likely that AS 3333 or its clients use re-

active BGP load-balancing. In AS 7018, the likely expla-

nation for a large number of withdrawals is a misconfig-

uration, or a flapping link. In any case, these outliers can

stress the Transit Portal against extreme load conditions.

Test environment. We replay the BGP updates using

the bgp simple BGP player [11]. The bgp simple

player is implemented using Perl Net::BGP libraries.

We modified the player to honor the time intervals be-

tween the updates.

Unless otherwise noted, the test setup consists of five

nodes: Two nodes for emulating clients, two nodes for

emulating upstream ISPs, and one node under test, run-

ning the Transit Portal. The test node has two 1 Gbps Eth-

ernet interfaces, which are connected to two LANs: one

LAN hosts client-emulating nodes, the other LAN hosts

upstream-emulating nodes. Each node runs on a Dell Pow-

erEdge 2850, with a 3 Ghz dual-core 64-bit Xeon CPU and

2 GB of RAM. The machines run Fedora 8 Linux.

When we measure CPU usage for a specific process, we

use the statistics provided by /proc. Each process has

a jiffies counter, which records the number of sys-

tem ticks the process used so far. For each test, we col-

lect jiffies at five-second intervals over three minutes and

the compute average CPU usage in percent. The vmstat

utility provides the overall memory and CPU usage.

5.2 Memory Usage

Upstream sessions. Using a commodity platform with

2GB of memory, TP scales to a few dozen of upstream

ISPs. Figure 15 shows how the memory increases as

we add more upstream ISPs. When TP utilizes sepa-

rate BGP processes, each upstream ISP utilizes approx-

imately 90MB of memory; using BGP views each up-

stream ISP utilizes approximately 60MB of memory. Data

plane memory usage, as shown in Figure 16, is insignifi-

cant when using our forwarding optimization.

Downstream sessions. Each session to a downstream ap-

plication consumes approximately 10MB of memory. For

example, given 20 upstream ISPs, a client “subscribing”

to all of them will consume 200MB. Upgrading the TP

machine to 16GB of memory would easily support 20 up-

stream ISPs with more than a hundred clients subscribing

to an average of 10 ISPs. The clients use only a small

amount of memory in the data plane. The TP ensures for-

warding only to the prefixes clients own or lease.

5.3 CPU Usage and Propagation Time
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Figure 15: Control plane memory use.
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Figure 16: Data plane memory use.

The main users of TP CPU are a BGP scan process,

which scans the routes for the changes in reachability in-

formation, and BGP update parsing process, which parses

the updates which arrive intermittently at a rate of approx-

imately 2 million updates per day.

Figure 17 shows the time-series of the CPU usage of two

BGP processes as they perform routine tasks. Routing up-

dates for both processes arrive from five different ISPs ac-

cording to their traces. The baseline uses a default Quagga

configuration with one routing table, and one client. The

Transit Portal configuration terminates each ISP at a dif-

ferent virtual routing table and connects 12 clients (which

amounts to a total of 60 client sessions). The TP configu-

ration, on average consumes 20% more CPU than a base-
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Figure 17: CPU usage over time (average taken every 3 seconds).
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Figure 18: CPU usage while adding client sessions.
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Figure 19: Update propagation delay.

line configuration – most of this load overhead comes from

maintaining more client sessions. The spikes in both plots

correspond to BGP scan performed every 60 seconds.

TP can easily support hundreds of client BGP sessions.

Figure 18 shows CPU usage as more client sessions are

added. Two plots shows CPU usage using the default

client configuration and CPU usage using a client config-

uration with a peer-group feature enabled. While conduct-

ing this experiment, we add 50 client sessions at a time and

measure CPU load. We observe fluctuations in CPU use

since at each measurement the number of updates passing

the TP is slightly different. Nevertheless the trend is visi-

ble and each one hundred of client sessions increase CPU

utilization by approximately a half of a percent.

Figure 19 shows the update propagation delays though

the TP. The baseline configuration uses minimal configu-

ration of Quagga with advertisement interval set to 2 sec-

onds. Other configurations reflect the setup of five up-

stream providers with 10, 25, and 50 sessions. Approx-

imately 40% of updates in the setup with 10 sessions are

delivered within 1.6 seconds, while the baseline configura-

tion seems to start deliver updates only at around 1.7 sec-

ond mark. The reason for this is the grouping of updates

at the TP. Single upstream ISP sends updates in batches

and each batch is subject to configured 2 second advertise-

ment interval. When multiple upstream ISPs are config-

ured, more updates arrive at the middle of advertisement

interval and can be delivered as soon as it expires.

6. Framework for Provisioning Resources

The TP service provides an interface to the clients of

existing hosting facilities to provision wide-area connec-

tivity. In this section, we describe the design and imple-

1 <rspec t y p e =” adver t i s ement ” >

2

3 <node v i r t u a l i d =” tp1 ”>

4 <node type t ype name=” tp ”>

5 < f i e l d key=” e n c a p s u l a t i o n ” v a l u e =” gre ” />

6 < f i e l d key=” e n c a p s u l a t i o n ” v a l u e =” egre ” />

7 < f i e l d key=” upstream as ” v a l u e =”1” />

8 < f i e l d key=” upstream as ” v a l u e =”2” />

9 < f i e l d key=” p r e f i x ” c o u n t=”3” l e n g t h =”24” />

10 </ node type>

11 </ node>

Figure 20: Resource advertisement: In Step 0 of resource allocation

(Figure 21), the TP’s component manager advertises available re-

sources. This example advertisement says that the TP supports both
GRE and EGRE encapsulation, has connections to two upstream

ASes, and has three /24 prefixes available to allocate.

mentation of this management plane. We first discuss the

available resources and how they are specified. Next, we

describe the process for clients to discover and request

resources. Then, we discuss how we have implemented

the management plane in the context of the GENI control

framework [16]. In the future, the management plane will

also control the hosting resources, and provide clients a

single interface for resource provisioning.

6.1 Resources and Their Specification

The current resource allocation framework tracks num-

bered and network resources. The numbered resources in-

clude the available IP address space, the IP prefixes as-

signed to each client network, the AS number (or num-

bers) that each client is using to connect to the TPs, and

which IP prefix will be advertised from each location.

The framework must also keep track of whether a client

network has its own IP prefix or AS number. Network

resources include the underlying physical bandwidth for

connecting to clients, and bandwidth available to and from

each upstream ISP. Management of hosting resources, at

this stage, is left for the client networks to handle.

The available resources should be specified in a consis-

tent, machine-readable format. Our implementation rep-

resents resources using XML. Figure 20 shows an exam-

ple advertisement, which denotes the resources available

at one TP that offers two upstream connections, as indi-

cated by lines 7–8 in the advertisement. The advertisement

also indicates that this TP has three prefixes available for

clients (line 9) and can support both GRE and EGRE tun-

neling (lines 5–6).

6.2 Discovering and Requesting Resources

Each Transit Portal runs a component manager (CM)

that tracks available resources on the node. To track

available capacity between TPs, or on links between vir-

tual hosting facilities, the service uses an aggregate man-

ager (AM). The aggregate manager maintains inventory

over global resources by aggregating the available re-

sources reported by the component managers. It also
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Figure 21: Resource allocation process.

brokers client requests by contacting individual CMs, as

shown in Figure 21.

Clients can discover and request resources using a sup-

plied command line tool en-client.py. The tool can

issue resource discovery and resource reservation requests

to a hard-coded AM address as shown in Section 4.2.

Before clients can request resources, the AM must know

about resources in all TP installations. Each component

manager registers with the AM and provides the list of

the available resources, such as the list of upstream ISPs

and available IP prefixes (Step 0 in Figure 21). To request

resources, a client first issues a discovery call to an AM

(Step 1). The AM replies with advertisement, which de-

scribes resources available for reservation (Step 1), such as

the example in Figure 20. After receiving the resource ad-

vertisement, a client can issue a resource request (Step 3),

such as the example in Figure 22(b). If the resources are

available, the AM issues the reservation request to TP1

(Step 4) and responds with a manifest (Step 5), which

is annotated version of the request providing the miss-

ing information necessary to establish the requested topol-

ogy, as shown in Figure 22(c). AM also provides sample

client configuration excerpts with the manifest to stream-

line client configuration setup. The client uses the mani-

fest to configure its end of the links and sessions, such as

the configuration of PC1 in Figure 22(a).

6.3 Implementation

We implement the provisioning framework in the spirit

of the Slice-based Facility Architecture (SFA) [2]. This

management plane approach is actively developed by

projects in the GENI [16] initiative, such as Proto-

GENI [22]. SFA is a natural choice, because our inter-

mediate goal is to integrate the TP with testbeds like Pro-

toGENI [22] and VINI [25]. We use the Twisted event-

driven engine libraries written in Python to implement the

management plane components.

The primary components of the SFA are the Compo-

nent Manager (CM) and Aggregate Manager (AM) as in-

troduced before. The interface between the AM and CM is

implemented using XML-RPC calls. The client interacts

with the AM though a front-end, such as the Emulab or

PlanetLab Web site, which in turn contacts the AM using

XML-RPC, or through the supplied client script.

Currently, access control to AM is controlled with static

access rules that authenticate clients and authorize or pre-

Emulab Internet Exchange

TP1 nodePC1 node

“AS 2”
“Local AS 1”

ETH0ETH0

“network
2.2.2.0/24”

bgpd process bgpd process (AS 
47065)

EGRE Tunnel

.1 .22.2.2.0/30

BGP session

10.0.0.1 10.1.0.1

(a) Topology resulting from the resource request.

1 <rspec t y p e =” r e q u e s t ” >

2 <node v i r t u a l i d =” tp1 ”>

3 <node type t ype name=” tp ”>

4 <f i e l d key=” upstream as ” v a l u e =”1” />

5 <f i e l d key=” p r e f i x ” c o u n t=”1”>

6 </ node type>

7 </ node>
8 < l i n k v i r t u a l i d =” l i n k 0 ”>

9 < l i n k t y p e name=” egre”>

10 <f i e l d key=” t t l ” v a l u e =”255 ”>

11 </ l i n k t y p e>

12 < i n t e r f a c e r e f v i r t u a l n o d e i d =” tp1 ” />

13 < i n t e r f a c e r e f v i r t u a l n o d e i d =”pc1 ”

t u n n e l e n d p o i n t =” 1 0 . 0 . 0 . 1 ” />

14 </ l i n k>

15 </ rspec>

(b) The resource request specifies the client’s tunnel endpoint,
10.0.0.1, and asks for an EGRE tunnel, as well as an IP prefix
and upstream connectivity to AS 1.

1 <rspec t y p e =” mani fe s t ” >

2 <node v i r t u a l i d =” tp1 ”>

3 <node type t ype name=” tp ”>

4 < f i e l d key=” upstream as ” v a l u e =”1” />

5 < f i e l d key=” p r e f i x ” c o u n t=”1” v a l u e =”

2 . 2 . 2 . 0 / 2 4 ” />

6 </ node type>

7 </ node>
8 < l i n k v i r t u a l i d =” l i n k 0 ”>

9 < l i n k t y p e name=” egre ”>

10 < f i e l d key=” t t l ” v a l u e =”255 ” />

11 </ l i n k t y p e>

12 < i n t e r f a c e r e f v i r t u a l n o d e i d =” tp1 ”\
13 t u n n e l e n d p o i n t =” 1 0 . 1 . 0 . 1 ”\
14 t u n n e l i p =” 2 . 2 . 2 . 2 / 3 0 ” />

15 < i n t e r f a c e r e f v i r t u a l n o d e i d =”pc1 ”\
16 t u n n e l e n d p o i n t =” 1 0 . 0 . 0 . 1 ”\
17 t u n n e l i p =” 2 . 2 . 2 . 1 / 3 0 ” />

18 </ l i n k>
19 </ rspec>

(c) The manifest assigns an IP prefix to the network,
2.2.2.0/24, and specifies the parameters for the tunnel be-
tween PC1 and TP1.

Figure 22: The resource request (Step 3) and manifest (Step 5) of the
resource allocation process, for an example topology.

vent a client from instantiating resources. To support more

dynamic access control, we plan to expand the AM and

CM to support security credentials, which will enable us

to inter-operate with existing facilities (e.g., PlanetLab,

VINI, GENI) without using static access rules. We also

plan to extend the resource management to include slice-

based resource allocation and accounting.

7. Extensions to the Transit Portal

TP is a highly extensible platform. In the future we plan

to add support for lightweight clients who don’t want to

run BGP, support for smaller IP prefixes, support for back-
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haul between different TP sites, extensions for better scal-

ability using hardware platforms for the data plane, and

extensions for better routing stability in the face of tran-

sient client networks.

Support for lightweight clients. Some client networks

primarily need to control traffic, but do not necessarily

need to run BGP between their own networks and the tran-

sit portal. In these cases, a client could use the existence or

absence of a tunnel to the TP to signal to the TP whether

it wanted traffic to enter over a particular ingress point.

When the client network brings up a tunnel, the TP could

announce the prefix over the appropriate ISP. When the

client brings the tunnel down, the TP withdraws the pre-

fix. As long as the tunnels are up, the client is free to

choose an outgoing tunnel to route its traffic.

Support for small IP prefixes. Many client networks

may not need IP addresses for more than a few hosts; un-

fortunately, such client networks would not be able to ad-

vertise their own IP prefix on the network, as ISPs typi-

cally filter IP prefixes that are longer than a /24 (i.e., sub-

networks with less than 256 addresses). The TP could

allow client networks with fewer hosts to have BGP-like

route control without having to advertise a complete /24

network. Clients for such networks would have full con-

trol of outgoing route selection and limited control for in-

fluencing incoming routes.

Better scalability. The scalability of the TP data plane can

be further improved in two ways: (1) by running multiple

TPs in an Internet exchange, each serving subset of up-

stream ISPs, and (2) running the data and control plane of

a TP on separate platforms. The first approach is easier to

implement. The second approach offers the convenience

of a single IP address for BGP sessions from ISPs and

follows the best practices of data plane and control plane

separation in modern routers. A data plane running on a

separate platform could be implemented using OpenFlow

or NetFPGA technologies.

Better routing stability in the face of transient client

networks. The Transit Portal can support transient client

networks that need BGP-based route control but do not

need to use network resources all of the time. For exam-

ple, suppose that a client network is instantiated every day

for three hours to facilitate a video conference, or bulk

transfer for backups. In these cases, the TP can simply

leave the BGP prefix advertised to the global network,

even when the client network is “swapped out”. In this

way, TPs could support transient client networks without

introducing global routing instability.

Back-haul between sites. Today’s cloud applications in

different data centers, performing tasks such as backup

or synchronization, must traverse the public Internet. For

instance, Amazon EC2 platform offers sites in U.S. East

coast, U.S. West coast and in Ireland. Unfortunately, the

platform offers little transparency or flexibility for appli-

- Akamai
- Amazon Cloud Front

- Limelight
- Overlay networks

Transit

Portal
- Equinix Direct
- InterNAP

- Route-servers
- Multihoming

- Amazon EC2
- Hosting

Figure 23: Transit Portals allow cloud providers to offer wide-area

route control to hosted services

cation operators seeking to connect the applications in dif-

ferent sites into a common network. TP platform, on the

other hand, is well suited to support sophisticated back-

haul between applications in different sites. Each TP site

can choose among multiple paths to other TP sites and

application operator could exercise control on what path

applications are routed to reach other sites. In addition,

TP could facilitate private networking between the appli-

cations in different sites by using TP to TP tunnels. TP

could also improve connectivity between the sites through

deflection routing, where TP site A relies on TP site B to

relay the traffic to TP site C.

8. Related Work

On the surface, the Transit Portal is similar to several

existing technologies, including content distribution net-

works, route servers, cloud hosting providers, and even

exchange point operators. Below, we describe how these

existing technologies differ from TP, with respect to their

support for the applications from Section 2.

Content distribution networks and cloud hosting

providers do not provide control over inbound and out-

bound traffic. Content distribution networks like Aka-

mai [6] and Amazon Cloud Front host content across a

network of caching proxies, in an attempt to place con-

tent close to users to improve performance and save band-

width. Each of these caching proxies may be located in

some colocation facility with its own upstream connectiv-

ity. Some content providers may care more about through-

put, others may care about low delay, others may care

about reliability, and still others might care about minimiz-

ing costs. In a CDN, however, the content provider has no

control over how traffic enters or leaves these colocation

facilities—it is essentially at the mercy of the decisions

that the CDN provider makes about upstream connectiv-

ity. The Transit Portal, on the other hand, allows each

content provider to control traffic independently.

Exchange points do not provide flexible hosting.

Providers like Equinix Direct [15] allow services to

change their upstream connectivity on short timescales
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and connect on demand with ISPs in an Internet exchange.

Equinix Direct operates only at the control plane and ex-

pects clients and ISPs to be able to share a common LAN.

Unlike Equinix Direct, the Transit Portal allows services

to establish connectivity to transit ISPs without renting

rack space in the exchange point, acquiring numbered re-

sources, or procuring dedicated routing equipment.

Route servers do not allow each downstream client net-

work to make independent routing decisions. Route

servers reduce the number of sessions between the peers

in an exchange point: instead of maintaining a clique of

connections, peers connect to a central route server. Route

servers aggregate the routes and select only the best route

to a destination to each of the peers [18]. This function

differs from the TP, which provides transparent access to

all of the routes from upstream ISPs.

DNS-based load balancing cannot migrate live connec-

tions. Hosting providers sometimes use DNS-based load

balancing to redirect clients to different servers—for ex-

ample, a content distribution network (e.g., Akamai [6]) or

service host (e.g., Google) can use DNS to re-map clients

to machines hosting the same service but which have a

different IP address. DNS-based load balancing, however,

does not allow the service provider to migrate a long-

running connection, and it requires the service provider

to use low DNS TTLs, which may also introduce longer

lookup times. The Transit Portal, on the other hand, can

move a service by re-routing the IP prefix or IP address

associated with that service, thereby allowing for longer

DNS TTLs or connection migration.

Overlay networks do not allow direct control over in-

bound or outbound traffic, and may not scale. Some

control over traffic might be possible with an overlay net-

work (e.g., RON [9], SOSR [19]). Unfortunately, overlay

networks can only indirectly control traffic, and they re-

quire traffic to be sent through overlay nodes, which can

result in longer paths.

9. Conclusion

This paper has presented the design, implementation,

evaluation, and deployment of the Transit Portal, which

offers flexible wide-area route control to hosted services.

Our prototype TP system runs at three locations, using its

own /21 address block, AS number, and BGP sessions

with providers. In our future work, we plan to deploy

and evaluate more example services, including offering

our platform to other researchers. Drawing on these de-

ployment experiences, we plan to design and implement

new interfaces (beyond today’s BGP) for distributed ser-

vices to control how traffic flows to and from their users.
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