
A P4-based 5G User Plane Function

Robert MacDavid∗, Carmelo Cascone†, Pingping Lin†, Badhrinath Padmanabhan†,
Ajay Thakur†, Larry Peterson†, Jennifer Rexford∗, Oguz Sunay†

Princeton University∗, Open Networking Foundation†

ABSTRACT
The demands on mobile networks are constantly evolving, but de-
signing and integrating new high-speed packet processing remains
a challenge due to the complexity of requirements and opacity
of protocol specifications. 5G data planes should be implemented
in programmable hardware for both speed and flexibility, and ex-
tending or replacing these data planes should be painless. In this
paper we implement the 5G data plane using two P4 programs:
one that acts as a open-source model data plane to simplify the
interface with the control plane, and one to run efficiently on hard-
ware switches to minimize latency and maximize bandwidth. The
model data plane enables testing changes made to the control plane
before integrating with a performant data plane, and vice versa.
The hardware data plane implements the fast path for device traffic,
and makes use of microservices to implement functions that high-
speed switch hardware cannot do. Our data plane implementation
is currently in limited deployment on three university campuses
where it is enabling new research on mobile networks.

CCS CONCEPTS
• Networks → Mobile networks; Programmable networks;
Middle boxes / network appliances.

KEYWORDS
5G, P4, Mobile networking, Programmable dataplanes
ACM Reference Format:
Robert MacDavid, Carmelo Cascone, Pingping Lin, Badhrinath Padmanab-
han, Ajay Thakur, Larry Peterson, Jennifer Rexford, Oguz Sunay. 2021. A
P4-based 5G User Plane Function. In The ACM SIGCOMM Symposium on
SDN Research (SOSR) (SOSR ’21), September 20–21, 2021, Virtual Event, USA.
ACM, New York, NY, USA, 7 pages. https://doi.org/10.1145/3482898.3483358

1 INTRODUCTION
The emergence of 5G promises high speed and low latency, enabling
a wide range of innovative applications like Internet of Things (IoT)
and augmented/virtual reality. As a result, many organizations—
from global carriers and cloud providers to university campuses
and small businesses—want to deploy their own 5G networks, and
customize them for their users and applications. Historically, mo-
bile network technology has been closed and vertically integrated,

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SOSR ’21, September 20–21, 2021, Virtual Event, USA
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-9084-2/21/09. . . $15.00
https://doi.org/10.1145/3482898.3483358

Figure 1: UPF is configured by the control plane via PFCP, a
niche protocol specific to cellular networks. The UPF routes
traffic destined for user devices (i.e., downlink traffic) to-
wards the correct base station, and acts as a gateway for in-
ternet traffic sent by user devices (i.e., uplink traffic).

making customization frustratingly difficult, if not impossible. For-
tunately, this is changing with 5G due to the availability of open-
source mobile core implementations, including Aether [6], Magma-
Core [8], OpenRAN [10], and Free5GC [7], as well as the adoption of
software-defined networking and cloud services in these platforms.

The heart of the 5G data plane is the User-Plane Function (UPF),
as shown in Figure 1. The UPF not only serves as a full-fledged
IP router, but also routes traffic to mobile devices as they move
between base stations, buffers traffic for idle devices, enforces QoS
constraints, accounts for subscriber usage, and more. The UPF
must execute these features at ever-growing speeds for an ever-
increasing number of mobile devices.

The UPF interacts with a complex control plane consisting of
many components with different responsibilities (e.g., authentica-
tion, billing, etc.), where the control interface is defined by the
Packet Forwarding Control Protocol (PFCP). At the same time, the
set of features the UPF needs to support continuously evolves, due
in part to specification changes, but also in response to deploy-
ments that require customization and new features. As a result,
designers of Mobile Core platforms face the dual challenges of (i)
implementing a sophisticated control plane, and (ii) implementing
an extensible, high-speed UPF data plane.

This paper argues that specifying UPF functionality in the P4
language can help address both of these challenges. To this end, we
present two P4-based UPF designs. The first,model UPF, defines the
PFCP interface as a series of match-action tables, with match keys
based on packet metadata and actions that process the packet. Here,
the P4 program distills the essence of PFCP from a complex and
evolving standards document [4]. With the model UPF data plane
specified in P4, a P4 compiler can generate an RPC-based PFCP
interface automatically, simplifying the process of implementing
the control plane. The model UPF is also a functional UPF, suitable
for running correctness tests on the control-plane implementation.

https://doi.org/10.1145/3482898.3483358
https://doi.org/10.1145/3482898.3483358

SOSR ’21, September 20–21, 2021, Virtual Event, USA MacDavid, et al.

Running on a software switch, the model UPF supports developing
control-plane software in emulation environments like Mininet [9],
without developers requiring access to special-purpose data-plane
hardware. Additionally, recent research focused on automatically
generating test cases based on P4 programs would allow the model
UPF to be used to test other UPF implementations [16, 21].

The model UPF P4 program serves as a useful starting point
for creating full-fledged UPF implementations for specific hard-
ware targets. This leads to our second design, the performant UPF,
which runs on the Intel Tofino programmable data-plane switch.
While earlier open-source 5G platforms implemented the UPF en-
tirely in software, hardware network interface cards (NICs) and
switches offer higher speed and lower power. The performant UPF
P4 program must grapple with the realities of limited data-plane
resources. Some match-action tables in the model UPF are too large,
requiring optimizations that break “wide" match-action tables into
a collection of smaller tables. Other capabilities of a performant UPF
cannot be expressed in P4, or cannot be supported in high-speed
packet-processing hardware at all. Here, we rely on microservices
to support certain functionality, such as buffering traffic for idle
mobile devices. The end result is an efficient system with a hard-
ware data plane processing most traffic, an a set of microservices
handling other UPF functionality.

Many existing works aim to solve issues present in both LTE
and 5G such as control signalling load [19, 22, 24], fault toler-
ance [14, 20], and software data-plane performance [23] but few
seek to implement the data-plane in hardware, although there are
proprietary P4-based solutions [2]. TurboEPC [24] implements
LTE’s equivalent of the UPF in P4 switches and reduces control-
plane load by processing some common control messages in the
data-plane, but it requires control plane modification and does not
discuss features like idle buffering that are currently unsupported
by P4. Aghdai et. al [13] introduce a new P4-based network func-
tion to the mobile core for reducing latency between user devices
and edge services, but they do not implement the UPF or its LTE
equivalent.

The remainder of the paper is organized as follows. §2 presents
background on the User Plane Function and the control-plane in-
terface. §3 presents the model UPF, including how to synthesize the
control-plane interface and specify the data plane. We release the
model UPF P4 program as open source, to serve as executable UPF
documentation for the community. [12] §4 describes the perfor-
mant UPF for the Intel Tofino switch, including how to work within
limited data-plane memory and interface to an external buffering
microservice. §5 presents our experiences with the two UPFs in the
Aether mobile core platform (including deployments on university
campuses), and §6 discusses future research directions.

2 USER PLANE FUNCTION (UPF)
The User Plane Function (UPF) connects the base stations of the
Radio Access Network (RAN) to the Internet. It performs packet
processing for user devices, including supportingmobility, buffering
for idle devices, traffic accounting, and quality-of-service based on
rules configured by the control plane, as summarized in Table 1.

Traffic classification: Each packet corresponds to a user device
attached to the cellular network. The UPF associates a packet with
the corresponding user device and traffic class, based on Packet

Rule Rule Key(s) Rule Parameters
Packet Detection Rule IP Address, 5-Tuple,

Tunnel Headers,
Endpoint DNS Name
Regex

FAR-ID, QER-ID, URR-ID,
Decapsulation Flag

Forwarding Action Rule FAR-ID (Forward, Buffer, Notify)
Flags, Tunnel Headers (op-
tional), BAR-ID (optional)

Buffering Action Rule BAR-ID Buffer Depth, Buffer Duration
Usage Reporting Rule URR-ID Counter Index, Reporting

Frequency or Threshold
QoS Enforcement Rule QER-ID QoS Flow ID (QFI), Guaran-

teed BitRate, Maximum Bi-
tRate

Table 1: The rules a 5G control plane uses to configure a UPF,
the match keys used to look up a rule, and the parameters
loaded into a packet’s metadata by said rule. Italicized fields
are either scaffolded or not present in the model UPF.

Detection Rules (PDRs). A PDR may simply match the device’s IP
address, or consider tunnel headers, the five-tuple, or even the do-
main name of the other end-point. The matching PDR determines
how other parts of the UPF process the packet. Each attached user
device has at least two PDRs, for uplink and downlink traffic, re-
spectively, and possibly more to support multiple traffic classes
(e.g., for different QoS levels, pricing plans, etc.). The control plane
installs, changes, and removes PDRs when a device attaches, moves
to another base station, and detaches, respectively.

Mobility and packet forwarding:User devices connect to new
base stations as the user moves. To tunnel downlink packets to the
right base station, the UPF applies a Forwarding Action Rule (FAR)
identified by the PDR during packet classification. The FAR for
downlink traffic indicates the tunnel header field and the IP address
of the base station. More generally, a FAR specifies a set of actions
(using flags) to apply to the packet, including tunneling, forwarding,
buffering, and notifying the control plane. For example, a typical
FAR for uplink traffic contains only a ‘forward’ flag, signifying that
the packet is permitted to enter the UPF’s IP router functionality.
In contrast, the ‘notify’ flag sends an alert to the control plane to
wake an idle device. FARs are installed and removed when a device
attaches or detaches, respectively, and the downlink FAR changes
when the device moves, goes idle, or wakes.

Buffering for idle devices:When a user device goes idle, the
UPF buffers downlink traffic that arrives for that device until it
reawakens; this feature is increasingly important as battery opti-
mizations and limited radio spectrum push devices to spend more
time idle. When traffic first arrives, the UPF sends an “Downlink
Data Notification” alert to the control plane, which triggers the base
station to attempt to wake the device. Once the device awakens, the
UPF releases the buffered traffic and resumes normal forwarding.
The buffering and notification functions are activated by modifying
a FAR to include ‘buffer’ and ‘notify’ flags. An additional set of
Buffering Action Rules (BARs) decide settings like the maximum
number of packets (and the maximum duration) to buffer. The iden-
tifier of the BAR to use is determined by the FAR that triggered
buffering. If no BAR is provided, default settings are assumed.

Traffic accounting: The UPF sends usage reports for each user
device to the control plane. These reports include counts of the
packets sent and received by the UPF for both the uplink and down-
link traffic for each user device and traffic class. Service providers
use these measurements to limit and bill their customers separately

A P4-based 5G User Plane Function SOSR ’21, September 20–21, 2021, Virtual Event, USA

for upload and download usage. The control plane installs and re-
moves Usage Reporting Rules (URRs) when the device attaches and
detaches, respectively. Each URR includes parameters specifying
whether usage reports should be sent periodically or when a quota
is exceeded. Typically a device has two URRs, one for uplink and
downlink usage, respectively. If a user’s plan includes special treat-
ment for certain types of traffic, an additional URR is created for
each traffic class (e.g., to support plans with free VoIP/video calls).

Quality-of-Service: The UPF guarantees a minimum amount
of available bandwidth and enforces a bandwidth cap for each
user device, for uplink and downlink packets for each traffic class.
These parameters are decided by per-device Quality Enforcement
Rules (QERs). The identifier of the associated QER is determined
by the PDR in the traffic-classification process. The control plane
installs and removes QERs when a device attaches and detaches,
respectively, and are modified according to operator-defined events
such as when the network becomes more or less congested, the user
device exceeds a quota, or the network policy changes (e.g., the
user signs up for a new pricing plan). The UPF can perform traffic
policing to enforce the bandwidth cap, as well as packet scheduling
to ensure a minimum bandwidth in conjunction with admission
control in the control plane.

3 THE MODEL UPF
The PFCP protocol used for communication between the control
plane and the UPF can be difficult to understand, even though the
rules it installs are actually simple match-action rules, as summa-
rized in Table 1. Additionally, documentation on the operations
applied to a packet by the UPF and the order in which they ap-
ply are scattered across the 5G specifications. To address both of
these issues, we proposemodeling the UPF with a P4 program. Such
a model would provide unambiguous, executable documentation
on the UPF and, with the addition of P4Runtime, provides a sim-
ple control-plane interface as well. More specifically, we have two
objectives in the implementation of a model UPF:

(1) The model UPF should serve as an interface that the 5G
control plane can expect a data-plane implementation to
expose. Developers creating their own data plane need only
present the same interface as the model UPF in order to
integrate with the control plane. Implementing the same
interface also means that testing infrastructure can be reused
to verify the behavior of a new UPF.

(2) The model UPF should implement a minimally functional
UPF, to act as a valid and executable data plane suitable for
running correctness tests on the 5G control plane in the
absence of a more sophisticated data-plane implementation.
The implemented functions can also serve as behavioral
references for implementers of new UPFs.

3.1 Synthesizing the Control-Plane Interface
P4 is a language for specifying packet-processing pipelines, but
it does not provide any means for the control plane to configure
those pipelines at runtime. P4Runtime fills this need. P4Runtime is
an RPC (Remote Procedure Call) protocol that allows a P4Runtime
client running in the control plane to read and write table entries,
read counter values, and install new P4 programs from a P4Runtime

Figure 2: The model UPF P4 pipeline

server running on a data plane 1. The format of table and counter
reads and writes is determined by a p4info file, akin to a header
file, that is generated when a P4 program is compiled. For example,
for each table in a P4 program, the p4info contains a description of
the table name, match keys, action names, and action parameters,
but not details of the operations or packet modifications performed
by the table. A P4Runtime client can install an entry into a table by
sending a write request message containing a table entry matching
the format specified in the p4info. If we create P4 representations
of every UPF feature, P4Runtime automatically gives us a control
interface to those representations.

To implement a real UPF that uses the model UPF interface, the
implementer must only implement a P4Runtime server that accepts
messages matching the p4info of the model UPF, as shown in Fig-
ure 3. Since P4Runtime is based on gRPC, client and server stub im-
plementations can be automatically generated from the P4Runtime
protocol specification for a variety of popular languages. The stub
implementations take care of message serialization and connection
management; the implementer need only worry about reading and
writing message objects, accelerating the development and inte-
gration of new UPFs. However, to support these new UPFs, the
5G control plane must speak P4Runtime instead of PFCP. This is
handled by the implementation of a PFCP-to-P4Runtime transla-
tion microservice, which must be done once and can be reused by
different control plane implementations without modification.

An important note here is that the data plane driven by the
P4Runtime server need not exactly adhere to the P4 program pre-
sented to the client. For example, the data plane may consist of two
parallel ASICs, eachwith onematch-action table, but the P4Runtime
server may choose to abstract them as a single device with a sin-
gle table. In such a setting where the data plane does not match
the p4info presented to clients, it is up to the server to translate
reads/writes to the representative P4 program into reads/writes to
the true data plane. Although this translation currently must be
manually implemented, there is research interest in automating
such translations [16].

3.2 Specifying the Model UPF Data Plane
In order to meet objective (1), we need a P4 program that, when
compiled, generates a set of P4Runtime messages that directly map
1The server is not exactly “on” the data plane. Modern switches are typically comprised
of a both a CPU and a packet-processing ASIC. The ASIC is configured via the PCI
bus by control processes (like a P4Runtime server) running on the CPU.

	Abstract
	1 Introduction
	2 User Plane Function (UPF)
	3 The Model UPF
	3.1 Synthesizing the Control-Plane Interface
	3.2 Specifying the Model UPF Data Plane

	4 The Performant UPF
	4.1 Dealing with Limited Data-Plane Memory
	4.2 Interfaces to Buffering Microservice
	4.3 QoS and Usage Reporting

	5 Deployment Experience
	5.1 Prototype Implementation Details
	5.2 Testing of the UPFs
	5.3 UPF Extensibility

	6 Next Steps
	References

