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Abstract
Network administrators are interested in continuously mea-

suring the distribution of network delays, defined as the time

between a request and its response. Ideally, such measure-

ment can be done directlywithin the data plane of high-speed

switches, where we can run succinct algorithms that pro-

cess traffic at Terabits per second line rate. Unfortunately,

measuring delays is challenging, given the considerable gap

between the small available memory and the huge volume of

arriving traffic. Existing data-plane algorithms for measur-

ing delays exhibit bias against samples with higher delays,

as these samples are more likely to be evicted due to hash

collisions with new insertions. However, many important

use cases, such as monitoring service-level agreements and

video Quality-of-Experience, rely on accurate information

about the tail of the delay distribution.

We present fridges, a novel data structure that produces
unbiased estimates of the delay distribution, by correcting for

the survivorship bias due to hash collisions in the data plane.

We track the number of insertions into the data structure for

each sample waiting in the fridge, and compensate accord-

ingly when updating the delay distribution. We also show

how to combine results frommultiple fridges, each optimized

for a different range of delays, for further accuracy gains. Sim-

ulation experiments show our design produces much better

accuracy than prior work using naive hash-indexed arrays,

achieving 2x-4x memory saving. We implement a prototype

P4 program running on the Barefoot Tofino programmable

switch, using only moderate hardware resources.

1 Introduction
Network administrators often want to measure fine-grained

information about network delays, which directly impacts

application performance. Delay can be characterized as the

time difference between a request and its corresponding re-
sponse, and can be calculated by observing the stream of

network traffic packets. For example, the two-way delay for

a TCP handshake is the time between a client sending TCP

SYN packet to a server and receiving the corresponding TCP

SYN/ACK packet, while the delay for a DNS lookup is the

time between a DNS query packet and its corresponding

reply packet. We can also measure the time between the

beginning of a TCP flow (SYN packet) and its ending (FIN or

RST packet), which characterizes the duration of a flow that

corresponds to the delay an application experienced when

downloading a file.

It is common for an Internet Service Provider (ISP) and its

clients to specify a target delay distribution in their Service-

Level Agreements (SLAs). For example, an ISP might be in-

terested in identifying customers with more than 5% of TCP

handshake delay in excess of 50 milliseconds.

However, unlike in a data-center network, an ISP might

not be able to deploymeasurement tools directly on customer

end hosts; meanwhile, active measurement incurs overhead

and may not accurately reflect the delay experienced by

end-user applications. Thus, we often need to measure delay

distributions by passively observing bidirectional applica-

tion traffic at an ISP vantage point close to the customer

hosts. By observing the stream of network packets, we can

match an outgoing request packet with its incoming response

packet, and subsequently calculate the pairwise delay on the

internet and tally the delay distribution. It is also possible

to separately calculate two legs of the delay (from client to

the vantage point, and from the vantage point to server) and

combine the measurements, as discussed in [10], to estimate

the full client-to-server round trip delay.

The emergence of programmable data planes enables real-

time monitoring directly in high-speed network devices.

Switches and network interface cards with programmable

data planes are now available off-the-shelf, and they are be-

ginning to see commercial deployment in large data-center

networks. We no longer need to mirror and store a large

volume of traffic from the vantage point, and can instead

implement customized algorithms to analyze traffic in the

data plane and export summary statistics, such as heavy

hitters [5, 9, 12], out-of-order packets [18], and so on. This

not only helps reduce computation and network overhead,

but also improves privacy by never exporting sensitive user

traffic.

However, high-speed data planes have limited memory—

not enough to store per-flow, let alone per-packet, state.



While it is possible to estimate volume-based metrics based

on packet sampling or using memory-efficient sketch data

structures, measuring delay requires matching information

across pairs of packets, which imposes significant pressure on

the memory from waiting for the second packet of the pair to

arrive. This can easily be shown from a back-of-the-envelope

calculation: Suppose we observe a backbone link running at

a full line rate of 400 Gbps, which translates to around 2
29

packets per second. With an average delay of 50ms, to store

all such packets for the full time until the responses come

back, we need an array with 2
25
entries—at least an order of

magnitude larger than the total data-plane register memory

available in commodity programmable switches.

The programmable data plane poses several additional

constraints beside the limited memory size. To maintain

packet-processing speed at line rate, the data plane requires

each packet to be processed within a constant number of

clock cycles in a pipeline. Therefore, any operations on the

data structure must finish within constant time. Meanwhile,

we cannot perform arbitrary arithmetic operations, such as

division or logarithm.

Due to these constraints, many earlier works rely on hash-

indexed arrays to do operations in the data plane [3, 6, 20]. In

this work, we also make use of hash-indexed arrays to match

pairs of request and response to calculate delays. We assume

each request and its matching response share an ID, which

can be derived from header fields of the network packet. A

naive solution based on [6] would save the request ID and a

timestamp into an array, applying a hash function over the ID

to obtain an array index. When the corresponding response

arrives, we use the hash function again to look at the same

index, and if the matching request exists, calculate this re-

quest’s delay and update the statistics of delay distribution.

However, not all requests eventually receive a response.

Problems arise when the memory is limited, as new requests

would suffer from hash collisions with existing requests upon

insertion. Upon hash collisions we cannot discard the new

request and keep the existing one, otherwise the array would

soon fill up with stale requests without a response [6]. But

simply overwriting upon every hash collision is even worse:

to produce a delay sample, the request must stay in the

array for long enough without being overwritten. For large-

delay pairs, the request needs to survive a large number of

new insertions into the data structure without a hash colli-

sion. Consequently, more small-delay samples are produced,

while large-delay pairs are undersampled and therefore bi-
ased against. This phenomenon is especially problematic in

applications like verifying SLAs or measuring tail latency,

since larger delays are exactly the anomalies we hope to

catch.

(b) Correcting for survival bias

ID Request
Timestamp

97 0

22 10

13 30
15 50
26 40
78 20

Request

(a) Naive table
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Timestamp

Insertion
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Request
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ID=22
Time=10

ID=15
Time=90

Insertion
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RTT=40 RTT=40
Survived x insertions
Weight=p-1(1-1/8)-x

Insertion
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p=0.5

Figure 1: Compared with the naive approach, the
fridge tracks how many insertions each entry sur-
vives, and assigns higher weights to less likely RTTs.

Previous efforts to mitigate the bias against larger delays

include finding a middle ground between favoring the ex-

isting entries and overwriting aggressively. Chen et al. [6]

used a large expiration threshold that corresponds to the

99th-percentile delay in the network, and only evicts upon

hash collision when a record gets too old. Yet it is hard to

accurately choose such a threshold, particularly when the

prior distribution is unknown. Moreover, setting such a con-

servative threshold means stale requests stay too long in the

memory, reducing the number of valid matches.

In this paper, we propose a data-plane algorithm that pro-

duces a provably unbiased delay distribution, specifically

designed for programmable switches using the Protocol In-

dependent Switch Architecture (PISA) [4]. Our algorithms

tackle the bias by keeping track of the probability of get-

ting each sample, and applying a correction factor inversely

proportional to this probability when computing the distri-

bution. This helps reduce the required memory size by 2x-4x

compared with earlier work, while maintaining the same

accuracy.

In what follows, § 2 describes the naive delay monitoring

algorithm and why it is biased against high-delay samples,

and § 3 introduces our design for fridges, a data structure
that produces unbiased samples. In § 4, we discuss ways

to extend our design beyond a single fridge. In § 5 we run

simulation-based experiments for our algorithm and show it

indeed estimates the delay distribution more accurately. § 6

presents and evaluates a prototype implementation of the

fridge data structure on hardware programmable switches.

We discuss related work in Section § 7, and conclude the

paper in § 8.

2 Passive Delay Monitoring Problem
In this section, we first introduce the delay monitoring prob-

lem, and a “naive” data-plane solution. Then, we explain why
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the naive algorithm is biased against large delays, and how

we quantify the bias.

2.1 Naive delay monitoring
In delay monitoring, a stream of packets represents a stream

of requests and responses, where we hope to match a response

with its corresponding request, to generate useful delay sta-

tistics. Examples of request/response pairs include NTP re-

quest and response, DNS request and response over UDP,

TCP handshake pairs (between SYN and SYN-ACK packets),

and TCP flow duration (between TCP SYN and FIN/RST pack-

ets). In real-world applications, some requests never receive a

response, for instance due to server failures or cyber attacks.

We assume each request and its potential response carry the

same identifier (ID) unique for the pair that allows match-

ing, if the response exists. For example, we can extract IP

addresses, port numbers, and sequence numbers from a TCP

SYN packet, and match them with that of a TCP SYN-ACK

packet. After matching a response to a request, the resulting

delay sample contributes to some larger analysis of the delay

distributions.

Today’s programmable switches using the PISA pipeline

architecture have tens of megabytes of register memory

that we can read or write in the data plane, while process-

ing individual network packets. To meet the strict speed

requirements of line-rate packet processing (Terabits per

second), the switch imposes several constraints on what

packet-processing logic we can implement. The pipeline has

a fixed number of stages, therefore each packet is processed

within a constant number of clock cycles. To avoid memory

hazard due to concurrent memory access, all register mem-

ory arrays are allocated to a specific pipeline stage, and we

can only access one index of each register memory array

when processing each packet.

Given the memory access constraints, we cannot imple-

ment traditional hash tables with sophisticated collision res-

olution logic. The hash-indexed array is a good candidate

data structure to implement a naive algorithm for matching

packet pairs and continuously generating delay samples, as

illustrated in Figure 1(a).

(1) Request: For each request, we compute ℎ𝑎𝑠ℎ(𝐼𝐷) to
find an array index and write in the request ID and

current timestamp. To avoid filling the memory with

stale requests, we favor the new request upon hash

collisions, by overwriting any existing request in the

same array index.

(2) Response: For each response, we again computeℎ𝑎𝑠ℎ(𝐼𝐷)
as the index. If there is a request with the same ID, we

calculate the difference 𝑡 of their timestamps, report

an delay sample 𝑡 , and remove the request; otherwise,

there is no match and no sample is recorded.

2.2 Bias against large delays
The limited memory in the data plane poses a significant

challenge. A higher delay means the request needs to stay

in memory longer while waiting for its response to arrive,

which translates to using more memory at any given point.

Since we choose to always overwrite existing requests upon

hash collisions, when memory is limited a request is more

vulnerable to eviction the longer it remains in memory. This

leads to a bias against larger delays.

At first glance, we could solve this problem by favoring

existing requests on collisions. However, a response may

never arrive, causing stale requests to consume the memory.

An alternative is to set an expiration threshold and evict a

record if the request stays in the data structure longer than

the threshold. This method seemingly achieves a balance

between overwriting aggressively and favoring existing re-

quests conservatively, but in practice it is hard to find the

right threshold [6]. A large threshold leads to an array full

of stale requests, while a small threshold causes bias against

larger delays, as such requests are quickly evicted before

their responses arrive.

2.3 The delay distribution
In practice, we often hope to combine individual delay re-

ports to generate some statistics of interest. In this work,

we specify the output of our algorithms to be an approxi-

mated distribution of delays of all request/response pairs

in the stream, and in particular we can look at the Cumu-

lative Distribution Function (CDF) of the delay. We note

that the estimation error of many real-world delay metrics

commonly seen in Service Level Agreements (SLAs) can be

translated to the difference between estimated and ground

truth delay CDF curves. For example, the error in measuring

95th-percentile delay is the horizontal distance between the

CDF curves at 𝑦 = 95%, while the error in measuring the

fraction of RTTs above 40ms is the vertical distance between

the CDF curves at 𝑥 = 40𝑚𝑠 . We therefore formalize the

problem as follows:

Definition 2.1 (Delay problem). Given a stream of requests

and responses with identifier 𝐼𝐷𝑖 , timestamp 𝑡𝑖 , and type 𝑐𝑖 ∈
{req, resp} differentiating requests and responses, we pair

a request 𝑖 with its response 𝑖 ′ when 𝐼𝐷𝑖 = 𝐼𝐷𝑖′ ∧ (𝑐𝑖 , 𝑐𝑖′) =
(req, resp). Each request has a unique ID, and has at most

one matching response. The delay of a request/response pair

(𝑖, 𝑖 ′) is defined to be 𝑡𝑖′ − 𝑡𝑖 . Let 𝑓 (𝑡) denote the number

request/response pairs in the stream with delay 𝑡 , and 𝐹 (𝑡) =∑
𝜏<𝑡 𝑓 (𝜏)∑
𝑡 𝑓 (𝑡 ) the ground truth CDF. On seeing the entire stream,

we hope to output a close approximation 𝐹 (𝑡) of 𝐹 (𝑡).
It is also important to note that in this work we do not

intend to distinguish between the delay CDF of all packets

versus some subset of packets, e.g., those of one particular
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flow or application. The algorithms presented in § 3 are

general enough to be applied in either case.

3 Unbiased Delay Estimation
Contrary to previous work [6], we do not attempt to mitigate

bias by fine-tuning the frequency of overwriting records. In-

stead, we overwrite aggressively to take in all new requests,

and correct for bias as samples are collected.We start this sec-

tion with the idea of bias correction (§ 3.1). Next we describe

the single fridge algorithm and its mechanism of applying

correction factors (§ 3.2).

3.1 Correcting for survivorship bias
The phenomenon that larger delays are undersampled traces

back to the step where any report, whether the delay is large

or small, is considered as one sample. Instead, we should

cherish each sample with a high delay—it should account

for not only itself, but other sibling requests that are evicted

before their responses arrived.

Thus, we define a correction factor to counter this sur-

vivorship bias. If a sample has a probability 𝑞 to survive

without being evicted, upon seeing its report we set the cor-

rection factor to
1

𝑞
, and count it as

1

𝑞
samples. This way,

evictions from the data structure no longer lead to biases,

since the collected large-delay reports can compensate for

the missing ones.

To track a sample’s survival probability, we can analyze the

number of insertions between the time this sample’s request

is inserted and its response arrives. Each insertion has a small

probability to evict the request due to hash collision, thus the

sample’s survival probability diminishes as there are more

insertions before the response.

3.2 Single fridge algorithm
Now we discuss the design of a single fridge data structure.
We precisely track the “time” each request stayed in the

fridge and calculate the correction factor, as illustrated in

Figure 1(b). This is inspired by humans checking how long a

grocery item has stayed in a fridge when taking it out.

We formally compute the correction factor using the in-

verse of the probability of a sample being collected.We define

a data structure, fridge-(𝑀, 𝑝), to be a hash-indexed array

of size 𝑀 equipped with an entering probability 𝑝 , which

dictates that each new request is inserted into the array with

probability 𝑝 (and discarded with probability 1 − 𝑝).

3.2.1 Probability of Survival. A request’s probability of sur-

vival decreases as it spends more “time” in the fridge, mea-

sured by the number of other requests being inserted be-

tween this request and its response. We track this number by

maintaining a global insertion counter. For each new request,

an existing request in the fridge has a
𝑝

𝑀
chance to suffer

from a hash collision and be evicted; thus requests stay for

roughly
𝑀
𝑝
insertions, which we call the average lifetime of

a fridge.

Consider a sample with delay 𝑡 that survives 𝑥 insertions

between its request and response: it must survive three inde-

pendent events: (1) its request enters the fridge (with proba-

bility 𝑝), (2) the request survives next 𝑥 insertions into the

array with size𝑀 , and (3) the sample has delay 𝑡 in the un-

derlying ground truth distribution. Denote 𝑓 (𝑡) as the true
number of samples with delay 𝑡 , and 𝑛 the true number of

samples in the stream, we have

P[getting a sample with delay 𝑡] = 𝑝 ·
(
1 − 𝑝

𝑀

)𝑥
· 𝑓 (𝑡)

𝑛
. (1)

Note that the first two terms indicates a sample’s survival

probability 𝑞 = 𝑝 ·
(
1 − 𝑝

𝑀

)𝑥
. We therefore set a correction

factor of
1

𝑞
= 𝑝−1 ·

(
1 − 𝑝

𝑀

)−𝑥
for each report we observe.

After seeing the entire stream, we get a collection of reports,

where each contains its delay 𝑡𝑖 and its correction factor, in

the form of a 2-tuple:

(
𝑡𝑖 , 𝑝

−1 (
1 − 𝑝

𝑀

)−𝑥𝑖 )
, with 𝑥𝑖 being the

number of insertions the sample survives. From the reports

we can obtain an estimator of 𝑓 (𝑡) for all 𝑡 , denoted as
ˆ𝑓 (𝑡),

by summing up all correction factors that correspond to 𝑡 .

We show in Lemma 3.1 that
ˆ𝑓 (𝑡) is an unbiased estimator

of 𝑓 (𝑡) with bounded variance.

Lemma 3.1. Let 𝑌𝑖 be in indicator of sample 𝑖 , 𝑌𝑖 = 1 if
sample 𝑖 has delay 𝑡 , and 𝑌𝑖 = 0 otherwise, then

ˆ𝑓 (𝑡) :=
∑
𝑖∈[𝑛]

𝑝−1
(
1 − 𝑝

𝑀

)−𝑥𝑖
𝑌𝑖

is an unbiased estimator of 𝑓 (𝑡), and

Var[ ˆ𝑓 (𝑡)] = 𝑓 (𝑡)
𝑛

∑
𝑖∈[𝑛]

(
𝑝−1
1

(
1 − 𝑝1

𝑀

)−𝑥𝑖
− 𝑓 (𝑡)

𝑛

)
.

Proof. Fix any 𝑡 , and from Eq. 1,

E[𝑌𝑖 ] = P[get a sample with delay 𝑡] = 𝑝

(
1 − 𝑝

𝑀

)𝑥𝑖 𝑓 (𝑡)
𝑛

,

Var[𝑌𝑖 ] = 𝑝

(
1 − 𝑝

𝑀

)𝑥𝑖 𝑓 (𝑡)
𝑛

(
1 − 𝑝

(
1 − 𝑝

𝑀

)𝑥𝑖 𝑓 (𝑡)
𝑛

)
.

By definition,
ˆ𝑓 (𝑡) = ∑

𝑖∈[𝑛] 𝑝
−1 (

1 − 𝑝

𝑀

)−𝑥𝑖
𝑌𝑖 , then

E[ ˆ𝑓 (𝑡)] =
∑
𝑖∈[𝑛]

𝑝−1
(
1 − 𝑝

𝑀

)−𝑥𝑖
E[𝑌𝑖 ] = 𝑓 (𝑡) .

Since indicator 𝑌𝑖 ’s are independent,

Var[ ˆ𝑓 (𝑡)] =
∑
𝑖∈[𝑛]

𝑝−2
(
1 − 𝑝

𝑀

)−2𝑥𝑖
Var[𝑌𝑖 ]

=
𝑓 (𝑡)
𝑛

∑
𝑖∈[𝑛]

(
𝑝−1

(
1 − 𝑝

𝑀

)−𝑥𝑖
− 𝑓 (𝑡)

𝑛

)
. (2)

□

3.2.2 Approximated CDF. We estimate the CDF 𝐹 by aggre-

gating and normalizing the individual point-wise estimate
ˆ𝑓
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using discrete integration,

𝐹 (𝑡) :=
∑
𝑖,𝑡𝑖 ≤𝑡

ˆ𝑓 (𝑡𝑖 )∑
𝑖
ˆ𝑓 (𝑡𝑖 )

,∀𝑡 ∈ {𝑡𝑖 }𝑖 . (3)

To compare 𝐹 with the ground truth CDF 𝐹 , it is convenient

to think of 𝐹 and 𝐹 as continuous functions. Throughout this

work, we assume linear interpolation for both 𝐹 and 𝐹 .

Though
ˆ𝑓 (𝑡𝑖 ) is unbiased, and so is

∑
𝑖
ˆ𝑓 (𝑡𝑖 ) by linearity of

expectation, it is important to note that the unbiasedness is

not preserved under division. Therefore, 𝐹 is not necessarily

unbiased. Nonetheless, the single fridge algorithm improves

on the naive algorithm considerably in terms of reducing

bias (§ 5.1). Later in § 5.2, we show how the choice of 𝑝 affects

accuracy of the estimated CDF and how to identify a good 𝑝

based on the fridge size and the maximum delay.

3.3 Setting the Tunable Parameters
Choosing the entry probability (𝑝). Given a fixed𝑀 , the

entry probability 𝑝 needs to be strategically chosen such that

the (𝑀, 𝑝)-fridge operates optimally. Recall that on average

each request survives 𝑀/𝑝 insertions (the “average lifetime”

of the fridge) before being evicted.

• If delays are short such that most request-response

pairs we are measuring are less than 𝑀/𝑝 insertions

apart, almost all responses will arrive before any col-

lision happens to the request. For most samples, the

insertion counter 𝑥 will be 0, therefore the correction

factor is always 𝑝−1 with no effect of the survivorship

bias. In short, memory is “underutilized”.

• If the average lifetime𝑀/𝑝 is too short (there are often

more than 𝑀/𝑝 insertions between request-response

pairs), most requests cannot survive long enough until

their responses arrive – a request will suffer from hash

collisions with overwhelming probability. The very

lucky requests that did survive will have very large

correction factors, leading to an enormous estimation

variance. Although our estimation is still unbiased

in this case, it has little practical value. Under this

scenario, memory is “oversubscribed”.

• Ideally, the fridge operates in the regime with its av-

erage lifetime 𝑀/𝑝 aligning with the number of in-

sertions between most request-response pairs. In this

case, 𝑥 (the number of insertions survived by a sample)

is close to𝑀/𝑝 .

We note that in the ideal regime, given a large 𝑀 and the

assumption 𝑥 ≈ 𝑀/𝑝 , typical delay samples should have

a correction factor in the order of 𝑝−1
(
1 − 𝑝

𝑀

)−𝑀/𝑝 ≈ 𝑒/𝑝 .
Thus, medium-delay samples weights about 𝑒 times more

than samples with very short delay.

Inferring the number of insertions (𝑥). We further ob-

serve that, with a constant traffic rate, the number of in-

sertions survived by a sample (𝑥) is proportional to the de-

lay observed by this sample. Therefore, it is possible to not

record an insertion counter in the fridge, and use the delay

to recover 𝑥 and calculate the correction factor. However, in

many network applications, delay is correlated with short-

term spikes in traffic rate (which cause transient congestion),

which are precisely the anomalous events we want to scruti-

nize. Thus, we still opt to record the exact insertion counters.

Regarding the number of table entries (𝑀). We note

that although we expect a fridge to have thousands of entries

in practice, in the extreme case we require 𝑀 ≥ 2, as we

account for each survived request’s survivorship bias using

the collisions suffered by its𝑀 − 1 sibling requests. A single-

entry fridge with𝑀 = 1 is a degenerative case, as we cannot

observe any “survivorship bias” (all samples have 𝑥 = 1). In

the special case of 𝑀 = 2, the surviver’s correction factor

doubles every time its sole sibling is replaced due to a new

insertion. This estimation clearly has a large variance, and

a larger𝑀 is preferred — the estimation about survivalship

bias becomes more accurate as we observe the fate of more

sibling requests.

As the fridge size 𝑀 is limited by the memory available

under the given hardware environment, given a fixed𝑀 it is

important to provision the fridge with the appropriate entry

probability 𝑝 , based on the traffic rate (number of requests

per second) and the delay we expect to observe. In § 5.2 we

evaluate the effect of choosing 𝑝 on a fridge’s accuracy, and

demonstrate the fridge has some tolerance regarding this

choice.

4 Expanding Beyond a Single Fridge
In this section, we discuss how to extend the single fridge

design to possibly achieve better measurement accuracy. We

first discuss why a simple design using multiple hardware

pipeline stages to build a single fridge will, surprisingly, hurt

high-delay samples (§ 4.1). Then, we present how to build

multiple fridges to and combine their output correctly (§ 4.2).

4.1 Using many pipeline stages per fridge
On a PISA programmable switch [4], we are limited to ac-

cessing only one index per register array when processing a

packet. Algorithms often span multiple pipeline stages and

allocate multiple register arrays to improve performance. For

example, the delay measurement algorithm in [6] achieves

the best accuracy when the same total memory size is split

into 4-6 arrays in separate pipeline stages, each indexed with

a different hash function. Naturally, when running the fridge

algorithm, we should also consider a multi-stage design.
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Similar to [6], we could use multiple memory arrays in-

dexed by different hash functions.This makes hash collisions

independent between different arrays, and generally per-

forms better in many data structure use cases, thanks to

the “power of two choices” phenomenon. However, to deal

with stale requests, upon a hash collision we must favor in-

serting the new request and evict the existing request. We

could implement a scheme similar to HashPipe [20], where

the request evicted in the first stage is inserted again in the

second stage, and likewise for later stages. The propagation

stops when an empty array slot is encountered, and a request

is finally abandoned when it is evicted from the very last

pipeline stage.

To produce an unbiased delay estimator, we need to find

the right correction factor under this design. We note that

a request in the first few stages is not at risk of eviction,

thus their survival has probability one; only the requests

appearing in the last stage need a correction factor for its

survival probability, based on 𝑥𝑖 , the number of insertions it

survived in the last stage.

Unfortunately, this design works poorly for samples with

larger delay. Assume we build a 𝐷-stage fridge with total

memory 𝑀 and entry probability 𝑝 , we can calculate the

number of insertions a request can survive in the fridge as

a probability distribution. Note that each stage has 𝑀/𝐷
entries, and for simplicity we assume the memory is full of

requests with no empty slots. For one insertion, a request

currently in stage 𝑠 has probability 𝑝 · 𝐷/𝑀 suffering from

a collision and move to stage 𝑠 + 1. Thus, the number of

insertions a request survives in stage 𝑠 follows the geometric

distribution 𝑙𝑠 = 𝐺𝑒𝑜 (𝑝 ·𝐷/𝑀). We can thus write the lifetime

distribution of the 𝐷-stage fridge, i.e., the total number of

insertions survived before a request is evicted from the last

stage, as 𝐿𝐷 =
∑𝐷

𝑠=1 𝑙𝑠 =
∑𝐷

𝑠=1𝐺𝑒𝑜 (𝑝 ·𝐷/𝑀), with expectation
𝐷 · 𝑀

𝑝 ·𝐷 = 𝑀/𝑝 . Meanwhile, for an ordinary fridge, we can

simply plug in 𝐷 = 1: its lifetime distribution is simply

𝐺𝑒𝑜 (𝑝/𝑀) with expectation𝑀/𝑝 .
Although items in the multi-stage fridge have the same

expected lifetime
𝑀
𝑝

as those in a single-stage fridge, its

lifetime distribution is the sum of𝐷 i.i.d. geometric variables,

which is more concentrated and has a lighter tail than a

single geometric variable. This is to say, for a large delay

𝑇 > 𝑀/𝑝 and 𝐷 > 1, we have

P[𝐺𝑒𝑜 (𝑝/𝑀) ≥ 𝑇 ] > P[
𝐷∑
𝑠=1

𝐺𝑒𝑜 (𝑝 · 𝐷/𝑀) ≥ 𝑇 ] . (4)

Therefore, requests with delay higher than the fridge’s aver-

age lifetime has a much smaller survival probability.

This phenomenon is most obvious when we consider the

extreme case: with 𝐷 = 𝑀 stages each having array size 1,

the fridge essentially becomes a FIFO queue, and the life-

time distribution becomes very narrowly concentrated. With

every request spending almost the same time in fridge, a

request whose delay is higher than the average lifetime has

almost no chance to survive. Instead, we want the exact op-

posite: the lifetime distribution should be heavy-tailed, so

requests have some probability of staying in the fridge for

much longer than
𝑀
𝑝
insertions, so our fridge can collect

some samples for large delay. Thus, analytically the multi-

staged design performs poorly; we have also verified this

phenomenon empirically.

Thus, we should never use a multi-stage fridge. When we

need to utilize more memory than the capacity of a single

pipeline stage, we should simply merge the memory across

multiple stages into one large logical hash-indexed array and

build a single-stage fridge. We also note that proposals like

dRMT [7] would enable stateful memory allocation across

stages, so a simple one-stage algorithm can use the entire

stateful memory directly.

4.2 Using multiple fridges
Requests in one fridge have an average lifetime

𝑀
𝑝
, which

can be adjusted to fit the typical delay of the input traffic

stream for higher accuracy. However, internet traffic exhibits

a wide range of delays, due to different geographic distances,

server behavior, and congestion conditions. Thus, a single

fridge targeting a particular
𝑀
𝑝
may be inadequate.

To cover a wide range of delays, we split the memory

into 𝑁 fridges with size 𝑀1 + · · · + 𝑀𝑁 = 𝑀 . Requests

and responses are directed to one of the fridges via a hash

function, while each fridge has its own entry probability

𝑝1 + · · · + 𝑝𝑁 < 1 and targets a different average lifetime

𝑀1/𝑝1, . . . , 𝑀𝑁 /𝑝𝑁 . When a response matches in fridge 𝑘 ,

we calculate the correction factor 𝑝−1
𝑘

(1 − 𝑝𝑘/𝑀𝑘 )−𝑥𝑖 based
on fridge 𝑘’s entering probability 𝑝𝑘 and the probability for

surviving 𝑥𝑖 insertions in this fridge.

Since different fridges have different average lifetime, they

have different variance when estimating various ranges in

the delay distribution. We need to combine their output

strategically to produce the final estimated delay distribution

with minimum estimation variance. In § 5.3, we demonstrate

that using multiple fridges can indeed produce more accurate

estimate than a single fridge when memory size is limited.

We nowdescribe the process of combiningmultiple fridge’s

output using the Inversed Variance Weighting method [8] in

more detail.

Variance of each fridge. For a sample coming from fridge

𝑘 (with size 𝑀𝑘 and entry probability 𝑝𝑘 ) that survives 𝑥

insertions, we set its correction factor as 𝑝−1
𝑘

(
1 − 𝑝𝑘

𝑀𝑘

)−𝑥
fol-

lowing Lemma 3.1. Summing up all correction factors for a

𝑡 coming out of fridge 𝑘 gives an unbiased estimator
ˆ𝑓𝑘 (𝑡)

for 𝑓 (𝑡), the true number of samples with delay 𝑡 , where the
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unbiasedness follows again from Lemma 3.1. Let 𝑘𝑖 be the

index of the fridge sample 𝑖 comes from, then the variance

of
ˆ𝑓𝑘 (𝑡) follows directly from Eq. 2,

Var[ ˆ𝑓𝑘 (𝑡)] =
𝑓 (𝑡)
𝑛

∑
𝑖∈[𝑛],𝑘𝑖=𝑘

(
𝑝−1
𝑘

(
1 − 𝑝𝑘

𝑀𝑘

)−𝑥𝑖
− 𝑓 (𝑡)

𝑛

)
.

(5)

The weighted average of estimators. Similar to classi-

cal sketching algorithms such as CountMin [9] and CountS-

ketch [5], in the multi-fridge algorithm, we keep a set of 𝑁

basic unbiased estimators { ˆ𝑓1 (𝑡), ˆ𝑓2 (𝑡), . . . , ˆ𝑓𝑁 (𝑡)} for 𝑓 (𝑡),
each coming from a fridge. Since the variance of each indi-

vidual estimator could be large, we combine them to get a

better estimator. However, unlike [5, 9], our basic estimators

have different variance, so instead of simply taking their min

or the median, we leverage this fact to compute a weighted

average of the estimators.

It is well-known in statistics [8] that given 𝑁 unbiased

estimators with bounded variance, we can set weights opti-

mally so that the weighted average of these estimators has

the minimum possible variance.

Theorem 4.1. Given 𝑁 unbiased estimators ˆ𝑓1, ˆ𝑓2, . . . , ˆ𝑓𝑁

with bounded variance Var[ ˆ𝑓1],Var[ ˆ𝑓2], . . . ,Var[ ˆ𝑓𝑁 ] respec-

tively, the set of𝑁 weights {𝑤1,𝑤2, . . . ,𝑤𝑁 }with𝑤𝑘 =

1

Var[ ˆ𝑓𝑘 ]∑
𝑘

1

Var[ ˆ𝑓𝑘 ]
,

𝑘 ∈ [𝑁 ] minimizes the variance of the combined unbiased
estimator

∑
𝑘 𝑤𝑘

ˆ𝑓𝑘 .

To combine estimators using Theorem 4.1, we need to as-

sociate each sample with a weight, so as to calculate weights

{𝑤1,𝑤2, . . . ,𝑤𝑁 } for a fixed delay 𝑡 . Therefore, the report

sample 𝑖 in the multi-fridge algorithm becomes a 4-tuple

that keeps the weight of the sample, to be determined next,

as well as the fridge index 𝑘𝑖 , on top of the delay 𝑡𝑖 and the

correction factor as in the single fridge case.

However, Theorem 4.1 cannot be directly cast into our

multi-fridge setup, since we do not know variance Var[ ˆ𝑓1],
Var[ ˆ𝑓2], . . . , Var[ ˆ𝑓𝑁 ] exactly. We work around this issue by

approximating weights𝑤𝑘 for each fridge 𝑘 . From Eq. 5, we

can safely focus on estimating

𝑓 (𝑡)
𝑛

∑
𝑖∈[𝑛],𝑘𝑖=𝑘

𝑝−1
𝑘

(
1 − 𝑝𝑘

𝑀𝑘

)−𝑥𝑖
(6)

in the variance, since
𝑓 (𝑡 )
𝑛

<< 1 << 𝑝−1
𝑘

(
1 − 𝑝𝑘

𝑀𝑘

)−𝑥𝑖
. Yet,

it would be false to assume the
𝑓 (𝑡 )
𝑛

factor outside of the

summation cancels out in 𝑤𝑘 , so we can obtain the rest of

(6) precisely from summing over correction factors from all

reports. This would have produced an underestimation, since

𝑛 is the true number of samples, and the fridges can only

report fewer than 𝑛 samples due to hash collisions.

We therefore use the unbiased estimator of (6),∑
𝑖∈[𝑛]

𝑝−2
𝑘

(
1 − 𝑝𝑘

𝑀𝑘

)−2𝑥𝑖
𝑍𝑖 , (7)

where indicator 𝑍𝑖 = 1 if sample 𝑖 comes from fridge 𝑘 and

has delay 𝑡 , and 𝑍𝑖 = 0 otherwise. An argument similar to

that in Lemma 3.1 suffices to verify the unbiasedness of (7).

Putting all elements together, the report of a sample with

delay 𝑡 that survives 𝑥 insertions in fridge 𝑘 , the 4-tuple

(fridge index, delay, correction factor, weight factor), has the

following form(
𝑘, 𝑡, 𝑝−1

𝑘

(
1 − 𝑝𝑘

𝑀𝑘

)−𝑥
, 𝑝−2

𝑘

(
1 − 𝑝𝑘

𝑀𝑘

)−2𝑥 )
.

We obtain estimator
ˆ𝑓𝑘 (𝑡) by summing over all correction

factors of samples with RTT 𝑡 from fridge 𝑘 ,

ˆ𝑓𝑘 (𝑡) :=
∑
𝑖∈[𝑛]

𝑝−1
𝑘

(
1 − 𝑝𝑘

𝑀𝑘

)−𝑥𝑖
𝑍𝑖 .

Denote the unbiased estimator of (6) as 𝑉𝑘 (𝑡), by (7),

𝑉𝑘 (𝑡) :=
∑
𝑖∈[𝑛]

𝑝−2
𝑘

(
1 − 𝑝𝑘

𝑀𝑘

)−2𝑥𝑖
𝑍𝑖 .

Finally, we obtain our multi-fridge estimator
ˆ𝑓 (𝑡) through a

weighted average of estimators from all fridges { ˆ𝑓1 (𝑡), ˆ𝑓2 (𝑡),
. . . , ˆ𝑓𝑁 (𝑡)},

ˆ𝑓 (𝑡) :=
∑
𝑘

�̂�𝑘 (𝑡) ˆ𝑓𝑘 (𝑡), where �̂�𝑘 (𝑡) =
1

�̂�𝑘 (𝑡 )∑
𝑘

1

�̂�𝑘 (𝑡 )
.

This concludes the process of combining the output of

multiple fridges. Note that despite of the approximation, we

always have

∑
𝑘∈[𝑁 ] �̂�𝑘 (𝑡) = 1, and

ˆ𝑓 (𝑡) is hence unbiased
for being a convex combination of unbiased estimators.

5 Evaluation
In this section, we use real-world and synthetic traffic traces

to show that the fridge algorithm can effectively reduce

bias in delay measurement, compared with prior works. To

experiment with different parameter settings, we run all tests

using a Python-based simulator. We discuss and evaluate a

prototype running on hardware programmable switches in

§ 6.

Distancemetric.We evaluate the accuracy of single- and

multi-fridge algorithms by computing the distance between

the ground truth CDF 𝐹 (𝑡) and the estimated CDF 𝐹 (𝑡) com-

puted by our algorithms. As discussed in § 2.2, the CDF is

closely related to criteria specified in SLAs. For example,

“95th-percentile delay” is where the delay CDF curve crosses

𝑦 = 95%. Since real-world delays vary widely, absolute error

is not an effective metric; we instead look at the relative error

of percentile delay queries:

���log
2

(
Estimated

Ground Truth

)���, which corre-

sponds to the horizontal distance between the estimated and

ground truth CDF curve under logarithmic 𝑥-axis. We are
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interested in the relative error of typical percentile queries

(at 50%, 95%, and 99%), as well as the maximum error for any

percentile between [5%, 95%], i.e., the maximum horizontal

gap between the CDF curves between 𝑦 ∈ [5%, 95%].
Dataset.We use both real and synthetic network traffic

traces in our experiments.

• Real-world traffic (§ 5.1, 5.3): We use a bi-directional

anonymized traffic trace that contains 10 million pack-

ets across 11.4 seconds, collected from a 10Gbps border

link of a local ISP network. We extract round-trip de-

lay samples by treating outgoing TCP data packets

as requests, and looking for their matching incoming

TCP acknowledgment packets as responses. The trace

includes 61% requests and 39% responses. Approxi-

mately 13% of all requests has a matching response,

as the TCP delayed-ACK mechanism only sends one

response for every two requests, and malicious traffic

such as port-scanning attacks generates many orphan

requests. The average round-trip delay across all sam-

ples is 57.8 milliseconds.

• Synthetic trace (§ 5.2): We also generated synthetic

traces to explore our data structure’s performance char-

acteristics under other traffic distributions. We first

generate request packets arriving at a constant rate of 1

million packets per second, and randomly select a 40%

subset to generate responses. Subsequently, given a

maximum delay of𝑇ms, we randomly sample an delay

from a log-uniform distribution between (0,𝑇 )ms for

each response. Finally, we combine the requests and re-

sponses and sort them by their timestamps. The trace

contains 0.5million delay samples, with approximately

1.75 million packets in total. Although the synthetic

trace is not fully realistic, it allows us to test our data

structure by changing the delay distribution.

Unless otherwise noted, we repeat each experiment ten times

with different hash seeds and combine estimated CDFs, to

reduce variance from individual runs and highlight the bias.

We note that our algorithm’s output exhibits a similar vari-

ance comparable to [6]; the output distribution is almost

the same across different runs, unless memory is extremely

limited.

5.1 Comparison with naive algorithm
We first show that our fridges achieve higher accuracy than

the naive algorithm described in § 2.1.

In Figure 2, we visualize the advantage of the fridge algo-

rithm by plotting the estimated delay CDF curves alongside

the ground truth (shaded).We run the single-fridge algorithm

using entry probability 𝑝 = 1 and memory size𝑀 = 2
16
, and

the naive algorithm in [6] using the samememory size on the

real-world traffic trace. The naive algorithm uses an expiry

Round-trip delay (ms)

Figure 2: (𝑀=216,𝑝=1)-fridge produces a visibly more
accurate delay CDF, compared with the naive algo-
rithm using the same memory size 𝑀=216 and expi-
ration threshold 𝑇=29ms. The fridge and the naive al-
gorithm achieves maximum relative error of 8% and
168% respectively for percentile delay queries.

threshold 𝑇 = 2
9
ms, close to the 99%-percentile delay in the

ground truth, as suggested by the authors of [6].

As we can see from Figure 2, our unbiased fridge algorithm

closely reproduces the ground truth CDF curve. The naive

algorithm produces a CDF curve biased against high delays,

underestimating percentile delay queries.

The fridge algorithm estimates 50th, 95th, and 99th per-

centile delay much more accurately than the naive algo-

rithm. We also plotted the maximum horizontal gap be-

tween estimated and ground truth CDF curves in [5%, 95%],
which corresponds to the maximum relative error when

answering percentile delay queries for any percentile be-

tween 5% and 95%. The fridge algorithm has a maximum

relative error of 8%, while the naive algorithm has a maxi-

mum relative error of 168%. We observe similar results when

using synthetic traces.

5.2 Choosing the best entry probability
Requests in a (𝑀, 𝑝)-fridge have an average lifetime of𝑀/𝑝
insertions. Although the fridge algorithm’s output is guar-

anteed to always be unbiased, we can improve its accuracy

by choosing 𝑝 carefully to reduce the estimator’s variance.

In general, we want more samples to reduce the variance of

the fridge’s estimation. When memory is limited, a higher

𝑝 shrinks the average lifetime, so fewer large-delay sam-

ples can survive; however, a very small 𝑝 means not many

requests enter the fridge in the first place, thus it cannot

produce many samples either.

As high-delay samples are the hardest to measure, intu-

itively, the best 𝑝 that maximizes accuracy should make the

fridge’s average lifetime (
𝑀
𝑝
insertions) roughly equal to the
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Figure 3: For a fridge with 𝑀 = 2
12 memory size pro-

cessing synthetic trace with ground truth delay be-
tween (0, 212)ms (top), error is minimized around en-
tering probability 𝑝 = 2

−9; for ground truth delay in
(0, 26)ms (bottom), the best 𝑝 increases to around 2

−4,
which leads to a shorter average lifetime in the fridge.

number of insertions between request-response pairs that

experience the maximum delays we are interested in mea-

suring. In Figure 3, we show the error of the fridge algorithm

under different entering probabilities, under a small mem-

ory size𝑀 = 2
12
. We use two different synthetic traces, one

with delay range (0, 212)ms and another with delay range

(0, 26)ms.

In Figure 3(a), the largest delay 2
12
ms corresponds to 4×106

insertions between request and response. The best choices

of 𝑝 indeed appear near average lifetime𝑀/𝑝 = 4 × 10
6
. For

Figure 3(b), the largest delay 2
6
ms corresponds to 6.4 × 10

3

insertions, and we observe an increase in the best choice of 𝑝

(thus decreased average lifetime). Also, the fridge’s accuracy

is not very sensitive to the exact choice of 𝑝 , as we observe

similar accuracy when choosing any 𝑝 within 0.5x-2x of the

optimal.
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Figure 4: Compared with the single fridge single stage
variant, using two fridges provides more benefits as
memory size𝑀 decreases.

We conclude that network administrators deploying the

algorithm should provision 𝑝 according to the expected max-

imum delay to be measured in the network, by aligning the

fridge’s average lifetime to the number of insertions under

this delay. It is likely not necessary to tune 𝑝 continuously to

adapt to the slight temporal changes in traffic pattern, as the

fridge is robust against a 0.5x-2x change in optimal 𝑝 , and

we only observe a 1.2x-1.3x diurnal change in per-minute

average traffic rate in our network. However, 𝑝 should be

re-calibrated whenever the traffic rate or the average delay

changed more than 2x.

5.3 Beyond a single fridge
We now show that using multiple fridges improves accuracy

by experimenting with a two-fridge algorithm.

The two fridges each use half of the total memory size

(𝑀1 = 𝑀2 = 𝑀
2
), and we find the best entry probabilities

(𝑝1, 𝑝2) using grid search; the outputs of two fridges are then
combined using Inversed Variance Weighting (as discussed

in § 4.2) to produce the final estimated CDF. In Figure 4, we

show the two-fridge algorithm is more accurate than a single

fridge when processing the real-world traffic trace, especially

in the more challenging regime with smaller memory size.

Finally, we compare our single- and two-fridge algorithms

with both the single-stage and the four-stage naive algo-

rithms. We similarly tuned the naive algorithm to use the

best expiration threshold for each memory size. Figure 5

shows that the two-fridge algorithm performs consistently

better than the naive algorithms, achieving the same accu-

racy using 2x-4x smaller memory.
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Figure 5: The single- and two-fridge algorithms ex-
hibit much lower estimation error for 50, 95, 99th-
percentile delays, compared with the 1- and 4-stage
naive algorithms, under various total memory sizes.

It is not yet clear how to systematically find the best entry

probability for more than two fridges without using exhaus-

tive search, or how much further we can reduce error by

using three or more fridges. We leave these as future work.

6 Hardware Implementation
We build a prototype of the fridge data structure that runs on

the Barefoot Tofino high-speed programmable switch, that

can measure traffic delay distribution at line-rate of 100 Gbps

per port across 16 ports (1.6 Tbps aggregated throughput).

The prototype program is written in the P4 [22] language

and has approximately 800 lines of code. We plan to make

the source code of our prototype publicly available with the

final version of this paper.

Our prototype measures TCP handshake delay distribu-

tion by parsing handshake packets, hashing the IP address

pair, port number pair, and TCP sequence number together

into a request/response ID; it is straightforward to adapt the

program to measure other delays by similarly defining and

calculating request/response IDs using other information in

the packets.

In this section, we briefly discuss some technical details

about implementing the algorithm on hardware programmable

switches, and present evaluations of our prototype.

6.1 Implementing the fridge table
We implement the fridge using three hash-indexed arrays:

𝐼𝐷𝑆 [·], 𝑇𝑆 [·], and 𝐶𝑇𝑅 [·], storing the request packet’s ID,

its timestamp, and the insertion counter, respectively.

When a request arrives, we first combine the relevant

packet header fields (and compress them through a digesting

hash function) to generate a 32-bit request ID, as well as gen-

erating a random array index 𝑖𝑑𝑥 = ℎ𝑎𝑠ℎ(𝐼𝐷) ∈ [𝑀], which
specifies a location in the fridge. Subsequently, we invoke

the pseudorandom number generator to generate a 32-bit

random number 𝑟 ∈ [0, 232), and compare it against a thresh-

old: the request is only inserted if 𝑟 < 𝑝 · 232. This way, we
implement the entry probability 𝑝 as the request is ignored

with probability 1 − 𝑝 . We also maintain an additional regis-

ter as the fridge’s insertion counter, which is incremented

by one for each inserted request. Subsequently, we write

this request’s ID, the current timestamp, and the insertion

counter into 𝐼𝐷𝑆 [𝑖𝑑𝑥], 𝑇𝑆 [𝑖𝑑𝑥], and𝐶𝑇𝑅 [𝑖𝑑𝑥], respectively.
When a response arrives, we calculate the same ID and in-

dex 𝑖𝑑𝑥 = ℎ𝑎𝑠ℎ(𝐼𝐷), and check if a matching ID is currently

stored in 𝐼𝐷𝑆 [𝑖𝑑𝑥]. If so, we generate a delay sample by cal-

culating the delay (the difference between current timestamp

and 𝑇𝑆 [𝑖𝑑𝑥]) and the number of survived insertions (𝑥 , the

difference between current insertion counter and𝐶𝑇𝑅 [𝑖𝑑𝑥]),
and also erase the current values. Otherwise, if the stored

ID mismatched, the request didn’t survive and we simply do

not produce a sample.

We note that the process of generating IDs using a 32-bit

hash digest might lead to mismatching request and response

sharing the same ID. However, the probability for a hash

collision when generating an ID is much lower than hash

collisions on the shorter 𝑖𝑑𝑥 (8-16 bits), therefore it has neg-

ligible impact to producing delay samples. Requests have a

much higher chance to be evicted than surviving and seeing

a mismatching response with the same ID.

6.2 Correcting the bias
Given the delay 𝑡 and survived insertion count 𝑥 in a reported

sample, we calculate the single-fridge bias correction factor

in the switch data plane.

As the programmable switch only supports basic arith-

metic operations, we cannot exactly calculate 𝑝−1
(
1 − 𝑝

𝑀

)−𝑥
;

instead, we notice 𝑝 and𝑀 are known constants, and exploit

P4’s match-action semantics to match 𝑥 with a list of pre-

fixes, effectively building a lookup table with pre-computed

𝑥 ranges and the corresponding correction factor.

The prefix matching logic available on the programmable

switch was originally used for routing network packets over

the internet by IP address prefixes. Given that the bias cor-

rection factor 𝑝−1
(
1 − 𝑝

𝑀

)−𝑥
is a monotonic function over

𝑥 , it is straightforward to implement a lookup table that
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matches on the bit prefixes of the binary representation of 𝑥

and outputs the correction factor. To save memory, we do

not implement all possible correction factors exactly, and

instead only maps 𝑥 approximately to several integer cor-

rection factors starting from 1/𝑝 with 1.1x increment. The

programmable switch hardware supports matching using

different bit prefix lengths, which is very handy given that

the correction factor has 𝑥 in its exponent.

For example, with 𝑝 = 0.5 and 𝑀 = 2
16
, the first prefix-

matching rule matches 𝑥 ∈ [0, 7×211) and outputs correction
factor 2, and the next rule matches 𝑥 ∈ [7 × 2

11, 9 × 2
12)

and outputs correction factor 3. We use a python script to

automatically generate these rules based on 𝑝 and𝑀 .

Subsequently, we tally the delay samples and build a his-

togram in a register array, by adding up the correction factors

of delay samples that fall into certain delay ranges. In our

prototype, we maintain a histogramwith 32 bins using 𝑙𝑜𝑔(𝑡)
as the bin index, however it is straightforward to discretize

the distribution differently or use more bins.

This implementation allows the data-plane program to

track the distribution of delay in real time, enabling diverse

applications such as real-time SLA monitoring and dynamic

rerouting. We can either maintain an overall delay distribu-

tion, or split the traffic into different subsets and maintain a

separate delay distribution for each subset.

Still, we note that various approximations incur additional

error in the measurement. One may collect all the produced

samples and perform the bias correction outside of the data

plane, using a program running on a server (with no arith-

metic constraints), to exactly calculate the correction factors

and the delay distribution. This also allows running the more

complex correction operations required by the multi-fridge

algorithm.

6.3 Prototype evaluation
We evaluate our prototype fridge implementation by running

it on a Barefoot Tofino Wedge-32X programmable switch,

processing the same real-world traffic trace used in § 5. We

use the MoonGen [11] traffic generator to replay the trace to

the switch at real-world speed, by reading the pcap file from

a ramdisk. The traffic generator runs on a server with two

10-core Intel Xeon 4114 CPUs and a Mellanox ConnectX-5

100 Gbps NIC, using Ubuntu 20.04 and DPDK 19.05.

We check that the fridge is producing samples correctly,

by running it under various memory size𝑀 and collecting all

the samples reported using a server running packet captur-

ing. Analyzing the raw samples produce a delay distribution

CDF closely matching the ground truth, unless 𝑀 is set to

be very small. The results closely match what we observe

under simulation. We also analyze the effect of approximat-

ing the correction factor using a lookup table, and find it

only negligibly affects the resulting CDF: we observe a max-

imum relative error between 0.2% and 0.9%, about ten times

smaller than the relative error between the fridge’s estimated

distribution and the ground truth.

A fridge with 𝑀 = 2
16

entries costs about 6.4% of the

total register memory available on the programmable switch.

We only need 𝑀 = 2
12

entries to process the real-world

traffic trace used in § 5 and produce an accurate delay CDF,

and under this configuration we only consume 1.7% of the

total register memory. Besides the register memory allocated

for the fridge, the prototype program also uses 23.6% of

hash units (for array indexing), 7.3% of Ternary Content

Addressable Memory (TCAM, for prefix lookup tables) and

less than 5%-10% of any other hardware resource.

Given that we only use moderate hardware resource, we

believe our prototype program’s performance is sufficient

to process traffic at the switch’s maximum line rate; unfor-

tunately, our packet generator server can only replay trace

at speeds up to 8 Gbps (due to single-core CPU bottleneck)

and generate synthetic traffic at approximately 80 Gbps. We

have validated the prototype behaved correctly under both

cases. At 80 Gbps, the prototype data-plane program is pro-

cessing more than 160 million requests and responses per

second, which is 80 times faster than a simulator written in

C++ (processing 2 million requests/responses per second on

a single CPU core).

7 Related Work
Measuring delay. PingMesh [14] and NetBouncer [21] mea-

sure round-trip delay by running active measurement on end

hosts, and calculating the time difference between outgoing

probes and incoming replies. Active measurement can gener-

ate comprehensive reports periodically, however the probe

might not experience the same delay as actual application

traffic [2]. Meanwhile, Ruru [10] and Abut [1] measure TCP

handshake delay by passively observing the three-way hand-

shake packets. This is helpful for producing a flow-level

distribution of delays. Veal et al. [23] measure delay for all

TCP packets, by adding a timestamp as a TCP option header.

This method can produce accurate samples, as long as in-

termediate firewalls do not drop the option header and the

client correctly echoes back the timestamp. Instead, Jiang

and Dovrolis [16] passively measured TCP packets by ob-

serving sequence numbers, and produce delay estimates for

many but not all packets. However, these methods all require

exporting a large number of packets from the data plane for

off-path analysis, which incurs significant networking and

computational overhead when measuring high-speed net-

works.

Delay measurement in the data plane. Dapper [13]
and Chen et al. [6] both measure delay directly in the switch
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data plane. Dapper tracks TCP flows individually, and pro-

duces one delay sample per round-trip for each TCP flow;

this requires pre-allocating memory for every TCP flow be-

ing tracked. Meanwhile, [6] works directly with packets from

all flows. This allows better memory utilization (almost the

entire memory is used at all times) and does not require

per-flow state, however it leads to the bias issue against long

delays, which we addressed in this work.

Quantile sketch. KLL [17] and DDSketch [19] are quan-

tile sketches that approximately measure samples in a dis-

tribution and produce an estimate of certain quantiles us-

ing only small memory. QPipe [15] implements a quantile

sketch that runs fully within the programmable switch data

plane. Our work does not measure quantiles directly as we

only re-weight the produced samples to ensure the resulting

distribution is unbiased, and we rely on subsequent post-

processing to aggregate the samples and produce statistics

such as quantiles. It is possible to feed the samples and their

weights output by a fridge into a quantile sketch, such that

we can approximately answer queries about percentile delay

without the need to save the entire distribution.

8 Conclusion
In this paper, we show how to compute unbiased estimates

of delay in the data plane, using the fridge data structure that
tracks the number of evictions while the request remains in

the fridge. By correcting for the probability of eviction due to

hash collisions, we can produce accurate delay distributions

that closely match the ground truth. Evaluation shows that

our algorithm is indeed much more accurate at estimating

delay percentiles, compared with prior works using the same

amount memory. The two-fridge algorithm achieved the

same accuracywhile saving 2x-4xmemory.We also build and

validate a prototype implementation of the fridge running

on high-speed programmable switches, that measures the

unbiased delay distribution accurately and efficiently within

the data plane.

There are still many network performance metrics we

struggle to measure in the data plane due to the limited

memory size. The fridge design opened up many possibil-

ities measuring unbiased statistics for sophisticated “join-

over-time” queries, where two or more packets across the

traffic stream need to be joined together. One question re-

main unsolved by this paper is whether our fridge design

is applicable to statistics beyond the distribution of delays

between request-response pairs, allowing us to estimate dis-

tributions of other more complex metrics such as the total

number of bytes or packets in a completed flow. It is straight-

forward to accumulate the counts in the fridge and produce

a correction factor for each sample, and we can obtain an

unbiased estimate for the frequency of each count using the

same correction factor. However, further empirical analysis

are needed when we start to aggregate these counts into

more complex metrics, such as their quantiles and skewness,

as the unbiased property cannot be carried over automat-

ically. We are also excited to apply the idea of correcting

survivorship bias in other randomized data structures in our

future work.
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