
UFO: A Resilient Layered Routing Architecture

Yaping Zhu∗, Jennifer Rexford∗, Andy Bavier∗, Nick Feamster†
∗ Princeton University † Georgia Tech

Abstract
Conventional wisdom has held that routing protocols can-
not achieve both scalability and high availability. Despite
scaling rather well, today’s Internet routing system does not
react quickly to changing network conditions. Overlay net-
works, on the other hand, can respond quickly to changing
network conditions, but their reliance on aggressive probing
does not scale to large topologies. This paper presents an
Underlay Fused with Overlays (UFO), which achieves the
best of both worlds by providing router support for overlay
routing mechanisms. UFO comprises two changes to exist-
ing routers: (i) data-plane support for deflecting packets at
the behest of the overlay and (ii) explicit notification about
significant changes in network conditions. We discuss how
these two mechanisms facilitate the scalable deployment of
overlay routing mechanisms at the network layer.

1 Introduction
Today’s “one size fits all” routing system scales well, but
at the expense of availability. Routers do not respond au-
tomatically to congestion, forcing traffic to traverse over-
loaded paths even when better paths exist. Transient disrup-
tions during routing-protocol convergence [16, 29] degrade
the performance of interactive applications like Voice over
IP (VoIP) [3, 15, 19] and online gaming. In addition, to-
day’s routing protocols do not satisfy the diverse availability
requirements of different applications. For example, some
applications may prefer high-throughput paths while others
prefer low loss and low delay, but today’s routing protocols
route all traffic over the same set of paths. In this paper, we
propose a routing architecture that scales well and provides
high availability for diverse applications by combining ideas
from conventional routing protocols and overlay networks.

Our architecture is motivated by the success of overlay
networks at providing reliable communication services, al-
beit at limited scales. For example, a Resilient Overlay Net-
work (RON) [1] uses a small collection of hosts to form a
topology where each overlay link traverses one or more hops
in the underlying network. RON reacts more quickly than the
underlying network to changes in network conditions; un-
fortunately, it does not scale to a large number of hosts, and
the resulting paths can sometimes be inefficient. Travers-
ing intermediate hosts adds delay and consumes bandwidth
and processing resources. Quickly masking failures requires
monitoring the underlying paths with frequent probes, which
does not scale to large overlay topologies.

This paper argues that, to scale welland provide high
availability, the routing architecture should consist of mul-
tiple layers. Overlay routing should be viewed as part of
the routing system itself, not as “just another application”.
The key questions that a multi-layer routing system must ad-
dress concern: (1) Whatfunctionsshould be placed at each
layer of the routing system? and (2) Whatinterfacesshould
these layers expose to one another? To explore these ques-
tions, we present a two-level routing architecture that sup-
ports high availability by reacting quickly to failures by bor-
rowing some design principles and mechanisms from over-
lay networks. We believe that the lower layer, the “under-
lay”, should support the following two functions:

• Direct control over forwarding table entries.We be-
lieve that routers should provide data-plane support for
forwarding packets over “overlay” links, at the behest
of the “overlay” control plane. This enables flexible
control over the end-to-end paths, without the efficiency
drawbacks (e.g., higher latency and wasted bandwidth)
of traditional overlay networks.

• Explicit notification about changing network condi-
tions. We believe that routers should notify the over-
lay about critical changes in the properties of an over-
lay link. Explicit notifications improve the efficiency
of reactive routing at the “overlay” layer without com-
promising scalability. This raises important questions
concerning who to notify about what kinds of events,
and how to design a scalable notification system.

We call our system “underlay fused with overlays” (UFO)
to emphasize thecross-layernature of our design. In prac-
tice, we envision two main deployment scenarios. First, ISPs
could view the two-layer design as an effective way to offer
highly-available communication services to their customers.
Second, ISPs could host third-party overlay services, offer-
ing them extra support for packet forwarding and explicit no-
tification, as an extension of their server hosting business.

The remainder of the paper is structured as follows Sec-
tion 2 describes how routers can host overlays and perform
customized packet forwarding on high-speed links. Then,
Section 3 discusses how the routers generate notification
messages when overlay links fail or become heavily con-
gested. Section 4 describes enhancements to UFO for bet-
ter scalability, followed by a discussion of related work in
Section 5. Section 6 concludes with a discussion of the eco-
nomic incentives for deploying UFO.

table

overlay
forwarding

Classifier

Decapsulation Encapsulation

table
forwarding

IPdefault

overlay data traffic

overlay data traffic control plane control plane
overlay IProuting

Figure 1: Line cards provide support for overlay forwarding.

2 Efficient Overlay Forwarding
UFO proposes that routers provideline-card supportfor for-
warding packets on overlay links and expose a standard in-
terface to allow aseparate control plane(either running as an
overlay or as a remote server) to install forwarding table en-
tries directly on the routers. This function circumvents some
forwarding inefficiencies that today’s overlay routing incurs:
specifically, it not only speeds up overlay packet encapsu-
lation and decapsulation but also reduces traffic going both
inbound and outbound to reach the overlay servers, which
are traditionally located at the network edge.

2.1 Overlay Forwarding on Line Cards

Overlay servers use tunnels to communicate with each other
and participating end hosts1. A receiving server decapsulates
the data packet, performs a lookup in an overlay forwarding
table, and reencapsulates the packet with the address of the
next tunnel end point in the overlay path. Instead of termi-
nating at separate overlay servers, the tunnel could terminate
at the router itself: the router’s line cards could recognize en-
capsulated packets based on an outer header, such as a desti-
nation address and port number. The line card can terminate
multiple overlay links, perhaps belonging to different over-
lay networks, using different (address, port) pairs.

After decapsulating the packet, the router indexes into an
overlay forwarding table populated by the overlay control
plane, as shown in Figure 1. Since each overlay network has
its own forwarding-table entries, the line card must include
the overlay identifier (e.g., the port number) when indexing
the forwarding table. Based on lookup results, the line card
reencapsulates the packet and forwards it toward the next
overlay node. The line card performs a second lookup in the
IP forwarding table to direct the packet to the outgoing link
en route to the next overlay node. This data-plane pipeline
can be easily implemented at high speed, e.g., on line cards
with network processors or custom logic.

2.2 Hosting the Overlay Control Plane

The contents of the two forwarding tables come from differ-
ent sources. As in a traditional router, the IP forwarding table
is generated by the routing software by combining informa-
tion from various routing protocols (e.g., OSPF and BGP),
but the entries in the overlay forwarding table are generated

1End hosts can employ a variety of techniques for “opting in” to the
overlay service [13, 17, 18].

Over
lay2
Over

LC LC LC LC LC

Overlay3
 IP Routing
BGP,OSPF

switching fabric

line cards

 Processors lay1

LC Overlay4

router

server

Figure 2: The router itself hosts the overlay control plane.

by overlay networks. Each overlay can add, remove, and
modify its own forwarding-table entries but does not have
permission to modify the entries belonging to other overlays.
To avoid exhausting the memory, the line card may limit the
number of entries per overlay.

A natural question arises aboutwherethe overlay control
plane should run. The overlay control plane could conceiv-
ably run on a separate set of servers, as illustrated by Overlay
4 in Figure 2. In this model, only the data-plane functions
(i.e., “in network” packet reflection) moves to the routers,
while the control-plane function remains separate. Because
the data packets are reflected “in network”, the overlay server
would not need to exchange much traffic with the routers,
minimizing the bandwidth and processing requirements for
the overlay server. In addition, the overlay server may be
relatively cheap, compared to router, making this an inex-
pensive solution. However, allowing the overlay server to
communicate with the router over the network introduces
some security challenges, such as the need to prevent unau-
thorized access and denial-of-service attacks. In addition, the
control and data planes may fail independently, introducing
additional challenges.

Instead, running the control-plane software directly on the
router allows for fast updates of the forwarding tables, and
avoids extra loss and delay for control packets to reach the
overlay control plane. Moreover, today’s high-end routersal-
ready have the ability to host overlay control planes. Routers
typically consist of line cards and processors connected by
a switching fabric. Most packets travel directly from one
line card to another, though some packets (e.g., OSPF and
BGP messages) are sent or received by one of the proces-
sors. In addition to conventional IP routing, the processors
in the router could run overlay control planes; router virtu-
alization [20], the process by which one physical router acts
as several logical routers, makes this even easier. For exam-
ple, in Figure 2, router could host overlay control plane on
dedicated processors or dedicated processor cores (Overlay
3), or virtual machines with a dedicated share of system re-
sources (Overlay 1 and Overlay 2). Each approach provides
resource isolation between the overlay control planes, while
also protecting the resources needed by the IP control plane.

3 Scalable Overlay Monitoring

To improve scalability, UFO provides explicit notification
about events that affect the overlay links (e.g., reachability

2

failures, congestion). Different types of overlays may re-
quire different types of notifications: for example, an overlay
designed for video might be more concerned with jitter than
one defined for bulk file transfer. We design the notification
mechanism to preserve overlay link abstractions: overlays
are deployed without knowledge of underlying topology,
and underlay can send notifications to overlays about over-
lay links without exposing individual underlay link proper-
ties. Routers store state about the overlay links which travel
through them, which is done by explicit registration. In this
section, we describe how UFO registers an overlay link and
sends explicit notifications in response to various network
events. We also describe how overlays can recover without
explicit notification from the underlay.

3.1 Registration of Overlay Links

An overlay node registers a unidirectional overlay link by
sending a registration message to the router hosting the re-
mote overlay node, including the event types of interest. The
routers along the underlay path see this message and store
the (source, destination, event) pair, along with information
about the next hop in the path. In Figure 3, the overlay node
S registers the overlay links S-D1 (following the underlying
path S-R1-R2-R3-D1) and S-D2 (following the underlying
path S-R1-R2-R4-D2); similarly, D1 registers D1-S and D2
registers D2-S. Suppose the R2-R3 link fails, R2 can notify
S that the overlay link S-D1 has failed, and R3 can notify
D1 that the overlay link D1-S has failed. Separate registra-
tions for each unidirectional overlay link ensures registration
is correct when paths are asymmetric.

To ensure correct operation even when paths change, reg-
istration messages are stored as soft state: the overlay nodes
periodically refresh the registration and the routers discard
stale registrations. Moreover, each registration packet car-
ries a version number that the routers store and include in
notification packets. This ensures that the overlay nodes can
safely ignore notification packets with out-of-date version
numbers, to avoid erroneously reacting to events along an
old forwarding path.

When processing a registration message, a router verifies
that the two overlay nodes are allowed to register an overlay
link. To prevent denial-of-service attacks and unauthorized
use of the service, the routers must verify that the registration
packet is authorized. Verification may involve consulting a
separate server or a locally cached list of valid participating
nodes. The ISP could also prevent source-address spoofing
by network ingress filtering. Another option for authentica-
tion is to have registration packets carry a capability. In this
way, access to registration and notification service will be
efficiently controlled by light-weight authentication cookies,
such as those found in L2TPv3.

3.2 Notification of Network Events

The router must notify registered overlay nodes about var-
ious kinds of network events which would affect the per-
formance of an overlay link, including physical failure of

S R1 R2 R3 D1

(D1, S) (D1, S)
(D1, S) (D1, S)(D2, S) (D2, S)

(S, D1) (S, D1) (S, D1) (S, D1)
(S, D2) (S, D2)

(S, D1) fails !

(D1, S) fails !

R4 D2
(D2, S)

(S, D2)

(S, D2)

(D2, S)

Figure 3: Overlays receive explicit notifications about faults.

routers of links, heavy congestion, or lost reachability due to
policy changes or session failures. To generate the notifica-
tions in timely fashion, the router must have efficient access
to the registration information. The router could maintaina
single data structure on the control plane processor, and con-
sult the table to generate notifications upon learning abouta
network event affecting a particular outgoing link. Alterna-
tively, each line card could store just the registration entries
that correspond to the outgoing link. This approach allows
line cards to create and update table entries as part of data-
plane processing of the registration packets and to automat-
ically send notification packets when the link experiences a
failure or heavy congestion.

Only the router that is directly incident to the offending
underlay link sends a notification: for example, in Figure 3,
in the event of a problem on the R2-R3 link, only R2 would
send a notification to S. Some downstream failures might
cause R1 to switch to a new underlay path to reach D1 or
D2, or cause the overlay link S-D1 or S-D2 to no longer
traverse R1, but since registration information is soft state,
R1 would eventually delete any out-of-date registration in-
formation. Similarly, if a second event (e.g., such as a failure
of the R1-R2 link) happens in the meantime, R1 would send
an unnecessary notification to S, but the stale version number
would allow S to safely discard the information.

Upon detecting a network event, the underlay node must
determine who to notify by identifying the affected overlay
links. In the preceding example, R2 must determine which
overlay links (among S-D1, S-D2, D1-S and D2-S) are af-
fected by the failure of the R2-R3 link. To do so, R2 matches
the next-hop of each overlay destination with the failed out-
put interface: because the overlay path S-D1 uses R2-R3 to
reach the destination D1, R2 will notify the S that S-D1 is
faulty. Similarly, R3 notifies D1 that (D1, S) is faulty. More-
over, R2 periodically sends notification messages to each af-
fected overlay node until it receives an acknowledgment.

3.3 Lazy Re-registration of Overlay Links

After learning about a problem with an overlay link, the over-
lay control plane can quickly reroute (at the overlay level)to

3

circumvent the problem. Yet, an important question remains
about how the overlay learns that the overlay link is perform-
ing well again. One seemingly natural approach would be for
the underlay to send another notification message when the
overlay link has recovered. However, determining that the
underlaypath(between two overlay nodes) has recovered is
difficult, since no one router has sufficient visibility intothe
path-level performance. For example, even if a failed link re-
covers, the incident router may not know that all of the other
routers have converged to a new, stable path. In addition,
some of the routers on the new path may not have any regis-
tration state for the overlay link, if they were not on old path
that received the registration packet. As such, UFO doesnot
have the underlay send recovery messages to the overlays.

Fortunately, fast recovery of overlay links is not as impor-
tant as fast notification of reachability or performance prob-
lems. Overlay networks typically have a rich (logical) topol-
ogy, with numerous alternate paths to circumvent a problem-
atic overlay link. As such, we rely on the overlay nodes to
re-register the overlay link at some time in the future. The
overlay node could be conservative and wait for several sec-
onds (or minutes) for the underlying path to reconverge be-
fore attempting to re-register the overlay link. This keepsthe
design simple without compromising the high availability of
the overlay routing layer.

4 Enhancing the Scalability of UFO
In this subsection, we describe the how to use IP multicast
to improve the scalability of monitoring the overlay links.
Then, we discuss how nesting of overlay links can offer ad-
ditional scalability.

4.1 IP Multicast for Overlay Link Monitoring

The overhead of processing registration packets and generat-
ing notification packets increases with the number of overlay
links. For example, Figure 4(a) shows the registration state
on each underlay link after four overlay sources (S1 to S4)
register overlay links to overlay destination D. The router
R1 must process four registration packets (as well as peri-
odic refreshes to maintain the soft state) and keep state about
the four overlay links. If the R1-D link fails, R1 must send
notification packets to each of the four overlay sources, as
shown by the four arrows from R1 to R2. More generally,
the storage, bandwidth, and processing resources for both
registration and notification grow in proportion to the num-
ber of overlay links that traverse a given underlay link. These
overheads could grow quite significant in large deployments.

Fortunately, UFO can capitalize on ideas from multicast
protocols to improve the efficiency of registration and noti-
fication. Using a multicast tree rooted at the overlay desti-
nation ensures that each registration and notification packet
traverses a link only once. The overlay sources join the
multicast group to register for notifications about changesin
reachability to the overlay destination. For example, in Fig-
ure 4(b), the four overlay sources join a multicast group for
overlay links terminating at D. Suppose S1 joins the group

first. Then, S1’s registration message (i.e., join request)to D
would traverse the path R3-R2-R1-D, and each node along
the way would keep track of the outgoing link to forward
packets sent to the multicast group. Later, when S2 joins the
multicast group, router R3 grafts link R3-S2 into the mul-
ticast tree, but does not need to forward the registration re-
quest further. This process reduces the storage, bandwidth,
and processing overhead for registration requests.

The multicast tree also reduces the overhead of disem-
minating notification packets. In particular, the notification
packet will traverse the subtree rooted at the router that de-
tected the network event. Suppose an the link R1-D experi-
ences some fault. Upon detecting the event, R1 directs a no-
tification packet to all downstream members in the multicast
tree. Only one copy of the notification packet would traverse
the downstream links, as shown by the arrows in Figure 4(b),
using significantly less bandwidth than the unicast scenario
shown (Figure 4(a)). Similarly, if an event occurs on the R3-
R2 link, R3 would send a notification packet downstream to
S1 and S2. Thus, a single multicast tree allows a node to send
notifications that affect any overlay links that it terminates.

Many multicast protocols exist, with different complex-
ity. Since UFO has relatively simple requirements, we envi-
sion using Protocol Independent Multicast (PIM) [9]; PIM
“sparse mode” is well suited for UFO since the number
of overlay nodes is small, relative to the number of under-
lying routers and links. UFO can also capitalize existing
data-plane support for multicast forwarding in IP routers.
However, multicast forwarding typically requires a multicast
group address. UFO could conceivably assign a multicast
group address to each overlay destination, at the expense
of administrative overhead and consuming a large part of
the multicast “class D” addresses. Instead, we envision that
the data-plane of the routers would treat registration packets
(destined to D) as implicit multicast join messages. Simi-
larly, the router could treat notification messages as implicit
multicast packets destined to the downstream members of
the multicast group.

Multicast enables UFO’s registration and notification
mechanisms to scale to a large number of overlay nodes. In
the unicast design, a fully-connected overlay withn nodes
would haven2 overlay links, each requiring registration state
for one or more underlay links. In the multicast design, the
routers need only to participate in at mostn multicast groups.
In fact, multiple overlay destinations (participating in differ-
ent overlay networks) could conceivablysharea single mul-
ticast group, if they were hosted on the same router. Suppose
a second overlay node E runs on the same router as D. Then,
notification messages could be distributed over a single mul-
ticast tree rooted at the hosting router. Then, the number of
multicast groups would be limited to the number of routers
that host overlay nodes.

4.2 Nesting of Overlay Links

In recent years, various kinds of tunneling techniques (such
as MPLS or IP-in-IP) has been deployed to decouple the

4

R2 R3

R4

D R1(S1, D)
(S2, D)
(S3, D)
(S4, D)

(S1, D)
(S2, D)
(S3, D)
(S4, D)

(S1, D)
(S2, D)

S1

S2

S4

S3

(S1, D)

(S2, D)

(S3, D)

(S4, D)

(S3, D)
(S4, D)

(a) Unicast

R2 R3

R4

D R1

S1

S2

S3

S4

GroupD GroupD GroupD

GroupD

GroupD

GroupD

GroupD

GroupD

(b) Multicast

Figure 4: Comparison of unicast and multicast notification

S I1 E1

E2
I2

E3

D

R1

R2
R3

R4

(S, D)
(I1, E1) (I2, E3)

(I1, E1)

(I2, E3)

AS BAS A

(I1, E1) (I1, E1)

(I2, E3)

(I2, E3)

Figure 5: Nested registration and notification

routing control over inter-domain egress route selection and
intra-domain next-hop route selection. For instance, in Fig-
ure 5, there are two overlay nodes S and D, whose overlay
link traverses through the underlay path S-I1-R1-E1-I2-R3-
E3-D in two autonomous systems AS A and AS B. Sup-
pose AS A has two egress routers E1 and E2 to reach AS
B, and the ingress router I1 switches to use E2 instead of
E1 for some policy reason, then overlay link must be re-
registered corresponding to change in egress route selection,
and I1 needs to determine among all the (source, destina-
tion) pairs registered, which overlay link would be affected
by this egress route change. In this subsection, we describe
the solution to this problem by nested registration.

As shown in Figure 5, while registration packet enters AS
A at ingress router I1, instead of registering for overlay link
(S, D), I1 could register the overlay link between itself and
the current egress E1 (I1, E1). Moreover, I1 also has to re-
member that (I1, E1) is a nested registration for (S, D). Un-
der such circumstance, if the egress route selection changes
to E2, I1 will notify S that (S, D) changes, since (I1, E1) is
a nested overlay link for (S, D). Similarly, AS B could also
register (I2, E3) at ingress router I2 for overlay link (S, D). In
this way, the registration of (S, D) in composed of two nested
registration of (I1, E1) and (I2, E3) in two autonomous sys-
tems, as illustrated in Figure 5.

Nested registration has several advantages, including: it
solves the problem of re-registration while egress route se-
lection is decoupled from next-hop route choice. Moreover,
the same ingress/egress pair might be shared among different
overlay pairs, which improves the scalability of UFO design.

5 Related Work
Detour recognized the potential benefits in redirecting traf-
fic along overlay paths [6]; Resilient Overlay Networks
(RON) [1] subsequently built a system based on this idea
to improving the availability by quickly detecting paths with
high latency or packet loss and rerouting around them; RON
nodes probe aggressively to maintain information about al-
ternate paths, which limits its scalability. By augmentingthe
underlay to provide some native support for overlay func-
tions, UFO circumvents some of these scaling problems.
Overlays also can make routing decisions tailored for differ-
ent applications such as Content Distribution Networks [26],
Multicast [5, 27], network level proximity [10, 30], and
Quality of Service [25]. UFO preserves the cusomizability
of overlays while eradicating many of the scaling and effi-
ciency problems.

Jannotti proposes path reflection to reduce overlay for-
warding inefficiency by allowing end hosts to request short-
circuit packet routing and duplication in nearby routers [12];
UFO’s line-card support for overlay forwarding implicitly
pushes overlay reflection points inside the network. Nakao
and Chen propose optimizations to reduce overlay mea-
surement overhead by probing along most disjoint underlay
paths, with inference or knowledge of the underlay network
topology [4, 21]; UFO’s explicit notification support pushes
this monitoring functionality into all routers to improve scal-
ability. Subsequent work on overlays has involved perfor-
mance studies [7, 11], systems for managing of overlay de-
ployments [13, 17, 18] and examinations of interactions be-
tween underlays and overlays [24].

UFO relates to many recent proposals that rely on network

5

virtualization to provide support for multiple routing systems
operating in parallel on the same physical infrastructure [17].
Cabo [8] proposes an architecture with diversified infrastruc-
ture providers and service providers. Recent research on
testbed support for virtualization [2, 22, 23, 28, 14] an ini-
tial platform for deploying UFO.

6 Conclusion
Routing faces a tension between high availability and scale.
This paper presents a routing architecture that provides two
new functions—direct control over forwarding table entries
and explicit notification about changing network conditions
overlays—to provide some of the benefits of overlay routing
at the IP layer without incurring the same scaling limitations.

Although UFO requires additional router support, we be-
lieve that these changes to routers are relatively modest and,
further, that ISPs nonetheless have sufficient incentive to
augment their routers to provide this support. First, many
ISPs already run overlay nodes of their own, (e.g., voice
over IP (VoIP) gateways and IPTV servers). Second, the ISP
could upgrade a small fraction of its routers to provide over-
lay forwarding support. Finally, providing explicit feedback
about the performance of overlay links allows ISPs to offer
better service to their overlay customers, giving them a com-
petitive edge over non-participating ISPs.

This paper has presented an initial design for UFO, but we
hope that, as we progress, it will enable overlay-based ser-
vices to operate more scalably and efficiently. As a first-of-
its-kind routing architecture that embraces routing as inher-
ently multi-later, we believe that it will also generally offers
important insights about how to design routing systems that
are both reactive and scalable.

References
[1] D. Andersen, H. Balakrishnan, F. Kaashoek, and R. Morris. Resilient

overlay networks.Proc. ACM SOSP, 2001.

[2] A. Bavier, N. Feamster, M. Huang, L. Peterson, and J. Rexford. In
VINI veritas: Realistic and controlled network experimentation. Proc.
ACM SIGCOMM, September 2006.

[3] C. Boutremans, G. Iannaccone, and C. Diot. Impact of linkfailures on
VoIP performance.Proc. NOSSDAV Workshop, 2002.

[4] Y. Chen, D. Bindel, H. Song, and R. H. Katz. An algebraic approach
to practical and scalable overlay network monitoring.Proc. ACM SIG-
COMM, 2004.

[5] Y. Chu, A. Ganjam, T. S. E. Ng, S. Rao, K. Sripanidkulchai,J. Zhan,
and H. Zhang. Early experience with an Internet broadcast sys-
tem.Proc. USENIX Symposium on Internet Technologies and Systems,
2004.

[6] A. Collins. The Detour Framework for Packet Rerouting. Master’s
thesis, University of Washington, 1998.

[7] N. Feamster, D. Andersen, H. Balakrishnan, and M. F. Kaashoek.
Measuring the effects of Internet path faults on reactive routing. Proc.
ACM SIGMETRICS, 2003.

[8] N. Feamster, L. Gao, and J. Rexford. How to lease the Internet in your
spare time.ACM Computer Communication Review, 2006.

[9] B. Fenner, M. Handley, H. Holbrook, and I. Kouvelas. Protocol
Independent Multicast - Sparse Mode (PIM-SM): Protocol Specifi-
cation (Revised).ftp://ftp.rfc-editor.org/in-notes/
rfc4601.txt, August 2006.

[10] M. Freedman, K. Lakshminarayanan, and D. Mazieres. OASIS: Any-
cast for any service.Proc. USENIX/ACM NSDI, 2006.

[11] K. P. Gummadi and H. V. Madhyastha. Improving the reliability of
Internet paths with one-hop source routing.Proc. OSDI, 2004.

[12] J. Jannotti.Network Layer Suppport for Overlay Networks. PhD the-
sis, Massachusetts Institute of Technology, 2002.

[13] D. Joseph, J. Kannan, A. Kubota, K. Lakshminarayanan, I. Stoica, and
K. Wehrle. OCALA: An architecture for supporting legacy applica-
tions over overlays.Proc. USENIX/ACM NSDI, 2006.

[14] S. Karlin and L. Peterson. VERA: An extensible router architecture.
Computer Networks, 2002.

[15] N. Kushman, S. Kandula, and D. Katabi. Can you hear me now?! it
must be BGP.ACM Computer Communication Review, 2007.

[16] C. Labovitz, A. Ahuja, A. Bose, and F. Jahanian. DelayedInternet
routing convergence.Proc. ACM SIGCOMM, 2000.

[17] K. Lakshminarayanan, I. Stoica, S. Shenker, and J. Rexford. Rout-
ing as a service. Technical report, University of California, Berkeley,
2006.

[18] H. V. Madhyastha, A. Venkataramani, A. Krishnamurthy,and T. An-
derson. Oasis: An overlay-aware network stack.SIGOPS, 2006.

[19] A. Markopoulou, F. Tobagi, and M. Karam. Assessment of VoIP qual-
ity over Internet backbones.Proc. IEEE INFOCOM, 2002.

[20] D. McPherson et al. Core network design and vendor prophecies.
NANOG 25, 2003.

[21] A. Nakao, L. Peterson, and A. Bavier. A routing underlayfor overlay
networks.Proc. ACM SIGCOMM, August 2003.

[22] L. Peterson, T. Anderson, D. Culler, and T. Roscoe. A blueprint for
introducing disruptive technology into the Internet.Proc. of HotNets,
2002.

[23] L. Peterson, A. Bavier, M. E. Fiuczynski, and S. Muir. Experiences
building Planetlab.Proc. OSDI, 2006.

[24] S. Seetharaman, V. Hilt, M. Hofmann, and M. Ammar. Preemptive
strategies to improve routing performance of native and overlay layers.
Proc. IEEE INFOCOM, 2007.

[25] L. Subramanian, I. Stoica, H. Balakrishnan, and R. H. Katz. Overqos:
An overlay based architecture for enhancing Internet QoS.Proc.
USENIX/ACM NSDI, 2004.

[26] SureRoute. Sureroute. http://www.akamai.com/dl/
feature_sheets/fs_edgesuite_sureroute.pdf.

[27] K. Svetz, N. Randall, and Y. Lepage. Mbone: Multicasting tomor-
row’s internet.IDG Books Worldwide, 1996.

[28] J. S. Turner. A proposed architecture for the GENI backbone platform.
ANCS, 2006.

[29] F. Wang, Z. M. Mao, J. Wang, and L. Gao. A measurement study on
the impact of routing events on end-to-end Internet path performance.
Proc. ACM SIGCOMM, 2006.

[30] B. Wong, A. Slivkins, and E. G. Sirer. Meridian: A lightweight net-
work location service without virtual coordinates.Proc. ACM SIG-
COMM, 2005.

6

