
Meta4: Analyzing Internet Traffic by Domain Name in the Data Plane

Jason Kim
Advisor: Jennifer Rexford

Princeton University

Abstract
Associating network traffic with human-readable domain
names, instead of low-level identifiers like IP addresses, is
helpful for network operators who might need to rate-limit
traffic by domain, conduct web-fingerprinting, identify IoT de-
vices, measure traffic volume by domain name, and more. The
problem is that most current methods of network monitoring
require collecting and examining large amounts of network
traffic in a way that may compromise user privacy. The emer-
gence of high-speed programmable switches makes it possible
to implement monitoring programs that run in the data plane
at line-rate without revealing user information to network op-
erators. In this paper, we introduce Meta4, a framework for
implementing network monitoring by domain name in the
data plane by extracting the client IP, server IP, and domain
name from DNS response packets and using this information
to identify the domain name associated with packets from the
subsequent client-server session. A data-plane implementa-
tion has the benefits of preserving the privacy of sensitive user
information, running efficiently at line-rate, and allowing net-
work operators to take action on network traffic to rate-limit,
block, or mark packets based on their associated domain. We
implemented Meta4 on a Barefoot Tofino P4-programmable
switch and deployed and assessed our implementation on the
Princeton University campus.

1 Introduction

Monitoring network traffic usually is conducted based on low-
level identifiers like IP addresses, MAC addresses, or port
numbers. Ideally, network operators should be able to monitor
traffic by defining higher-level policies that match closer to
their actual intent. For example, network operators should
be able to capture traffic based on policies like “capture all
traffic related to video streaming services” rather than having
to worry about low-level details of identifying which flows
are associated with various streaming services.

Efforts at implementing this higher-level network monitor-
ing or “intentional network monitoring” have been made, in

particular, by Donovan and Feamster’s NetAssay system [6]
which implements intentional network monitoring using meta-
data engines at controllers receiving traffic redirected from
switches across a network. In this paper, we seek to lay the
groundwork for implementing domain-based intentional mon-
itoring at the switch-level, within the data plane itself.

The advent of programmable data planes allows us to
quickly parse and process packets at the switch without hav-
ing to capture and store large amounts of extraneous network
traffic. By parsing DNS response packets, we can extract the
client’s IP address (the destination IP address of the packet),
the server’s IP address (found in the answer of the DNS re-
sponse), and the domain name requested by the client (found
in the query field of the DNS response packet). By joining the
client IP and server IP pair with the domain name in the data
plane (hence referred to as the <cIP, sIP, D> tuple, referring
to the client IP, server IP, and domain name, respectively),
we are able to analyze client-server sessions by the domain
that they are associated with. Here, we define “session” as all
the traffic a given server/domain pair sends to a client for a
given time after a single DNS lookup. A given session may
in fact consist of multiple connections over time due to DNS
response caching by the client.

It is important to note that dynamically joining IP address
pairs to domain names using DNS response packets is nec-
essary as opposed to keeping a static mapping of server IP
addresses to domain names. This is because multiple domain
names may have the same IP (various domains may share the
same server) or a single domain name can have multiple IPs
(CDNs may load balance/geographically distribute servers
across different clients).

Taking advantage of a PISA (Protocol Independent Switch
Architecture)-based programmable data plane, we introduce
Meta4, a framework for implementing domain-based inten-
tional network monitoring. Meta4 has several benefits over
control-plane applications:

• Privacy: Within the data plane, the act of joining infor-
mation from DNS traffic to follow-on network traffic can

1



be done without exposing individual user IP addresses
to network operators. Furthermore, in the case of fin-
gerprinting or detection-based applications, a network
operator never needs to store or see traffic from users
whose behavior does not result in positive detections,
thus limiting breaches in user privacy to those clients
that a network operator is specifically looking to flag or
detect.

• Efficiency: Data-plane programs are very fast and can
outperform what can be done in the control plane, al-
lowing us to monitor large amounts of traffic without
compromising network performance.

• Direct Action: In addition, implementing these appli-
cations within the data plane allows network operators
to take direct action on packets in a network based on
results from the application. In other words, network
operators could use the results reported from a domain
name heavy-hitters application to dynamically rate-limit
or re-route traffic from particular domains. Furthermore,
a network operator could dynamically block traffic from
a client IP associated with suspicious DNS tunneling,
malware injection, or other malicious behavior on a net-
work.

Domain-based monitoring within the data plane allows for
network operators to create a variety of applications such as:

• Traffic Volume Measurement by Domain: Network
operators can define domain-based “traffic classes” such
as “Netflix video traffic” or “Zoom video chat traffic”
and monitor the amount of traffic volume (in bytes or
packets) sent by servers to clients for domains associated
with these traffic classes. (section 6.1)

• DNS Tunneling Detection: By identifying clients who
routinely make DNS requests with no follow-up traf-
fic, we can easily identify client IP addresses that are
suspects for using DNS for nefarious purposes. (section
6.2)

• IoT Device Detection and Fingerprinting: By identi-
fying domain names commonly associated with partic-
ular IoT devices, we can identify devices on a network
that routinely send and receive traffic to domains that are
unique identifiers of a type/model of IoT device. (section
6.3)

• Webpage Fingerprinting: By identifying the domain
names requested by a client and quantity/size of packets
received when downloading a specific web page, a form
of web fingerprinting can be conducted within the data
plane to identify when clients visit particular web pages
of interest.

• IDS Bypass by Domain: In order to improve network
performance, a network operator could allow traffic from
certain trusted domains to bypass processing by an IDS
(intrusion detection system).

• Firewall Rules based on Domains: A network operator
could also create firewall rules based on domain name
that restrict the flow, redirect, or drop packets associated
with certain untrusted domains.

However, implementing Meta4 within the data plane is not
a straightforward task. PISA-based switch hardware imposes
a number of restrictions that make implementing Meta4 dif-
ficult. For one, PISA switch parsers are designed to parse
fixed-length header fields which make dealing with variable-
length fields like domain names difficult. Furthermore, there
are significant limitations in register memory as well as limita-
tions on the amount of processing that can be done per packet
(due to limited stages in the the processing pipeline).

In section 2, we discuss the architecture of a basic Meta4
use case that measures traffic volume by domain as well as
define in detail the challenges with creating a Meta4 imple-
mentation within the data plane. In section 3, we discuss the
design and implementation of that Meta4 use case and detail
how we overcame the challenges discussed in section 2. In
section 4, we evaluate the efficacy and performance of the
Meta4 application measuring traffic volume by domain name
on a campus deployment and in section 5, we discuss the par-
ticular challenges of implementing and deploying Meta4 on
hardware. In section 6, we describe how to implement several
other Meta4 use cases and evaluate their utility. In section 7,
we discuss related work that helped to inform the methodol-
ogy and methods used in Meta4. In section 8, we conclude by
discussing potential avenues for future work related to Meta4.

2 Meta4 Architecture and Challenges

In this section, we provide an overview of the architecture of
Meta4 and the challenges presented by trying to create a data-
plane implementation. In section 2.1, we start by describing
Meta4 through the most basic use case where we use the IP
address-domain name mapping to identify traffic associated
with a particular domain name. By doing this, the program can
then identify how much traffic, measured in terms of packets
or bytes, is associated with a particular domain. In section
2.2, we describe the challenges with implementing Meta4 in
a PISA-based data plane.

2.1 Meta4 Architecture
The overall architecture for a Meta4 application is shown in
Figure 1. The system is defined by three levels: the network
operator, the control plane, and the data plane. The network
operator defines high-level policies that the control plane con-
verts into match-action rules for the data plane.

2



Figure 1: Meta4 is designed to take high-level policies defined
by network operators and convert them to rules that can be
used by the data plane to process packets. In this use case,
policies define types of traffic that Meta4 measures volume
for. The control plane converts these policies to match-action
rules.

In this specific application, a network operator wishes to
measure traffic volume by certain traffic classes (In Figure 1,
the network operator wants to compare video streaming traf-
fic from Netflix and education-related traffic). The network
operator uses these traffic classes to define a known domain
list: a list of domain names that encompass the sources of
traffic that the network operator is interested in. This list of
domains is then converted into match-action table rules by the
control plane which are then used by the data plane to decide
if the packets it sees are relevant to the network operator’s
intended policy.

Using DNS response packets, the data plane parses domain
names and uses the match-action rules to create Domain to
IP address mappings. These IP address mappings are then
used to identify what domains subsequent data packets are
associated with. The data plane stores information like the
number of bytes/packets seen for each of the traffic classes in
registers. When the network operator wants to see the traffic
volume results, the control plane polls the register values to
retrieve the number of bytes/packets for each traffic class.
The control plane can then interpret this data and report it to
the network operator in terms of the original policy that was
defined (traffic volume of Netflix vs. education, for example).

2.2 PISA Implementation Challenges
The goal of implementing Meta4 within the data plane is
possible thanks to PISA (Protocol Independent Switch Ar-
chitecture) switches which contain a programmable packet
parser, processing pipeline, and a packet deparser. The pro-
cessing pipeline contains both an ingress and egress pipeline.
Each can contain match-action tables for matching on packet
headers or metadata, and register arrays for storing informa-
tion. The processing pipeline can also modify packet header
fields and metadata and make packet forwarding or dropping

decisions. The processing pipeline is composed of a limited
number of stages which limits the amount of operations that
can be performed for each packet as it moves through the
pipeline.

Parsing: Prior to the processing pipeline, packets go
through a programmable packet parser capable of extract-
ing header fields and metadata from a packet. The processing
pipeline can then use information extracted from a packet to
make decisions on storing or updating information in memory
and take action on the packet. Primarily intended for parsing
fixed-width headers, the parser is only able to parse through
fixed number of bytes. While the parser can make different
parsing decisions by switching to different parser states based
on the values of header fields, it cannot parse through a vari-
able number of bits. This constrains a programmer by forcing
them to pre-define all potential parser actions that a program
may require. In the context of Meta4, this poses a challenge
with parsing domain name fields from DNS response pack-
ets since domain names are, by their nature, variable-length
strings.

Match-Action Tables: Within the processing pipeline, a
program can make use of match-action tables which can
match on packet header fields and metadata. Upon a match
(or miss), the program can choose to take some action such
as a forwarding or dropping decision, an update to header or
metadata values, or an update to a register. Each stage in the
pipeline can store match-action rules in a limited amount of
TCAM or SRAM. In the context of Meta4, match-action rules
provide a natural way for us to match domain names from a
DNS packet to check if a domain name belongs to one of our
traffic classes. However, the limited height of TCAM memory,
in particular, limits the total length of a domain name that we
can match on within a stage.

Register Memory: PISA switches have the ability to pre-
serve some state in persistent memory across multiple packets
by way of registers. Within the processing pipeline, each stage
contains a limited number of registers of limited and fixed
width [9]. Furthermore, each stage can only perform a few
concurrent memory accesses to its registers. In practice, this
means that a program can only access (read/write) to a reg-
ister once per packet. This naturally causes difficulties with
many programs for PISA switches that need to perform more
complex operations that depend on reading existing values
from a register, taking some action, and then updating that
same register value. Limitations in the total amount of mem-
ory available in the form of registers mean that it is likely
impossible to store all <cIP, sIP, D> tuples from every single
DNS response packet in the switch. This means that we will
have to create a solution to intelligently evict stale entries to
allow room for new DNS response entries.

Packet Resubmission: Normally, each packet goes
through the processing pipeline once, and cannot repeat and
move backwards to prior stages in the pipeline. This severely
limits the number of operations that can be programmed for a

3



packet as well as the ability to access data structures multiple
times for a single packet. One tool available within PISA
switches that provides some flexibility for programmers is the
ability to resubmit a packet. Resubmission, which can only be
done once per packet, causes a packet to be be resubmitted to
the same ingress port once it finishes its initial pass through
the ingress pipeline. Resubmission, at the cost of some la-
tency caused by the bandwidth consumed by having packets
go through the pipeline multiple times, allows a programmer
to use more stages to increase the complexity of a program
and perform more processing on a packet. Resubmission will
be a key tool in solving one of the primary restrictions of reg-
ister memory. As mentioned before, limited memory forces
us to evict stale entries to allow room for new ones. Resub-
mission, which allows us to access the same register entry
twice, gives us the ability to check for a stale entry, and if the
entry is stale, to replace that old entry.

3 Name-Based Monitoring in the Data Plane

In this section, we describe our design and implementation for
a canonical Meta4 application that measures traffic volume
in terms of bytes and packets sent by servers to clients by
domain name via a PISA-based programmable data plane.
We show how we solved hardware limitations discussed in
section 2 of parsing (section 3.1), memory limitations (section
3.2), and information loss (section 3.3).

Figure 2: Meta4 response to a DNS response packet. D refers
to a domain name, dID refers to a domain ID number, T
refers to a timestamp, sIP and cIP refer to server and client IP
addresses respectively.

3.1 Parsing Long, Variable-Length Names
As discussed in section 2.2, extracting variable-length do-
main names from DNS response packets is a challenging
task within the data plane since parsers are designed with
the intent of parsing fixed-length packet headers, not variable
length strings of characters like domain names.

In order to successfully parse domain names, it is impor-
tant to understand how DNS encodes domain names. Domain

Figure 3: Meta4 response to a non-DNS data packet.

names are stored within the DNS “question” field which sep-
arates the domain name into “labels”, the parts of the domain
name delineated by periods. For example, the labels of “exam-
ple.foobar.com” are “example”, “foobar”, and “com”. Within
the DNS question field, each domain label is preceded by
a single octet which gives the length, in characters, of the
label. The last label is followed by the octet 0x00 which in-
dicates that there are no more labels in the domain name.
Thus, the domain “example.foobar.com” would be encoded
as “(0x07)example(0x06)foobar(0x03)com(0x00)”.

In order to parse domain names in Meta4, we take advan-
tage of the octet prefix indicating the length of the subsequent
domain label in order to parse a domain name in fixed-length
segments. We fix the maximum number of labels allowed in
a domain name and parse different label widths in different
parser states in order to comply with the PISA parser restric-
tion of parsing only fixed-length header fields. For example,
for “example.foobar.com”, the parser first reads the 0x07 octet
and then transitions to a state that reads the next seven bytes
into a fixed-width variable of seven bytes. Then, the parser
reads the octet 0x06 and transitions to a state that reads the
next six bytes. The parser then reads 0x03 and transitions to a
state that reads three bytes. The parser then reads 0x00 and
then transitions out of parsing the domain name.

Theoretically, this solution would allow us to parse any
domain name if we had the ability to parse a domain name
with any number of labels and if we allowed the max width of
a label to be parsed (255 is the max width of a label since it is
the max value of an octet). However, in reality, hardware lim-
itations, particularly with limitations in TCAM when trying
to apply match-action table rules to a parsed domain name,
drastically confine the size of domain names that can be used
in our programs. In our P4_16 implementation on the Tofino
switch, we limited parsing domain names to a maximum of
four labels with 15 characters each.

Note that while a different domain parsing configura-
tion such as four labels with 20, 20, 5, 5 characters respec-
tively could work better on some domain names such as
“www.nationalgeographic.com” which tend to have labels
with many characters followed by short labels like “com”

4



or “org”, it is better to maximize the number of labels that
we can parse and keep the number of characters that can
be parsed equivalent for each of those labels. Since do-
main names are parsed sequentially and we cannot tell be-
forehand how many labels are in a domain name, we can-
not preconfigure the parser to work well for both a domain
like “www.nationalgeographic.com” and a domain like “get-
pocket.cdn.mozilla.net”. We evaluate the impact of this limi-
tation in section 4.1.

3.2 Efficient Memory Usage
3.2.1 Avoiding Storing Domain Names

As discussed in section 2.2, register memory has a fixed width
which means that once we have parsed domain names, storing
them as variable-length strings can be quite difficult. The
solution used was to take advantage of the list of domain
names provided by the control plane and assign each traffic
class an integer index ID (0, 1, 2, 3, and so forth) based off
of what traffic class (as defined in section 2.1) the domain is
associated with.

Using a match-action table as seen in the Domain IDs Ta-
ble (labeled A in Figure 2), we can match domains as they
were parsed to domains in the known list. If a match occurs,
a domain can be represented as its integer domain ID cor-
responding to its traffic class, allowing us to store just the
number and not the entire domain name. As depicted in Fig-
ure 2, all references to a domain name in subsequent data
structures use this domain ID as opposed to the full domain
name. As seen in Figure 3, the domain ID also is the array
index for the Traffic Statistics table which stores accumulated
packet/byte-count information for each traffic class.

3.2.2 Multi-Stage Register Data Structure

As depicted in Figure 2, the <cIP, sIP, D> tuple, extracted
from a DNS response packet, is stored within a register data
structure known as the DNS Response table (labeled B in
Figure 2 and Figure 3). The purpose of this data structure is
to match packets with specific client-server/domain sessions.

Ideally, this data structure would be able to accommodate
an unlimited number of entries. However, as mentioned in
section 2.2, due to the register memory constraints found in
PISA-based architectures, a large amount of DNS response
traffic could quickly cause a loss of information as new entries
encounter hash collisions with existing entries.

To avoid hash collisions, which inevitably occur as the table
fills up, we implement a solution inspired by the multi-stage
data structure used in the PRECISION algorithm [2]. The
basic premise is to divide the data structure into multiple sets
of registers. If a hash collision occurs at one register set, the
program then tries the next register set with a hash with a
different salt and so forth until it finds an available entry (or
until it tries every single register and fails). While this method

uses the same amount of memory as just a single long register
set, dividing the register into multiple sets can promote a more
efficient use of register memory.

3.2.3 Freeing Register Entries

Even with more efficient register usage, the register data struc-
ture inevitably fills up as more traffic goes through the switch.
To help free up table entries, the program makes table entries
free once it has determined that a client-server session is no
longer active. This is determined by maintaining a timestamp
value for each table entry. When the table entry is initially
created by a DNS response packet, the table entry is marked
with the packet’s timestamp as seen in Figure 2. Subsequent
packets that belong to the same client-server session are used
to update the timestamp as seen in Figure 3. If a new table
entry encounters a hash collision with an existing entry, but
the old entry’s timestamp is older than some timeout value T
(T seconds have passed since the last packet sent to the client
from the server), then the new entry is allowed to occupy that
space in the table (see section 4.2 for explanation of how we
experimentally determined a good timeout value). To avoid
unnecessarily evicting table entries, we lazily evict timed out
entries. In other words, we do not evict an entry until a hash
collision occurs. As suggested in section 2.2, the operation
of checking if a table entry is timed out is problematic for a
PISA register because it depends on both reading an existing
timestamp value and then potentially replacing it with a new
timestamp value (if we choose to replace the existing register
entry). Both of these operations cannot be conducted within
the same stage which requires a packet resubmission opera-
tion in order for us to properly implement this data structure
by allowing us to go through the ingress processing pipeline
a second time. Because DNS response traffic typically con-
sists of less than 1% of total traffic, the overhead incurred by
resubmitting DNS response packets has minimal effect on
network performance.

3.3 Correcting for Missed DNS Responses

There are two potential sources of error or information loss
that can occur in Meta4. First, we have error due to a failure to
store a certain <cIP, sIP, D> tuple due to hash collisions in our
DNS Responses table. In the event that the existing entries
in the DNS Responses table are not timed out, a given <cIP,
sIP, D> tuple may never be stored in the first place, causing
us to miss all traffic associated with this client-server/domain
session.

The second source of error is due to a premature eviction of
a <cIP, sIP, D> tuple from the DNS Responses table. A given
entry in the DNS Responses table may be timed out (no traffic
for this entry has been seen for more than say 100 seconds),
causing a new <cIP, sIP, D> tuple to evict the old entry. In

5



this case, if there was in fact more traffic for the older session,
we would miss this traffic due to the premature eviction.

These two sources of error tend to work against each other.
If we increase our timeout value to reduce the second type
of error, we may cause our DNS Responses table to bloat,
causing new <cIP, sIP, D> entries to experience more hash
collisions and fail to be stored. On the other hand, if we
reduce our timeout value to allow more frequent eviction
of old entries and allow more new <cIP, sIP, D> entries to
be stored, we may prematurely evict old entries more often.
However, while reducing the second type of error is just a
matter of fine-tuning the timeout value, there are other ways
to reduce the first type of error. While not a perfect solution,
we introduced a mitigating measure to avoid potential under-
representation of packet/byte counts associated with certain
domains due to missed <cIP, sIP, D> entries.

The goal is to calculate an approximation of the proportion
of total packets/bytes missed for a certain domain/traffic class.
To do this, we turn to a relatively easy metric: the proportion
of <cIP, sIP, D> tuples that we are unable to store in the DNS
Responses Table. To do this, we introduce an additional data
structure to keep count of the number of DNS response pack-
ets seen for each domain and to keep count of the number of
DNS responses seen for each domain that are not able to fit
within the IP-Domain Match table. The DNS Statistics Table
(labeled C in Figure 2) allows us to calculate the proportion
of DNS packets, and hence client-server sessions, for a par-
ticular domain that we were not able to monitor. Using this
proportion, we can scale up the number of bytes and packets
for a particular domain in order to provide a more accurate
representation of the amount of traffic associated with each
domain.

For example, as seen Figure 2 if Meta4 records three DNS
response packets for “example.com” but is not able to store
the client IP, server IP, domain ID tuple for one of those pack-
ets, we then scale the byte/packet counts for “example.com”
by 1.5 (1/(2/3)). Thus, if Meta4 records seeing nine packets
and a total of 1320 bytes for “example.com”, it reports an
estimate of 9× 1.5 = 13.5 packets and 1320× 1.5 = 1980
bytes.

4 Performance Evaluation

In this section, we evaluate how well Meta4 performs using
our traffic volume measurement application example from
section 3. In particular, we assess how well Meta4 performs
within data-plane constraints such as parsing limitations and
register memory constraints as discussed in section 2.2. In
order to provide a comparison for Meta4’s performance under
varying quantities of memory/parsing resources, most of the
experiments in this section were performed in a Python pro-
gram that emulates Meta4’s behavior in the data plane. Unless
otherwise stated, all experiments were run on a three-hour
trace from Princeton University’s campus. The traffic trace

was anonymized and sanitized to obfuscate personal data be-
fore being used by researchers, and our research was approved
by the university’s institutional review board. A repository
with code for these experiments can be found below1.

4.1 DNS Response Parsing Limits

The first experiment assumes unlimited register memory and
applies various parsing constraints to the domain name parser.
The source of this limitation is discussed in section 3.1. We
measure the number of DNS response packets that contain
domain names that cannot be parsed under various parser
configurations. We also measure the number of data packets
(non-DNS packets that are part of the associated data transfer
between a client and a server discovered through DNS) and
the number of bytes from those packets that are missed as a
result of being unable to successfully parse a DNS packet. All
domain name parser configurations were limited to a maxi-
mum of four labels with an equal number of bytes allocated
to each label. For example, in Figure 4, 60 bytes on the x-axis
corresponds to a domain parsing configuration of four labels
with 15 bytes allocated to each label.

Figure 4: The x-axis shows the maximum width of a domain
name allowed in bytes in the parser and the y-axis shows the
amount of traffic missed with 1.0 meaning that all traffic is
missed and 0.0 meaning that no traffic is missed. The red line
marks the parser limit of our Tofino implementation.

Figure 4 shows the results of the experiment. Note that
under the domain parsing constraint used in our Tofino im-
plementation, we are unable to parse about 18% of DNS
queries/responses but only miss about 10% of actual traffic
associated with those requested domains. This indicates that
the domains we are not able to parse contribute proportionally
less traffic than the domains that we are able to parse.

1https://github.com/jkim117/Meta4

6

https://github.com/jkim117/Meta4


A closer inspection reveals that on average, each indi-
vidual domain that we were not able to parse contributes
only 0.0037% of DNS responses, 0.0049% of packets, and
0.0048% of bytes. The domain that was the single great-
est contributor of byte/packet traffic out of the domains
we were not able to parse in our test campus trace (m-
9801s3.ll.dash.row.aiv-cdn.net) contributed 4.0% of byte
traffic and 3.4% of total packets. The domain that was
the single greatest contributor of DNS responses out of
the domains we were not able to parse in our test cam-
pus trace (124.230.49.37.4vw5piqz5ksoolyszwje5tobsi.sbl-
xbl.dq.spamhaus.net) contributed 5.2% of DNS responses
but 0 packets or bytes. This is because this DNS response
is actually a spam blacklist [14] using the DNS protocol for
convenience. Many of the DNS response packets that we are
not able to parse are not actually normal DNS responses made
by human clients requesting domains which is why they pro-
portionally contribute less traffic than the domains we are able
to parse. Overall, the vast majority of unparseable domain
names contribute little or no traffic, so missing this traffic has
a relatively small effect on the overall effectiveness of Meta4
as a tool to measure major sources of traffic volume.

4.2 Evaluating DNS Table Timeout

The next experiment was designed to determine a good time-
out value as described in section 3.2.3 with the goal of missing
a minimal amount of traffic due to evicting register entries
before a server finishes sending packets to a client. At the
same time, we want to keep the timeout relatively low in or-
der to encourage new <cIP, sIP, D> entries to evict stale ones.
Thus, in this experiment, we sought to determine the amount
of traffic that would be missed if we evicted <cIP, sIP, D>
entries if the inter-arrival time for packets corresponding to a
particular <cIP, sIP, D> exceeded some timeout value.

As seen in Figure 5, most of the benefits of increasing the
timeout value end after a timeout of 100 seconds. This is
the case for multiple reasons. For one, many browsers like
Chrome [5] and Firefox [12] cache DNS results for a default
of 1 minute. In addition, most users are likely to engage with
a particular domain name in a single, sustained period of time
where the biggest gaps of time come from the user’s “think
time” in between transactions with a server. A user’s “think
time” usually falls much under 100 seconds [13], allowing
us to effectively capture all traffic from most client-server
sessions.

Note that the result from Figure 5 does not reflect what
actually happens in Meta4. In Meta4, we do not destroy table
entries that are timed out until a new, incoming <cIP, sIP, D>
tuple experiences a hash collision with an existing timed out
entry. This “lazy eviction” allows for the possibility of timed
out entries to still be used and become “un-timed out”. This
allows us to capture a significantly larger portion of traffic.

In addition, Meta4, unlike in this experiment, has limited

Figure 5: The x-axis shows the timeout applied on <cIP, sIP,
D> tuples and the y-axis shows the amount of traffic missed
with 1.0 meaning that all traffic is missed and 0.0 meaning
that no traffic is missed. The red line marks the timeout used
by our Tofino implementation.

memory resources. That means that a smaller timeout may
actually be advantageous as it allows for stale <cIP, sIP, D>
entries to be evicted more frequently, allowing new entries
to take their place so that Meta4 can monitor new traffic for
newer <cIP, sIP, D> tuples.

In order to determine the proper timeout value under limited
memory resources, we ran a similar experiment but with mem-
ory constraints2 and did not automatically evict timed-out
entries (until a hash collision forced an eviction of a timed-
out entry). We ran this experiment on two separate traces.
The first trace was the same 3-hour trace that we have been
using for all previous experiments. The second trace was a 15-
minute trace, also anonymized and sanitized from Princeton’s
campus, but captured during a period of greater traffic density.
In Table 1, we show a comparison of the the two packet traces.
Notice in particular that traffic density of DNS responses is
10 times greater in the 15-minute trace. This means that the
frequency of DNS response packets, each creating a new <cIP,
sIP, D> entry, is tenfold in the 15 minute trace.

Time of Day Packets/s DNS responses/s
15:00-15:15 APR 7, 2020 240750.23 2151.41
08:00-11:00 AUG 19, 2020 138382.92 205.26

Table 1: Comparison of the traffic density for the 15-minute
(top) and 3-hour (bottom) packet captures

The results shown in Figure 6 for the 3-hour trace seem to
confirm the similar results from when there were no memory

2We limited the DNS Responses table to 216 total entries and 2 stages.
This is the same configuration that we used in our hardware implementation
as explained in section 4.3

7



constraints (see Figure 5) that a longer timeout is better for
capturing more traffic. However, the results for the higher
density 15-minute trace show that increasing the timeout does
not lead to a consistent improvement in performance of Meta4.
Because the 15-minute packet trace has a significantly higher
traffic rate, the DNS Responses table fills up rather quickly,
causing many more hash collisions. Increasing the timeout
at some point prevents stale table entries from being evicted,
leading to more traffic being missed. Because of these results,
we ultimately decided on a timeout of 100 seconds as a good
balance that performs well under conditions of both high and
low traffic density.

Figure 6: Ratio of traffic missed with limited memory under
varied timeout values for the 15-minute high load vs 3-hour
low load traces. The red line marks the timeout used in our
Tofino implementation. (Missed traffic does not include traffic
missed due to parser limitations).

4.3 DNS Response Table Memory Limits

The next set of experiments involved testing Meta4 under a
variety of memory constraints by varying the total amount
of register memory in addition to the number of stages as
discussed in section 3.2.2. Fixing a timeout of 100 seconds
(as chosen in section 4.2), we assessed the ratio of traffic
missed (in bytes) under the varying memory configurations.

The results from Figure 7 show that at the memory lim-
itation of 216 entries, the limitation used in our Tofino im-
plementation, we miss under 5% of traffic when using two
stages. Also note that when so little traffic is missed, there
are negligible if nonexistent benefits to using 1 vs 2 vs 4
vs 8 stages. However, when the amount of traffic begins to
overwhelm the system (as in the case where there are 212

or 210 entries), using 2 stages as opposed to 1 stage can cut
down the ratio of traffic missed significantly (0.33 to 0.23)
in the case of 212. This occurs because as the data structure

Figure 7: The x-axis shows selected total memory lengths. The
y-axis shows the ratio of traffic missed for different memory
configurations of Meta4 (not including traffic missed due to
parser limitations).

fills up, the probability of hash collisions increase. Providing
at least one extra stage to hedge against hash collisions can
provide a significant boost in the performance of the data
structure under these conditions. However, as you increase
the number of stages to 4 or 8, the actual benefit of hedging
against hash collisions starts to become outweighed by the
smaller amount of memory in each stage. Thus, in the case
of 212 memory length, the greatest benefit in data structure
performance comes from moving from 1 to 2 stages, but the
benefit wrought from going to 4 or even 8 stages is rather
minimal.

4.4 Correction for DNS Response Misses

Finally, we also wanted to assess the efficacy of the data cor-
rection based on the number of DNS responses missed as
discussed in section 3.3. Using the ratio of the number of
missed DNS responses for a particular domain to the number
of DNS responses that we were able to fit in our DNS Re-
sponse table, we scale up the number of packets and bytes
seen for that domain.

In Figure 8, we show the relative error for the amount of
bytes recorded for each of the top 15 domains (by DNS count)
both before and after our correction is applied. We excluded
domains with only a single defined label (domains like *.com,
*.*.edu, etc). In this case, we are running on the configura-
tion that our Tofino implementation uses (216 total memory
length). We see that the correction scaling applied makes a
significant difference for most of the domains, often cutting
down the error by more than half. This improvement is not
universal, however. For example, for the domains *.zoom.us
or outlook.office365.com, the scaling correction actually in-

8



Figure 8: For the top 15 domains (by DNS response count), we
show the relative error compared to the ground truth number
of bytes for each domain before and after our scaling cor-
rection is applied. This graph was produced with a memory
limitation of 216 total register entries.

creases the relative error. This suggests that for some domains,
the amount of packets and bytes transmitted to a client is not
very consistent per DNS request. This makes sense as services
like Zoom or Microsoft Teams provide varying amounts of
traffic per user depending, among other things, on the length
of a video call. Domains that primarily serve webpages, on the
other hand, are relatively consistent in the number of packets
and bytes served per DNS request. While this scaling correc-
tion can be a useful tool, it is important to use it selectively
on domains that are known to be consistent in the amount
of traffic that they send per client-session and also only on
domains for which Meta4 has been able to collect a large
sample of DNS responses and traffic to make a more accurate
scaling correction.

5 Hardware Prototype and Deployment

In this section, we discuss the process and challenges of im-
plementing and deploying Meta4 in hardware. Meta4 was
implemented using P4-16 for a Tofino switch. The develop-
ment process was an iterative process, requiring many tests to
see how much we could stretch the limits of the hardware’s
resources. The final parameters of our hardware implemen-
tation are summarized in Table 2. Based on traffic lost both
due to parsing limitations and memory limitations, this hard-
ware configuration of Meta4 had a final ratio of traffic lost
(by bytes) of 0.142 when run on our 3-hour test trace.

Meta4 was deployed using the infrastructure provided by
P4Campus [10], a Princeton University initiative to help re-
searchers run experiments for P4 programs on live hardware
switches on a campus network. Specifically, we tested Meta4

Parameter Hardware Implementation Value
Domain Parser 4 15-byte labels (60 bytes total)
DRT Timeout 100 seconds
DRT Length 216 entries
DRT Stages 2

Table 2: Final parameters of Meta4 hardware implementation
for Tofino switch. Note that “DRT” stands for “DNS Response
Table”.

on the P4Campus passive analytics testbed where anonymized
mirrored traffic is delivered.

Below, we discuss two challenges of our Tofino hardware
implementation: parsing DNS response packets (section 5.1)
and dealing with limited stages in the processing pipeline
(section 5.2). A repository with code for the hardware imple-
mentation can be found below3.

Figure 9: An overview of resource usage in Tofino by Meta4
in the processing pipeline.

5.1 Parsing DNS Packets

In section 3.1, we discussed how we were able to parse
variable-length domain names using different fixed-length
parser states for parsing domain labels. Since the parsed
header fields that we store a domain’s labels in have to be
matched against match-action table rules to assign a domain
ID, we had to ensure that the parsed domain labels can all
collectively fit within the TCAM restraints of the Tofino hard-
ware. Thus, we were relatively judicious in how we stored
domain name labels in our parsed packet header fields. In-
stead of having a separate field for every possible domain
label length, we instead stored header fields for 1, 2, 4, and
8 bytes for each domain label. With these header fields in
powers of two, we were able to store domain name labels of
any length up to, and including, 15 bytes. For example, if a

3https://github.com/jkim117/Meta4

9

https://github.com/jkim117/Meta4


domain label was 7 bytes long, we stored it in the 1, 2, and 4
byte-long header fields. If a domain label was 10 bytes long,
we stored it in just the 8 and 2 byte header fields. This solution
allowed us to maximize the number of domains we were able
to parse while minimizing the total amount of TCAM in the
match-action table we consumed (see Figure 9 for TCAM
resource consumption by the domain match-action table).

Another issue with parsing DNS response packets that is
specific to the hardware implementation is the challenge of
dealing with CNAME entries. A DNS response providing
IP addresses (A entries) for a domain name often includes
a variable number of CNAME records that map a domain
name alias to other domain names. As indicated above, it is a
challenge to parse a variable-length field like a domain name.
It is even more challenging to parse through a variable number
of variable-length fields. Thankfully, each CNAME entry is
preceded by an octet which gives the length of the CNAME
record in bytes. We use this field to set a parser counter to the
length of a CNAME record. A parser counter is a feature in
P4 which allows us to skip through a CNAME field byte by
byte while decrementing the counter until the counter reaches
0. We repeat this process for each CNAME record we find
until we finally reach the A (IP address) record.

5.2 Limited Number of Stages

As discussed in section 2.2, the processing pipeline for a
PISA switch is restricted to a limited number of stages. A
programmer is limited by the ALU to a restricted number
of operations per stage. Furthermore, one cannot access or
modify a register in a stage more than once. This particular
restriction proved problematic for our implementation of our
<cIP, sIP, D> tuple data structure. For a given DNS response
packet, the program first checks to see if the client IP/server
IP pair matches for an entry in the register data structure.
If it is a match, the program just updates the timestamp. If
the IP addresses do not match, the program then checks the
timestamp of the entry. If the timestamp is timed out, the
program replaces the entry with the new <cIP, sIP, D> tuple.

The problem is that replacing the entry requires replacing
the client IP, server IP, and timestamp entries, all of which have
already been accessed by the program. Since this operation is
not allowed within a stage, we had to use a solution involving
packet resubmission, a feature of PISA switches discussed in
section 2.2. This allows us to essentially double the number
of stages the program has to work within the ingress pipeline.
In particular, we determine if a <cIP, sIP, D> entry needs to
be replaced on the first pass for a DNS response packet. If
we decide the entry should be replaced, we resubmit the DNS
response packet and replace the old <cIP, sIP, D> entry with
the new DNS response packet on the second pass. Because we
are only resubmitting DNS response packets, any overhead
due to resubmission is negligible. For example, in our 3-hour
trace used for testing in section 4, DNS response packets

made up 0.14% of total packets. In our 15-minute trace, DNS
response packets only made up 0.89% of total packets. With
these packets contributing very little to the total corpus of
packets going through the switch, resubmitting these packets
adds very little additional overhead.

Even with resubmission, however, we ran into problems
trying to fit the entire Meta4 implementation into the limited
stages of the ingress pipeline. In order to further expand the
number of stages available to us in the processing pipeline, we
divided the program between the ingress and egress pipeline.
For the Meta4 traffic volume measurement program, for ex-
ample, we moved the data structures counting packets and
bytes indexed by domain ID to the egress pipeline. In gen-
eral, we decided to keep the DNS Responses Table in the
ingress for all Meta4 programs. Any subsequent data struc-
tures unique to a particular use case were confined to the
egress pipeline (such as the DNS Statistics Table). The result
is that we can again double the effective number of stages
available for processing for a single packet. This particular
method was possible because of our deployment of Meta4
within the passive analytics testbed of P4Campus where we
conducted passive monitoring on mirrored traffic.

6 Use Cases

We now turn to other use cases of Meta4 to show how var-
ious applications can be built off of the same fundamental
framework described in sections 2 and 3 and will evaluate
their performance based on campus deployments at Princeton
University.

6.1 Measuring Traffic Volume by Domain
First, we re-visit the use case that we have been using as our
running example. We ran our traffic volume measurement
program on a Tofino switch with the same 15-minute/3-hour
traces from Princeton University’s campus network that we
discussed in Section 4.2 (see Table 1). It is important to note
that the 15-minute trace was captured while school was in
session during mid-afternoon while the 3-hour trace was cap-
tured while school was out of session during the morning.
To create our policy configuration, we used previous campus
traffic, processed off the switch, to determine the most pop-
ular domains requested through DNS. In Table 3 and Table
4, we show the top 10 services by bytes for the 3-hour and
15-minute traces respectively. Note that we omitted domains
with only one specified label (*.com and *.*.net for exam-
ple) from this list. It is worth noting that Microsoft Teams,
which contributes a third of traffic seen in the 3-hour trace,
is a service that is used heavily by the university’s Office of
Information Technology (OIT).

In addition, as described in section 2.1, we used these re-
sults to determine the amount of traffic that was associated
with various “traffic classes”. In particular, we defined 12

10



Domain Name DNS Packets Bytes
Skype/Microsoft Teams 15.3% 33.4% 33.4%
Google Ads 21.4% 27.5% 30.0%
Google (general) 4.1% 16.8% 14.6%
Apple (general) 0.5% 4.2% 4.1%
Zoom 0.4% 3.3% 3.3%
YouTube 0.5% 1.5% 1.6%
Facebook 0.3% 1.4% 1.4%
Microsoft (general) 0.5% 1.1% 1.2%
Akamai 0.03% 1.0% 1.0%
Instagram 0.02% 1.0% 1.0%

Table 3: Top services by bytes from anonymized 3-hour
Princeton network trace. This trace was captured from 08:00-
11:00 in the morning.

Domain Name DNS Packets Bytes
Steam Games 0.005% 17.5% 16.7%
Facebook 1.3% 11.8% 12.0%
Google Ads 21.1% 7.0% 7.1%
llwnwd (CDN) 0.01% 6.2% 6.4%
Skype/Microsoft Teams 3.6% 6.6% 6.3%
Google (general) 15.4% 6.0% 6.1%
Reddit 0.05% 3.7% 3.8%
iCloud 0.5% 3.6% 3.7%
Instagram 0.1% 3.5% 3.7%
constitution.org 0.0002% 3.1% 3.3%

Table 4: Top services by bytes from anonymized 15-minute
Princeton network trace. This trace was captured from 15:00-
15:15 in the afternoon.

different traffic classes and grouped the domains from our
known domain list under each of those classes. The result of
measuring traffic volume by traffic class are shown in Table 5
and Table 6 for the 3-hour and 15-minute traces respectively.

6.2 DNS Tunneling Detection

DNS Tunneling is a method of using the DNS protocol to
bypass security protocols/firewalls to send or receive normally
restricted traffic. While DNS is not usually intended for data
transfer, the fact that it is allowed to bypass most firewalls
makes it a potential tool for malicious users seeking to “tunnel”
unwanted traffic [3].

To detect potential incidents of DNS tunneling, we need
to identify client IP addresses that are making an abnormal
number of DNS requests with no subsequent traffic to those
server IP addresses contained in the DNS response. This
particular Meta4 use case is unique in that it does not require
a list of domain names and a corresponding match-action
table as we are interested in all DNS response packets and
not just those for specific domains.

Traffic Type DNS Packets Bytes
Video Call/Communication 15.9% 37.4% 37.3%
Advertising 21.4% 27.5% 30.0%
Misc Technology 3.6% 20.0% 17.8%
Other 20.0% 4.5% 4.5%
Social Media 0.5% 2.7% 2.6%
Entertainment 0.6% 2.2% 2.3%
Web Search 1.6% 2.4% 2.2%
Productivity/Education 35% 1.6% 1.7%
Cloud Computing/Storage 0.7% 1.0% 0.9%
Shopping 0.1% 0.4% 0.3%
News 0.03% 0.2% 0.3%
Government 0.4% 0.04% 0.06%

Table 5: Traffic volume by traffic class from anonymized 3-
hour Princeton network trace. This trace was captured from
08:00-11:00 in the morning.

Traffic Type DNS Packets Bytes
Other 15.1% 22.1% 22.3%
Entertainment 1.8% 22.6% 21.7%
Social Media 1.9% 20.4% 20.9%
Misc Technology 17.1% 8.4% 8.7%
Video Call/Communication 6.6% 9.0% 8.7%
Advertising 21.2% 7.0% 7.1%
Cloud Computing/Storage 5.7% 5.4% 5.5%
Productivity/Education 26.0% 2.3% 2.3%
Web Search 2.3% 1.4% 1.4%
Shopping 1.6% 0.7% 0.7%
News 0.3% 0.6% 0.6%
Government 0.3% 0.1% 0.1%

Table 6: Traffic volume by traffic class from anonymized 15-
minute Princeton network trace. This trace was captured from
15:00-15:15 in the afternoon.

As seen in Figure 10, for DNS response packets, the pro-
gram uses a hash of the server and client IP addresses (just
like for the traffic volume use case for Meta4) to create a
table entry with an associated timestamp. Unlike the traffic
volume case for Meta4, there is no domain ID that needs to
be stored. After creating the entry in the DNS Response ta-
ble of Figure 10, a counter register keyed by the client IP is
incremented.

For a non-DNS data packet, the source and destination IPs
are hashed to key into the DNS Response table as seen in
Figure 11. If there is a match, the timestamp is set to 0 to in-
dicate that the table entry is free and available for re-use. The
counter in the Client IP table is then decremented to indicate
that the DNS response from Figure 10 was followed by actual
traffic. In the case that a DNS response is never followed by
additional traffic, the entry in the DNS Responses table will
eventually time out (after five minutes) and the counter in the

11



Figure 10: Meta4 DNS-Tunneling response to a DNS re-
sponse packet.

Figure 11: Meta4 DNS-Tunneling response to a non-DNS
data packet.

Client IP table will not be decremented, indicating that the
DNS response was never followed by additional traffic. A
client entry in Client IP table with an abnormally high count
is a suspect for DNS tunneling.

To test our DNS Tunneling application, we generated two
instances of DNS tunneling traffic using the open-source
dnscat2 tool [4] and embedded them with normal, benign
traffic. The first was a case where the client made an ssh
connection through a DNS tunnel and performed simple com-
mands like “cd” or “ls”. The second was a case where the
client made an scp connection through a DNS tunnel to make
a data transfer of 3.5 MB. We made a control-plane script
that queried the registers every 30 seconds to see if there
were any positive detections. A positive detection was defined
as a client having more than five DNS response packets not
followed by additional traffic. In our test, we had zero false
positive detections and were able to succesfully detect both
instances of DNS tunneling.

DNS packets that are being used for tunneling are often
significantly longer than normal DNS packets as they hold rel-
atively large amounts of data where the domain name would
usually be stored in a DNS packet. Because of this, it is often
difficult for the P4 parser to completely parse through a DNS
tunneling packet. Nonetheless, our program was able to parse
through and detect about half of the DNS packets used for

tunneling, allowing us to catch instances of DNS tunneling in
less than a minute of the initial attack. In the case of the SSH
tunneling traffic, we were able to detect 132 out of 306 DNS
tunneling packets. In the case of the SCP tunneling traffic,
we were able to detect 35089 out of 75078 DNS tunneling
packets.

6.3 IoT Device Fingerprinting

Figure 12: Meta4 IoT-Fingerprinting response to a non-DNS
data packet.

By tracking what domains a device speaks to, we can rel-
atively easily detect if it is a particular IoT device. Previous
work by Saidi et al. has shown that fingerprinting IoT devices
by using rules that define a domain and server port can be
quite accurate. In an experiment by Saidi et al. involving 33
devices from different manufacturers, 97% were able to be
detected within 72 hours of active monitoring [15].

We sought to implement the same system within the data
plane using Meta4. By using the domain names found by
Saidi et al. associated with IoT device traffic, we are able
to generate a known list of domains (and thus match-action
table rules). The response of this program to a DNS response
packet is nearly identical to the traffic volume measurement
use case. The domain name from the DNS response packet is
parsed and a match action table is used to find the domain’s
associated ID. An entry is then created for the DNS Responses
table using a hash of the server and client IP addresses to
create the key for the entry. The timestamp is also set using
the DNS packet’s timestamp. The domain ID is set from the
ID matched in the match action table.

When a data packet is seen that has a source and destina-
tion IP address that matches an entry in the DNS Response
table, (see Figure 12), we set the timestamp in the entry to
0 to indicate that the entry is free for re-use. We then take
the domain ID, client (destination) IP address, and the source
port of the data packet and forward a report packet to the
control plane. By accumulating a long-term record of the do-
mains/ports that certain client IPs communicate to, we can
build a profile that may eventually lead to a positive detec-
tion of an IoT device. Due to the convoluted nature of rules

12



associating domain/ports to IoT devices (many IoT devices
have multiple or overlapping detection rules), we leave the
detection decision making logic up to the control plane.

To evaluate our IoT fingerprinting use case, we ran our
program with 10 hours of traffic from a IoT traffic dataset
collected by IMPACT (Information Marketplace for Policy
and Analysis of Cyber-risk and Trust) [7] known to contain
traffic from seven IoT devices from the device detection list
from Saidi et al. In Table 7, we show how many unique rules
we were able to detect from each of the seven devices where
a “rule” is defined as a domain-port number pairing that indi-
cates a positive detection of a particular device. For each of
the seven devices, we were able to get at least one positive
detection for each device without any false device detections,
confirming the effectiveness of our fingerprinting application.

Device Name Number of Unique
Rules Detected

Alexa Fire TV 18
Philips Hub 5
Alexa Echo Dot 8
TPlink smart bulb 1
TPlink smart plug 2
Amcrest Camera 1
Wansview Camera 2

Table 7: Number of unique IoT rules detected for each of the
devices included in the 10-hour evaluation trace.

6.4 Other Use Cases

In this section, we provide examples of other potential use
cases that could be implemented with the Meta4 framework.
We did not create or test hardware implementations for these
use cases.

Web Fingerprinting By creating detection rules defined
by the amount of traffic in terms of bytes/packets sent from
certain domains, we can also create a form of web finger-
printing. We can create a known list of domains from all the
domains associated with a webpage of interest. In many ways,
this application would work very similarly to the standard
traffic volume measurement case. For each of the domains in
the known list, we keep track of how much traffic (in terms of
packets/bytes) that we see for each client. The basic concept
is that for certain webpages, when a client downloads that
webpage, a relatively consistent set of domains are requested
by the client. Furthermore, a relatively consistent amount of
bytes are downloaded from each of those domains. Together,
a set of domains and an amount of bytes for each of those do-
mains could potentially be a strong fingerprint for a webpage.

IDS Bypass by Domain If a network operator notices that
there is a lot of traffic associated with a few, trusted domains,
they could potentially improve the performance of the net-

work by allowing traffic from those domains to bypass intru-
sion detection (IDS) processing. For example, if a network
operator notices a large increase in Zoom traffic that is hurting
overall performance for an IDS system, they could use Meta4
to identify traffic associated with the *.zoom.us domain name
and allow those packets to bypass IDS processing.

Traffic Inspection/Blacklisting by Domain Similar to the
IDS bypass use case, a network operator could also seek to
blacklist certain domains. Meta4 could be used to identify
traffic associated with certain problematic domains and either
re-route that traffic off the switch for further analysis or rate-
limit that traffic.

7 Related Work

Intentional Network Monitoring The basic design and func-
tionality of Meta4 was inspired by the ideas behind intentional
network monitoring, pioneered by the NetAssay system [6].
One of the specific applications of NetAssay, in particular,
dealt with using DNS packets in order to match subsequent
packets to their associated domain names, an idea that we
sought to implement in the data plane with Meta4. NetAssay
itself was also inspired by the concept of intentional naming in
networks. The Intentional Naming System or INS [1] allows
systems to route traffic based on higher-level intent (such as a
domain name) as opposed to a lower-level identifier like IP or
MAC address. The concept of altering how traffic is handled
within a network based on its domain name also played a key
part in informing how Meta4 was developed. Meta4 differs
from NetAssay in that it was implemented entirely in the data
plane and focuses primarily on use cases (such as IoT finger-
printing, web fingerprinting, etc) that take advantage of the
<cIP, sIP, D> tuple that can be extracted from DNS response
packets.

Parsing Domain Names Previous work in developing so-
lutions for parsing variable length domain names in PISA-
based switches greatly helped to inform the solution that we
implemented for Meta4. P4DNS [17], an implementation of
an in-network DNS server in P4, offered the solution of pars-
ing different domain names in different, pre-determined, fix-
length parser states. The P4 Authoritative DNS Server [11],
another attempt at implementing a local DNS server in P4,
expands on the ideas of P4DNS, and parses the separate la-
bels of a domain name into separate fixed-length parser states.
We expanded on these ideas in designing our domain name
parser for Meta4 to optimize the efficiency and performance
of our parser. In particular, as discussed in section 5.1, we
stored domain name labels in header fields of size 1, 2, 4, and
8 bytes so that we could minimize the amount of metadata we
needed to store while also allowing us to maximize the length
of domain labels we could parse. In addition, we standardized
the number of bytes (15) that could be parsed for each label
of a domain name in order to allow for more flexibility in the
domains that we could parse (as opposed to different pre-set

13



maximum lengths for different labels that could be parsed as
in the P4 Authoritative DNS Server).

Data Structure Implementation in P4 In addition, many
of the ideas used to implement the data structures of Meta4,
especially the <cIP, sIP, D> register data structure (DNS Re-
sponse table), were inspired by previous P4 projects that sim-
ilarly required fitting large amounts of packet information
into a limited amount of register memory. PRECISION [2]
and HashPipe [16], heavy-hitter detection programs in P4,
provided the idea of separating a register data structure into
separate stages to hedge against the possibility of hash colli-
sions. In addition, HashPipe also provided the idea of evicting
table entries based on some sort of counter. Specifically, Hash-
Pipe evicts table entries for flows that have a low packet count
value. We expanded on these ideas for our implementation
of our DNS Responses table to create a two-stage data struc-
ture to handle hash collisions that also evicts entries (similar
to HashPipe) for having timestamp values that had not been
updated for a certain period of time.

8 Conclusion

This paper outlined the design and implementation of Meta4,
a framework for network monitoring in the data plane that
allows a network operator to associate traffic by domain name.
Developed for PISA-based programmable switches, Meta4
parses DNS response packets to store client IP, server IP, and
domain ID (<cIP, sIP, D>) tuples on registers in the switch.
Using this register data structure, we are able to associate
subsequent packets to a domain ID by matching the desti-
nation and source IP addresses to the client IP and server
IP of a (<cIP, sIP, D>) entry respectively. This allows for a
host of potential use cases including traffic volume measure-
ment by domain name, DNS tunneling detection, IoT device
fingerprinting, and webpage fingerprinting.

We implemented Meta4 on Tofino hardware using the P4
language and deployed Meta4 on Princeton University’s cam-
pus. We evaluated Meta4 and showed that even under the
hardware restrictions and limitations of the switch, we were
able to achieve a relatively high accuracy in terms of traffic
volume measurement by domain name.

As indicated in section 6, there are many potential appli-
cations that can be developed using the Meta4 framework to
run in the data plane. Future work that expands on what we
have done here could include creating data-plane implementa-
tions of domain-based web fingerprinting, IDS bypassing by
domain, or domain blacklisting. Another possible direction is
creating additional tools that work off of the Meta4 framework
to further help network operators to accomplish their intent
without worrying about low-level network details. For exam-
ple, one application, similar to the Sonata network querying
system [8], could allow network operators to make queries
for traffic based on domain name or even higher-level abstrac-
tions such as queries for video-streaming traffic, or queries for

education-related traffic. Finally, Meta4 specifically focuses
on using DNS response packets to join IP address information
to domain names. This form of intentional network monitor-
ing, however, can be expanded beyond just DNS. For example,
one could monitor traffic based on a join of a client IP ad-
dress and a userid from wifi. In addition, one could again join
domain name and IP address information but by using SNI
(included in TLS handshakes) instead of using DNS.

Acknowledgments

I would like to thank Professor Jennifer Rexford and Dr. Hyo-
joon Kim for advising me during this project. Their constant
willingness to help, offer advice, and provide feedback was
absolutely crucial at every step. I am very grateful for their
patient guidance and understanding especially during the chal-
lenges presented by the pandemic. I would also like to thank
Professor David Walker for providing additional feedback
and reviewing this work. Finally, I would like to thank the
Princeton Computer Science Department and Office of Infor-
mation Technology for providing the institutional support and
infrastructure to implement and deploy Meta4.

References

[1] William Adjie-Winoto, Elliot Schwartz, Hari Balakrish-
nan, and Jeremy Lilley. The design and implementation
of an intentional naming system. In ACM Symposium
on Operating Systems Principles, pages 186–201, 1999.

[2] Ran Ben-Basat, Xiaoqi Chen, Gil Einziger, and Ori Rot-
tenstreich. Efficient measurement on programmable
switches using probabilistic recirculation. In IEEE In-
ternational Conference on Network Protocols (ICNP),
pages 313–323. IEEE, 2018.

[3] Kevin Borders, Jonathan Springer, and Matthew Burn-
side. Chimera: A declarative language for streaming
network traffic analysis. In USENIX Security Sympo-
sium, pages 365–379, 2012.

[4] Ron Bowes. dnscat2. https://github.com/
iagox86/dnscat2, 2013-2015.

[5] Chromium. Issue 164026dns TTL not hon-
ored. https://bugs.chromium.org/p/chromium/
issues/detail?id=164026, 2018.

[6] Sean Donovan and Nick Feamster. Intentional network
monitoring: Finding the needle without capturing the
haystack. In ACM SIGCOMM HotNets Workshop, 2014.

[7] Information Marketplace for Policy, Analysis of Cyber-
risk, and Trust (IMPACT). IoT bootup and oper-
ation traces. https://www.impactcybertrust.

14

https://github.com/iagox86/dnscat2
https://github.com/iagox86/dnscat2
https://bugs.chromium.org/p/chromium/issues/detail?id=164026
https://bugs.chromium.org/p/chromium/issues/detail?id=164026
https://www.impactcybertrust.org/dataset_view?idDataset=1144


org/dataset_view?idDataset=1144,https:
//www.impactcybertrust.org/dataset_view?
idDataset=1491, 2020.

[8] Arpit Gupta, Rob Harrison, Marco Canini, Nick Feam-
ster, Jennifer Rexford, and Walter Willinger. Sonata:
Query-driven streaming network telemetry. In ACM
SIGCOMM, pages 357–371, 2018.

[9] Daehyeok Kim, Zaoxing Liu, Yibo Zhu, Changhoon
Kim, Jeongkeun Lee, Vyas Sekar, and Srinivasan Se-
shan. TEA: Enabling state-intensive network functions
on programmable switches. In ACM SIGCOMM, pages
90–106, 2020.

[10] Hyojoon Kim, Xiaoqi Chen, Jack Brassil, and Jennifer
Rexford. Experience-driven research on programmable
networks. ACM SIGCOMM Computer Communication
Review, 51(1):10–17, 2021.

[11] Xiazhou Li. P4 authoritative DNS server. Barefoot
Networks, 2017.

[12] mozillaZine. Network.dnscacheexpiration. http://kb.
mozillazine.org/Network.dnsCacheExpiration,
2010.

[13] PerfMatrix. Think time: Importance of think time in
performance testing. https://www.perfmatrix.com/
think-time/, 2019.

[14] The Spamhaus Project. https://www.spamhaus.org,
2021.

[15] Said Jawad Saidi, Anna Maria Mandalari, Roman Kol-
cun, Hamed Haddadi, Daniel J Dubois, David Choffnes,
Georgios Smaragdakis, and Anja Feldmann. A haystack
full of needles: Scalable detection of IoT devices in the
wild. In ACM Internet Measurement Conference, pages
87–100, 2020.

[16] Vibhaalakshmi Sivaraman, Srinivas Narayana, Ori Rot-
tenstreich, Shan Muthukrishnan, and Jennifer Rexford.
Heavy-hitter detection entirely in the data plane. In ACM
Symposium on SDN Research, pages 164–176, 2017.

[17] Jackson Woodruff, Murali Ramanujam, and Noa Zil-
berman. P4DNS: In-network DNS. In ACM/IEEE
Symposium on Architectures for Networking and Com-
munications Systems, 2019.

15

https://www.impactcybertrust.org/dataset_view?idDataset=1144
https://www.impactcybertrust.org/dataset_view?idDataset=1491
https://www.impactcybertrust.org/dataset_view?idDataset=1491
https://www.impactcybertrust.org/dataset_view?idDataset=1491
http://kb.mozillazine.org/Network.dnsCacheExpiration
http://kb.mozillazine.org/Network.dnsCacheExpiration
https://www.perfmatrix.com/think-time/
https://www.perfmatrix.com/think-time/
https://www.spamhaus.org

	Introduction
	Meta4 Architecture and Challenges
	Meta4 Architecture
	PISA Implementation Challenges

	Name-Based Monitoring in the Data Plane
	Parsing Long, Variable-Length Names
	Efficient Memory Usage
	Avoiding Storing Domain Names
	Multi-Stage Register Data Structure
	Freeing Register Entries

	Correcting for Missed DNS Responses

	Performance Evaluation
	DNS Response Parsing Limits
	Evaluating DNS Table Timeout
	DNS Response Table Memory Limits
	Correction for DNS Response Misses

	Hardware Prototype and Deployment
	Parsing DNS Packets
	Limited Number of Stages

	Use Cases
	Measuring Traffic Volume by Domain
	DNS Tunneling Detection
	IoT Device Fingerprinting
	Other Use Cases

	Related Work
	Conclusion

