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ABSTRACT
Traditional traffic engineering adapts the routing of traffic
within the network to maximize performance. We propose
a new approach to traffic engineering that also adaptively
changes where trafficenters and leaves the network. To
change the traffic matrix, we leverage recent innovations in
virtual-machine migration (in data-center networks) and link
migration through router grafting (in ISP backbone networks).
We present an optimization framework fortraffic engineer-

ing with migration and develop algorithms that determine
which traffic end-points should migrate, and where. Our ex-
periments with Internet2 traffic and topology data show that
migration allows the network to carry at least 25% more traf-
fic (at the same level of performance) over optimizing rout-
ing alone. Our theoretical results provide provableworst-

case guarantees for maximizing network throughput.

1. INTRODUCTION
The rapid growth of online services, from video strea-

ming to 3D games and virtual worlds, is placing tremen-
dous demands on the underlying networks. ISP back-
bone networks carry more traffic than ever, and emerg-
ing data-center networks support tens of thousands of
servers with widely varying traffic demands.

To address these challenges, network operators do
traffic engineering (TE). Traditionally, traffic engineer-
ing involves tuning routing-protocol parameters to con-
trol how traffic is routed across the network, to opti-
mize performance and use network resources effectively.
Thus, today’s traffic engineering adapts routing within

the network for a given traffic matrix, i.e., the volume
of traffic between fixed traffic ingress and egress points.

Recent innovations challenge this traditional approach
to traffic engineering. In data centers, live virtual-mach-
ine migration allows network operators to move virtual
machines from one physical location to another; in ISP
networks, network operators can dynamically rehome
their ends of links to external networks via router graft-

ing [14]. In both environments, the network operator
can go beyond adapting the routing protocol to con-
trol where traffic enters and exits the network. Thus,
the network operator now has the power to, in effect,
change the traffic matrix.

In this paper, we introduce traffic engineering with

migration, and present an optimization framework that
addresses the following questions:

• How much can traffic migration improve over tra-

ditional traffic-engineering techniques?

• Which traffic end-points should migrate, and where
should they migrate to?

• Can a “good” placement of traffic end-points be
computed efficiently?

While finding the optimal solution in this new setting
is computationally intractable, we show that a relatively
simple heuristic offers significant performance improve-
ments in practice. Our experiments with Internet2 traf-
fic and topology data show that migration would enable
the network to carry 25% more traffic at the same level
of performance. These results apply to two different
measures of performance—minimizing congestion (as a
sum over all the links) and maximizing overall through-
put (so as to deliver as much traffic as possible).

We show, however, that this heuristic can miss op-
portunities for even better performance. This motivates
the design of computationally-efficient algorithms with
provably “good” worst-case performance, relative to an
idealized optimal solution. We explore how well the
optimal solution for traffic engineering with migration
can be approximated. We develop approximation al-
gorithms and prove that our algorithms achieve good
approximation guarantees in environments of interest
(over 87% of the optimum in some cases). Our algo-
rithms leverage an interesting connection we establish
between traffic engineering with migration and classical
constraint satisfaction problems in complexity theory.
Understanding the average-case performance of these
algorithms (on realistic traffic and topology data) is a
natural next step, and part of our ongoing work.

Organization. After a brief review of traditional traf-
fic engineering in Section 2, we introduce traffic engi-
neering with migration in Section 3. Section 4 presents
a simple heuristic for traffic engineering with migration
and an experimental evaluation of this heuristic. We
present algorithms with provably good worst-case per-
formance in Section 5. Section 6 presents our initial re-
sults on extensions to our algorithms that cluster traffic
end-points that have the same set of potential homing
locations. We wrap up with a presentation of related
work in Section 7, and conclusion in Section 8.

2. TRAFFIC ENGINEERING TODAY
In traditional traffic engineering, the network is rep-

resented by a graph G = (V, E), where the vertex set V



represents routers or switches, and the edge set E rep-
resents the links. Every edge e ∈ E has capacity ce > 0.
We are also given a traffic matrix D = {dij}i,j∈V , where
entry dij ≥ 0 is the amount of traffic that vertex i wishes
to send vertex j. The goal is to distribute flow across
the paths from i to j to optimize an objective function.
We now present two common objective functions:

Minimizing total link usage (TLU): TLU mini-
mization reflects a common goal in ISP networks [8].
Each link e has a “cost” that reflects its level of conges-
tion, where lightly-loaded links are “cheap” and links
become exponentially more “expensive” as the link be-
comes heavily loaded. The cost function φe specifies
the cost as a function of fe (the total flow traversing
the edge) and ce (the edge capacity). Every φe is a
piecewise linear, strictly increasing and convex function
(see Section 4 and [8] for concrete examples). The goal
is to distribute the entire demand between every pair
of vertices in a manner that minimizes the sum of all
link costs (i.e., Σe∈E φ(fe, ce)). (Observe that the flow
along an edge can exceed the edge’s capacity.)

Maximizing the sum of throughputs (SoT): SoT
maximization captures the objective of maximizing the
network throughput, that is, the overall amount of re-
ceived traffic. This is reasonable when a company (or
other organization) wishes to fully utilize network band-
width (e.g., if traffic is not delay sensitive). When max-
imizing SoT the goal is compute a traffic flow that (1)
does not exceed edge capacities; (2) does not exceed
the offered demands; and (3) maximizes the total traf-
fic volume Σi∈V Σj∈V fji, where fji is the amount of
traffic received at vertex i that originates in vertex j.

Both objectives can be cast into the classical mul-
ticommodity flow framework; TLU minimization can
be formulated as minimum-cost multicommodity flow,
whereas SoT maximization is the extensively studied
maximum multicommodity flow. Thus, these two objec-
tive functions are realizable using existing algorithms
for computing multicommodity flows. Realizing these
objectives in practice can be done via MPLS and a
management system that solves the optimization prob-
lem and installs the resulting paths. Network operators
often take the indirect approach of tuning Interior Gate-
way Protocol (IGP) weights to closely approximate the
optimal distribution of the traffic [8].

3. TE WITH MIGRATION
In this section, we present mechanisms for changing

the underlying traffic matrix, in both ISP and data-
center networks. Then, we formulate a new model for
traffic engineering that incorporates migration.

3.1 Traffic Migration Techniques
Traditional traffic engineering assumes that the lo-

cations of traffic sources and sinks cannot change over
time. The ability to migrate users—to adaptively change
where users connect to the network—gives rise to new
possibilities in traffic engineering. Dynamically relocat-
ing traffic end-points can redirect traffic to decrease the
traffic traversing a congested bottleneck, or capitalize
on unused bandwidth. We now describe mechanisms
for migrating traffic in ISP and data-center networks.

3.1.1 ISP Networks: Migration with Router Grafting

An ISP network connects to neighboring networks
(customers, peers, or providers) at its perimeter. To
establish a link to another network, the ISP selects one
of its routers to connect to the adjacent network. Tra-
ditionally, the link remains fixed unless there is signif-
icant reason for change. This is because changing to a
different internal router in real time can be extremely
disruptive to the Border Gateway Protocol (BGP) ses-
sion with the neighboring network, requiring significant
coordination such as scheduling a maintenance window.
During the transition period, data packets may be lost
or delivered out of order, and routers throughout the
Internet receive additional BGP update messages.

A new technology, called router grafting [14], enables
an ISP to move its end of the link without disrupt-
ing user performance and without coordination with
the neighboring network. Router grafting rehomes the
layer-three link (through signaling in the programmable
transport network), migrates the local end-point of the
TCP connection to the neighbor’s router, and transpar-
ently transfers the routing-protocol state to a different
internal router. Router grafting has no impact on the
neighboring network—the neighbor is not aware that
grafting has happened, and sees no change in where
traffic enters or leaves its own routers. (This is sharp
contrast to traditional interdomain traffic engineering,
where an ISP changes its BGP policies to shift traffic
from one edge link to another—triggering both BGP
update messages and changes in where traffic enters or
leaves neighboring networks.) Router grafting makes it
possible to migrate a link within a few seconds without
disruption, allowing network operators to change the
ingress and egress points for traffic in real time.

The overhead of router grafting is relatively low. Graft-
ing involves the export of state from one router, the
transference of state, and the import of state at another
router. Changing the network topology requires some
routers to repeat the route-selection process, leading to
a temporary increase in CPU load. In addition, some
routers may change their routing decisions, leading to
a temporary increase in BGP update messages. These
overheads are short-lived, and do not disrupt the flow
of data traffic. As such, network operators can afford
to make periodic adjustments to where they terminate
the links to neighboring networks.
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Figure 1: Network model for traffic engineering
with migration.

3.1.2 Data Centers: Virtual Machine Migration

Data centers can contain tens of thousands of servers [9],
and are becoming bigger every year. The networks
connecting server clusters are also growing larger, and
must satisfy the demands of applications like MapRe-
duce that impose large and highly-variable traffic de-
mands [10]. As such, traffic engineering in data-center
networks is increasingly important. Commonly, the phy-
sical servers can host multiple virtual machines (VMs).
Live migration allows a running VM to move from one
physical server to another; this capability is available in
each of the major server virtualization platforms (e.g.,
KVM [15], Xen [25], and VMWare [23]).

Migration of VMs can be done in time ranging from
seconds to minutes, depending on how much state there
is, and on whether there is disk to be transferred. In en-
vironments where VM migration is too expensive, data-
center operators can “fire up” a new VM instance of-
fering the same service, while gradually “draining” the
load off the old virtual machine. Either way, the effect
is the same—the service connects to a new location in
the data-center network.

Just as with router grafting, VM migration also has
a cost. In VM migration, the amount of state exported,
transferred, and imported can potentially be large. For-
tunately, these transfers can take place “in the back-
ground,” with only the final transfer (of the last changes
to the VM before it moves) happening in real time. So,
while data-center operators must be judicious in mi-
grating VMs, periodically moving some VMs to new
locations does not introduce much overhead.

3.2 Migration-Aware Traffic Engineering
We now extend the traffic-engineering model in Sec-

tion 2 to incorporate migration. Table 1 summarizes
the notation.

Distinguishing users from network nodes: In our
model for traffic engineering with migration, the net-
work (see Figure 1) is represented by a graph G =
(V, E), where the vertex set V is the union of two dis-
joint subsets, U and N . U is the set of network users,
that is, originators and receivers of traffic, and N is the

Notation Description
G Network graph G = (V, E)
V Network vertex, union of U and N
E Network edge, union of EU and EN

U Set of network users
N Set of network nodes
EU Subset of edges that connect user u ∈ U

to network nodes in N , EU ⊆ U × N
EN Subset of edges that connect network

node n ∈ N to network nodes in N ,
EN ⊆ N × N

ce capacity of edge e ∈ E
Lu Potential links, Lu ⊆ EU

D Demand matrix, D = {dij}i,j∈U

dij Amount of traffic that user i wishes to
send user j

φe cost function used in TLU minimization,
function of fe/ce

fe Total flow traversing the edge e

Table 1: Summary of notation used in model of
traffic engineering with migration.

the set of network nodes, that is, the routers/switches
in the network. The term “users” here refers to users of
the network and not to end-users. In an ISP network,
the set of users U represents routers in neighboring net-
works (“adjacent routers”) and the set of network nodes
N represents the routers in the ISP’s internal network
(“internal routers”). In data center networks, the set
of users U represents the VMs and the set of network
nodes N represents the network switches.

User edges are potential links: To capture the abil-
ity to migrate, we introduce the notion of potential links

that represent the locations where the user can possibly

connect to the network. The edge set E is the union of
two disjoint subsets, EU and EN , where EU ⊆ U ×N is
the subset of edges connecting users to network nodes,
and EN ⊆ N ×N is the subset of edges connecting net-
work nodes to other network nodes. Each edge e ∈ EN

has capacity ce ≥ 0, which measures the amount of
flow that can traverse edge e. We impose no capacity
constraints on the edges in EU (that is, these edges
have infinite capacity). We call the set of all edges
Lu ⊆ EU that connect user u ∈ U to network nodes
in N “the set of u’s potential links” (that is, ∀u ∈ U ,
Lu = {e = (u, v)| e ∈ EU}).

In ISP networks, the set of potential links Lu for each
adjacent router (user) u represents the points at which
u can connect to the ISP network. This can, in practice,
depend on the underlying transport network that can,
for example, limit a user to connecting only to network
nodes in nearby geographical regions. In addition, the
set of potential links can reflect latency considerations,
e.g., it is beneficial to home frequently-communicating
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users near each other. In data center networks, the set
of potential links can depend on a number of factors
such as the network topology and application require-
ments (e.g., VMs that need to be in the same broadcast
domain, have access to a common storage area network,
reside in different portions of the data center so as to
increase tolerance to faults, etc.).

Demand matrix is user-to-user: Our model dis-
tinguishes network users from network nodes, and our
demand matrix captures this distinction; we are now
given a demand matrix D = {dij}i,j∈U , where each en-
try dij specifies the amount of traffic user i wishes to
send user j.

Each user must use a single potential link: The
high-level goal is, for every pair of users i and j such
that dij > 0, to distribute flow from i to j between the
routes from i to j in G, subject to the constraint that
every user can only connect to the network via a single

link. That is, for every user u ∈ U , traffic flowing from
that user to the other users, and vice versa, can only
traverse a single edge in Lu; traffic along all other edges
in Lu must be 0. When optimizing the flow of traffic
through the network we can again consider the TLU
minimization and SoT maximization objectives.

3.3 Practical Considerations
Naturally, our formal framework does not capture all

the constraints that could arise in practice. We now
present several such constraints and discuss how these
can be incorporated into our model. We revisit some of
these in later sections and leave the others as interesting
directions for future research.

Cost of migration. Our framework does not model
the cost of migration (in terms of processing, offline
time, and more) yet this is expected to be a consid-
eration in practice (we present some indication of the
impact of this cost, based on experiments with Internet2
data, in Section 4.3). We can incorporate that cost into
our model as follows. The input will include, in ad-
dition to the other components, an edge eu ∈ Lu, for
every user u ∈ U , that represents the link that user u is
currently using to connect to the network, and also costs
associated with changing each user u’s current connec-
tion edge to other edges in Lu.

Router/switch limitations. Other practical consid-
erations are the physical limitations of the individual
vertices in the network, including the number of links
that each vertex can support, and also the capacity of
the node (in terms of processing, memory, bandwidth,
etc.). This can be incorporated into our model through
additional constraints (e.g., limits on the number of in-
coming links per node, node-capacity functions depen-
dent on incoming traffic amount, etc.).

Multi-homed users. We did not model the case that
users are multi-homed, that is, that users connect to
the network at more than one location. This alters our
constraint that a single potential link must be chosen
per user. To incorporate this into our model we can
introduce a variable for each user u that specifies how
many links in Lu that user is allowed to send/receive
traffic along. It also adds the complexity that chang-
ing the ingress point may alter the egress point (i.e.,
“hot-potato routing” [22]), thus changing the traffic ma-
trix beyond the change introduced with migration. The
design and evaluation of heuristics/algorithms for this
more general environment is left for future work.

User dependencies. In data center networks, there
can be dependencies between users, e.g., VMs that must
be placed at proximate locations (so as to be in the same
broadcast domain, or to have access to a common stor-
age area network), VMs that must reside in different
portions of the datacenter (so as to increase tolerance
to faults), etc.. Our definition of the potential links (the
Lu’s) does not capture all such dependencies (e.g., two
VMs that need to be close to each other, without car-
ing exactly where they both are placed). Understanding
how to address such dependencies in traffic engineering
is important. To model this, it is possible to use ideas
and formulations from work on optimizing the place-
ment of VMs (e.g., [17]).

4. MIGRATION IMPROVES TE
Multicommodity flow provides an optimal solution

for traditional traffic engineering with a fixed traffic ma-
trix. Ideally, we would also be able to find an optimal
solution to traffic engineering with migration. Unfortu-
nately, this is intractable.

Theorem 4.1. Computing the TLU minimizing or

the SoT maximizing outcome in traffic engineering with

migration is NP-hard even when |Lu| ≤ 2 for all u ∈ U .

However, even a relatively simple heuristic, that we
term the “max-link heuristic”, achieves good perfor-
mance on the Internet2 traffic and topology. We now
present the max-link heuristic, that utilizes multicom-
modity flow, along with the performance evaluation us-
ing Internet2 data. Then, we show that the max-link
heuristic has poor worst-case performance, motivating
the design of algorithms with provably “good” worst-
case guarantees in Section 5.

4.1 The Max-Link Heuristic
The max-link heuristic first computes the multicom-

modity flow in the input network that contains all po-
tential links. Then, the heuristic uses this “fully frac-
tional” flow (where users’ traffic can be split between all
of their potential links) to choose a single potential link
for each user, thus constructing a feasible (“integral”)
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solution. To do this, the max-link heuristic discards, for
every user u ∈ U , all potential links in Lu but the single
potential link which carries the most traffic in the mul-
ticommodity flow solution (breaking ties arbitrarily).

The max-link heuristic consists of these three steps:

• Step I: Compute multicommodity flow f in
the input network G (that contains all potential
links for each user) for the given demand matrix
D. That is, compute the minimum-cost multicom-
modity flow for TLU minimization, or maximum
multicommodity flow for SoT maximization, with-
out restricting users to sending and receiving traf-
fic along a single potential link. The multicom-
modity flow solution f tells us how much traffic
every user u sends and receives along each of the
potential links in Lu. We let t(lu) denote the sum
of traffic that user u sends and receives along the
potential link lu ∈ Lu.

• Step II: Use the most utilized potential link.
Choose, for every user u ∈ U , a potential link for
which t(lu) is maximized. (Migrate users’ poten-
tial links if necessary.)

• Step III: Compute the multicommodity flow
in the resulting network, that is, in the network
obtained through the removal from G of all poten-
tial links but those chosen above. The max-link
heuristic outputs (1) the choice of a single poten-
tial link for each user and (2) the optimal routing
of traffic subject to these migration decisions.

4.2 Experimental Results on Internet2
We now present our experimental evaluation of the

max-link heuristic. The goal of this evaluation is to
demonstrate the benefits of using migration in traffic
engineering, even with a simple heuristic. We show that
our max-link heuristic does indeed lead to significant
improvement in network performance.

We based all of our experiments on data collected
from Internet2 [12], which consists of N = 9 core routers
and U = 133 external routers. We used previously col-
lected NetFlow data which provides summaries of the
sampled flows (at the rate of 1/100 packets) for each
router. Every NetFlow entry contains the incoming in-
terface, which we used to represent an external source
user. We used the routing tables for each of the routers
to determine the egress router for each flow, along with
the specific interface on the egress router that the flow
exits the network on, which we used to represent the
external destination user. This enabled us to generate
an external-user-to-external-user traffic matrix.

4.2.1 TLU Minimization

Our results for TLU minimization appear in Figure 2,
which shows results for the original (optimally engi-

Figure 2: Results for TLU minimization with
the max-link heuristic.

neered) network (the “original” line), and for traffic en-
gineering with migration with 2 and 3 potential links
per user.

When computing the multicommodity flow (in Step
I), we used a demand matrix that is a multiple of 1.75
times the measured traffic matrix, representing a point
where the current network could still operate without
experiencing the exponential rise in costs. Our choice of
the sets of potential links (the Lu’s) in the experiments
was based on geographical distance, with the users’ lo-
cations inferred from which router they are connected
to in the original topology. We do not present results for
4 potential links per-user, as in this case (in our small
topology) almost every two users end up connected to a
common network node, and thus traffic between these
users does not traverse the network at all. (To elabo-
rate, consider the extreme case in which all users have
potential links to all routers. Here, a multicommodity
flow solution will give no guidance on which links to use
since no traffic will even traverse the network.)

To obtain the graph in Figure 2, we varied the traffic
demand by scaling all entries by a multiplicative fac-
tor, plotted on the x-axis, and optimized for the TLU
for each. TLU minimization captures the goal of avoid-
ing congestion, and involves an exponentially increasing
cost for utilizing a link (see Section 3). We used the cost
function from [8], shown below:

φe(fe, ce) =






fe 0 ≤ fe

ce

< 1

3

3fe −
2

3
ce

1

3
≤ fe

ce

< 2

3

10fe −
16

3
ce

2

3
≤ fe

ce

< 9

10

70fe −
178

3
ce

9

10
≤ fe

ce

< 1

500fe −
1468

3
ce 1 ≤ fe

ce

< 11

10

5000fe −
16318

3
ce

11

10
≤ fe

ce

< ∞

Due to the exponentially increasing cost, the network
operator will wish to be at a point in the curve that
comes before the exponential rise, that is, before the
“knee” in the curve. Observe that this “knee” shifted
to the right by roughly 25%, and so, with migration, the
network can handle 25% more traffic with the same level
of congestion. Note also that with 3 potential links per
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Figure 3: Results for SoT maximization with the
max-link heuristic.

user we only achieve slightly better results than with 2
potential links per user. This is due both to how we
selected the sets of potential links (based on the geo-
graphic locations), and to the exponentially rising cost
of using a link. Specifically, traffic from a user in one
geographic region to a user in a remote geographic loca-
tion will often have to traverse a certain link regardless
of the specific ingress and egress points. That link will
therefore be congested in both the 2 potential link case
and 3 potential link case, and will then dominate the
TLU because of the exponentially rising cost function.

4.2.2 SoT Maximization

Similarly to the TLU minimization experiment, in
Figure 3 we show our results for SoT maximization for
the original network, as well as for the 2 potential links
case. We omit the 3 potential links case as the re-
sults are roughly equivalent to the 2 potential links case.
When computing the multicommodity flow (in Step I)
we used a demand matrix that is a multiple of 8 times
the measured traffic matrix, representing a point where
the current network is congested.

When maximizing SoT, the goal is to maximize the
amount of traffic that gets through the network, and so
higher points in the graph in Figure 3 are more desir-
able. Under a certain load, the network can handle all
offered traffic, as illustrated by the linear relation for
low values on the x-axis. As expected, the results are
similar to the results for TLU minimization in that we
are able to send more traffic through the network with
migration.

4.3 Effects of Migration Cost
To obtain the results for the max-link heuristic in our

experiment with Internet2 data shown in Figure 2, we
migrated 57 of the 133 users. Our formulation did not
incorporate the cost of migration, yet this is expected
to be a consideration in practice. To decide which users
to migrate, we can weigh the cost of migrating a user
against the gain from migrating that user; when the
impact of migrating a user is low (e.g., when that user

Figure 4: Traffic sent and received by migrated
users as a fraction of the total traffic.

generates and consumes negligible amounts of traffic),
migration might be undesirable.

To investigate this, we plotted in Figure 4 the users
whose links were migrated (sorted by the amount of
traffic they generate/consume) on the x-axis, and the
cumulative fraction of the total traffic on the y-axis.
From this we learn that 75% of the traffic comes from
the first 10 users, and 95% from the first 20 users.
Hence, migrating 20 users is sufficient to achieve a sig-
nificant improvement in network performance.

While 57 (or even 20) users may seem to be a signif-
icant fraction of total users, this does not imply that a
constantly high rate of migration will be necessary in
practice. The starting point in our experiments was a
network that has not capitalized on migration yet; pre-
sumably, once users are homed to good locations, much
fewer migrations would be necessary thereafter.

4.4 Worst-Case Performance of Max-Link
We now show that, while our experimental evaluation

establishes that max-link heuristic leads to significant
improvement in network performance, this heuristic suf-
fers from poor worst-case performance. This motivates
the design of algorithms with provable worst-case guar-
antees in Section 5.

We focus on the SoT maximization objective. Con-
sider the network in Figure 5. User A aims to send 1
unit of traffic to user B across the network. A has two
potential links, l1 and l2, and B has two potential links,
l3 and l4. The capacities of the network edges are as in
the figure. Observe that, in the case that we allow all
potential links to be utilized, the maximum (SoT max-
imizing) multicommodity flow solution gets A’s entire
demand across the network to B. To achieve this, A
sends 1

2
+ ǫ along l1 and 1

2
− ǫ along l2. B then receives

1

2
− ǫ traffic along l3 and 1

2
+ ǫ traffic along l4. Now,

observe that the execution of the max-link heuristic re-
sults in user A using only the link l1 and user B using
only the link l4. Thus, A can only send 2ǫ units of traf-
fic across the network. Contrast this with the optimal
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Figure 5: Worst-case performance of the max-
link heuristic.

solution in which A uses l1 and B uses l3 (or where A
uses l2 and B uses l4) to see that the ratio of the out-
put of the max-link heuristic (in which the SoT is 2ǫ)
and the optimal solution (in which the SoT is 1

2
− ǫ) is

unbounded (as ǫ can be arbitrarily small).
Intuitively, the max-link heuristic has poor worst-

case performance because the choice of potential link
for each user is independent from the choices for other
users, and is based solely it makes on the traffic along
the user’s own potential links. The algorithms we present
in the next section achieve much better worse-case per-
formance by making “global” decisions.

5. APPROXIMATION ALGORITHMS
In this section, we present several algorithms that

provably approximate the optimal SoT-maximizing out-
come; we leave the design of TLU-minimizing algorithms
for future research—we do point out that our hardness
results for SoT maximization have implications for TLU
minimization as well.

We first present a fast and simple combinatorial al-
gorithm for traffic engineering with migration that has
provable approximation guarantees. We then establish
an interesting connection between our framework and
classical problems in complexity theory, and show that
this can be leveraged to design algorithms with better
approximation ratios (e.g., a randomized algorithm that
achieves at least 87% of the optimum when each user
has at most 2 potential links).

The choice of which of these algorithms to use in prac-
tice must reflect the tradeoffs between them in terms of
worst-case performance, average-case performance and
computational costs. These can depend on the specific
context (network size, demand matrix, etc.), and are
left for future research.

5.1 Overview of Our Algorithms
Ideally, we would be able to achieve constant-factor

approximations to the optimum in a computationally-

efficient manner regardless of the network topology, the
number of users, the number of potential links, etc.

Unfortunately, we show that, in general, even finding
a constant-factor approximation to the optimum is in-
tractable; as the maximal number of potential links per
user grows, the approximation guarantees must become
worse.

Theorem 5.1. Approximating the SoT maximizing

outcome in traffic engineering with migration within a

constant factor is NP-hard.

We present algorithms whose approximation ratios
depend on k = maxu∈U |Lu|.

5.1.1 Introducing the Link-2-Link Graph

We now present an illustration of some key ideas in
our algorithms. Consider the users A and B, who com-
municate across the network in Figure 6(a). Both A
and B have two potential links (see figure). Our algo-
rithms first compute the maximum (SoT maximizing)
multicommodity flow f in the network that contains all
potential links (l1, l2, l3, and l4 in the figure), for the
given demand matrix. The multicommodity flow solu-
tion is then used to construct an artifact we term the
“link-2-link graph”, illustrated in Figure 6(b) for the
specific network in Figure 6(a).

The vertices in the link-2-link graph represent users’
potential links (see figure), and each edge weight is the
total flow in f between the potential links that are its
endpoints, e.g., α in the figure is the sum of the total
flow in f that leaves user A along l1 and reaches user
B along l2 and the total flow in f that leaves user B
along l2 and reaches user A along l1. Observe that the
link-2-link graph does not contain information about
how traffic is routed in f within the network, but does
capture correlations between choices of potential links
for different users (absent in the max-link heuristic).

Once the link-2-link graph is constructed, our algo-
rithms use it to guide the choice of which potential link
to choose for each user. We present several methods for
doing this (combinatorial, using linear programming,
and using semidefinite programming) and analyze the
worst-case performance of these methods.

5.1.2 Algorithmic Framework

Our algorithms consist of the following four steps.

• Step I: Compute the maximum multicom-
modity flow f in the input network G (that con-
tains all potential links for each user) for the given
traffic matrix D. Clearly, the value of this maxi-
mum multicommodity flow OPTf is an upper bound
on the optimum when we restrict every user to
only send/receive traffic along a single potential
link. Set f(lu, lv) to be the total amount of flow
that leaves user u through the potential link lu ∈

7



(a) Two users with two potential links
(b) Link-2-link graph

Figure 6: Examples illustrating how to provably approximate the optimal solution

Lu and reaches user v through the potential link
lv ∈ Lv.

• Step II: Construct the “link-2-link graph”
Ĝ = (V̂ , Ê) as follows. Create, for each user u ∈

U , a set of k vertices V̂u that represents the set
of u’s k potential links Lu, and that we shall thus
henceforth identify with Lu. Set V̂ =

⋃
u∈U V̂u

(=
⋃

u∈U Lu). Create an edge e ∈ Ê between every
vertex lu ∈ Lu and every vertex lv ∈ Lv for u 6=
v ∈ U , and set e’s weight to be we = f(lu, lv) +
f(lv, lu).

Observe that every |U | vertices v1, . . . , v|U| ∈ V̂ ,
such that no two are in the same Lu set, represent
a possible solution (in which users send/receive
traffic only along these potential links), and shall
hence be called a “solution”. Observe also that
for every such v1, . . . , v|U| ∈ V̂ , the total sum of
weights of the edges between them is a lower bound
on maximum SoT in the network in which (only)
these potential links are selected.

• Step III: Compute a solution T ∗ in Ĝ, that
is, |U | vertices v1, . . . , v|U| ∈ V̂ , such that no two
are in the same Lu set.

• Step IV: Output the maximum multicom-
modity flow in the resulting network, that
is, in the network obtained through the removal
from G of all potential links but those in the cho-
sen solution T ∗. Our algorithms output (1) the
choice of a single potential link for each user and
(2) the optimal routing of traffic subject to these
migration decisions.

We now move on to presenting algorithms for SoT
maximization in traffic engineering with migration. The
algorithms we develop all have the above structure and
differ only in how the solution T ∗ in Step III is chosen.

5.2 1

k2 -Approximation Algorithm
We present a simple deterministic algorithm that ach-

ieves a 1

k2 approximation ratio. The algorithm com-
putes the multicommodity flow for the input network
G = (V, E) and then constructs the graph Ĝ = (V̂ , Ê),
as in Step I and Step II above. We now explain how
the algorithm selects a solution T ∗ in Step III (which

it then uses to output the SoT maximizing flow as in
Step IV above). Intuitively, this algorithm constructs k
possible solutions, and then selects the best of these to
be T ∗.

We introduce the following notation: ∀X ⊆ V̂ , W (X),
called X ’s weight, is the total sum of the weights of
edges in Ê whose endpoints both lie in X . Observe that
W (V̂ ) = OPTf . Given the link-2-link graph Ĝ, the
algorithm constructs k candidate solutions T1, . . . , Tk,
and selects the solution for which W (Ti) is maximized,
as follows.

• Set Ti := 0 for every i ∈ [k].

• Go over the users in U in some arbitrary order
u = 1, . . . , |U |, and, at each step, place the ver-

tices in V̂u within the sets T1, . . . , Tk, subject to
the constraint that no two vertices be placed in
the same Ti set, so as to maximize the expression
ΣiW (Ti)

(Consider, for example, the link-2-link graph in
Figure 6(b), and the case that we start with user
A. A’s potential links, l1 and l2 will be placed in
T1 and T2, respectively (this choice is arbitrary).
Then, B’s potential links, l3 and l4 will be placed
in T1 and T2, respectively, if α + β > γ + δ, and in
T2 and T1, respectively, otherwise.)

• Set T ∗ := argmaxiW (Ti).

Theorem 5.2. The algorithm is computationally ef-

ficient and has approximation ratio 1

k2 .

Proof. To see that the algorithm is computationally
efficient observe that, as k is constant, going over all the
possibilities of placing the vertices in V̂u in the Ti sets
can be done efficiently.

We are left with showing that the approximation ra-
tio is indeed 1

k2 . Consider the following simple random-
ized process for constructing T1, . . . , Tk. Go over all
users and, for each user u, place the vertices in V̂u in
the sets T1, . . . , Tk uniformly at random, subject to the
constraint that no two vertices be placed in the same
Ti sets. Observe that for the set generated using this
process it holds that E(ΣiW (Ti)) ≥

1

k
W (V̂ ).

This randomized process can be derandomized using
the method of conditional probabilities so that the re-
sulting deterministic process construct the sets T1, . . . , Tk
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precisely as in our algorithm. Hence, we have that our
algorithm generates sets T1, . . . , Tk such that ΣiW (Ti)) ≥
1

k
W (V̂ ). Observe that when choosing the best solu-

tion T ∗ it must therefore hold that W (T ∗) ≥ 1

k2 W (V̂ ).
The theorem now follows from the observation that
W (V̂ ) = OPTf .

5.3 MAX-2-AND and Traffic Engineering

5.3.1 Leveraging Solutions to MAX-2-AND

MAX-2-AND is a special case of the maximum con-
straint satisfiability problem (MAX-CSP), which is a
classical problem in complexity theory that has been
the subject of extensive research. We now establish an
interesting connection between traffic engineering with
migration and MAX-2-AND. Specifically, we show that
Step II and Step III in Section 5.1 can be cast into
the language of MAX-2-AND. This enables us to lever-
age existing algorithms for MAX-2-AND to design al-
gorithms for traffic engineering with migration with sig-
nificantly better approximation ratios than 1

k2 .
In MAX-2-AND, the input consists of (1) n variables

x1, . . . , xn, where each variable xi takes values in a set
Si (we consider the general case that not all variables
are necessarily boolean); (2) m constraints c1, . . . , cm,
where each constraint ci is of the form “xi = α AND

xj = β”; and (3) a weight wci
> 0 for every constraint

ci. The objective is to find an assignment to the vari-
ables that maximizes the total sum of the weights of the
satisfied constraints.

We make the following observation. Given a link-2-
link graph Ĝ = (V̂ , Ê) as in Step II in Section 5.1 we
can create an instance of MAX-2-AND as follows. We
create, for each user u ∈ U , a variable xu and set Su to
be V̂u. We also create, for every edge e = (lu, lv) ∈ Ê,
a constraint ce that is only satisfied if xu = lu and
xv = lv, and has weight wce

= we. Observe that this is
an approximation preserving reduction, and thus find-
ing a solution T ∗ in Step III in Section 5.1 is equivalent
to finding an assignment to the variables in the con-
structed instance of MAX-2-AND.

Hence, we can replace Step II and Step III in Sec-
tion 5.1 with equivalent two steps where we construct an
instance of MAX-2-AND and then find an assignment
to the variables in the MAX-2-AND instance. This im-
plies that obtaining a good approximation in our con-
text (when taking this approach) boils down to finding
a good approximation to MAX-2-AND. We can thus
leverage the extensive work on designing algorithms for
MAX-CSP to design algorithms for traffic engineering
with migration.

5.3.2 Implications for TE with Migration

We now show how known algorithm for MAX-CSP
can be used to to approximate traffic engineering with
migration beyond the 1

k2 ratio presented in Section 5.2.

Using these algorithms we can obtain an approximation
ratio of 1

k
for every k > 0, and an approximation ratio

of nearly 90% for the interesting special case k = 2.

• Improved combinatorial algorithm. Datar et

al. [6] present a combinatorial algorithm for MAX-
CSP. Using this algorithm, we can improve over
the approximation ratio of the combinatorial algo-
rithm we presented in Section 5.2 and achieve an
approximation ratio of 4

9
for the case that k = 2,

and of 1

2k−2
for k ≥ 3.

• Linear programming algorithm with approx-
imation ratio 1

k
. Serna et al. [21] present an

LP-based algorithm for MAX-CSP (see also [6]).
This algorithm can be used to provide a 1

k
approx-

imation algorithm for SoT maximization in traffic
engineering with migration.

• Semidefinite programming algorithm for the
case k = 2 with approximation ratio ∼90%.
We can also leverage semidefinite programming al-
gorithms for MAX-2-CSP to design algorithms for
SoT maximization for the special case that k = 2.
Specifically, we can use the algorithm of Lewin et

al. [16] to approximate traffic engineering with mi-
gration to within a ratio of at least 0.874.

We can further exploit the connection between traffic
engineering with migration and MAX-2-AND to show
that the last algorithm is essentially “tight” for the 2
potential links case. This follows from the inapprox-
imability result for MAX-2-AND in [5].

Theorem 5.3. When every user has at most 2 po-

tential links, approximating the SoT maximizing out-

come within a factor of 0.87435 is NP-hard if the Unique

Game Conjecture is true.

The choice of which of the above algorithms to use
in practice must reflect the tradeoffs between them in
terms of worst-case performance, average-case perfor-
mance and computational costs. These can depend on
the specific context (network size, demand matrix, etc.),
and are left for future research.

6. DISCUSSION: CLUSTERING USERS
When evaluating the max-link heuristic, we also in-

vestigated the benefits of considering the users in groups,
and not individually. Grouping users together is moti-
vated by the fact that, in practice, often large numbers
of users can connect to the network at the exact same
locations (e.g., via a common access network). In ad-
dition, clustering users reduces the network size, thus
making computation more efficient. Our experimental
results, however, did not match our expectations; these
show that clustering users can indeed be beneficial, yet

9



that this is dependent on careful choices of the clus-
ter sizes and contents. We now present this approach,
along with its performance evaluation. We conjecture
that clustering will be more effective in larger networks.

6.1 The Cluster User Heuristic
Under the cluster user heuristic, users are considered

in groups and not individually. The intuition behind
this heuristic is the following. Consider the scenario
that the set of users is divided into groups (or clusters)
of users, such that every cluster contains a large num-
ber of users who all can connect to the network at the
exact same locations (network nodes), and such that
each user’s demands constitute a small fraction of the
demands of the cluster as a whole. We observe that,
in this case, each cluster can be regarded as a single
user with the ability to split traffic among its poten-
tial links almost as in the optimal multicommodity flow
solution. This follows from the fact each user in the
cluster sends/receives a negligible amount of the total
traffic, and so users in the cluster can be mapped to out-
going links so as to closely mimic the multicommodity
flow solution.

To illustrate this point, consider the example in Fig-
ure 7(a). There are six users (labeled A-F) which are
grouped into two clusters (cluster 1 and cluster 2). In
the cluster user approach, users can (but do not nec-
essarily) belong to the same cluster if their sets of po-
tential links connect to the network at the exact same
network nodes.

We create a new network where each user cluster is
replaced by a single user (with a set of potential links
that connect to the network at the exact same network
nodes). We then solve multicommodity flow for this
network (allowing traffic to be split between multiple
potential links) to get the fraction of traffic flowing over
each potential link (shown in Figure 7(a)).

We now use the multicommodity flow solution to map
users to potential links, as shown in Figure 7(b). In our
example, 0.79 units of cluster 1’s traffic should be via
w and 0.21 units via x. Hence, we map A (0.60) and
B (0.20) to w, and C (0.20) to x. Observe that this is
the “best fit” as splitting the traffic exactly as in the
multicommodity flow is impossible.

We note that, in general, finding the best fit can eas-
ily be shown to be NP-hard, even in the case that every
user has 2 potential links, yet good approximations are
achievable. In our experiments, we were able to use a
brute-force approach to determine the best fit; for each
cluster, we go over all possibilities for mapping users to
potential links; we pick the mapping that minimizes the
sum of gaps between the traffic sent along the poten-
tial links in the mapping and in the multicommodity
flow solution. In Figure 7(a), for example, a possible
mapping is to map user A to node w, and users B and
C to node x, which leads to a “penalty” of 0.38 (as

Figure 8: TLU minimization with cluster user
heuristics (for 2 potential links per-user).

0.38 = |0.79 − 0.60| + |0.21 − (0.2 + 0.2)|); mapping
users A and B to w and C to x is the optimal solution
with penalty 0.02.

6.2 Evaluation with Internet2 Traffic
While the intuition behind the cluster user heuris-

tic seems solid, our results are not conclusive due to
the variables involved: the cluster size, and the clus-
ter contents. Using the same setup as in Section 4, we
experimented with several cluster sizes for the 2 po-
tential links per user case (Figure 8) (the 3 potential
links per user case does not provide any additional in-
sights). Our results, show that traffic engineering with
migration via cluster user has benefits, yet the cluster
composition must be carefully chosen.

6.3 How to Select the Right Clusters?
Selecting the “right” cluster of users (and cluster size)

is not trivial for the following reasons: (1) Traffic sent
from a user in a cluster to another user in the same clus-
ter is not considered (as the entire cluster is treated as
a single user). Interestingly, the intuition that the big-
ger the cluster size is the more unconsidered traffic we
have is not necessarily true; sometimes increasing the
cluster size changed the division points and resulted in
highly communicating users falling into different clus-
ters, thus actually decreasing the unconsidered traffic.
(2) Best-fitting users to potential links to match the
computed multicommodity flow can lead to lost traffic
if the fitting is not perfect (e.g., in the multicommodity
flow solution 0.79 units of traffic flow over the link to
node w in Figure 7, yet the closest we can come is 0.80
units). In Figure 9 we show the effects of these two
factors for the 2 potential links per user case. Observe
that while the best results with the cluster user heuris-
tic were achieved for a cluster size of 8 (see Figure 8),
this is not obvious from Figure 9.

Understanding how to select user clusters (in a comp-
utationally-efficient manner) is a direction for future
work. We suspect that the cluster user approach is more
suitable for larger networks with more users, where we
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Figure 7: Illustration of the cluster user approach.

Figure 9: Implications of cluster size and con-
tents with cluster user heuristics (for 2 potential
links per-user).

have more freedom in choosing the composition of the
clusters. In such networks, we can place users who com-
municate with each other in separate clusters so as to
avoid not considering that traffic. We can also form big
clusters with even distribution of traffic, thus making
it easier not to lose traffic in the course of best-fitting
users to potential links.

7. RELATED WORK
Due to its importance for network performance, there

have been much research on traffic engineering.

7.1 ISP Networks
There has been much work on schemes for traffic en-

gineering in ISP networks [24][13][7][4][27]. This work
interprets traffic engineering as the adaptation of the
routing of traffic within the network so as to optimize
performance. We, in contrast, also explore how to adapt
traffic’s ingress and egress points.

Changes to the traffic matrix can also result from ac-
tions of the users themselves (e.g., using overlay rout-
ing to route around congested areas, as in Detour [20]
and RON [3]). However, such “selfish” overlay routing
can, as pointed out in [19], significantly reduce the ef-
fectiveness of traffic engineering (as it lies outside the
control of the ISP network operator). Interestingly, as

these overlays shift the traffic, migration could be used
to better handle the traffic within the ISPs network.

Migration in the ISP context has received but little
attention. Mechanisms for the re-home of customers
have been introduced [1] [14], but the implications for
traffic engineering has not been studied.

7.2 Data center Networks
Traffic engineering in data center networks typically

involves mechanisms that enable the network to carry
the observed traffic patterns. Traffic patterns in data
centers are more dynamic and so setting up static routes
does not have the same effectiveness as in ISP net-
works. Instead, decisions are made on a finer granular-
ity. VL2 [10] does this through the use of Valiant load
balancing and modifications to the end-host operating
systems to enable source routing. Hedera [2] adaptively
schedules the paths flows take in a multi-stage switching
fabric to efficiently utilize aggregate network resources.
Both do this within the context of a network which re-
lies on oversubscription of links.

Related is also the work on placing VMs in data cen-
ters. This work explores placement from the perspective
of the server and application performance, and thus fo-
cuses on proximity in the network (e.g., it is better to
co-locate highly-communicating VMs; jobs for data pro-
cessing applications such as MapReduce must be placed
close to the data, otherwise the network suffers signif-
icant burden [26]). Network proximity in this work is
incorporated into the overall placement cost. In [17],
for instance, this “proximity cost” is simply the num-
ber of network switches between the VMs. Our focus is
on the implications of VM placement for the network.

Existing techniques for placing VMs can lead to a
situation where VMs interfere with one another (e.g.,
with competing memory access patterns [18]). VM mi-
gration can be used to address this (e.g., migrating VMs
to improve network paths, as in SecondNet [11]).

8. CONCLUSIONS AND FUTURE WORK
The introduction of migration mechanisms challenges

the traditional approach to traffic engineering. We pro-
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posed a new approach to traffic engineering where in-
stead of only optimizing network performance for fixed
(predicted) traffic patterns, we also influence where traf-
fic enters and exits the network. We showed that even
a simple heuristic leads to significant improvements in
network performance and presented algorithms with pro-
vably good worst-case guarantees.

We view our work as a first step in this direction. In-
corporating more practical aspects of traffic engineer-
ing into our model (see Section 3.3), and designing al-
gorithms to handle these, are promising directions for
future research. Understanding the average-case perfor-
mance and computational overhead of our algorithms,
and further exploring the cluster user approach, are also
left for future work.
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