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Abstract— We present Statesman, a network-state management
service that allows multiple network management applications to
operate independently, while maintaining network-wide safety and
performance invariants. Network state captures various aspects of
the network such as which links are alive and how switches are for-
warding traffic. Statesman uses three views of the network state.
In observed state, it maintains an up-to-date view of the actual net-
work state. Applications read this state and propose state changes
based on their individual goals. Using a model of dependencies
among state variables, Statesman merges these proposed states into
a target state that is guaranteed to maintain the safety and perfor-
mance invariants. It then updates the network to the target state.
Statesman has been deployed in ten Microsoft Azure datacenters
for several months, and three distinct applications have been built
on it. We use the experience from this deployment to demonstrate
how Statesman enables each application to meet its goals, while
maintaining network-wide invariants.

Categories and Subject Descriptors:

C.2.1 [Computer-Communication Networks]: Network Archi-
tecture and Design;

C.2.3 [Computer-Communication Networks]: Network Opera-
tions—network management

Keywords:
Network state; software-defined networking; datacenter network

1. Introduction

Today’s planetary-scale services (e.g., search, social network-
ing, and cloud computing) depend on large datacenter networks
(DCNs). Keeping these networks running smoothly is difficult, due
to the sheer number of physical devices, and the dynamic nature of
the environment. At any given moment, multiple switches expe-
rience component failures, are brought down for planned mainte-
nance or saving energy, are upgraded with new firmware, or are
reconfigured to adapt to prevailing traffic demand. In response,
DCN operators have developed an array of automated systems for
managing the traffic (e.g., traffic engineering [12, 13], server load
balancing [25], and network virtualization [17]) and the infrastruc-
ture (e.g., hardware power control for failure mitigation or energy
saving [10, 30], switch firmware upgrade, and switch configuration
management [4, 5]).
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Figure 1: Example of an application conflict

Each management application is highly sophisticated in its own
right, usually requiring several years to design, develop, and de-
ploy. It typically takes the form of a “control loop” that measures
the current state of the network, performs a computation, and then
reconfigures the network. For example, a traffic engineering (TE)
application measures the current traffic demand and network topo-
logy, solves an optimization problem, and then changes the routing
configuration to match demand. These applications are compli-
cated because they must work correctly even in the presence of
failures, variable delays in communicating with a distributed set of
devices, and frequent changes in network conditions.

Designing and running a single network management application
is challenging enough; large DCNs must simultaneously run mul-
tiple applications—created by different teams, each reading and
writing some part of the network state. For instance, both a TE
application and an application to mitigate link failures need to run
continuously to, respectively, adjust the routing configuration con-
tinuously and detect and resolve failures quickly.

These applications can conflict with each other, even if they in-
teract with the network at different levels, such as establishing net-
work paths, assigning IP addresses to interfaces, or installing firm-
ware on switches. One application can inadvertently affect the ope-
ration of another. As an example in Figure 1, suppose a TE ap-
plication wants to create a tunnel through the switch B, while a
firmware-upgrade application wants to upgrade B. Depending on
which action happens first, either the TE application fails to create
the tunnel (because B is already down), or the already-established
tunnel ultimately drops traffic during the firmware upgrade.

Running multiple management applications also raises the risk
of network-wide failures because their complex interactions make
it hard to reason about their combined effect. Figure 2 shows an
example where one application wants to shut down switch AggB
to upgrade its firmware, while another wants to shut down switch
AggA to mitigate packet corruption. While each application acting
alone is fine, their joint actions would disconnect the ToRs (top-of-
rack). To prevent such disasters, it is imperative to ensure that the
collective actions of the applications do not violate certain network-
wide invariants, which specify basic safety and performance re-
quirements for the network. For instance, a pod of servers must not
be disconnected from the rest of the datacenter, and there must be
some minimum bandwidth between each pair of pods.
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Figure 2: Example of a safety violation

DCN operators could conceivably circumvent the problems that
stem from running multiple applications by developing a single ap-
plication that performs all functions, e.g., combining TE, firmware
upgrade, and failure mitigation. However, this monolithic applica-
tion would be highly complex, and worse, it would need to be ex-
tended repeatedly as new needs arise. Thus, DCN operators need a
way to keep the applications separate.

Another option is to have explicit coordination among appli-
cations. Corybantic [23] is one recent proposal that follows this
approach. While coordination may be useful for a subset of ap-
plications, using it as a general solution to the problem of multi-
application co-existence imposes high overhead on applications. It
would require each application to understand the intended network
changes of all others. To make matters worse, every time an appli-
cation is changed or a new one is developed, DCN operators would
need to test again, and potentially retrofit some existing applica-
tions, in order to ensure that all of them continue to co-exist safely.

We argue that network management applications should be built
and run in a loosely coupled manner, without explicit or implicit
dependencies on each other, and conflict resolution and invariant
enforcement should be handled by a separate management system.
This architecture would simplify application development, and its
simplicity would boost network stability and predictability. It may
forgo some performance gains possible through tight coupling and
joint optimization. However, as noted above, such coupling greatly
increases application complexity. Further, since applications may
have competing objectives, a management system to resolve con-
flicts and maintain invariants would be needed anyway. We thus
believe that loose coupling of applications is a worthwhile tradeoff
in exchange for significant reduction in complexity.

In this paper, we present Statesman, a network-state manage-
ment service that supports multiple loosely-coupled management
applications in large DCNs. Each application operates by reading
and writing some part of the network state at its own pace, and Sta-
tesman functions as the conflict resolver and invariant guardian.
Our design introduces two main ideas that simplify the design and
deployment of network management applications:

Three views of network state (observed, proposed, target): In
order to prevent conflicts and invariant violations, applications can-
not change the state of the network directly. Instead, each applica-
tion applies its own logic to the network’s observed state to gen-
erate proposed states that may change one or more state variables.
Statesman merges all proposed states into one farget state. In the
merging process, it examines all proposed states to resolve con-
flicts and ensures that the target state satisfies an extensible set of
network-wide invariants. Our design is inspired by version control
systems like git. Each application corresponds to a different git
user and (i) the observed state corresponds to the code each user
“pulls”, (ii) the proposed state corresponds to the code the user
wants to “push”, and (iii) the target state corresponds to the merged
code that is ultimately stored back in the shared repository.

Dependency model of state variables: Prior work on abstract-
ing network state for applications models the state as independent
variable-value pairs [18, 19]. However, this model does not contain
enough semantic knowledge about how various state variables are
related, which hinders detection of conflicts and potential invariant
violations. For example, a tunnel cannot direct traffic over a path
that includes a switch that is administratively down. To ensure safe
merging of proposed states, Statesman uses a dependency model to
capture the domain-specific dependencies among state variables.

Statesman has been deployed in ten datacenters of Microsoft
Azure for several months. It currently manages over 1.5 million
state variables from links and switches across the globe. We have
also deployed two management applications—switch firmware up-
grade and link failure mitigation, and a third one—inter-datacenter
TE—is undergoing pre-deployment testing. The diverse function-
alities of these applications showcase how Statesman can safely
support multiple applications, without hurting each other or the net-
work. We also show that these benefits come with reasonably low
overhead. For instance, the latency for conflict resolution and in-
variant checking is under 10 seconds even in the largest DCN with
394K state variables. We believe that our experience with States-
man can inform the design of future management systems for large
production networks.

2. Statesman Model

In this section, we provide more details on the model of network
state underlying Statesman, and how applications use that model.

2.1 Three Views of Network State

Although management applications have different functionali-
ties, they typically follow a control loop of reading some aspects
of the network state, running some computation on the state, and
accordingly changing the network. One could imagine that each
application reads and writes states to the network devices directly.

However, direct interaction between the network and applica-
tions is undesirable for two reasons. First, it cannot ensure that
individual applications or their collective actions will not violate
network-wide invariants. Second, reliably reading and writing net-
work state is complex because of response-time variances and link
or switch failures. When a command to a switch takes a long time,
the application has to decide when to retry, how many times, and
when to give up. When a command fails, the application has to
parse the error code and decide how to react.

Given issues above, Statesman abstracts the network state as
multiple variable-value pairs. Further, it maintains three different
types of views of network state. Two of these are observed state
(OS) and target state (TS). The OS is (a latest view of) the actual
state of the network, which Statesman keeps up-to-date. Applica-
tions read the OS to learn about current network state. The TS is
the desired state of the network, and Statesman is responsible for
updating the network to match the TS. Any success or failure of
updating the network towards the TS will be (eventually) reflected
into the OS, from where the applications will learn about the pre-
vailing network conditions.

The OS and TS views are not sufficient for resolving conflicts
and enforcing invariants. If applications directly write to the TS,
the examples in Figure 1 and 2 can still happen. We thus introduce
the third type of view called proposed state (PS) that captures the
state desired by applications. Each application writes its own PS.



Statesman examines the various PSes and detects conflicts among
them and with the TS. It also validates them against a set of network-
wide invariants. The invariants capture the basic safety and perfor-
mance requirements for the network (e.g., the network should be
physically connected and each pair of server pods should be able to
survive a single-switch failure). The invariants are independent of
what applications are running. Only non-conflicting and invariant-
compliant PSes are accepted and merged into the TS.

2.2 Dependency Model of State Variables

Applications read and write different state variables of the net-
work, e.g., hardware power, switch configuration, switch routing,
and multi-switch tunneling. Statesman thus provides the state va-
riables at multiple levels of granularity for applications’ needs (more
details are covered in §4, and Table 2 lists some examples).

But state variables are not independent. The “writability” of one
state variable can depend on the values of other state variables. For
example, when a link interface is configured to use the traditional
control-plane protocol (e.g., BGP or OSPF), OpenFlow rules can-
not be installed on that interface. In another example, when the
firmware of a switch is being upgraded, its configuration cannot be
changed and tunnels cannot be established through it. Thus, when
proposing new values of state variables, conflicts can arise because
a state variable in one application’s PS may become unchangeable
due to some dependent state variables in another application’s PS.
Requiring applications to understand the complex cross-variable
dependency will go against our goal of running them in a loosely
coupled manner. For instance, it will be difficult for a TE appli-
cation to have to consider how one specific switch configuration
affects its operation.

Therefore, Statesman does not treat network state as a collec-
tion of independent variables but includes a model of dependen-
cies among them. These dependencies are used when checking for
conflicts and invariant violations. Based on the dependency model,
Statesman also exposes to applications the “controllability” of each
state variable as an additional logical variable. Thus, an application
can read only the state variables of interest and their controllability
variables to decide whether it is able to propose new values for
those variables of interest. For example, a TE application can read
the “path” variable (i.e., a tunnel through multiple switches) and
whether it is currently controllable, which is computed by States-
man based on various hardware and routing configurations of the
switches along the path; the TE application does not need to reason
about the related hardware and routing configurations itself.

2.3 Application Workflow

In the observed-proposed-target model, the workflow of manage-
ment applications is simple. Each application reads the OS, runs its
computational logic, and writes a newly generated PS. Statesman
generates the new TS after resolving conflicts and invariant viola-
tions in the PSes and merging the accepted ones.

In this model, some application proposals may be rejected. Han-
dling this rejection does not impose extra overhead on applications;
even if interactions with the network were not mediated by States-
man, applications have to be prepared to be unable to update the
network to the desired state (e.g., due to failures during the up-
date process). When Statesman rejects a proposal, applications get
detailed feedback on the reason for rejection (§5), at which point
applications can propose a new PS in an informed manner.
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Figure 3: Statesman architecture overview

Component Input Output
Monitor Switch/link data OS
(0N
Checker PSes TS
TS
oS Switch update
Updater TS commands

Table 1: Input and output of each component in Statesman

Per our desire for loose coupling, applications make proposals
independently. It is thus possible that PSes of two applications fre-
quently conflict or we do not compute a network state that satisfies
all applications (even though such a state exists). In our experience
with Statesman (so far), such cases are not common. Thus, we
believe that the simplicity of loose coupling outweighs the com-
plexity of tight coupling. In cases where coordination among two
applications is highly beneficial, it may be done out of band such
that applications make proposals after consulting each other. Done
this way, most applications and the system as a whole stay simple,
and the complexity cost of coordination is borne only in parts that
benefit the most from the coordination.

3. System Overview

Figure 3 shows the architecture of Statesman. It has four com-
ponents: storage service, checker, monitor, and updater. We outline
the role of each below. The following sections present more details.

Storage service is at the center of the system. It persistently stores
the state variables of OS, PS, and TS and offers a highly-available,
read-write interface for other components and applications. It also
handles all data availability and consistency issues, which allows
all other components to be completely stateless—in each round of
their operations, they just read the latest values of the needed state
variables. This stateless mode of operation simplifies the design of
the other components.

The checker, monitor, and updater independently interact with
the storage service, and the latter two also interact with the network.
Table 1 summarizes the input and output of each component.
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Figure 4: Network state dependency model

Checker plays a pivotal role of generating the TS. After reading
the OS, PSes, and TS from the storage service, the checker first ex-
amines whether some PSes are applicable with respect to the latest
OS (e.g., the proposed change may have already been made or can-
not be made at all due to a failure). It then detects conflicts among
PSes with the state dependency model and resolves them with one
of two configurable mechanisms: last-writer-wins or priority-based
locking. After merging the valid and non-conflicting PSes into the
TS, the checker examines the TS for operator-specified invariants.
It writes the TS to the storage service only if the TS complies with
the invariants. It also writes the acceptance or rejection results of
the PSes to the storage service, so applications can learn about the
outcomes and react accordingly.

Monitor periodically collects the current network state from the
switches and links, transforms it into OS variables, and writes the
variables to the storage service. In addition to making it easy for
other components and applications to learn about current network
state, the monitor also shields them from the heterogeneity among
devices. Based on the switch vendor and the supported technolo-
gies, it uses the corresponding protocol (e.g., SNMP or OpenFlow)
to collect the network statistics, and it translates protocol-specific
data to protocol-agnostic state variables. Other components and ap-
plications use these abstract variables without worrying about the
specifics of the underlying infrastructure.

Updater reads the OS and TS and translates their difference into
update commands that are then sent to the network. The updater
is memoryless—it applies the latest difference between the OS and
TS without regard to what happened in the past. Like the monitor,
the updater handles how to update heterogeneous devices with a
command template pool, and allows other components and appli-
cations to work with device- and protocol-agnostic state variables.

4. Managing Network State

We now describe the various aspects of Statesman in more de-
tails, starting with the network-state data model. We use the ex-
amples in Table 2 to illustrate how we build the state dependency
model, and how to use and extend the model.

4.1 The State Dependency Model

Managing a DCN involves multiple levels of control. To perform
the final function of carrying traffic, the DCN needs to be properly
powered and configured. Statesman aims to support operations in
the complete process of bringing up a large DCN from scratch to

Entit; Level in Example Permission
¥ dependency state variables

Switches on path ReadWrite

Path Path/traffic setup MPLS or VLAN config | ReadWrite

Link interface IP assignment ReadWrite

config Control plane setup ReadWrite

Link Link power Interface admin status ReadWrite

P Interface oper status ReadOnly

N/A Traffic load ReadOnly

(counters) Packet drop rate ReadOnly

Routine control Flow-link routing rules | ReadWrite

2 Link weight allocation ReadWrite

Device Mgmt. interface setup ReadWrite

configuration OpenFlow agent status ReadWrite

Device Operating system Firmware version ReadWrite

setup Boot image ReadWrite

Power Admin power status ReadWrite

Power unit reachability | ReadOnly

N/A CPU utilization ReadOnly

(counters) Memory utilization ReadOnly

Table 2: Example network state variables

normal operations. In order to capture the relationship among the
state variables at different levels of the management process, we
use the state dependency model of Figure 4. We use the process of
bootstrapping a DCN as an example to explain this model.

At the bottom of the dependency model is the power state of
network devices. With the power cable properly plugged in and
electricity properly distributed to the switches, we then need to con-
trol which switch operating system (i.e., firmware) runs. Running
a functioning firmware on a switch is a prerequisite for managing
switch configuration, e.g., use switch vendor’s API to configure the
management interface, boot up compatible OpenFlow agent, etc.

With device configuration states ready, we are able to control the
link interfaces on the switch now. The fundamental state variable
of a link is its being up or down. The configuration of a link in-
terface follows when the link is ready to be up. There are various
link-interface configuration states, such as IP assignment, VLAN
setup, ECMP-group assignment, etc. Consider an example of con-
trol plane setup where a link interface can be configured to use the
OpenFlow protocol or traditional protocols like BGP. For the cho-
sen option, we need to set it up: either an OpenFlow agent needs
to boot and take control of the link, or the BGP session needs to
start with proper policies. These control plane states of the link
determine whether and how the switch’s routing can be controlled.

We can manage the routing states of the switches when all the
dependent states are correct. We represent the routing state in a
data structure of the flow-link pairs, which is agnostic to the sup-
ported routing protocols. For example, the routing states can map to
the routing rules in OpenFlow or the prefix-route announcement or
withdrawal in BGP. When applications change the value of the rout-
ing state variable, Statesman (specifically the updater) automati-
cally translates the value to appropriate control-plane commands.

One level higher is the path state which controls tunnels through
multiple switches. Creating a tunnel and assigning traffic along the
path depend on all switches on the path having their routing states
ready to manage. Again, Statesman is responsible for translating
the path’s states into the routing states of all switches on the path,
and the application only needs to read or write the path states.



4.2 Using and Extending the Model

For simplicity, applications should not be required to understand
all the state variables and their complex dependencies. They should
be able to simply work with the subset of variables that they need
to manage based on their goals. For instance, a firmware-upgrade
application should be able to focus on only the DeviceFirmware-
Version variable. However, this variable depends on lower-level
variables such as switch power state whose impact cannot be com-
pletely ignored; firmware cannot be upgraded if the switch is down.

We find that it suffices to represent the impact of these depen-
dencies by using a logical variable that we call controllability and
exposing it to applications. This boolean-valued variable denotes
whether the parent state variable is currently controllable, and its
value is computed by Statesman based on lower-level dependen-
cies. For instance, DeviceFirmwareVersion is controllable only if
the values of variables such as switch’s power and admin states
are appropriate. Now, the firmware-upgrade application can simply
work with DeviceFirmwareVersion and DeviceFirmwareVersionls-
Controllable variables to finish its job.

To give another concrete example, the variable DeviceConfigls-
Controllable tells whether applications can change various state va-
riables of switch configuration, such as the management interface
setup. The value of DeviceConfiglsControllable is calculated based
on whether the switch is powered up, whether the switch can be
reachable via SSH/Telnet from the management network (indicat-
ing the firmware is functioning), and whether the switch is healthy
according to the health criterion (e.g., CPU/memory utilizations are
not continuously 100% for certain amount of time). Similarly, links
have LinkAdminPowerlsControllable calculated with the Device-
ConfiglsControllable of the two switches on the link’s ends.

Exposing just the controllability variables makes the dependency
model extensible. The functions calculating the controllability are
implemented in the storage service. When a new state variable is
added to Statesman, we just need to place it in the dependency
model, i.e., find what state variables will be dependent of the new
one. Then we modify the controllability functions of corresponding
state variables to consider its impact. For applications that are not
interested in the new variable, no modifications are needed.

5. Checking Network State

The checker plays a pivotal role in Statesman. It needs to resolve
conflicts among applications and enforce network-wide invariants.
Its design also faces scalability challenges when handling large net-
works. We first explain the state checking process and then describe
techniques for boosting scalability of the checker. Figure 5 outlines
the checker’s operation.

5.1 Resolving Conflicts

Multiple types of conflicts can occur in the network state due to
the dynamic nature of DCNs and uncoordinated applications:

e TS-OS. The TS can conflict with the latest OS when changes in
the network render some state variables uncontrollable, although
they have new values in the TS. For instance, if the OpenFlow
agent on a switch crashes, which is reflected as DeviceAgent-
BootStatus=Down in the OS, any routing changes in the TS can-
not be applied.

e PS—OS. When the checker examines a PS, the OS may have
changed from the time that the PS was generated, and some va-
riables in the PS may not be controllable anymore. For example,

‘
Read OS, TS. Read next PS.
Resolve TS-OS || Resolve PS-0OS [~

Resolve PS-TS
conflicts.

conflicts. conflicts.
i +
Write new TS Exar'nme TS PS
for invariants.
back.

TS=TS+PS if pass.

Figure 5: Flow of the checker’s operation

a PS could contain the new value of a LinkEndAddress variable,
but when the checker reads the PS, the link may have been shut
down for maintenance.

PS-TS. The TS is essentially the accumulation of all accepted
PSes in the past. A PS can conflict with the TS due to an ac-
cepted PS from another application. For example, assume that
a firmware-upgrade application wants to upgrade a switch and
proposes to bring it down; its PS is accepted and merged into the
TS. Now, when a TE application proposes to change the switch’s
routing state, it conflicts with the TS even though the switch is
online (i.e., no conflict with the OS).

The first two types of conflicts are because of the changing OS,
which makes some variables in the PS or TS uncontrollable. To
detect these conflicts, the checker reads the controllability values
from the OS, which are calculated by the storage service based on
the dependency model when relevant variable values are updated. It
then locates the uncontrollable variables in the PS or TS. To resolve
TS—-OS conflicts, we introduce a flag called SkipUpdate for each
variable in the TS. If set, the updater will bypass the network update
of the state variable, thus temporarily ignoring the target value to
resolve the conflict. The checker will clear the flag once the state
variable is controllable again.

For uncontrollable state variables in a PS, the checker removes
them from the PS, i.e., rejecting the part of PS that is inapplicable
on the current network. The choice of partial rejection is a tradeoff
between application’s progress and potential side-effects of accept-
ing a partial PS. The asynchrony between the application’s and the
checker’s views of the OS is normal. By rejecting the whole PS due
to a small fraction of conflicting variables, Statesman will be too
conservative and will hinder application progress. We thus allow
partial rejection. We have not yet observed any negative conse-
quences in our deployment from this choice. In the future, we will
extend the PS data structure such that applications can group varia-
bles. When a variable in a group is uncontrollable, the entire group
is rejected, but other groups can still be accepted.

For PS-TS conflicts, which are caused by the conflicting appli-
cation proposals, Statesman supports an extensible set of conflict
resolution mechanisms. It currently offers two mechanisms. The
basic one is last-writer-wins, in which the checker favors the value
of state variable from the newer PS. The more advanced mecha-
nism is priority-based locking. Statesman provides two levels of
priorities of locks for each switch and link. Applications can ac-
quire a low-priority or a high-priority lock before proposing a PS.
In the presence of a lock, applications other than the lock holder
cannot change the state variables of the switch or link; however, the
high-priority lock can override the low-priority one. The choice of
the conflict resolution mechanism is not system-wide and can be
configured at the level of individual switches and links.

Although simple, these two conflict-resolution strategies have
been proven sufficient for the applications that we have built and



deployed thus far. In fact, we find from our traces that last-writer-
wins is good enough most of the time since it is rare for two ap-
plications to compete for the same state variable head-to-head. For
our intra-datacenter infrastructure, we configure the checker with
the last-writer-wins resolution; for our inter-datacenter network, we
have enabled the priority-based locking. If needed, additional reso-
lution strategies (e.g., based on application identities) can be easily
added to Statesman.

5.2 Choosing and Checking Invariants

Network-wide invariants are intended to ensure the infrastruc-
ture’s operational stability in the face of application bugs or unde-
sired effects of collective actions of multiple applications. They
should capture minimum safety and performance requirements, in-
dependent of which applications are currently running.

Choosing invariants: This choice must balance two criterion. First,
the invariant should suffice to safeguard the basic operations of the
network—as long as it is not violated, most services using the net-
work would continue to function normally. Second, the invariant
should not be so stringent that it interferes with application goals.
For instance, an invariant that all switches should be operational is
likely too strict and interferes with a firmware-upgrade application.

Following the criterion above, we currently use two invariants in
the checker. Both are application-agnostic and relate to the topo-
logical properties of the network. The first invariant considers net-
work connectivity. It requires that every pair of ToR switches in the
same datacenter are (topologically) connected and that every ToR
is connected to the border routers of its DCN (for WAN connecti-
vity). Here, we ignore the routing configurations on the switches
(which could be that two ToRs cannot communicate) because ap-
plications can intentionally partition a DCN at the routing level for
multi-tenant isolation.

The second invariant considers network capacity. We define the
capacity between two ToRs in the same datacenter as maximum
possible traffic flow between them based on the network topology.
The invariant is that the capacity between p% of ToR pairs should
be at least t% of their baseline, when all links are functional. The
values of p and ¢ should be based on level of capacity redundancy in
the DCN, tolerance of the hosted services to reduced capacity, and
implications of blocking a management application that violates the
invariant. We currently use p = 99 and ¢ = 50, i.e., 99% of the
ToR pairs must have at least 50% of the baseline capacity.

Although Statesman currently maintains only two invariants, the
set of invariants is extensible. As explained below, the invariant
checking is implemented as a boolean function over a graph data
structure that has the network topology and all state variables. It is
straightforward to add more invariants by implementing new func-
tions with the same interface. For example, some networks may
add an invariant that requires the absence of loops and blackholes,
which can be checked using the routing states of the switches.

Checking invariants: When checking whether the TS obeys the
invariants, the checker first creates a base network graph using va-
riable values from the OS. Then, it translates the difference between
a variable’s observed and target values into an operation on the net-
work graph, e.g., bringing a switch offline, changing the routing
state to the target value, etc. Finally, the invariant checking func-
tions are run with the new network graph.

The invariant checking is invoked in two places. The first is
when the checker reads the TS from the storage service. The TS
was compliant when written but can be in violation when read due

to changes in the network (i.e., the OS). While running the inva-
riant checking as described above, the checker clears or sets the
SkipUpdate flags in the TS respective of its compliance status.

The second place is when the checker tries to merge a PS into
the TS after conflict resolution. The checker analyzes TS+PS, as if
the PS was merged into the TS. If TS+PS passes the check, the PS
is accepted and merged into the TS. Otherwise, the PS is rejected.

The acceptance or rejection (and reasons) for each PS is recorded
by the checker into the storage service. We categorize the rejection
reasons into three groups: state variable became uncontrollable;
invariant was violated; and TS was unreachable. The reasons are
encoded as machine-readable status code as values of a special state
variable called ProposalStatus for each PS. Applications use the
same interface as for reading the OS to read their PSes’ status. They
can then react appropriately (e.g., generate a new PS that resolves
the conflicts with the latest OS).

5.3 Partitioning by Impact Group

The checker needs to read all the state variables in the OS and TS
to examine conflicts and invariants every round of operation. The
number of such variables across our infrastructure—the datacenters
and the WAN that connects them—poses a scalability threat.

To help scale, we observe that the impact of state changes for a
given switch or link is limited. For instance, changes to an aggre-
gation switch in one datacenter do not affect the connectivity and
capacity of ToRs in another datacenter. Similarly, changes to bor-
der routers in a datacenter do not impact the capacity and connecti-
vity within the datacenter, though they do impact other datacenters’
WAN reachability.

Based on this observation, we partition the checker’s responsi-
bility into multiple impact groups. We set up one impact group per
datacenter and one additional group with border routers of all da-
tacenters and the WAN links. These groups are independent with
respect to the state checking process. In our deployment of States-
man, we run one instance of checker per impact group, which has
enabled the state checking to scale (§8).

6. System Design and Implementation

We now describe in more details the design and implementation
of Statesman. We start with the storage service, followed by the
updater and monitor; we skip the checker as it was covered in de-
tails in §5. Figure 6 provides a closer look at various components
in a Statesman deployment. Our implementation of Statesman has
roughly 50 thousand lines of C# and C++ code, plus a number of
internal libraries. At its core, it is a highly-available RESTful web
service with persistent storage. Below, we also describe States-
man’s read-write APIs.

6.1 Globally Available and Distributed Storage Service

The storage service needs to persistently and consistently store
the network states. We thus use a Paxos-based distributed file sys-
tem. However, two challenges prevent us from using a single big
Paxos ring to maintain all the states for all our datacenters. The first
is the datacenter reachability. Due to WAN failures, one datacenter
may lose connectivity to all others, or two datacenters may not be
able to reach each other. To protect Statesman from such failures,
the storage instances need to be located in multiple datacenters.

A second challenge stems from the volume of state data. In
DCN:s, there are hundreds of thousands of switches and links, each
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Figure 6: Statesman system design

with dozens of state variables. This scale results in millions of state
variables (§8). Manipulating all variables in a single Paxos ring
would impose a heavy message-exchange load on the file system
to reach consensus over the data value. This impact worsens if the
exchange happens over the WAN (as storage instances are located
in multiple datacenters for reliability). WAN latencies will hurt the
scalability and performance of Statesman.

Therefore, we break a big Paxos ring into independent smaller
rings for each datacenter. One Paxos ring of storage instances is
located in each datacenter, and it only stores the state data of the
switches and links in that datacenter. In this way, Statesman re-
duces the scale of state storage to individual datacenter, and it low-
ers the impact of Paxos consensus by limiting message exchanges
inside the datacenter.

Although the underlying storage is partitioned and distributed,
we still want to provide a uniform and highly available interface
for the applications and other Statesman components. These users
of the storage service should not be required to understand where
and how various state variables are stored.

We thus deploy a globally available proxy layer that provides
uniform access to the network states. Users read or write net-
work states of any datacenters from any proxy without knowing
the exact locations of the storage service. Inside the proxy, we
maintain an in-memory hash table of the switch and link names to
corresponding datacenters for distributing the requests across the
storage-service instances. The proxy instances sit behind a load
balancer, which enables high availability and flexible capacity.

6.2 Stateless Update on Heterogeneous Devices

Network update is a challenging problem itself [12, 20, 28]. In
the context of managing a large network, it becomes even more
challenging for three reasons. First, the update process is device-
and protocol-specific. Although OpenFlow provides a standard in-
terface for changing the forwarding behaviors of switches, there is
no standard interface today for management-related tasks such as
changing the switch power, firmware, or interface configuration.
Second, because of scale and dynamism, network failures during
updates are inevitable. Finally, the device’s response can be slow
and dominate the application’s control loop. Two aspects of the
design of the Statesman updater help to address these challenges.

Command template pool for heterogeneous devices: The changes
from applications (i.e., PSes) are device-agnostic network states.
The updater translates the difference between a state variable’s OS
and TS values into device-specific commands. This translation
is done using a pool of command templates that contains tem-
plates for each update action on each device model with supported
control-plane protocol (e.g., OpenFlow or vendor-specific API).
When the updater carries out an update action, it looks up the tem-
plate from the pool based on the desired action and device details.

For instance, suppose we want to change the value of a switch’s
DeviceRoutingState. If the switch is an OpenFlow-enabled model,
the updater looks up this model’s OpenFlow command template to
translate the routing state change into the insertion or deletion of
OpenFlow rules, and issues rule update commands to the Open-
Flow agent on the switch. Alternatively, if the switch is running
a traditional routing protocol like BGP, the updater looks up the
BGP command template to translate the routing state change into
the BGP-route announcement or withdrawal.

Stateless and automatic failure handling: With all network states
persistently stored by the storage service, the updater can be state-
less and simply read the new values of OS and TS every round.
This mode of operation makes the updater robust to failures in the
network or in the updater itself. It can handle failures with an im-
plicit and automatic retry. When any failure happens in one run of
update, the state changes resulted by the failure reflect as a changed
OS in the storage service. In the next run, the updater picks up the
new OS which already includes the failure’s impact, and it calcu-
lates new commands based on the new OS-TS difference. In this
manner, the updater always brings the latest OS towards the TS, no
matter what failures have happened in the process.

Being stateless also means that we can run as many updater in-
stances as needed to scale, as long as we are able to coherently
partition the work among them. In our current deployment, we run
one instance per state variable per switch model. In this way, each
updater instance is specialized for one task.

6.3 Network Monitors

The monitors collect the network states with various protocols
from the switches, including SNMP and OpenFlow. The moni-
tors then translate the protocol-specific data into the value of corre-
sponding state variables, and write them into the storage service as
the OS. We split the monitoring responsibility across many monitor
instances, so each instance covers roughly 1,000 switches.

Currently the monitors run periodically to collect all switches’
power states, firmware versions, device configurations, and various
counters (and routing states for a subset of switches). For links, our
monitors cover the link power, configuration, and counters like the
packet drop rate and the traffic load.



NetworkState/Read?Datacenter={dc } &Pool={p}
&Freshness={c}&Entity={e}&Attribute={a}

NetworkState/Write?Pool={p}
(Body is list of NetworkState objects in JSON)

(a) HTTP Request

GET

POST

Datacenter dc Datacenter name

Pool p OS,PS,orTS
Freshness ¢ Up-to-date or bounded-stale

Entity e  Entity name (i.e., switch, link, or path)
Attribute a  State variable name

(b) Parameters

Table 3: Read-write APIs of Statesman

6.4 Read-Write APIs

The storage service is implemented as a HTTP web service with
RESTful APIs. The applications, monitors, updaters, and checkers
use the APIs to read or write NetworkState objects from the storage
service. A NetworkState object consists of the entity name (i.e.,
the switch, link, or path name), the state variable name, the varia-
ble value, and the last-update timestamp. The read-write APIs of
Statesman are shown in Table 3.

There is a freshness parameter in the read API because States-
man offers different freshness modes for reading the network states.
The up-to-date mode is for applications who are strict with the
state staleness. For instance, the link-failure-mitigation application
needs to detect link failures as soon as possible when the failures
happen. Statesman also offers 5-minute bounded-staleness mode
by reading from caches [27]. Many management applications do
not need the most up-to-date network states and can safely tolerate
some staleness in state data. For instance, the firmware-upgrade
application needs to upgrade the switches within hours; it does not
matter if the value of DeviceFirmwareVersion is slightly stale. By
allowing such applications to read from caches, we boost the read
throughput of Statesman. At the same time, applications that can-
not tolerate staleness can use the up-to-date freshness mode.

7. Application Experiences

In this section, we present our experiences of running Statesman
in Microsoft Azure. Statesman is now deployed in ten datacen-
ters (DCs), and we have built two production and one pilot-stage
applications on top of it. We first describe this deployment, and
then use three representative scenarios to illustrate how Statesman
facilitates the operations of management applications.

7.1 Statesman Deployment

Statesman currently manages ten geographically-distributed DCs
of Microsoft Azure, covering all the switches and links in those
DCs and the WAN connecting the DCs. The three applications that
we have built leverage Statesman to manage different aspects (e.g.,
switches, links, and traffic flows) of our DCN.

e Switch upgrade: When a new version of firmware is released by
a switch vendor, this application automatically schedules all the
switches from the same vendor to upgrade by proposing a new
value of DeviceFirmwareVersion. In the upgrade process, the
checker of Statesman ensures that the DCN continues to meet
the network-wide invariants.
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Figure 7: Network topology for the scenario in §7.2

o Failure mitigation: This application periodically reads the Frame-
Check-Sequence (FCS) error rates on all the links. When detect-
ing persistently high FCS error rates on certain links, it changes
the LinkAdminPower state to shut down those faulty links to mit-
igate the impact of the failures [30]. The application also initi-
ates an out-of-band repair process for those links, e.g., by creat-
ing a repair ticket for the on-site team.

e Inter-DC TE: As described in SWAN [12], Statesman collects
the bandwidth demands from the bandwidth brokers sitting with
the hosted services. In addition, the monitor of Statesman col-
lects all the forwarding states, such as tunnel status and flow
matching rules. Given this information, the TE application com-
putes and proposes new forwarding states, which are then pushed
to all the relevant routers by the Statesman updater.

The first two applications have been fully tested and deployed,
while the third one is in pilot stage and undergoing testing.

We emphasize two issues on how applications interact with Sta-
tesman. First, they should understand that it takes time for Sta-
tesman to read and write a large amount of network states in large
DCNs. Thus, their control loops should operate at the time scale of
minutes, not seconds. Second, the applications should understand
that their PSes may be rejected due to failures, conflicts, or inva-
riant violations. Thus, they need to run iteratively to adapt to the
latest OS and the acceptance or rejection of their previous PSes.

7.2 Maintaining Network-wide Invariants

We use a production trace to illustrate how Statesman helps two
applications (switch-upgrade and failure-mitigation) safely coexist
in intra-DC networks while maintaining the capacity invariant—
99% of the ToR pairs in the DC should have at least 50% of their
baseline capacity.

Figure 7 shows the topology for the scenario. It is a portion of
one DC with 10 pods, where each pod has 4 Agg switches and a
number of ToRs. The switch-upgrade application wants to upgrade
all the 40 Aggs in a short amount of time. Specifically, it will up-
grade the pods one by one. Within each pod, it will attempt to
upgrade multiple Aggs in parallel by continuing to write a PS for
one Agg upgrade until it gets rejected by Statesman.

In Figure 8, we pick one ToR from each pod, and organize the
10 ToRs from the 10 pods into 90 ToR pairs (10x9, excluding
the originating ToR itself). On the Y-axis, we put the 9 ToR pairs
originating from the same ToR/pod together. Essentially, Figure 8
shows how the network capacity between each ToR pair changes
over time. Boxes A, B, and C illustrate how the network capacity
temporarily drops when the switch-upgrade application upgrades
the Aggs in Pod 1, 2, and 3 sequentially. To meet the 50%-capacity
invariant, the switch-upgrade application can simultaneously up-
grade up to 2 out of 4 Aggs, leaving at least 2 Aggs alive for traffic.
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Figure 8: Illustration of how the switch-upgrade and failure-
mitigation applications interact through the checker. Y-axis:
One ToR from each one of 10 pods to form directional ToR
pairs, indexed by the originating ToR/Pod. A, B, C: The switch-
upgrade application upgrades Pod 1, 2, 3 normally while the
checker maintains an invariant that each ToR pair has at least
50% of baseline capacity. D: The failure-mitigation applica-
tion detects a failing link ToR;-Agg; in Pod 4 and shuts the
link down. E: Due to the down link, upgrade of Pod 4 is auto-
matically slowed down by the checker to maintain the capacity
invariant. F: Upgrade of Pod 5 resumes the normal pattern.

During the upgrade, the failure-mitigation application discovers
persistently high FCS error rate on link ToR1-Agg; in Pods. As a
result, it shuts down this link at time D. Since one ToR-Agg link
is down, the capacity of all Pods-related ToR pairs drops to 75%,
which originate from Pods (index # 28-36) or end at Pods (index
#3, 12, 21, 40, 49, 58, 67, 76, & 85). When the switch-upgrade
application starts to work on Pod,, Statesman can only allow it to
upgrade one Agg at a time to maintain the 50%-capacity invariant.
Thus, as shown in box E, the switch-upgrade application automat-
ically slows down when upgrading Pod,. Its actual upgrade steps
are Aggi-Aggo-together, then Aggs, and finally Aggs. Note that
Aggi and Aggo can be upgraded in parallel, because link ToR;-
Agg; is already down and hence upgrading Agg: does not further
reduce the ToR-pair capacity. The switch-upgrade application re-
sumes normal speed when it upgrades Pods in box F.

7.3 Resolving Application Conflicts

The inter-DC TE application is responsible for allocating inter-
DC traffic along different WAN paths. Figure 9 shows the pilot
WAN topology used in this experiment. This WAN inter-connects
four DCs in a full mesh, and each DC has two border routers. The
switch-upgrade application is also running on the WAN.

One recurring scenario is that we need to upgrade all the border
routers while inter-DC traffic is on. This can lead to a conflict be-
tween the two applications: the switch-upgrade application wants
to reboot a router for firmware upgrade, while the TE application
wants the router to carry traffic. Without Statesman, the operators
of the two applications have to manually coordinate, e.g., by setting
up a maintenance window. During this window, the operators must
carefully watch the upgrade process for any unexpected events.

With Statesman, the whole process becomes much simpler. When
there is no upgrade, the TE application acquires the low-priority
lock over each router, and changes the forwarding states as needed.

BR = Border Router BR 31

Figure 9: WAN topology for the scenario in §7.3
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Figure 10: Illustration of how Statesman resolves conflicts be-
tween the inter-DC TE and switch-upgrade applications. A:
The switch-upgrade application acquires the high-priority lock
of BorderRouter; (BR;). B: The TE application fails to ac-
quire the low-priority lock and moves traffic away from BR;
to other links. C: The switch-upgrade application starts to up-
grade BR; since traffic is zero. D: Upgrade of BR; is done.
The switch-upgrade application releases the high-priority lock.
E: The TE application re-acquires the low-priority lock of BR;
and moves traffic back.

When the switch-upgrade application wants to upgrade a router, it
first acquires the high-priority lock over that router. Soon after, the
TE application realizes that it cannot acquire a low-priority lock
over the router, and it starts to shift traffic away from that router.
Meanwhile, the switch-upgrade application keeps reading the traf-
fic load of the locked router until the load drops to zero. At this
moment, it kicks off the upgrade by writing a PS with a new value
of DeviceFirmwareVersion. Once the upgrade is done, the switch-
upgrade application releases the high-priority lock of the router,
and proceeds to the next candidate.

We collected the traffic load data during one upgrade event in
off-peak hours. Since the load patterns of different routers are sim-
ilar, we only illustrate the upgrade process of BorderRouter; (BR1).
Figure 10 shows the time series of the link load (note that both ap-
plications run every 5 minutes). The Y-axis shows the 24 links (12
physical links x 2 directions) indexed by the originating router of
each link. At time B, the TE application fails to acquire the low-
priority lock over BR1, since the high-priority lock of BR; was
acquired by the switch-upgrade application at time A. So the TE
application moves traffic away from BR;. At time C, the load drops
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Figure 12: External-force failure in firmware upgrade

to zero on all the links originating from BR; (index # 1, 2, & 3) and
ending at BR; (index # 7, 16, & 22). As expected, this increases
the loads on the other links. After the switch-upgrade application
finishes upgrading BR: and releases the high-priority lock at time
D, the TE application successfully acquires the low-priority lock
again at time E, and then moves traffic back to BR.

In this example, neither of the two applications needs to be aware
of the other since conflict resolution and necessary coordination are
automatically enabled by Statesman. We use locking as the con-
flict resolution strategy in the inter-DC case. So the TE application
can move tunnels away from switches being upgraded before the
upgrade process starts, rather than after (which would be the case
with conflict resolution based on last-writer-wins). In the intra-DC
case, we do not use tunnel-based TE, and neighboring routers can
immediately reroute traffic when a switch is brought down for up-
grade without warning.

7.4 Handling Operational Failures

In Statesman, an application outputs a PS instead of directly in-
teracting with the network devices. Once the PS is accepted into
the TS, Statesman takes the responsibility of (eventually) moving
the network state to the TS. This simplifies the application design,
especially in failure handling.

In this example, we show how the switch-upgrade application
rolls out a new firmware to roughly 250 switches in several DCs in
two stages. In the first stage, 25% of the switches are upgraded to
test the new firmware. Once we are confident with the new firm-
ware, the remaining 75% of the switches are upgraded in the second
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Figure 13: End-to-end latency breakdown

stage. Figure 11 illustrates the upgrade process, where the percent-
age of switches with new firmware gradually grows to 100% in
about 100 hours. Here, the switch-upgrade application runs con-
servatively and upgrades one switch at a time.

During this process, Statesman automatically overcomes a vari-
ety of failures, which are highlighted in Figure 11. In box A, there
is a straggling switch which takes 4 hours to upgrade; note the flat
line in the figure. During the 4 hours, Statesman repeatedly tries
to upgrade until it succeeds. This straggling happens because the
switch has a full memory and cannot download the new firmware
image. After some of the switch memory is freed up, the upgrade
proceeds. In box B, a few switches become unstable after the up-
grade, e.g., frequently flipping between on and off. This appears
as a stair-shape line in Figure 11. Statesman automatically retries
until the switches are stable with the new firmware.

Box C shows a failure case which involves human interventions.
After a switch is upgraded, the operators take it out of service, and
manually reset it to the factory-default firmware before returning
it to production. This action causes the time-series line to slightly
drop in Box C, and we zoom in the process in Figure 12. Once
the switch is back to production, Statesman finds that the observed
DeviceFirmwareVersion of one switch is the factory-default one.
Since the firmware of the switch has been set to a new value in the
TS, Statesman automatically redoes the firmware upgrade without
any involvement from the switch-upgrade application.

8. System Evaluation

In this section, we quantify the latency and coverage of States-
man as well as the performance of checking, reading and writing
network states.

End-to-end latency: Figure 13 shows Statesman’s end-to-end la-
tency measured by running the failure-mitigation application on a
subset of our DCN. We manually introduce packet drops on a link,
and let the failure-mitigation application discover the problem and
then shut down the link. The end-to-end latency is measured from
when the application reads the high packet drop rate of the link
to when the faulty link is actually deactivated in the network. We
break down the end-to-end latency into four portions:

e Application latency: from when the application reads the high
packet drop rate to when it writes a PS for shutting down the
faulty link.

e Checker latency: from when the checker reads the PS to when it
finishes checking and writes a new TS.

e Updater latency: from when the updater reads the new TS to
when it finishes shutting down the faulty link.
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e Idling time: cumulative time when no one is running. It exists
because the application, checker and updater run asynchronously
(every 5 seconds in this experiment).

Figure 13 shows that the application and checker latencies are
negligibly small, accounting for only 0.13% and 0.28% of the end-
to-end latency on average. The main bottleneck is the time for the
updater to apply the link-shutdown commands to the switch, which
accounts for 57.7% of the end-to-end latency on average.

Coverage: Figure 14 shows the deployment scale and the chec-
ker latency across the ten DCs where Statesman is deployed. The
number of state variables in each DC indicates its size. The largest
DC (DC,) has 394K variables and 7 out of 10 DCs have over 100K
variables. The total number of variables managed by Statesman
is currently 1.5 million and it continues to grow as Statesman ex-
pands to more DCs. Since only 23.4% of the variables are writable
on average, the size of TS is correspondingly smaller than the OS.

Checker latency: Figure 14 also shows that one round of checking
takes 0.5 to 7.6 seconds in most DCs. In the most complex DC
(DC3), the 99th-percentile of checking latency is 11.2 seconds.

Read-write performance: We stress-test the read-write perfor-
mance of Statesman by randomly reading and writing varying num-
bers of state variables. Figure 15 shows that the 99th-percentile
latency of reading 20K to 100K variables always stays under a sec-
ond. Since the applications rarely read more than 100K variables
at a time, Statesman’s read speed is fast enough.

Figure 15 also shows that the write latency of Statesman grows
linearly with the number of variables, and the 99th-percentile la-
tency of writing 100K variables is under seven seconds. Since
our largest DC has fewer than 100K variables in the TS, it takes
less than 10 seconds to write the entire TS. In practice, the state-
variable writers, e.g., applications, monitors, and checkers, rarely
write more than 10K variables at a time. Hence, the write latency
is usually around 500ms in our normal operations.

9. Related Work

Statesman descends from a long line of prior works on software-
defined networking [1, 2, 3, 6, 8, 9, 22]. These works enable
centralized control of traffic flow by directly manipulating the for-
warding states of switches. In contrast, Statesman supports a wider
range of network management functions (e.g., switch upgrade, link
failure mitigation, elastic scaling, etc.).
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Figure 15: Read-write micro-benchmark performance

Similar to Statesman, Onix [18, 19] and Hercules [16] provide
a shared network-state platform for all applications. But these sys-
tems neither resolve application conflicts, in particular those caused
by state variable dependency, nor enforce network-wide invariants.

Pyretic [24], PANE [7], and Maple [29] are recent proposals on
making multiple applications coexist. Their target is again lim-
ited to traffic management applications. Their composition strate-
gies are specific to such applications and do not generalize to the
broader class of applications that we target at. Mesos [11] sche-
dules competing applications using the cluster-resource abstrac-
tion, which is quite different from our network-state abstraction
(e.g., no cross-variable dependency).

Corybantic [23] proposes a different way of resolving conflicts
by letting each application evaluate other applications’ proposals.
As noted previously, such tight cross-application coordination, while
sometimes beneficial, imposes enormous complexity on the appli-
cation design and testing.

Another approach of hosting multiple applications is to partition
the network into multiple isolated virtual slices as described in [17,
26]. Compared to the virtual topology model, our network-state
model is more fine-grained and flexible. It allows multiple applica-
tions to manage different levels of states (e.g., power, configuration,
and routing) on the same device.

There are also earlier works on invariant verification [14, 15, 21]
for the network’s forwarding state. In the future, we may incorpo-
rate some of these invariant checking algorithms into Statesman.

10. Conclusion

Statesman enables multiple loosely-coupled network manage-
ment applications to run on a shared network infrastructure, while
preserving network safety and performance. It safely composes
uncoordinated and sometimes-conflicting application actions using
three distinct views of network state, inspired by version control
systems, and a model of dependencies among different parts of net-
work state. Statesman is currently running in ten Microsoft Azure
datacenters, along with three diverse applications.
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