
SPINE: Surveillance Protection in the Network Elements

Trisha Datta, Nick Feamster, Jennifer Rexford, and Liang Wang
Princeton University

Abstract
Internet Protocol (IP) addresses can reveal information about
communicating Internet users and devices, even when the rest
of the traffic between them is encrypted. At the same time, IP
addresses serve as endpoints for network-layer communica-
tion and, as a result, are typically visible to the intermediate
routers to allow them to forward traffic to its ultimate destina-
tion. Previous approaches to obfuscate the IP addresses of the
sender and receiver commonly depend on either custom user
software (e.g., Tor browser) or significant modifications to net-
work hardware along the end-to-end path (which has proved
to be a major roadblock). SPINE, on the other hand, conceals
IP addresses and relevant TCP fields from intermediate—and
potentially adversarial—autonomous systems (ASes) but re-
quires only two participating ASes and no cooperation from
end hosts. To demonstrate SPINE’s practicality, we have im-
plemented it on commodity programmable switches using the
P4 programming language. Our evaluation shows that SPINE
can run at hardware rates on commodity switches, paving the
way to real-world deployment.

1 Introduction
Internet traffic relies on the Internet Protocol (IP) to transmit
data between endpoints: each Internet data packet contains
an IP source and IP destination address. Network devices
use IP addresses to forward traffic to Internet endpoints, but
at the same time, IP addresses can reveal information about
users and devices and the destinations with which they are
communicating. Thus, even if Internet traffic is encrypted, IP
addresses can still allow eavesdroppers to determine who is
communicating with whom [16]. This threat becomes more
acute when traffic traverses untrusted or adversarial domains,
including foreign governments, public networks, or untrusted
transit ISPs or carrier networks.

The threat of surveillance by intermediate networks is clear
and present for many countries and organizations. Brazil, for
instance, built an undersea cable to Portugal to prevent traf-
fic destined for Portugal from travelling through the United

States [11]. Many countries rely on Western nations for In-
ternet content [9], potentially raising these types of concerns
for other countries. More generally, any network’s ability to
observe source and destination IP addresses puts privacy at
risk by revealing the endpoints of the communications.

Previous work recognizes this privacy threat [4–6, 10, 19],
but existing approaches face significant deployment chal-
lenges. IPSEC tunnels, for instance, provide protection by
completely encrypting original IP packets. However, such op-
erations are too expensive to deploy in the core of the Internet
and redundant if payloads are already encrypted with TLS.
Another well-studied approach is network-layer anonymity
systems, which typically require many nodes along a traffic
path to provide protection. A common technique, for example,
is onion routing, which normally requires several nodes along
an end-to-end path to participate in the protocol. These nodes
often must both cooperate in the protocol and be located in
autonomous systems that are not adversarial; past work on
systems such as Tor [8] has shown that this constraint can
often be impractical. Even in threat models where the ad-
versary can control some fraction of the nodes, it is highly
unlikely that all ASes involved in forwarding the traffic will
agree to implement these protocols. Many of these systems
also require end-users to participate in the protocol, further
raising the barrier to deployment.

This paper surmounts these practical challenges, thwart-
ing an adversary that controls an intermediate portion of the
end-to-end path and wants to observe the true source and
destination IP addresses of the traffic. Our approach, Surveil-
lance Protection in the Network Elements (SPINE), encrypts
IP addresses in packet headers before these packets enter the
intermediate ASes and decrypts IP addresses when the pack-
ets exit the intermediate ASes. When packets travel through
the intermediate ASes, these networks only see encrypted ad-
dresses in the headers, not the true source and destination IP
addresses of the traffic. SPINE also encrypts TCP sequence
and acknowledgment numbers (when available) to prevent the
adversary from recognizing which packets belong to the same
TCP flow. Unlike previous approaches, SPINE only requires



Trusted
Entity #1 Untrusted

EntityR1 R2

(Keys, Version Number)

Original Traffic SPINE Traffic

Trusted
Entity #2

Figure 1: SPINE Setup

the cooperation of participating ASes (e.g., Trusted Entity #1
and #2 in Figure 1)—the behavior of end hosts and other ASes
along the path can remain unchanged. Furthermore, because
SPINE can be implemented on commodity programmable
switches using the P4 language, it processes traffic at switch
hardware rates, even in the core of the Internet.

SPINE exploits several recent technologies and trends.
First, because packet payloads are often encrypted (e.g., us-
ing TLS), we need only worry about obfuscating certain IP
and TCP header fields. Second, the rise of programmable
switches based on the Protocol-Independent Switch Archi-
tecture (PISA) presents an opportunity to design protocols
that manipulate arbitrary parts of packets (including the IP
and TCP headers) while still processing packets at switch
hardware rates. Third, we take advantage of the increasing
ubiquity of IPv6 in the network core; IPv6 addresses have
128 bits, offering enough room to store metadata for specific
types of encryption over IPv4 addresses. Currently, SPINE
only protects privacy for IPv4 traffic, but future work will
explore extensions to end-hosts communicating using IPv6.

Developing SPINE required us to tackle several challeng-
ing technical problems, including ensuring that routing still
functions after encrypting the IP addresses, coping with
the memory and computational constraints of modern pro-
grammable switches, and communicating encryption meta-
data (e.g., keys) across an untrusted network. The rest of the
paper explains how we tackle these problems.

2 Practical Surveillance Protection
SPINE preserves the privacy of communicating hosts between
two trusted network entities with minimal performance degra-
dation. In the context of this high-level goal, we define the
threat model and detail the design goals for SPINE.

2.1 Surveillance Threat Model
Figure 1 shows the problem setup. Two unmodified hosts com-
municate through two trusted entities—typically two ASes
or two ISPs, yet these ASes need not be distinct or even in-
dependent. They could, in fact, be two topologically disjoint
fragments of the same AS. The adversary resides in between
these two entities and can observe all traffic that traverses
the intermediate part (or parts) of the network that it controls.
There may, in fact, be multiple (uncoordinated or colluding)
adversaries between the two trusted ASes. The adversary may

be an AS; it could also be any intermediate network point
that an adversary controls, such as a public Internet exchange
point (IXP) or even simply a link that the adversary controls
or has access to. The goal of the adversary is to recover the
actual source and destination IP addresses of network traffic
it observes, given the contents of the packets that it can see.

In addition to passive observation, we assume that the ad-
versary can also perform certain active attacks. For example,
we assume that the adversary can send traffic to and from the
trusted entities, as users of the respective trusted entities. We
assume, however, that it cannot observe other users’ traffic in
the trusted entities’ networks. Thus, certain chosen-plaintext
attacks are feasible, whereby an attacker sends a packet with
source address s and destination address d and can observe
the corresponding encrypted IP addresses E(s) and E(d). On
the other hand, we assume that the attacker cannot observe
the same information for packets sent by another host.

Finally, we assume that the adversary is capable of perform-
ing timing analysis or fingerprinting attacks on traffic, which
it might be able to use to identify destinations (or users) solely
based on the characteristics of the encrypted traffic; for this
reason, we also aim to prevent the adversary from attributing
groups of packets to the same flow.

2.2 Practical Deployment Constraints
To make deployment practical, our design goals are as follows:

• No cooperation from intermediate ASes: Our solution
should only require participating ASes (i.e., the two
trusted entities) to make changes in order to be fully
implemented. Only the parties who offer the service, or
only the parties with the most incentives to participate,
will need to participate.

• No involvement from end users: Our solution should
not require end hosts to deploy SPINE. This makes the
solution easier to use and gives users plausible deniabil-
ity. While end users often lack knowledge about privacy
risks and potential solutions, ASes and AS owners have
both incentives to protect their customers’ privacy and
the technical ability to do so.

• Processing at switch hardware rates: We do not want
SPINE to slow down traffic rates. To achieve this goal,
we devise a solution that is implementable in the data
plane of commodity programmable switches using the
P4 language [2, 15]. The data plane is where decisions
about how to forward packets take place, and P4 is a
software-defined networking language that allows us
to program such decisions so that they can be made at
switch hardware rates. Because programmable switches
are being deployed in edge networks, creating a solution
that can be implemented on such switches facilitates the
deployment of SPINE.

The commodity programmable switches we consider in
this work are based on PISA [3, 17], as discussed in more



detail in Section 4. PISA defines a processing pipeline for the
data plane, providing a hardware-independent programming
model for programmable switches. Although PISA switches
allow us to write P4 programs for the data plane that run
at switch hardware rates, this performance guarantee limits
the amount and kind of packet processing PISA switches can
perform (e.g., loops are not allowed, the switches have limited
memory for the processing pipeline, etc.).

3 SPINE Design
Because the threat model is primarily concerned with adver-
saries who want to recover true source and destination IP
addresses, SPINE aims to obfuscate these addresses. SPINE
also prevents the adversary from attributing groups of packets
to the same flow by additionally obfuscating TCP sequence
and acknowledgment numbers when present. The main chal-
lenge of choosing an obfuscation technique is picking one
that can be performed at switch hardware rates; Section 3.1
describes the encryption technique SPINE uses given this
performance constraint. SPINE also enables periodic changes
of the keys used for encryption so that even if an adversary
steals a key, this knowledge will eventually become useless.
Section 3.2 describes how we deal with packets in flight when
keys change. Because routing depends on IP addresses, sim-
ply encrypting IP addresses would prevent packets from being
forwarded successfully. Section 3.3 explains how we replace
IPv4 headers with IPv6 headers to ensure that routing is still
successful despite using encrypted IP addresses.

3.1 Efficient Cryptography on IP Addresses
SPINE uses the following approach to encrypt an IP address:

E(ip,k) = ip⊕H(k,nonce)

where ip is the IPv4 address being encrypted, k is a secret
key, ⊕ is the XOR operation, H is a keyed hash function,
and nonce is a randomly-generated bit string. All SPINE
routers in the two trusted entities (e.g., R1 and R2 in Figure
1) use the same k for encryption so that packets can exit
the sending entity at one of several exit points and enter the
receiving entity at one of several entry points (in contrast to
IPSEC tunnels which establish point-to-point channels). We
rotate the key k, discussed further in Section 3.2. The nonce
is public and is sent along with the encrypted IP address
in packet headers. The decrypting party can easily generate
the same one-time pad to decrypt the IP address using the
same secret key and the hash function. Because we assume
that the attacker can send a packet with source address s and
destination address d and observe the encrypted addresses
E(s) and E(d), we choose H to be a cryptographically strong
pseudorandom function (PRF). This means that after seeing
H(x) for all x ∈ X , an attacker will be unable to guess H(y)
for y /∈ X [1]. If present, TCP sequence and acknowledgment
numbers are encrypted with the same H and nonce used to
encrypt the IP addresses but with a different shared key k.

SPINE uses a one-time-pad-based encryption scheme in-
stead of more standard encryption techniques because we
want SPINE to run at switch hardware rates, and the mem-
ory and computational power required in standard encryption
techniques are incompatible with this performance goal. We
are thus limited to fairly simple cryptography operations, like
the efficient single XOR operation required by one-time pad
encryption. One big challenge of one-time pad encryption is
facilitating the exchange of pads. SPINE overcomes this chal-
lenge by having a central coordinator that communicates with
the trusted network entities and facilitates the distribution of
secret keys to generate the pads.

One-time pad encryption is secure as long as the pads are
random and not repeated [13]. Because we use a PRF, ran-
domly generate nonces, and frequently switch keys for the
hash function, this requirement should hold in practice. The
main attack an adversary can perform is a chosen plaintext
attack, injecting traffic and observing the resulting ciphertext.
Due to the nature of the XOR operation, the adversary can
recover the one-time pad used to encrypt a packet’s IP ad-
dress if it knows the original address. However, since SPINE
generates different nonces and therefore different one-time
pads for each packet, the ability to do so will not assist in re-
covering future encrypted IP addresses. The fact that SPINE
generates a fresh nonce and one-time pad for each packet and
encrypts TCP sequence and acknowledgment numbers also
allows it to achieve a strong privacy property that we call
flow-packet unlinkability: packets belonging to the same flow
will have different (encrypted) IP addresses and meaningless
(encrypted) TCP sequence and acknowledgment numbers,
which prevents an adversary from associating packets with
flows.

3.2 Consistency Across Key Rotation
SPINE updates the secret keys being used by SPINE routers
every t seconds. Key rotation reduces the damage caused
by compromised secret keys. Even if an attacker somehow
manages to obtain the current keys, such knowledge eventu-
ally becomes useless after (at most) t seconds. Key rotation
also ensures the freshness of one-time pads: even if there
are collisions in nonces, the keyed hash function produces
different one-time pads under different keys. Another benefit
of key rotation is to give participating ASes the option of
not being able to retroactively decrypt IP addresses. Without
keeping a record of the keys used over time, the ASes will
be unable to decrypt older traffic. This is useful because if a
government entity were to order the AS to decrypt packets,
the AS would be unable to decrypt any packets sent before
the current set of keys was adopted (i.e., the AS would have
plausible deniability).

One potential issue caused by key rotation is inconsistent
keys during encryption and decryption. For instance, referring
back to Figure 1, the shared secret keys may be updated when
the packets from border router R1 are still in transit; without



a
0

b c

a b c

a b c

d b c

d e c

t

2t

3t

4t

Time v=0

v=1

v=2

v=0

v=1

key set being updated

key set being used for encryption

5t

Figure 2: SPINE key and version rotation.

recording the keys used before, R2 cannot decrypt the packets
that are encrypted with outdated keys.

Recall that SPINE uses one key to encrypt IP addresses
and another key to encrypt TCP fields (when present); we
call these two keys together a key set. Because we want par-
ticipating ASes to achieve plausible deniability, SPINE does
not remember all outdated key sets. Instead, to address the
inconsistency issue described above, SPINE remembers the
last key set used for a certain period of time. More specifically,
SPINE maintains three key sets (the previous set, the current
set, and the next set) at any given time. Assuming that there
are three slots sloti(i = 0,1,2) for storing key sets, SPINE
rotates a slot index v, from 0 to 2, every t seconds, and the
key set in slotv is used for encryption. A key set can stay in
a slot for at most 3 t seconds; after 3 t seconds, the key set is
updated by SPINE. An example is illustrated in Figure 2.

The encrypting party will send the version number (i.e.,
the slot index) of the key set used for encryption in packet
headers. Based on the version number, the decrypting party
retrieves the appropriate key set for decryption. Because the
previous key set is remembered, the decrypting party can
decrypt the packets encrypted with the previous key set. We
assume that we pick a long enough time t such that there are
no more packets encrypted with a given key set in transit in
the network before that key set is discarded.

We assume that all routers running the SPINE protocol
are coordinated from a logically centralized controller, which
performs key rotation, updates version numbers, and passes
updated keys and versions as arguments to all routers running
the SPINE protocol.

3.3 Encoding and Routing Using IPv6
Encoding information in SPINE faces three challenges:

1. We need to send the nonce, version number, and en-
crypted IP addresses along with the packet.

2. We need a way to discern which traffic has been en-
crypted and thus needs to be decrypted when it exits the
untrusted network entities.

Encrypted 
IPv4 Address

Reserved IPv6 Prefix

Original IPv4 
Address

New IPv6 Address

Hash 
Function

Version #

XOR

Nonce

Version # Nonce

One-
Time Pad

Figure 3: Encrypted IPv4 Address Encoded as IPv6 Address.

3. We need to ensure that packets are still forwarded suc-
cessfully because we are encrypting IP addresses, and
routing depends on IP addresses.

To address these three issues, SPINE transforms IPv4 head-
ers into IPv6 headers when packets enter the untrusted entity
(e.g., when packets travel from R1 to the untrusted entity in
Figure 1) and transforms the IPv6 headers back into IPv4
headers when the packets exit the untrusted entity (e.g., when
the same packets exit the untrusted entity at R2), which is
similar to NAT64 [12]. These transformations mostly pre-
serve the IPv4 header fields that have corresponding IPv6
header fields (e.g., TTL maps to hop limit, etc.). The primary
exception is the IP address field because SPINE uses the
IPv6 source and destination address fields to solve the three
problems outlined above. The first 64 bits of the new IPv6
destination address contain a reserved /64 prefix dr owned
by the receiving trusted entity, the next 32 bits contain the
version number and nonce, and the last 32 bits contain the
encrypted IPv4 address (see Figure 3); a similar scheme is
used to create the new IPv6 source address. The original TCP
sequence and acknowledgment numbers are simply replaced
by their encrypted counterparts.

This method of creating IPv6 addresses addresses the first
challenge. The reserved prefix dr addresses the second and
third challenges. SPINE assumes that the two trusted enti-
ties coordinate on the /64 IPv6 prefix dr beforehand. The
receiving trusted entity announces this prefix but does not
offer any services at these addresses. It can then assume that
any packets arriving with addresses with the dr prefix are part
of the SPINE scheme. This allows trusted entities to deter-
mine which traffic needs to be decrypted, solving the second
problem. Regarding the third problem, we note that routing
tables are populated by advertising routes to prefixes. Since
the receiving trusted entity owns dr, packets with the dr prefix
will be correctly forwarded to it. IPv6 prefixes are typically
64 bits, so our requirement that dr is a /64 prefix is reasonable.

Using IPv6 addresses therefore provides several benefits:



• The length of IPv6 headers gives us bits to use for meta-
data, which facilitates SPINE’s encryption.

• The standardized lengths of the prefix and host portions
of IPv6 addresses allow us to ensure that routing is suc-
cessful even when we encrypt IPv4 addresses.

• Because there are so many prefixes in the IPv6 space,
having a reserved dr prefix is a feasible option, which
makes the differentiation between encrypted and non-
encrypted headers very easy.

The dr prefixes reveal some information about the source
and destination IP addresses, but if we must rely on the un-
trusted entity’s routers to carry network traffic, then we cannot
avoid revealing this information. Because the untrusted en-
tity is directly receiving packets from one trusted entity and
forwarding these packets to the other trusted entity, there is
no way for packets to be forwarded successfully without the
adversary knowing this information.

4 Prototype Implementation
After a brief overview of the Protocol Independent Switch
Architecture (PISA), we describe how we implemented im-
portant aspects of SPINE (e.g., nonces and hashes) in P4, and
then discuss the resource requirements for the PISA switch.

4.1 Background: PISA Switch Architecture
The PISA pipeline consists of a programmable parser, a series
of match-action tables, and a programmable deparser. The
parser allows the programmer to define headers that are ex-
tracted when packets arrive at the switch. The match-action
tables, which generally perform matching on some part of
the parsed header, are used to choose actions for a packet
(e.g., drop it, manipulate its headers, etc.); these tables can
also specify arguments to be passed into these actions. The
deparser emits the final packet. If we can implement SPINE
such that it compiles to the PISA switch hardware target, then,
by construction, SPINE will operate at switch hardware rates.
In addition to these resource constraints, we are also limited
by the allowed functionality in P4 (e.g., no loops).

We implement SPINE in P416, which is the 2016 updated
revision of the P4 language [15]. We also use a software
switch called simple_switch, which is built to execute P416
programs. Figure 4 shows a flowchart of the SPINE P4 packet
processing pipeline for the border router in Trusted Entity #1
in Figure 1. The keys and reserved dr prefixes are stored in
Tables 2 and 5 and are passed as arguments to actions when
these tables are called.

As discussed above, SPINE assumes the existence of a
central controller that writes all values in the match-action
tables. The central controller in the prototype implementation
is a Python program that establishes a gRPC connection to
each switch. Writing the tables at runtime means we can
modify tables after installation to insert new keys.

We use PISA switches and P4 for the implementation be-
cause they ensure that SPINE will run at switch hardware
rates if it fits in switch memory. PISA switches are also cur-
rently being deployed in edge networks. Given that the trusted
entities (Figure 1) can easily be modeled as edge networks,
this means that SPINE will be feasibly deployable.

4.2 Evaluation
Developing mechanisms to efficiently generate nonces and
compute hashes posed several challenges due to the computa-
tional and memory limitations of PISA switches. To generate
nonces, we use P4’s random() function.

Finding a hash function that can be implemented in P4 is
more challenging, especially given P4’s memory constraints
and the fact that hash functions are often computationally
intensive. Our implementation relies on SipHash [1], a high-
speed pseudorandom function that is optimized to perform
well on short messages, requires just four 64-bit variables,
and only involves XOR and addition operations. These all
make SipHash amenable to a P4 implementation. SipHash
takes as input a 128-bit secret key and a message (in this case,
the nonce) and outputs a 64-bit hash. We split the 64-bit hash
into two 32-bit one-time pads to encrypt either 32-bit IPv4
addresses or 32-bit TCP sequence and acknowledgment num-
bers. Keys and versions are passed as arguments to routers
running the SPINE protocol when the match-action Tables 2
and 5 in Figure 4 are called. The central controller initializes
six keys (3 key sets containing 2 keys each) as arguments in
the match-action tables. To update these keys, the central con-
troller simply changes the arguments in these match-action
tables.

We have released a prototype implementation of SPINE1,
which extends the public P4 tutorials [14], and tested its op-
eration and correctness using the Mininet network emulator.

4.3 Resource Requirements
Our prototype allows us to evaluate the resource requirements
of SPINE. If the implementation can fit on a PISA switch,
then it will run at switch hardware rates on this switch. The P4
implementation uses five tables, as shown in Figure 4. Table
3 is a normal IPv4 forwarding table that all v4 switches must
have, and Tables 1, 2, 4, and 5 are additional tables used to
implement SPINE.

To discuss the resource requirements of our implementa-
tion, we consider a scenario where multiple trusted entities
are communicating with each other through one or more un-
trusted entities. In this situation, the number of lines in Table 1
for a border router in one of the trusted entities is at least equal
to the number of reserved dr prefixes that the other trusted
entities advertise. Each of these lines consists of a 128-bit
number representing a single dr and a 1-byte number repre-
senting the length of the prefix. Note that Table 1 also contains
lines that allow for standard IPv6 routing, but because any

1https://github.com/SPINE-P4/spine-code



Match: 
IPv6 Dst

Addr (if it 
exists)

Action

dr owned 
by Trusted 
Entity #2

Set 
needs_dec = 
1

Other
Set egress 
port

Parse 
headers

Table 1

Match: 
IPv4 Dst

Addr (if it 
exists)

Action

x.x.x.x
Set egress 
port

Match: 
IPv4 Dst

Addr (if it 
exists)

Action

Address 
owned by 
Trusted 
Entity #2

Set 
needs_enc = 
1 and fetch dr

Table 2
Table 3

Deparse
headers

Match: 
needs_dec

Action

1

Fetch keys, 
decrypt, 
remove IPv6 
header, and 
restore IPv4 
header

Match: 
needs_enc

Action

1

Fetch keys, 
encrypt, 
remove IPv4 
header, and 
add IPv6 
header

Table 4 Table 5

Figure 4: P4 Implementation on Trusted Entity #1 (ingress) border router.

switch that enables IPv6 routing would require such lines,
we do not count them toward our resource requirements. The
number of lines in Table 4 is equal to the number of prefixes
owned by the other participating trusted entities. Each line in
Table 4 consists of one 32-bit number representing an IPv4
prefix, a 1-byte number representing the length of the prefix,
and a 128-bit number representing the corresponding reserved
IPv6 prefix dr. Table 2 contains one line of 6 128-bit keys (96
bytes), and Table 5 contains the same keys and the current
version number v (approximately 97 bytes). Note that we have
separate tables for fetching keys so that we only have to store
the keys once instead of on every line in Tables 1 and 4 (this
also makes updating keys easier). Thus, if there are a total of R
reserved IPv6 prefixes advertised by the participating trusted
entities and a total of P IPv4 prefixes owned by the trusted
entities, then the tables in a single border router will take up
approximately 17R+96+21P+97 = 17R+21P+193 ex-
tra bytes of memory in addition to the normal IPv4 and IPv6
forwarding table. According to CIDR Report [7], the largest
numbers of IPv4 prefixes and IPv6 prefixes announced by an
AS are 5,759 and 1,383, respectively. Storing these prefixes
only requires 144,643 bytes or 0.14 MB extra memory.

5 Related Work
One main area of related work is network layer anonymity
systems. In such systems, anonymous circuits are first estab-
lished by senders and participating routers, and then traffic
is forwarded through these circuits. LAP [10], an early ex-
ample of a network layer anonymity system, relaxes privacy
guarantees to achieve higher speeds. Dovetail [19] achieves
similar privacy guarantees but uses a intermediate node to
construct traffic paths and prevent leaks that are possible in
LAP. HORNET [4] is a high-speed scalable onion routing
system that achieves better privacy guarantees than LAP and
Dovetail. PHI [6] offers better privacy guarantees than LAP
and Dovetail and better performance than LAP, Dovetail, and
HORNET. TARANET [5] improves on HORNET by using
a new method of traffic shaping to thwart traffic analysis at-
tacks. The main difference between SPINE and network layer
anonymity systems is that the latter assumes that all routers on
the path participate in the protocol. This assumption is a high
barrier to deployment because requiring that all ASes on the

path, especially potential adversaries, implement such a pro-
tocol is not practical. In contrast, SPINE does not assume that
routers in adversarial ASes implement any protocols other
than standard packet forwarding. Furthermore, network layer
anonymity systems often require hosts to initiate anonymous
connections, whereas SPINE leverages the security and tech-
nical knowledge of AS owners to protect (often uneducated)
end users without requiring them to take action.

The most similar work to ours is the Address Hiding Proto-
col (AHP) [18], which, like SPINE, enlists ISPs and ASes to
protect end user privacy. AHP assigns a different random ad-
dress from an ISP’s address block to each traffic flow started
by a client of the ISP. AHP therefore uses the same IP address
for each flow, unlike SPINE. This method of obfuscation does
not protect against the traffic-analysis attacks permitted in
the threat model. In addition, shorter prefixes imply a larger
set of possible addresses from which to randomly choose an
IP address for a client flow. This means that AHP is most
effective in large ISPs that own short prefixes. In contrast,
the standardized prefix lengths of IPv6 addresses mean that
SPINE is equally effective for ISPs and ASes of all sizes.

6 Conclusion
We have presented SPINE, which allows two trusted network
entities to communicate through untrusted network entities
without revealing source and destination IP addresses of traf-
fic. SPINE encrypts IPv4 addresses and relevant TCP fields
using efficient one-time pad encryption and stores the en-
crypted IPv4 addresses in IPv6 headers that are added to
packets when they enter the untrusted network entities and
are removed when they exit. In contrast to previous solutions
that face high deployment barriers, SPINE needs to be im-
plemented only by the participating trusted network entities
and requires no action from end users. We presented a P4 im-
plementation of SPINE for PISA switches, which can run at
switch hardware rates and demonstrated that the resource re-
quirements of this implementation are feasible for a practical,
real-world deployment.

Acknowledgments: We thank Prateek Mittal and the
anonymous reviewers for their comments. This research was
supported by DARPA under Dispersed Computing HR0011-
17-C-0047 and NSF TWC Award 1602399.



References

[1] J.-P. Aumasson and D. J. Bernstein. Siphash: A Fast
Short-Input PRF. In S. Galbraith and M. Nandi, editors,
Progress in Cryptology - INDOCRYPT, pages 489–508,
Berlin, Heidelberg, 2012. Springer Berlin Heidelberg.

[2] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKe-
own, J. Rexford, C. Schlesinger, D. Talayco, A. Vahdat,
G. Varghese, and D. Walker. P4: Programming Protocol-
independent Packet processors. ACM SIGCOMM Com-
puter Communication Review, 44(3):87–95, July 2014.

[3] P. Bosshart, G. Gibb, H.-S. Kim, G. Varghese, N. McK-
eown, M. Izzard, F. Mujica, and M. Horowitz. Forward-
ing metamorphosis: Fast programmable match-action
processing in hardware for SDN. In ACM SIGCOMM,
2013.

[4] C. Chen, D. E. Asoni, D. Barrera, G. Danezis, and A. Per-
rig. HORNET: High-speed Onion Routing at the Net-
work Layer. In ACM SIGSAC Conference on Computer
and Communications Security, pages 1441–1454, New
York, NY, USA, 2015. ACM.

[5] C. Chen, D. E. Asoni, A. Perrig, D. Barrera, G. Danezis,
and C. Troncoso. TARANET: Traffic-Analysis Re-
sistant Anonymity at the NETwork layer. CoRR,
abs/1802.08415, 2018.

[6] C. Chen and A. Perrig. PHI: Path-Hidden Lightweight
Anonymity Protocol at Network Layer. In Privacy En-
hancing Technologies, pages 100–117, 2017.

[7] CIDR report. https://www.cidr-report.org/as2.0/.

[8] R. Dingledine, N. Mathewson, and P. Syverson. Tor:
The second-generation onion router. In USENIX Secu-
rity Symposium, SSYM’04, pages 21–21, Berkeley, CA,
USA, 2004. USENIX Association.

[9] A. Edmundson, R. Ensafi, N. Feamster, and J. Rexford.
Nation-State Hegemony in Internet Routing. In ACM

SIGCAS Conference on Computing and Sustainable So-
cieties, pages 17:1–17:11. ACM, 2018.

[10] H. Hsiao, T. H. Kim, A. Perrig, A. Yamada, S. C. Nel-
son, M. Gruteser, and W. Meng. LAP: Lightweight
Anonymity and Privacy. In IEEE Symposium on Secu-
rity and Privacy, pages 506–520, May 2012.

[11] A. Mari. High Expectations for Brazil Undersea Cable
to Europe. ZDNet. https://www.zdnet.com/article/
high-expectations-for-brazil-undersea-cable-to-europe/.

[12] NAT64 technology: Connecting IPv6 and IPv4
networks. https://www.cisco.com/c/en/us/products/
collateral/ios-nx-os-software/enterprise-ipv6-solution/
white_paper_c11-676278.html.

[13] One-Time Pad (OTP). Crypto Museum (archived).
https://web.archive.org/web/20140314175211/http:
//www.cryptomuseum.com/crypto/otp.htm.

[14] P4 Tutorial. https://github.com/p4lang/tutorials.

[15] P4_16 Language Specification. https://p4.org/p4-spec/
docs/P4-16-v1.0.0-spec.html, May 22 2017.

[16] S. Patil and N. Borisov. What can you learn from an
IP? In Applied Networking Research Workshop, pages
45–51. ACM, 2019.

[17] The World’s Fastest & Most Programmable Networks
(whitepaper). https://barefootnetworks.com/resources/
worlds-fastest-most-programmable-networks/.

[18] B. Raghavan, T. Kohno, A. C. Snoeren, and D. Wetherall.
Enlisting ISPs to Improve Online Privacy: IP Address
Mixing by Default. In I. Goldberg and M. J. Atallah, ed-
itors, Privacy Enhancing Technologies, pages 143–163,
Berlin, Heidelberg, 2009. Springer Berlin Heidelberg.

[19] J. Sankey and M. Wright. Dovetail: Stronger Anonymity
in Next-Generation Internet Routing. In E. De Cristofaro
and S. J. Murdoch, editors, Privacy Enhancing Technolo-

gies, pages 283–303, 2014.

https://www.cidr-report.org/as2.0/
https://www.zdnet.com/article/high-expectations-for-brazil-undersea-cable-to-europe/
https://www.zdnet.com/article/high-expectations-for-brazil-undersea-cable-to-europe/
https://www.cisco.com/c/en/us/products/collateral/ios-nx-os-software/enterprise-ipv6-solution/white_paper_c11-676278.html
https://www.cisco.com/c/en/us/products/collateral/ios-nx-os-software/enterprise-ipv6-solution/white_paper_c11-676278.html
https://www.cisco.com/c/en/us/products/collateral/ios-nx-os-software/enterprise-ipv6-solution/white_paper_c11-676278.html
https://web.archive.org/web/20140314175211/http://www.cryptomuseum.com/crypto/otp.htm
https://web.archive.org/web/20140314175211/http://www.cryptomuseum.com/crypto/otp.htm
https://github.com/p4lang/tutorials
https://p4.org/p4-spec/docs/P4-16-v1.0.0-spec.html
https://p4.org/p4-spec/docs/P4-16-v1.0.0-spec.html
https://barefootnetworks.com/resources/worlds-fastest-most-programmable-networks/
https://barefootnetworks.com/resources/worlds-fastest-most-programmable-networks/

	Introduction
	Practical Surveillance Protection
	Surveillance Threat Model
	Practical Deployment Constraints

	SPINE Design
	Efficient Cryptography on IP Addresses
	Consistency Across Key Rotation
	Encoding and Routing Using IPv6

	Prototype Implementation
	Background: PISA Switch Architecture
	Evaluation
	Resource Requirements

	Related Work
	Conclusion

