
Accurate Traffic Splitting on Commodity Switches
Ori Rottenstreich

Technion

Yossi Kanizo

Tel-Hai College

Haim Kaplan

Tel Aviv University

Jennifer Rexford

Princeton University

ABSTRACT

Traffic splitting is essential for load balancing over multiple servers,

middleboxes, and paths. Often the target traffic distribution is not

uniform (e.g., due to heterogeneous servers or path capacities).

A natural approach is to implement traffic split in existing rule

matching tables in commodity switches. In this paper we suggest

an analytical study of such an approach. To do that, we relate the

description of distributions in switches to signed representations

of positive integers. We suggest an optimal algorithm that mini-

mizes the number of rules needed to represent a weighted traffic

distribution. Since switches often have limited rule-table space, the

target distribution cannot always be exactly achieved. Accordingly,

we also develop a solution that, given a restricted number of rules,

finds a distribution that can be implemented within the limited

space. To select among different solutions, we describe metrics for

quantifying the accuracy of an approximation. We demonstrate the

efficiency of the solutions through extensive experiments.

ACM Reference Format:

Ori Rottenstreich, Yossi Kanizo, Haim Kaplan, and Jennifer Rexford. 2018.

Accurate Traffic Splitting on Commodity Switches. In SPAA ’18: 30th ACM
Symposium on Parallelism in Algorithms and Architectures, July 16–18, 2018,
Vienna, Austria.

1 INTRODUCTION

Traffic splitting is a commonly required capability in modern net-

works for balancing traffic over multiple network paths or servers.

Traditionally, load balancers rely on dedicated middleboxes, servers

or hardware switches for traffic splitting [6, 14]. Equal-cost multi-

path routing (ECMP) [8, 9] is a common approach to achieve a

uniform distribution by hashing the packet header. While ECMP

achieves a uniform distribution, sometimes the desired distribu-

tion is not uniform. When servers are heterogeneous, more traffic

should be sent to servers with more resources (e.g., CPU, memory,

and storage). In irregular topologies, the network may need to split

traffic unevenly among output ports when different paths have

different costs. Furthermore, even regular topologies (e.g., fat-trees)

can become irregular upon a link or switch failure.

WCMP (weighted cost multipathing) [20] generalizes ECMP

for non uniform distributions. While also relying on hashing, a

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

SPAA ’18, July 16–18, 2018, Vienna, Austria
© 2018 Association for Computing Machinery.

ACM ISBN 978-1-4503-5799-9/18/07. . . $15.00

https://doi.org/10.1145/3210377.3210412

variable number of entries is required for implementing the different

distributions. Achieving high accuracy for skewed distributions,

sometimes requires an unrealistic number of memory entries (e.g.,

at least proportional to the ratio between the largest and smallest

weights).

Recently, several schemes capitalize on the rule matching tables

(implemented typically by Ternary Content Addressable Memory

(TCAMs)), commonly available in commodity switches, to imple-

ment traffic splitting (e.g., [19] and Niagara [10]). A part of the

packet header (e.g., the destination or the source IP field) is com-

pared in parallel against a list of rules and traffic is forwarded

according to the highest-priority matching rule. (Priority is usually

implemented by ordering the rules, early rules in the order are of

higher priority.) We address the problem of how to construct such

tables that implement exactly or approximately a given distribu-

tion. We restrict the tables to consist of prefix rule (wildcards are

consecutive at the end of the rule). For prefix rules, more specific

rules are of higher priority.

Assume traffic has to be split into k = 3 servers in ratio of 2:3:5

based on matchingW = 8 bits of the header. This implies a target

(unnormalized) distribution of C = (0.2 · 2W ,0.3 · 2W ,0.5 · 2W).
Assume that theW = 8 traffic bits are uniformly distributed with

values in {00000000, . . . ,11111111}. As illustrated in Table 1, with

three allowed rules, our target distribution C is best approximated

as D1 = (64,64,128) = (0.25 · 2W ,0.25 · 2W ,0.5 · 2W) meaning

that 64 bit combinations are mapped to server 1, another 64 bit

combinations are mapped to server 2, and the remaining 128 are

sent to server 3.With four rules a distribution ofD2 = (48,80,128) =
(0.1875·2W ,0.3125·2W ,0.5·2W) can be implemented, with a higher

similarity to C (as formally defined later). With six rules an even

closer distributionD3 = (51,77,128) ≈ (0.1992·2W ,0.3008·2W ,0.5·
2
W) to C can be implemented.

While an application might require a representation of high

accuracy, little is known about the number of rules required to

perform traffic split to within some prespecified accuracy, and how

to optimally utilize a given number of rules to maximize accuracy.

There are two previous papers, which we are aware of that address

the problem of how to split traffic by rule matching. The work

of [19], uses disjoint rules, that is each packet is matched only by

a single rule. This unnecessary restriction increases the table size.

The work of Kang et al. [10] suggests an algorithm named Niagara.

Theoretical guarantees have not been provided for Niagara but it

was demonstrated empirically that Niagara efficiently generates

compact tables. Intuitively, Niagara iteratively adds a matching rule

directing traffic from the server with the maximal amount of excess

traffic to the server that lacks the largest amount. We conjecture

that Niagara (or a slight variation of it) does compute the smallest

https://doi.org/10.1145/3210377.3210412

Target distribution C

= (0.2 · 2W ,0.3 · 2W ,0.5 · 2W) ≈ (51,77,128)

n1 = 3 rules n2 = 4 rules n3 = 6 rules

00******→ 1 0000****→ 2 00000000→ 1

01******→ 2 00******→ 1 0000001*→ 1

1*******→ 3 01******→ 2 0000****→ 2

1*******→ 3 00******→ 1

01******→ 2

1*******→ 3

Output distribution D
D1 = (64,64,128) D2 = (48,80,128) D3 = (51,77,128)

Table 1: Approximating the target distributionC with a lim-

ited number of n rules. Rules are defined onW = 8 bits and

are ordered according to their priorities. The first matching

rule applies.

set of rules required to exactly implement a given distribution (in

which the probabilities are multiples of 1/2W).

The restriction to use only prefix rules is common in works

about TCAM, and is made by [19] and [10] as well as in other re-

lated works such as [12, 15]. TCAMs that support general wildcard

matching are often considered expensive and power-hungry. Ac-

cordingly, for efficiency, recently suggested programmable switch

architectures such as RMT and Intel’s FlexPipe combine multiple

match-action tables of different kinds and include tables dedicated

to prefix matching [3, 13]. We believe that relaxing this constraint

makes the problem much harder and we leave it for future work.

We note that if we consider a related problem in which one needs

to find the most concise representation of a given function (rather

than a distribution), then in the case where only prefix rules are

allowed, there exists an efficient optimal algorithm [4], in contrast

to the general case where this problem becomes NP-hard [11]. Fur-

thermore, considering only prefix rules is more natural and is likely

to show up in other contexts beyond ours.

Our contributions. In Section 2 we formalize and consider the

following two basic optimization problems, 1) Find the smallest set

of prefix rules that implement a given target distribution (assuming

it is implementable). We refer to this problem as the Exact problem.

2) Given n and a target distribution C , find a set of n rules that

defines a distribution which is “closest” to C among all distribu-

tions defined by n rules. We consider two metrics to measure the

distance between distributions. One is the classical L1 distance (or
the variation distance), and the other is a variation of L∞ in which

we consider only servers to which we direct more traffic than the

target. We refer to this problem as the Approximate problem (the

metric we use would be clear from the context).

We first consider the case of splitting traffic to two servers (k = 2)

in Section 3. In this case we give efficient algorithms computing

optimal solutions for the Exact and Approximate problems (for

both metrics). We show a connection between the optimal solution

for the Exact problem to particular signed bit representations of

integers [1, 16]. Specifically, we characterize the number of rules in

the optimal solution of the Exact problem in terms of the smallest

weights of a signed bit representations of the integers specifying

the (unnormalized) distribution. This characterization also suggests

how to obtain an optimal set of rules in O (W) time. In addition we

prove that one can always obtain a set of rules that maps a prefix

of the bit combinations to server 1 and the corresponding suffix to

server 2. One can verify that the solution computed by Niagara for

k = 2 obeys our characterization and is therefore optimal. For the

Approximate problem we observe that for k = 2 our two metrics are

the same, and we use the relation with the signed representations

to give an algorithm for this problem that runs in O (W) time.

We generalize our approach to the case of an arbitrary number of

servers in Section 4. We introduce a representation of a distribution

over multiple servers by a vector set. Then we show that we can

restrict our vector-sets to be of a restricted kind. In Section 5 we use

this to describe an optimal algorithm for the Exact problem. Our

algorithm runs inO (W 2
2k) time and therefore is not efficient when

the number of servers is large. In all our experiments we observed

that the number of rules that our algorithm computes is identical

to the number of rules computed by Niagara, which supports the

conjecture we made above. Finding an optimal polynomial time

algorithm for the case of an arbitrary number of servers (or proving

that it is NP-hard) is an intriguing open question. Due to space

constraints part of the proofs are omitted.

2 TRAFFIC SPLITTING PROBLEM

The input is a target traffic distribution C = (c1, . . . ,ck) describing
the relative amount of traffic required by each of the k servers [1,k].
Traffic is split between servers based on matching rules examining

a field in the packet header. LetW describe the length in bits of

this field in the header. We assume that ci > 0 (∀i ∈ [1,k]) and∑
i c

i = 2
W
, so the target distribution C = (c1, . . . ,ck) is already

“rounded” and specified by integers ci ’s that sum up to 2
W
, which

is the total number of bit combinations in the designed header field.

For instance, if traffic is split based on the destination IP,W = 32

in IPv4 andW = 128 in IPv6.

The field value is assumed to be uniformly distributed. That is

every bit combination among the 2
W

possible ones has the same

probability to appear in traffic. While this assumption is not gener-

ally true, we observe that: (i) There are some bits for which this is

true, e.g., the least significant bits in many cases. That’s enough for

us and we can simply refer only to those bits; (ii) in some applica-

tions such bits can be achievable through the use of hash function

(supported in recent versions of the P4 switch programming lan-

guage [2]); Or (iii) there are ways to generalize some of our schemes

to work around known non-uniformities which we will address in

future work.

A matching rule is of the form (s1 . . . sW) → a where si ∈
{0,1,∗} and the wildcard ∗ stands for a don’t care. It is composed of

a matching pattern (s1 . . . sW) and an index a ∈ [1,k] of a server.
Rules are assumed to be of the form of prefix rules where we refer
to the matching pattern simply as a prefix. A prefix rule has a prefix

of length ℓ ∈ [0,W] describing the number of first bits it examines

and si = ∗ for i ∈ [ℓ + 1,W]. We say that a packet with a bit

combination b1 . . .bW (as its field value) matches a rule s1 . . . sW
iff si = bi ∀i ∈ [1, ℓ]. Intuitively, a prefix rule of length ℓ ∈ [0,W]

corresponds to a subtree of size 2
W −ℓ

in theW -bits trie. The subtree

includes the bit combinations the rule matches. The rule matching

process relies on a semantics named Longest Prefix Match (LPM).

In case of a match in multiple rules, the longer more specific one

is prioritized. Rules are ordered in a non-increasing order of their

prefix lengths so that the first among multiple matches is with the

longest prefix.

We refer to the number of bit patterns which are first matched

by a rule as the effective weight of this rule. The effective weight
determines the amount of traffic sent to the corresponding server

based on the rule. We assume that all traffic is matched by at least

one rule. We can see the set of rules as defining a function that maps

each of the 2
W

bit combinations [0,2W − 1] in the header space

to one of the k possible server indices. We refer to the distribution

implied by the selected rules as D = (d1, . . . ,dk) where di ≥ 0 is

the total amount of traffic to server i , i.e., the sum of the effective

weights of rules pointing to server i ∈ [1,k]. We say that D is the

output distribution. Since all traffic is assumed to be matched by at

least one rule, D satisfies that

∑
i d

i = 2
W
. Ideally, we would like

to have D = C , meaning that di = ci , ∀i ∈ [1,k]. Therefore our first
optimization problem is defined as follows.

Problem 1. Given a target distribution C for k servers. Find an
exact representation of the function within a minimal number of
rules.

In many scenarios, the number of available rules is limited and

it may be impossible to realize a specific target distribution C with

the number of available rules. We define two metrics to measure

the dissimilarity ofC and D when D , C . The first is the maximum

deviation of a server i above its target load ci . The second is the

average deviation or the ℓ1 norm of D −C .

Definition 2.1. (Dissimilarity Metrics) Consider a target distribu-

tion C for k servers. For a given output distribution D, a metricG
examines the maximal amount of excess traffic in a server,

G (D) = max

i ∈[1,k]

(
max

(
di − ci ,0

))
= max

i ∈[1,k]

(
di − ci

)
.

Likewise, a metric H examines the average amount of error in

the required traffic amount,

H (D) =
1

k
·

k∑
i=1
|di − ci |.

In the second optimization problem we are interested in a distri-

bution with a constrained number of rules.

Problem 2. Given a target distribution C for k servers and an up-
per bound n on the number of rules. Find a distribution D represented
by at most n rules that minimizes G (D) or H (D).

In particular, when we can implement C with at most n rules

then D = C and we have G (D) = H (D) = 0. Larger rule number

n can enable finding a distribution closer to the target distribu-

tion, achieving smaller dissimilarities, for both metrics. For a given

target distribution C and a number of allowed rules n we denote

by GOPT ,HOPT the optimal values of the metrics G (D) and H (D),
respectively.

The same output distribution can be achieved by implementing

different functions. For instance, the distribution (1
4
·2W , 3

4
·2W) can

be obtained by the rules (00*. . . ***→ server 1, ***. . . ***→ server 2)

as well as by the rules (11*. . . ***→ server 1, ***. . . ***→ server 2),

describing two different mappings. Accordingly, the requirement
for a specific traffic distribution does not imply a unique mapping.

This flexibility leads to an inherent difficulty. While it is easy

to find a representation with a minimal number of (prefix) rules

for a particular mapping (e.g., by the ORTC algorithm or similar

alternatives [4, 18]), finding the most concise (exact) representation

of a target distribution can be challenging since many possible

mappings have to be considered. Furthermore, finding a closest

representation given a specific number of rules can be even harder.

Since our model requires that all traffic is matched by the set of

rules, we assume without loss of generality that the last among the

n rules is a match-all (default) rule with a matching pattern **. . . **.

In any set of rules we can replace the last rule to be a match-all

(without modifying its target) and get an equivalent set of rules of

the same size.

Finally, throughout this paper, when looking for optimal rule

sets, we can consider only sets given in a compressed form as defined

below.

Definition 2.2. A compressed-form prefix rule set is an ordered

set of rules, where for each rule ri in the set, the first colliding

lower-priority rule r j (i) has a shorter prefix, i.e. a larger number of

wildcards, and, (ii) is mapped to a different server.

By the above property of two intersecting prefixes, if condition

(i) in Definition 2.2 is not met then r j can be removed from the

set, while if condition (ii) is not met then ri can be removed; both

remove operations do not affect the mapping that the original rule

set implements. Note that a compressed form is not necessarily the

most concise way to represent a function.

3 THE CASE OF TWO SERVERS

In this section we consider the case of two servers. We present

a simple mapping that realizes a given target distribution with a

minimal number of prefix rules. This enables us to calculate the

number of required rules for realizing a target distribution. Such

information can help a network designer to estimate the number

of rules available in a switch for other common tasks such as for-

warding and traffic measurements. Furthermore, given a specific

number of rules, we describe how to select them so that the distri-

bution D which they realize minimizes G (D) and H (D). Let OPTC
be the minimal number of prefix rules required to obtain an output

distribution that equals a target distribution C = (c1,c2).

3.1 Representation as a range function

Different functions can be implemented to realizeC . The next theo-
rem shows that an optimal number of rules can always be achieved

by a function that partitions the address space [0,2W − 1] to two

consecutive ranges, such that bit combinations from the first range

are mapped to server 1 and bit combinations from the second range

are mapped to server 2.

Theorem 3.1. For a given target distribution C = (c1,c2) with
k = 2 servers, there exists a set ofOPTC rules implementing a function
FC satisfying FC (x) = 1 for x ∈

[
0,c1 − 1

]
and FC (x) = 2 for

x ∈
[
c1,2W − 1

]
.

Proof. Consider an ordered set S of prefix rules that realizes

the distribution C = (c1,c2). We show how to construct an ordered

set of prefix rules R implementing the function FC such that (i)
FC satisfies FC (x) = 1 for x ∈

[
0,c1 − 1

]
and FC (x) = 2 for x ∈[

c1,2W − 1
]
, and (ii), |R | ≤ |S |.

Recall our Definition 2.2 regarding the compressed-form require-

ment. Furthermore, without loss of generality we assume that the

last match-all rule in S is mapped to server 2. Thus, we can ex-

press the number of distinct bit combinations c1 that are mapped to

server 1 by using a linear combination of powers of two. Let bi be
the number of wildcards in the i-th rule, and define ai as follows:

ai =

{
1 i-th rule is mapped to server 1,

−1 i-th rule is mapped to server 2.

Then, we get that

c1 =
W −1∑
j=0

qj · 2
j , (1)

where qj =
∑
i,bi=j ai , that is, qj equals the total number of prefix

rules with j wildcards that are mapped to server 1, minus those

with j wildcards that are mapped to server 2.

We denote by Q = (qW −1, . . . ,q1,q0) the vector of the coeffi-

cients of the powers of two in Equation (1). Note that the shortest

prefix, that is, the one with the largest number of wildcards, exclud-

ing the last match-all rule, may have at mostW − 1 wildcards.
The elements in Q will be used to construct the alternative or-

dered set of prefix rules R that satisfies the required properties of

this theorem. In this construction, in addition to a match-all rule,

the number of rules in R will be exactly as the sum of the absolute

values of the elements in Q . By the definition of Q , the number of

rules in R will be at most the number of the rules in S .
We further simplify Q by operations on its elements:

• For j ∈ [0,W − 2] such that qj ≥ 2 set qj := qj − 2 and

qj+1 := qj+1 + 1.
• For j ∈ [0,W − 2] such that qj ≤ −2 set qj := qj + 2 and

qj+1 := qj+1 − 1.

Each of these two operations preserves Equation (1), and it lowers

the sum of absolute values of the elements in Q by at least 1. We

perform either of these operations repetitively until they do not

apply anymore. The resulting vector Q satisfies that

• For the largest j for which qj , 0, qj = 1.

• The vector Q has at mostW elements.

• For each j ∈ 0, . . . ,W − 1, ���qj
��� ≤ 1.

Finally, we construct the prefix rule set R. We first select the

last match-all rule as in S (mapped to server 2), and then we add

rules with an increasing order of their priority by going over the

elements of Q .
Specifically, set u = 0, and for each of the elements of Q (from

j =W − 1 to j = 0):

• If qj = 1, add the rule

[
u,u + 2j − 1

]
→ 1, and setu := u+2j .

• If qj = −1, add the rule

[
u − 2j ,u − 1

]
→ 2, and set u :=

u − 2j .
• Skip if qj = 0.

In the last construction, the number of rules in R is not larger

than that of S , and the function FC defined by the rule set R satisfies

rule mapping

1 11010 server 2

2 0011* server 1

3 1101* server 1

4 001** server 2

5 101** server 1

rule mapping

6 110** server 2

7 10*** server 2

8 00*** server 1

9 1**** server 1

10 ***** server 2

(a) Input rule set (with 10 rules, defined overW = 5 bits), that yields a

distribution of (15, 17) of the 2W = 32 bit combinations.

0 8 16 24
2
W − 1 = 31

(b) graphical illustration of the input rule set

0 8 16 24
2
W − 1 = 31

(c) graphical illustration of the resulting rule set (with 3 rules) that describes a simpler

function and yields the same distribution (15,17)

Figure 1: An example of the technique described in the proof

of Theorem 3.1: (a) an example rule set given in a com-

pressed form defined over W = 5 bits, (b) a graphical il-

lustration of the rule set, and (c) a graphical illustration of

the resulting rule set (01111 → server 2, 0**** → server 1,

***** → server 2). Clear white and solid blue rectangles cor-

respond to rules mapped to server 1 and server 2, respec-

tively.

FC (x) = 1 for x ∈
[
0,c1 − 1

]
and FC (x) = 2 for x ∈

[
c1,2W − 1

]
.

Therefore, the theorem follows. □

The construction of the new rule set R given the rule set S as

described in the proof of Theorem 3.1 is illustrated in the following

example.

Example 3.2. Given the rule set S in Fig. 1(a) which is illustrated

graphically in Fig. 1(b), the vector Q = (q4,q3,q2,q1,q0) is initially
equal to (1,0,−1,2,−1). The reason q2 = −1 is due to the rules with
2 wildcards which are rules 4, 5, and 6. These rules are mapped to

servers 2,1, and 2, respectively. Therefore, a4 = −1, a5 = 1, and

a6 = −1, which sum up to q2 = −1. The number of bit combinations

that are mapped to server 1 is given by c1 = 1 · 24 + 0 · 23 − 1 · 22 +

2 · 21 − 1 · 20 = 15.

The only element with an absolute value greater or equal to 2

is q1. Therefore, we apply the simplification process on q1 and get

that q1 := q1 − 2 = 0 and q2 := q2 + 1 = 0. The resulting vector

Q = (1,0,0,0,−1) has no element with an absolute value greater

than 1. Hence, this process is over.

To construct the rule set R, we first take the match-all rule as in S
(mapping to server 2).We setu = 0, and go from left to right over the

elements ofQ . Forq4 we add the rule
[
0,24 − 1

]
→ 1, and setu = 16.

We skip q3, q2, and q1 since they equal 0, and last, for q0, we add the

rule

[
2
4 − 20,24 − 1

]
→ 2. Fig. 1(c) shows a graphical illustration

of the resulting rule set S = (01111 → server 2, 0**** → server 1,

*****→ server 2).

3.2 Calculating the cost of a given distribution

with signed representations of positive

integers

Following Theorem 3.1, we express the minimal number of pre-

fix rules OPTC required to (exactly) follow a target distribution

C = (c1,c2) by relating it to signed representations of positive in-

tegers. As mentioned, this can be useful for a network designer

to determine the number of rules available for other tasks such as

forwarding and traffic measurements.

Unlike the regular binary representation, in the signed-bit repre-

sentation an integer is described as a sum of positive and negative

powers of two. We now define it formally, following the terminol-

ogy of [1].

Definition 3.3. A signed-bit representation of y ∈ Z is given by

a sequence Q = (qt ,qt−1, . . . ,q0), such that y =
∑t
i=0 qi · 2

i
and

∀i ∈ [0,t − 1] ,qi ∈ {−1,0,1} and qt ∈ {−1,1}. We refer to t + 1 as
the length of the representation and to the number of non-zero qi ’s
as the weight of the representation. The integer 0 is represented by

the empty sequence denoted by ().

Unlike the regular binary representation, which is unique, there

are multiple signed-bit representations for a given integer y ∈ Z.
Consider for instance the integer y = 7. While the unique binary

representation (1,1,1) is also a signed-bit representation (satisfying

7 = 4 + 2 + 1 = 2
2 + 21 + 20), another signed-bit representation is

(1,0,0,−1) (satisfying 7 = 8 − 1 = 2
3 − 20). The last representation

has a property captured in the following definition.

Definition 3.4. A signed-bit representation of an integer y ∈ Z
is said to be in a non-adjacent form if there are no two non-zero

adjacent signed bits, that is, ∀i ∈ [1,t] , if qi , 0 then qi−1 = 0.

By [1] positive integers have a unique non-adjacent form. This

can be easily generalized for any integer.
1

Property 1. All integers have a unique non-adjacent form repre-
sentation.

It is easy to derive the non-adjacent signed-bit form representa-

tion of an integer. Start with its binary representation and while

beginning from the right bit, replace any sequence of 0,1,1, . . . ,1,1

by the sequence 1,0,0, . . . ,0,−1 of the same length (where the most

significant 1 bit of the assigned sequence can be considered as the

least significant 1 bit of the next sequence to be replaced).

As we show later, we are interested in the weight of the repre-

sentation since it relates to the number of prefix rules required to

follow a distribution. The following property is due to [1].

Property 2. For all integers, the non-adjacent form has a minimal
weight among all signed-bit representations.

Notice that for some integers, in addition to the unique non-

adjacent form, there can be additional signed-bit representations

that also achieve the minimal weight.

1
Clearly, this property of positive integers applies for any integer since we can negate

a represented number by negating the signed bits in its signed-bit representation.

Similarly, there is only one representation for 0.

0 32 64 96 128

0

1

2

3

4

5

6

7

x

ϕ (x)

OPTC forC = (x, 27 − x)

Figure 2: The value of ϕ (x) and the number of rulesOPTC re-

quired to describe a distributionC = (x ,27 −x) for an integer

x ∈ [0,27].

For an integerx , we denote byϕ (x) theweight of its non-adjacent
form representation. It is easy to calculateϕ (x) by the above compu-

tation of the non-adjacent form. Clearly, ϕ (x) = ϕ (−x). Notice that

for a distributionC =
(
c1,c2

)
ofk = 2 servers, we have c1+c2 = 2

W

and accordingly |ϕ (c1) − ϕ (c2) | ≤ 1. To represent c j in a signed bit

representation we can always negate a representation of the other

value c3−j and add a coefficient of 2
W

(achieving a representation

with a weight that is at most larger by one and thus by Property

2 the weight of a non-adjacent form cannot be larger). We charac-

terize the minimal required number of rules to exactly represent a

distribution.

Theorem 3.5. Consider a target distribution C =
(
c1,c2

)
. The

minimal number of rules OPTC required to realize C , is given by
min(ϕ (c1),ϕ (c2)) + 1.

Proof. We first show that we can realize C with

min(ϕ (c1),ϕ (c2)) + 1 rules. Without loss of generality as-

sume that the minimum is attained by ϕ (c1). We use ϕ (c1) rules
(mapping prefixes either to server 1 or to server 2) to map c1 bit
combinations to server 1. If the last rule is not a match-all rule,

we add a last match-all rule to map the other c2 = 2
W − c1 bit

combinations to server 2. Thus OPTC ≤ min(ϕ (c1),ϕ (c2)) + 1. For
the opposite inequality, assumeC is realized withOPTC rules. Let’s

assume, without loss of generality, that the last is an all-match rule

that maps to server 2. The value c1 must correspond to the number

of bit combinations matched by the rules that map to server 1

among the first OPTC − 1 rules. We can derive from these rules

a signed bit representation with a weight OPTC − 1 for c1. Thus
ϕ (c1) ≤ OPTC − 1. □

Interestingly, the values of ϕ (x) (for non-negative values) have
been widely investigated, and the values {ϕ (x) | x ≥ 0} have

been described as a sequence in the Encyclopedia of Integer Se-

quences [16]. Applications of the sequence have been suggested for

instance for minimizing communication between processors as well

as for routing in peer-to-peer networks [7, 17]. Bounds and recur-

sive formulas for the value of ϕ (x) were suggested. An illustration

of the values of ϕ (x) andOPTC of a distributionC = (x ,27 − x) for
x ∈ [0,128] is given in Fig. 2. This graph can give an intuition on the
representation cost of a distribution. It is easy to observe the sym-

metry of OPTC , i.e., the same rule count is required for (x ,27 − x)
and (27 − x ,x). We can also see that OPTC ∈ [ϕ (x),ϕ (x) + 1] and
that the only distributions that can be described by at most two

rules are those where x or 2
7 − x are powers of two.

3.3 Approximated distribution realization

Consider a target distribution C = (c1,c2) and a given number of

allowed rules n. We study the case where the target distribution

cannot necessarily be realized accurately by at most n rules (i.e.,

n < OPTC). Instead, we find a realizable distribution with a minimal

dissimilarity value with the target. By Theorem 3.5, the output

distribution D = (d1,d2) must satisfy min(ϕ (d1),ϕ (d2)) + 1 ≤ n.
For the metric G , considering the maximal amount of excess traffic

in a server, among the realizable distributions (d1,d2) we would
like to find the one minimizing |d1−c1 | = |d2−c2 |. For the metricH ,

considering the average amount of error, we would like to minimize

the sum 0.5 · (|d1−c1 |+ |d2−c2 |) = |d1−c1 |. It follows that for k = 2

servers the two metrics are minimized by the same distributions.

In the rest of this section we describe an efficient algorithm that

achieves a target distribution minimizing the two metrics.

We start with a statement on the number of bits required to

represent an integer in its non-adjacent form. Intuitively, it shows

that given t + 1 bits, the largest integer that can be represented

(in its non-adjacent form) is yu = 2
t + 2t−2 + . . ., that is starting

with 1 in the most significant bit and alternating between 1 and 0

when going from left to right. Likewise, the smallest integer that

can be represented is yd = −yu = −2
t − 2t−2 − Furthermore,

the next lemma shows that the non-adjacent form of any integer in

the range [yd ,yu] has no more than t + 1 bits.

Lemma 3.6. An integer y has a non-adjacent form representation
of at most t + 1 bits iff
(i) |y | ≤ 2

t + 2t−2 + . . . + 1 for an even t ,
(ii) |y | ≤ 2

t + 2t−2 + . . . + 2 for an odd t .

Recall that we aim at finding a set of at most n rules that best

approximates the target distribution

(
c1,c2

)
. The following lemma

significantly reduces the search space for the output distribution

D =
(
d1,d2

)
.

Lemma 3.7. Given an integer y = x · 2a , with a,x ∈ N, and let
Ua =

∑ ⌊a/2⌋
i=1 2

a−2·i . Then,

min

{
ϕ (y −Ua), . . . ,ϕ (y) , . . . ,ϕ (y +Ua)

}
= ϕ (y) = ϕ (x) .

Moreover, the value of ϕ (y) is uniquely retrieved for y.

To find a distributionD = (d1,d2) satisfyingmin(ϕ (d1),ϕ (d2))+
1 ≤ n, we consider four scenarios such that at least one of them

occurs (the scenarios are not necessarily disjoint). We explain how

to find D of a minimal dissimilarity under each scenario. They are

(i) d1 ≥ c1 and ϕ (d1) = min(ϕ (d1),ϕ (d2)), (ii) d1 ≤ c1 and ϕ (d1) =
min(ϕ (d1),ϕ (d2)), (iii) d1 ≥ c1 and ϕ (d2) = min(ϕ (d1),ϕ (d2)), (iv)
d1 ≤ c1 and ϕ (d2) = min(ϕ (d1),ϕ (d2)).

Since for k = 2 servers the two metrics G and H are minimized

by the same distributions, we arbitrarily focus on the metricG and

the optimality follows also for the metric H . We discuss scenario (i).
We considerW + 1 disjoint ranges for the value d1 ∈ [c1,2W]. The

ranges are denoted by R0,R1, . . . ,RW such that Ra = [

⌈
c1/2a

⌉
·2a −

Ua ,
⌈
c1/2a

⌉
· 2a +Ua] for a ∈ [0,W]. Let ϕa be the minimal value of

ϕ for values in Ra . By Lemma 3.7 it satisfies ϕa = ϕ (
⌈
c1/2a

⌉
· 2a).

We take the minimal value of a that satisfies ϕa ≤ n − 1. Notice

that for a ∈ [0,W − 1] it satisfies ϕa − ϕa+1 ≤ 1. This is since the

two values

⌈
c1/2a

⌉
· 2a ,

⌈
c1/2a+1

⌉
· 2a+1 are either equal or differ

by the power of two 2
a
. For the selected value of a, we set d1 as⌈

c1/2a
⌉
· 2a and we have that this value minimizes the error while

satisfying the constraint of n. The scenario of (ii) is similar. We

considerW + 1 disjoint ranges for the value d1 ∈ [0,c1]. They are

R0,R1, . . . ,RW such that Ra = [⌊c1/2a⌋ · 2a −Ua , ⌊c
1/2a⌋ · 2a +Ua].

We find the first range for which ϕa = ϕ (⌊c1/2a⌋ · 2a) ≤ n − 1.

Then we set d1 = ⌊c1/2a⌋ · 2a . For (iii), (iv) we repeat (i), (ii) by
replacing c1,c2. Finally, among the four options, we select the one

minimizing |di − ci |.

4 THE VECTOR-SET REPRESENTATION FOR

MULTIPLE SERVERS

We study the case of an arbitrary number of servers. Our ultimate

goal is to develop also for this scenario solutions for an exact repre-

sentation with minimal rules or the best representation for a given

number of rules. Towards this goal, while relying on an analytic

model, we suggest a novel representation of a given rule set which

can be manipulated to construct an alternative low-cost rule set

that yields the same distribution. Then, in Section 5 we use this

tool to develop algorithms for both problems.

In Section 3, for the case of two servers, we used the vector

Q = (qW −1, . . . ,q1,q0) with coefficients of powers of two for sum-

marizing a set of rules involving two servers. In this section, we

generalize this representation for multiple servers. We refer to this

generalization as a vector set, denote it by Q̂ and explain that a

vector set implies a single distribution. In Section 4.1, we formally

define the vector set, explain how to construct it for a given set of

rules and study its properties. Then, in section 4.2, we explain how

to process a vector set while keeping the distribution it implies, so

that it can be realized into a set of rules of a small size.

4.1 Construction and basic properties

A vector set Q̂ consists of k2 vectors denoted as

{
Qi j

}
with i, j ∈

[1,k]. Each vector Qi j =
(
q
i j
W −1, . . . ,q

i j
0

)
hasW elements. A given

set of rules, can be associated with a vector set Q̂ , described in the

following. Informally, a vector Qi j
represents the amount of traffic

(number of bit combinations) that server i “takes” from server j.
Thus, a vector set Q̂ represents the entire relation (in that manner)

between the servers.

We explain a way to construct a vector set from a general

compressed-form rule set S for representing its structure. Formally,

consider a general ordered set S of prefix rules. We assume that the

rule set S adheres to the compressed-form requirement described in

Definition 2.2 and that the last match-all rule is mapped to server k .
Following Definition 2.2, for each rule r in the set, the first colliding

rule mapping

1 11011 server 2

2 0011* server 1

3 1101* server 3

4 001** server 2

5 110** server 1

6 10*** server 2

7 01*** server 1

8 ***** server 3

Q12
= (0,0,0,1,0)

Q13
= (0,1,1,−1,0)

Q23
= (0,1,1,0,1)

Figure 3: Rule set example (left) and its corresponding vec-

tor set representation (right). The output distribution is D =
(12,11,9).

lower-priority rule, that is, the rule that r “takes” traffic from, (i)
has more wildcards, and (ii) maps to a different server.

The construction of the vectors in Q̂ , given a set of rules is

defined by the following process: Initiate all vectors in Q̂ to zero,

and repeat the following for each rule starting from the highest

priority rule (excluding the match-all rule). For each rule, denote

by i the server it maps to and by z its number of wildcards. Find its

first lower-priority colliding rule and denote its server by j. Then,

increment q
i,j
z and decrement q

j,i
z , both by one. These operations

reflect the fact that server i eliminates 2
z
bit combinations from

server j.
By the definition of the above construction, for all i, j ∈ [1,k] and

z ∈ [0,W − 1],q
i,j
z = −q

j,i
z . Moreover, since for each rule (excluding

thematch-all rule), its first lower-priority colliding rule is mapped to

a different server then for all i ∈ [1,k] and z ∈ [0,W − 1], qi,iz = 0.

Fig. 3 shows an example of a rule set S and its corresponding

vector set representation Q̂ . SinceQ21
,Q31

andQ32
are the element-

wise negation ofQ12
,Q13

andQ23
, only the latter vectors are shown;

the vectors Q11
, Q22

, and Q33
are all zeroed.

The construction of the vectors (initialized with zeros) starts with

the first rule 11011 that has 0 wildcards and maps to server 2. Its first

lower-priority colliding rule is rule number 3 (1101∗, mapped to

server 3). Therefore, we increment by one q2,3
0

(and decrement q3,2
0

).

Next, the first colliding rule of rule number 2 (mapping to server 1,

with a single wildcard) is rule number 4 (mapping to server 2), then

we increment q1,2
1

(and decrement q2,1
1

). This process continues for

all rules (excluding the match-all rule).

Intuitively, if one keeps track on the exact function implemented

by considering only the last t rules for t = 1,2, ...,k , the vector set
Q̂ represents succinctly, using cancellation, the number of times

there is a change in the function implemented by the rule set. In

particular, a vector Qi j
represents the times the change in function

involves server i and j.
Accordingly, one can count the number of bit combinations

mapped to each server. Let T i j =
∑W −1
t=0 q

i j
t · 2

t
. The value T i j

counts the total number of bit combinations server i takes from
server j. Given these values one can count for each server i the
total number of bit combinations di that the function maps to:

di =

∑k
j=1T

i j
1 ≤ i ≤ k − 1

2
W +

∑k
j=1T

i j i = k

Qix
= (_,_,≥ 1,_,_)

Qiy
= (_,_,_,_,_)

Qxy
= (_,_,≥ 1,_,_)

⇒

∆Qix
= (_,_,−1,_,_)

∆Qiy
= (_,_,+1,_,_)

∆Qxy
= (_,_,−1,_,_)

(a) step I

Qix
= (_,_,≥ 2,_,_) ⇒ ∆Qix

= (_,+1,−2,_,_)
(b) step II

Qix
= (_,_,≥ 1,_,_)

Qiy
= (_,_,≥ 1,_,_)

Qxy
= (_,_,_,_,_)

⇒

∆Qix
= (_,+1,−1,_,_)

∆Qiy
= (_,_,−1,_,_)

∆Qxy
= (_,_,+1,_,_)

(c) step III

Figure 4: Illustration of the simplification process of the vec-

tor set Q̂ , describing the delta (addition) to each of the vec-

tors. The output distribution is preserved in each of these

changes.

For each vector Qi j
, we further define a partial (weighted) sum

series of its elements. Forv ∈ [0,W − 1], representing prefix length,

let T
i j
v =

∑W −1
t=v q

i j
t · 2

t
and T

i j
W = 0. An equivalent more intuitive

definition is through using the following recursion: Let T
i j
W −1 =

q
i j
W −1 · 2

W −1
, and for v ∈ [0,W − 2],T

i j
v = T

i j
v+1 +q

i j
v · 2

v
. Last, we

define the number of bit combinations mapped to each server by

rules with prefix length of at mostW − 1 −v (namely more than v
wildcards), as represented by the vectors in Q̂ :

div =

∑k
j=1T

i j
v 1 ≤ i ≤ k − 1

2
W +

∑k
j=1T

i j
v i = k

We capture a simple property of a vector set.

Theorem 4.1. Given a compressed-form prefix rule set S , the values
div for the vector set Q̂ associated with the rule set, satisfy div ≥ 0 for
all i ∈ [1,k],v ∈ [0,W].

4.2 Processing and realization

We describe a technique to reduce the number of rules required to

achieve the output distribution of a vector set. In the next theorem

we show that the vector set can be manipulated, preserving its

original implemented distribution, such that for each prefix length

and for each server there is at most one rule that changes the

number of bit combinations mapped to the server.

Theorem 4.2. Any vector set Q̂ , with div ≥ 0 for all i ∈ [1,k] and
v ∈ [0,W − 1], can be processed, preserving the original distribution
and the non-negativity of its partial sums such that qixt ∈ {−1,0,1}
for all i,x ,t . Further, for all t and i , if for some x , qixt , 0, then for
all j , x , qi jt = 0 (and qjit = 0).

Proof Outline. The processing has twomain phases, each com-

posed of several steps among steps I-III, as illustrated in Fig. 4. Each

of the steps maintains the output distribution D. We verify that

along the processing, for all i ∈ [1,k],v ∈ [0,W] the partial sums

satisfy div ≥ 0. Phase 1 relies on steps I and II. In step I, for instance,

illustrated in Fig. 4(a), we consider t ∈ [0,W − 1]. Assume there

exist i,x ,y such that qixt ,q
xy
t > 0. We reduce qixt ,q

xy
t by one and

rule mapping

1 11000 server 2

2 1100* server 3

3 100** server 1

4 00*** server 1

5 1**** server 2

6 ***** server 3

Q12
= (0,0,1,0,0)

Q13
= (0,1,0,0,0)

Q23
= (1,0,0,−1,1)

Figure 5: The rule set S and the corresponding vector set

representation Q̂ derived after the processing of the rule set

from Fig. 3. The output distribution is again D = (12,11,9).

increase q
iy
t by one (and update qxit ,q

yx
t ,q

yi
t correspondingly). In

phase 1, we repeat steps I and II, column by column for t ∈ [0,W −2]
and then apply step I for t =W − 1. In phase 2, steps I and III are

repeated, column by column for t ∈ [0,W − 2] and then step I is

applied for t =W − 1. We explain that following phases 1 and 2,

the vector set has the required form in all columns besides maybe

the most-left one. To satisfy the property also for that column, we

might have to replace the default server by another server. □

The next theorem shows that when a simple condition on a

vector set holds, there exists a set of rules (in a compressed form)

for which the vector set corresponds.

Theorem 4.3. Consider a vector set Q̂ satisfying: (i) div ≥ 0 for
all i ∈ [1,k],v ∈ [0,W]. (ii) qixt ∈ {−1,0,1} for all i,x ,t . (iii) for all t
and i , if for some x , qixt , 0, then for all j , x , qi jt = q

ji
t = 0. Then,

vector set can be realized to a compressed-form prefix rule set.

Note that the number of required (non-default) rules in the con-

struction of the proof of Theorem 4.3 equals half the sum of the

absolute values of all elements (i.e. 0.5 ·
∑
i,j ∈[1,k] |q

i,j |). Fig. 5 de-

scribes the set of rules obtained after the processing of the vector set

from Fig. 3. While maintaining the output distribution, the number

of rules is reduced from 8 to 6.

5 SOLUTIONS FOR MULTIPLE SERVERS

Inspired by the representation of a distribution for multiple servers

through a vector set from Section 4, we turn to design algorithms

that find an exact representation with minimal rules (in Section 5.1)

and the most accurate representation for a given number of rules

(in Section 5.2).

5.1 Exact distribution realization

We describe an algorithm to find an exact representation with the

minimal possible number of rules for any given target distribution.

We start with properties that relate the vector set to the output

distribution it yields. For space constraints we provide the high-

level details of the algorithm.

Theorem 5.1. Let Q̂ be a vector set with an output distribution
D = (d1, . . . ,dk) for which the processing from Theorem 4.2 was
applied. For all i ∈ [1,k],u ∈ [0,W − 1], let hiu = ⌊d

i/2u ⌋ · 2u be the
number encoded in the binary representation of di when clearing bits
with bit indices lower than u. Then, the value diu , expressed by the
indices higher or equal to u in the vector set Q̂ , satisfies diu = hiu or
diu = h

i
u + 2

u .

Biu qiu server-state for bit u

0 -1 positive

0 0 invalid

0 1 invalid

1 -1 negative / zero

1 0 positive

1 1 invalid

Table 2: Server state transition: Dependency of the state of

server i for bit u on Biu and qiu , given a positive-state for bit

index u + 1.

We define the notion of a server state. Given a vector set Q̂ , a
server i ∈ [1,k] is associated with a state for every bit index u ∈
[0,W − 1]. Intuitively, the state examines the difference between

the allocation of a server following the complete vector set Q̂ and

its allocation as expressed by some high-indexed bits of Q̂ . For
u ∈ [0,W − 1],

• A server i is in a zero-state for u if diu = h
i
u , and d

i
u = d

i
.

• In a negative-state for u if diu = h
i
u , but d

i
u < di .

• In a positive-state for u if diu = hiu + 2
u
. This implies that

di < diu .

In other words, the server i is in a positive-state for a bit index u if

all rules involving it with number of don’t-care bits higher or equal

tou encode a specific number that is larger than the total number of

bit combinations when considering all rules. It is in a negative-state

if these rules encode a specific number that is lower than the total

number of bit combinations when considering all rules, and it is in

a zero-state if both numbers are equal. By Theorem 5.1, there are

no other possibilities.

The above statement is true for every vector set Q . In particular,

it is true for all sets that match the target distribution. Let us focus

on all such vector sets that match the target distribution.

Assuming that none of the servers has a target number of zero

bit combinations, then by convention we define that for bit index

u =W all servers are in a negative-state, except for the server that

is assigned with the default rule which is in a positive-state.

For each of the servers, its states (either negative, positive, or

zero) over the bit indices are related to each other.

Given the state of server i for some bit index u + 1 where u ∈
[0,W − 1], its state foru can be determined based onBiu ∈ {0,1}, and
qiu ∈ {−1,0,1}, where B

i
u is the bit located at index u in the binary

representation of di , and qiu =
∑k
j=1 q

i j
u ∈ {−1,0,1} as indicated by

Theorem 4.2.

Table 2 captures this dependency given a server that is in a

positive-state for a bit indexu+1. For example, given that the server

is in a positive-state for bit u + 1, meaning that diu+1 = h
i
u+1 + 2

u+1
,

then if Biu = 0 (meaning hiu+1 = hiu) and qiu = −1 (meaning

diu = d
i
u+1−2

u
), we get that diu = h

i
u +2

u
using simple substitution

operations. Therefore, the server stays in a positive-state for bit

index u. On the other hand, if Biu = 0 and qiu = 0, we get neither of

the defined states. Similar transition tables given a negative-state

and a zero-state for bit u can be obtained.

Algorithm 1: Algorithm for computing the optimal number

of rules given server p gets the default rule

Input: A target traffic distribution C = (c1, . . . ,ck). Server p
gets the default rule.

Output: An optimal number of rules realizing C

iSS .count = 0; iSS .state = all servers in a negative-state, except

for server p which is in a positive-state;

AW = {iSS };
For all i,u, Biu = u

th
binary bit of ci ;

for u ∈ {0, . . . ,W − 1} in reverse order do
Au = ∅
for cSS ∈ Au+1 do

• Find for each server optional rule additions

• Consider balanced options to calculate the

possible next super-state added to Au

Find SS ∈ A0 with k servers in zero-state that minimizes

SS .count .
return SS .count

Consequentially, for each server, based on its state for bit index

u+1 and the value of Biu , we can describe whether a rule that refers

to it should be added, and if so whether this can be a positive rule

(increasing qiu by one) or a negative rule (decreasing qiu by one).

The result state of the server for bit index u depends on this choice.

We refer to the set of all server states for some bit index u as a

super-state for bit u. Our suggested search algorithm operates on

these super-states. Initially, for bitW , there is only one super-state

where all servers are in negative-states except for the server who

gets the default rule and is in a positive-state. Then, it iterates over

the bit indices u ∈ {0,1, . . . ,W − 1} in reversed order, where at the

step corresponding to bit index u it considers all super-states it

arrived at the step corresponding to bit index u + 1, and constructs

all reachable super-states by assigning possible values to qiu under

the constraint that the number of servers that are assigned with

qiu = 1 is equal to the number of servers that are assigned with

qiu = −1. Last, it also collects for each such reachable super-state

the minimal number of rules needed to reach that super-state.

Since for every u ∈ {0,1, . . . ,W − 1}, each server can have one of

three possible states, the number of super-states is clearly bounded

by 3
k
. In our experiments we observe that the number of reachable

states is in practice often much smaller although still exponential

in the number of servers.

The pseudo-code of this algorithm is described in Algorithm 1.

We use iSS , cSS and SS that stand for the initial, the current and a

general super-state, respectively. For the sake of brevity, the algo-

rithm described only computes the optimal rule count. The distri-

bution is determined by the super-states for u = 0. In particular, to

correctly represent the target distribution we need all k servers to

be of a zero-state. The required rules number is the count associated

with this super-state. By Theorem 4.2 the solution can be realized,

where the actual realization can be performed by Theorem 4.3. The

minimality of the representations in each iteration implies the opti-

mality of the algorithm. Last, one may iterate over all p ∈ {1, . . . ,k }

and select the server leading to the optimal number of rules upon

pointing of the default rule to the server.

For computing the actual vector set Q̂ , one need to keep track

for each super-state, the super-state it was reached from. By the

chain of the super-states the vector set Q̂ can be recovered. In each

bit index u, the added rules transfer traffic from servers with values

qiu = −1 to those of values qiu = 11 where pairing can be arbitrary.

5.2 Approximated distribution realization

Given a restriction on the rule number, a simple approach is to take

the n first added (lowest priority) rules in an optimal solution for

an exact representation. However, we conclude by the following

example that this approach is not optimal.

Example 5.2. Consider the target distribution C = (2,3,3,8). In
its first two rules, the solution for exact representation applies a

default rule to the last server, and the next rule as a rule of size 2
3

mapping to server 3 and eliminating traffic from server 4, resulting

in a maximum excess trafficG (D) of 5 (to server 3). However, using
two rules one can achieve a valueG (D) = 4, by replacing the second

rule in the above solution to be of size 2
2
.

Our approach is based on intuition taken from study of properties

of the algorithm for optimal exact realization. We provide the high

level ideas.We basically follow the exact same steps as the algorithm

for exact realization where we keep record of the maximum excess

trafficG (D) of any distribution that is encoded by each super-state

the algorithm arrives at. We find for each number of rules, the

super-state that minimizes the maximum excess traffic G (D).
For a more accurate consideration of the super-states we arrive

at, we also consider transitions between super-states that involves

more than one rule, for whichwe carefully, in a separate sub-routine,

add the involved rules one by the other, where the next rule to be

added is the one that results in the minimal G (D). For each such

sub-step we also record the value of G (D).
The algorithm then outputs for each number of rules the minimal

G (D) encountered and its corresponding distribution (along with

the corresponding super-state or the corresponding sub-step of a

transition between super-states).

6 EXPERIMENTAL RESULTS

6.1 Effect of number of servers on exact

realization size

In this section we examine the optimal rules number needed for

an exact realization of a distribution given by the algorithm from

Section 1.

Fig. 6 shows the average and maximum optimal number of rules

over 500 random traffic allocations for eachk ∈ {5,6, . . . ,12} servers
and a number of bitsW ∈ {10,15,20,25}. For given values of k and

W , randomization was performed such that the traffic distribu-

tion is uniformly distributed over the vectors with fixed sum of

2
W
. These vectors were created using results related to Dirichlet

distribution [5], where first we generated a1, . . . ,ak uniformly dis-

tributed numbers in [0,1]. Then the allocation ci for a server is

given by the closest integer of 2
W · logai/(

∑k
j=1 loga

j) with last

small corrections due to rounding so that their sum is 2
W
. The

5 6 7 8 9 10 11 12

20

40

60

number of servers

a
v
e
r
a
g
e
n
u
m
b
e
r
o
f
r
u
l
e
s

W = 10 W = 15 W = 20 W = 25

(a) average number of rules

5 6 7 8 9 10 11 12

20

40

60

number of servers

m
a
x
.
n
u
m
b
e
r
o
f
r
u
l
e
s

W = 10 W = 15 W = 20 W = 25

(b) maximum number of rules

Figure 6: Average and maximum optimal number of rules

over 500 uniformly distributed traffic allocations as a func-

tion of the number of servers k and the number of bitsW .

results show a linear increase in the rule number as a function of

the number of servers.

Last, we note that in all instances that we tested we obtained the

exact same optimal number of rules as Niagara [10], although the

later one is not proven to be optimal.

6.2 Approximate realization of single flow

We now investigate the number of rules needed to achieve a given

normalized maximum amount of expense G (D).
We used the same method presented in Section 6.1 for creating

uniformly distributed fixed sum target traffic distribution. Fig. 7

shows the average of the (normalized) maximum allocation expense

G (D) found by our algorithm for approximating traffic allocation

over 1000 such random instances with k = 10 servers and for

W ∈ {10,15,20,25} bits. Interestingly, the normalized maximum

allocation expense G (D) drops exponentially with the same expo-

nent regardless of the number of bits. This is because our algorithm

deals first with the most significant bit and then considers lower

bits, making it indifference to the actual number of bits.

7 CONCLUSIONS AND FUTUREWORK

In this paper, we studied the representation of traffic distributions

in commodity switches. We explained the tight connection of the

problem to signed representations of positive integers. This ob-

servation allows us to construct representations with optimality

guarantees. As a future work, we would like to find also optimal

limited size representations with a minimal error. We would also

0 10 20 30 40 50 60

2
−38

2
−26

2
−14

2
−2

number of rules

m
a
x
.
n
o
r
m
a
l
i
z
e
d
e
x
p
e
n
s
e

W = 10

W = 15

W = 20

W = 25

Figure 7: Expectation of the normalized maximum expense

G (D) over 1000 random instances with k = 10 servers and

W ∈ {10,15,20,25} bits.

like to examine whether this link can help to understand more the

expressiveness of switch memory for other typical tasks such as

traffic measurement and policy enforcement.

REFERENCES

[1] Wieb Bosma. 2001. Signed bits and fast exponentiation. Journal de théorie des
nombres de Bordeaux 13, 1 (2001), 27–41.

[2] Pat Bosshart, Dan Daly, Glen Gibb, Martin Izzard, Nick McKeown, Jennifer

Rexford, Cole Schlesinger, Dan Talayco, Amin Vahdat, George Varghese, and

David Walker. 2014. P4: Programming protocol-independent packet processors.

Computer Communication Review 44, 3 (2014), 87–95.

[3] Pat Bosshart, GlenGibb, Hun-Seok Kim, George Varghese, NickMcKeown,Martin

Izzard, Fernando A. Mujica, and Mark Horowitz. 2013. Forwarding metamorpho-

sis: Fast programmable match-action processing in hardware for SDN. In ACM
SIGCOMM.

[4] Richard Draves, Christopher King, Srinivasan Venkatachary, and Brian Zill. 1999.

Constructing optimal IP routing tables. In IEEE Infocom.

[5] Paul Emberson, Roger Stafford, and Robert I Davis. 2010. Techniques for the

synthesis of multiprocessor tasksets. In WATERS. 6–11.
[6] Rohan Gandhi, Hongqiang Harry Liu, Y. Charlie Hu, Guohan Lu, Jitendra Padhye,

Lihua Yuan, and Ming Zhang. 2014. Duet: Cloud scale load balancing with

hardware and software. In ACM SIGCOMM.

[7] Prasanna Ganesan and Gurmeet Singh Manku. 2004. Optimal routing in Chord.

In ACM-SIAM SODA.
[8] C. Hopps. 2000. Analysis of an equal-cost multi-path algorithm. RFC 2992.

[9] C. Hopps and D. Thaler. 2000. Multipath issues in unicast and multicast next-hop

selection. RFC 2991.

[10] Nanxi Kang, Monia Ghobadi, John Reumann, Alexander Shraer, and Jennifer

Rexford. 2015. Efficient traffic splitting on commodity switches. InACMCoNEXT.
[11] Rick McGeer and Praveen Yalagandula. 2009. Minimizing Rulesets for TCAM

Implementation. In IEEE Infocom.

[12] Tal Mizrahi, Ori Rottenstreich, and Yoram Moses. 2017. TimeFlip: Using

Timestamp-Based TCAM Ranges to Accurately Schedule Network Updates.

IEEE/ACM Trans. Netw. 25, 2 (2017), 849–863.
[13] Recep Ozdag. 2012. Intel®Ethernet Switch FM6000 Series-Software Defined

Networking. Intel Coroporation (2012).

[14] Parveen Patel, Deepak Bansal, Lihua Yuan, Ashwin Murthy, Albert G. Green-

berg, David A. Maltz, Randy Kern, Hemant Kumar, Marios Zikos, Hongyu Wu,

Changhoon Kim, and Naveen Karri. 2013. Ananta: Cloud scale load balancing. In

ACM SIGCOMM.

[15] Ori Rottenstreich and János Tapolcai. 2017. Optimal Rule Caching and Lossy

Compression for Longest Prefix Matching. IEEE/ACM Trans. Netw. 25, 2 (2017),
864–878.

[16] N. J. A. Sloane and Simon Plouffe. 1995. The Encyclopedia of Integer Sequences.

[17] Ion Stoica, Robert Morris, David Liben-Nowell, David R. Karger, M. Frans

Kaashoek, Frank Dabek, and Hari Balakrishnan. 2003. Chord: A scalable peer-

to-peer lookup protocol for Internet applications. IEEE/ACM Trans. Netw. 11, 1
(2003), 17–32.

[18] Subhash Suri, Tuomas Sandholm, and Priyank Ramesh Warkhede. 2003. Com-

pressing two-dimensional routing tables. Algorithmica 35, 4 (2003), 287–300.
[19] Richard Wang, Dana Butnariu, and Jennifer Rexford. 2011. OpenFlow-based

server load balancing gone wild. In USENIX Hot-ICE.
[20] Junlan Zhou, Malveeka Tewari, Min Zhu, Abdul Kabbani, Leon Poutievski, Arjun

Singh, and Amin Vahdat. 2014. WCMP: Weighted cost multipathing for improved

fairness in data centers. In ACM EuroSys.

	Abstract
	1 Introduction
	2 Traffic Splitting Problem
	3 The case of two servers
	3.1 Representation as a range function
	3.2 Calculating the cost of a given distribution with signed representations of positive integers
	3.3 Approximated distribution realization

	4 The vector-set representation for multiple servers
	4.1 Construction and basic properties
	4.2 Processing and realization

	5 Solutions for Multiple Servers
	5.1 Exact distribution realization
	5.2 Approximated distribution realization

	6 Experimental Results
	6.1 Effect of number of servers on exact realization size
	6.2 Approximate realization of single flow

	7 Conclusions and Future Work
	References

