
Your Data Center Switch is Trying Too Hard

Xin Jin
Princeton University

Nathan Farrington
Rockley Photonics

Jennifer Rexford
Princeton University

ABSTRACT
We present Sourcey, a new data center network architecture with
extremely simple switches. Sourcey switches have no CPUs, no
software, no forwarding tables, no state, and require no switch con-
figuration. Sourcey pushes all control plane functions to servers.
A Sourcey switch supports only source-based routing. Each packet
contains a path through the network. At each hop, a Sourcey switch
pops the top label on the path stack and uses the label value as
the switch output port number. The major technical challenge for
Sourcey is to discover and monitor the network with server-only
mechanisms. We design novel algorithms that use only end-to-end
measurements to efficiently discover network topology and detect
failures.

Sourcey explores an extreme point in the design space. It ad-
vances the concept of software-defined networking by pushing al-
most all network functionality to servers and making switches much
simpler than before, even simpler than OpenFlow switches. It is a
thought experiment to show that it is possible to build a simple data
center network and seeks to raise discussion in the community on
whether or not current approaches to building data center networks
warrant the complexity.

CCS Concepts
•Networks → Network design principles; Network manage-
ment; Network monitoring; Data center networks;

Keywords
Software-defined networking; data center networks; network archi-
tecture; topology discovery; network monitoring; end hosts

1. INTRODUCTION
Cloud operators invest heavily in their cloud infrastructure. For

example, Google, Microsoft and Amazon spent 11.0, 5.3 and 4.9
billion dollars, respectively, on cloud infrastructure in 2014 [1],
with an estimated 15% of that investment spent on networking [2].
In our opinion, modern data center switches, and the data center
networks created from them, are too expensive, and the reason is

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from Permissions@acm.org.

c© 2016 ACM. ISBN 978-1-4503-4211-7/16/03 ...$15.00.
DOI: http://dx.doi.org/10.1145/2890955.2890967

S2

1

1

1

1

2

1

2

2
S1

S3

H1 H2

Ethernet	

Label(1)	

Label(2)	

Label(2)	

Label(1)	

IP	

TCP	

Payload	

(a) Packet: H1èH2 (b) Sourcey Data Center

Figure 1: Sourcey architecture. Servers insert labels into each
packet to encode an explicit path to the destination. Switches
implement only a label pop operation and use the label value as
the output port.

because the switches themselves are too complicated. They have
too much responsibility and not enough information to make good
decisions. They are trying too hard!

Many cloud data center networks today operate like mini Inter-
nets, using IP longest-prefix match (LPM) routing, with distributed
routing protocols for detecting link and router failures. For exam-
ple, Facebook uses BGP as their intra-data center network routing
protocol [3]. However, using technologies designed for the Internet
introduces unnecessary administrative complexity (increased oper-
ating expenditure, or OPEX) and hardware scalability bottlenecks
(increased capital expenditure, or CAPEX). BGP is complicated,
and this complication leads to bugs between different vendors and
product lines, and increased costs for training, planning, and trou-
bleshooting. Performing IP LPM in hardware on the scale of mod-
ern cloud data center networks quickly surpasses the number of
table entries that can fit on a single chip switch ASIC. IP LPM is a
major administrative headache for mega data center operators.

OpenFlow-style SDN improves upon the state of the practice by
removing the distributed and buggy nature of traditional network
protocols. A logically centralized controller with a global view
of information can make faster and better decisions than a dis-
tributed control plane. And a single implementation leads to fewer
bugs. However, OpenFlow-style SDN relying on hardware-based
forwarding tables on switches still suffers from the scaling limi-
tations of traditional merchant silicon-based data center networks.
One could argue that OpenFlow-style SDN can make better use of
on-chip resources than traditional network protocols, but the small
forwarding table sizes still remain. At the same time, cloud opera-
tors may be hesitant to purchase and deploy OpenFlow-style SDN
solutions from a single vendor because they may not be willing
to be dependent upon a single vendor for something as critical as

10.0.0.1 10.0.0.2

Match	
 Ac(on	

10.1.0.2	
 Outport=2	

Match	
 Ac(on	

10.1.0.3	
 Outport=2	

Match	
 Ac(on	

10.0.0.2	
 Outport=1	

10.1.0.1

10.1.0.2

10.1.0.3

(a) IP Option

…… 10.1.0.1, 10.1.0.2, 10.1.0.3 ……

Match	
 Ac(on	

1	
 Label=2	

Output=2	

Match	
 Ac(on	

2	
 Label=3	

Outport=2	

Match	
 Ac(on	

3	
 Label=4	

Outport=1	

(b) MPLS Label Swap

…… 1 …… Packet
H1èH2

(c) Sourcey

…… 1, 2, 2, 1 …… Packet
H1èH2

Packet
H1èH2

No Forwarding Tables

S2

1

1

1

1

2

1

2

2
S1

S3

H1 H2

S2

1

1

1

1

2

1

2

2
S1

S3

H1 H2

S2

1

1

1

1

2

1

2

2
S1

S3

H1 H2

Figure 2: Source routing methodologies.

their data center network. Finally, OpenFlow itself is getting more
and more complicated. The number of header fields have increased
from 12 (OpenFlow Spec 1.0, December 2009 [4]) to 41 (Open-
Flow Spec 1.5, December 2014 [5]), which requires switches to im-
plement complicated packet parsers and flow table pipelines. The
number of pages of the OpenFlow Spec has also increased from 42
pages to 277 pages [4, 5]. Accordingly, OpenFlow software agents
on switches are also becoming more complicated.

We present Sourcey, a new data center network architecture with
extremely simple switches (Figure 1). This paper is a thought ex-
periment to show that it is possible to build reliable, high-performance
data center networks using much simpler switching elements than
we use today. Sourcey switches are completely stateless. Servers
play a pivotal role by using source routing to choose paths through
the network. For each packet, a server translates a Layer 2 MAC
address or a Layer 3 IP address into a path, represented as a stack
of labels. At each hop, a Sourcey switch pops the top label off of
the stack, and uses the label value directly as the switch output port
number, thus avoiding a stateful table lookup. By the time a packet
reaches its final destination, the entire path has been removed from
the packet and the destination sees only an ordinary packet.

Sourcey pushes the entire control plane to servers. Switches
only perform a simple label pop operation. To enable a packet
to reach its destination, the control plane needs to tell the server
which labels to put into the packet header. The major technical
problem solved in this paper is how to servers can learn the net-
work topology and keep up-to-date with the latest topographical
changes, using only server-based mechanisms. This includes two
tasks: (i) discover the topology for network bootstrap; and (ii)
continuously monitor topology changes to keep update-to-date in-
formation. Once the control plane has the topology information,
it can implement a wide variety of traffic engineering policies to
choose a routing path for each flow or even each packet. The poli-
cies range from distributed ones to centralized ones, as discussed
extensively in literature [6, 7, 8, 9].

We design new algorithms for Sourcey to perform topology dis-
covery and monitoring. The algorithms run only on servers. The
key idea is to send probe packets to the network, and by observ-
ing the forwarding behavior of probe packets with different labels
(whether they return to the sender or not), to infer the topology
and its changes. While it sounds expensive to discover and moni-
tor a entire data center network with server-based probe methods,
we show that the carefully-designed algorithms incur low over-
head. Especially when compared to high-performance data cen-
ter networks (10G and 40G are common today), this overhead is
negligible. Furthermore, topology discovery only needs to be con-
ducted during the bootstrap phase. Afterwards, only a small stream
of packets are required to detect new elements (links, switches,

servers) added to the network and existing elements removed from
the network (manually or by failure).

Source routing is an old idea [10, 11, 12, 13]. The key novelty of
this paper is the design of the architecture with minimal features on
switches and the accompanied algorithms. In summary, we make
the following two major contributions.
• Architecture: We present the Sourcey data center network

architecture. Switches in this architecture have no CPUs,
no software, no forwarding tables, no state, and require no
switch configuration. The entire control plane is pushed to
servers.
• Algorithm: We present novel server-based algorithms to make

Sourcey control plane work. The algorithms leverage end-to-
end probe packets to efficiently infer the network topology
and detect its changes.

We view Sourcey as an extreme point in the design space. It
advances the concept of software-defined networking by pushing
almost all network functionality to servers and making switches
much simpler than before, even simpler than OpenFlow switches
(which has sophisticated packet parsers, table pipelines, and soft-
ware agents). With Sourcey, we seek to raise discussion in the
community on whether or not current approaches to building data
center networks warrant the complexity.

2. SOURCEY ARCHITECTURE
This section gives an overview of Sourcey. We first describe

the source routing in Sourcey and compare it against other source
routing methodologies. Then we describe the switch and server
design in Sourcey.

2.1 Source Routing
In source routing, servers completely or partially specify the path

for each packet, and put the routing information into packet head-
ers. Switches forward packets based on header information. We il-
lustrate how Sourcey differs from existing source routing solutions
in Figure 2.

IP source routing: In IP source routing, servers put IP addresses
into IP option field in each packet header (Figure 2(a)). These IP
addresses either specify the entire path (strict source and record
route, or SSRR) or specify some hops that the packet must go
through (loose source and record route, or LSRR). In the exam-
ple, the packet header contains the IP addresses of switches at each
hop in the IP option field for the packet from server H1 to server
H2. It requires servers to know the IP addresses of switches at each
hop, and switches to keep an IP forwarding table.

MPLS label swap routing: In MPLS label swap routing, servers
or ingress switches put an MPLS label on each packet header, and
at each hop, the switch forwards the packet based on the label and

drop	
 packet	
 send	
 to	

output	
 port	
 i	

pop	
 label	
 i	

add	
 switch	
 ID	

to	
 header	

i is 0
i is null or
port i is inactive port i is active

packet in

TCP/IP	
 Stack	

Data	
 Plane	

NIC	

Control	

Plane	

App	
 App	

(a) Sourcey switch
 data plane flowchart

(b) Sourcey server software stack
 for control plane and data plane

App	

Figure 3: Sourcey switch and server design.

swaps the label to another one (Figure 2(b)). In the example, server
H1 puts MPLS label 1 into the header and the packet goes through
the network to reach H2. It requires a centralized controller to
properly compute and configure the flow tables for each switch.
Sourcey source routing: Sourcey completely eliminates the flow
table in switches and requires only a label pop function. Servers put
labels for the entire path into each packet header; the label values
indicates the switch output ports at each hop (Figure 2(c)). Since
data center networks have small diameters, the overhead of putting
a path into packet headers is small. In the example, server H1 puts
[1, 2, 2, 1] into the packet header. The first value denotes the output
NIC port of server H1, the second value denotes the output port of
switch S1, etc. At each hop, switches simply pop off a label and
uses the label value as the output port number. It does not require
any configuration of switches.

We have to note that only using the label pop function and spec-
ifying the entire path at ingress is not a new idea [10, 11, 12, 13].
But to make this work, it requires the ingress to know what labels
to put into a packet header. Existing works either assume there
is some sort of an oracle, use distributed protocols, or interacting
with the switch software agents. Differently, Sourcey control plane
is entirely on servers and uses server-based mechanisms to learn
the topology.

2.2 Sourcey Switch
A Sourcey switch has no CPUs, no software, no forwarding ta-

bles, no state, and requires no switch configuration. It only imple-
ments the simple logic described in Figure 3(a). Switch ports start
from 1. We reserve port 0 for switch identification. For each arriv-
ing packet, the switch pops the first label from the label stack and
performs one of the following actions.
• Normal case: It forwards the packet to the output port de-

noted by the label.
• Error handling: If the label stack is empty or if the la-

bel value maps to a nonexistent or failed port, the packet is
dropped.
• Switch identification: If the label is 0, it appends its switch

ID to the header and uses the next label to decide which out-
put port to forward the packet.

Because no software agents run on the switches, the last case is nec-
essary for servers to determine the identity of a switch, which is an
important primitive in the topology discovery algorithms presented
later.
MPLS Compatibility: Sourcey can be made compatible with ex-
isting MPLS label switch routers (LSRs). Sourcey labels can use

the MPLS header format. Servers insert MPLS headers between
the Ethernet header and IP header (Figure 1). For the special case
of switch identification, MPLS LSRs must be configured to forward
such packets to LSR control plane, and let software agents handle
such packets.

2.3 Sourcey Server
Sourcey servers are responsible for putting labels into each packet

header. To implement this, it requires a control plane that decides
what labels to push for a packet and a data plane that performs label
push at line speed, as shown Figure 3(b).

Data plane: The data plane is an independent piece of software at
each server. It receives routing decisions from the control plane and
pushes labels to each packet based on the routing. The data plane
has to handle every packet at line speed. One implementation is as a
shim layer below the TCP/IP stack. Existing applications then need
not be modified. Implementation choices include in kernel space,
integration with the NIC as firmware or hardware, and integration
with the hypervisor in virtualized environments.

Control plane: The control plane is a distributed system that runs
on all servers. It discovers the network topology, monitors the net-
work status, and chooses routes for each flow or packet.

The major technical problem is topology discovery and monitor-
ing. Once the control plane has an updated view of the topology, it
is possible to choose routes for each flow or packet with different
traffic engineering policies, as discussed in [6, 7, 8, 9]. In the re-
mainder of this paper, we focus on how to implement topology dis-
covery and topology monitoring using server-based mechanisms.

3. SOURCEY CONTROL PLANE
There are two major problems to be solved by the control plane.

First, the control plane needs to discover the network topology dur-
ing bootstrap, so that servers know what labels to use to implement
a routing path. Second, the control plane needs to monitor the net-
work and have an up-to-date view of the topology, so that traffic
engineering can quickly switch to different paths in face of topol-
ogy changes. This section describes server-based mechanisms to
solve them.

3.1 Topology Discovery
Basic idea: Since the control plane exists entirely on servers, we
can not run any distributed protocols on switches to discover the
topology. We can only rely on servers. The basic idea is to send
probe packets to the network and infer the network topology by

1
H1

1
H2

1

S3
1 2 1

2

1

2

3 2 3
S1 S2

S4

[1, 0, 1]
1
H1

1
H2

1

S3
1 2 1

2

1

2

3 2 3
S1 S2

S4

[1, 2, 0,
1, 1]

[1, 3, 0,
1, 1] 1

H1

1
H2

1

S3
1 2 1

2

1

2

3 2 3
S1 S2

S4

p1:
[1, 2, 2, 0,
2, 1, 1]

p2:
[1, 2, 2, 0,
3, 1, 1] 1

H1

1
H2

1

S3
1 2 1

2

1

2

3 2 3
S1 S2

S4

p3:
[1, 3, 2, 0,
3, 1, 1]

p4:
[1, 3, 2, 0,
2, 1, 1]

(a) Discover S1 (b) Discover S3 and S4 (c) Discover S2 (d) Discover S2

Figure 4: Example of topology discovery.

observing the behavior of these packets (whether they return to the
sender or not). A naive way is to send packets with all combinations
of labels to the network and build the topology based on their be-
havior. The overhead of this solution increases exponentially with
the maximum number of hops of the network. To make the prob-
lem tractable, we use breadth-first search (BFS). A server gradually
explores the network and learns the topology, rather than exploring
the entire topology in one shot. This prunes many branches from
the search space.

Example: To make the idea more concrete, we describe an exam-
ple shown in Figure 4. Suppose, server H1 performs the topology
discovery. Initially, it only knows about itself.

Discover S1: Server H1 sends probe packets with label stack
[1, 0, j] to learn its neighbor (the first label is 1 because server H
only has one NIC) where 1 ≤ j ≤MAX_PORT andMAX_PORT
is the maximum port count of a switch. The label 0 is used to query
the switch ID that server H1 is connected to. Only the packet with
label stack [1, 0, 1] returns to server H1. This tells server H1 that it
is connected to switch S1 on port 1.

Discover S3 and S4: After discovering switch S1, server H1

sends probe packets to discover switches two hops away. The probe
packets have label stack [1, i, 0, j, 1] where 1 ≤ i, j ≤MAX_PORT .
The first label 1 in the stack is used to reach switch S1; the last
label 1 is used to return to server H1 from switch S1; the middle
labels [i, 0, j] are used for discovery. Packets with [1, 2, 0, 1, 1] and
[1, 3, 0, 1, 1] return to server H1, and server H1 learns link S1-S3

and link S1-S4.
Discover S2: Now server H1 sends probe packets to discover

switches three hops away. Since there are two switches (S3 and
S4) that are two hops away, the probe packets need to go one hop
beyond each of them. To go beyond S3, the probe packets use label
stacks [1, 2, i, 0, j, 1, 1]; to go beyond S4, the probe packets use
label stacks [1, 3, i, 0, j, 1, 1]. The following four packets would
return to server H1.
• p1: [1, 2, 2, 0, 2, 1, 1].
• p2: [1, 2, 2, 0, 3, 1, 1].
• p3: [1, 3, 2, 0, 3, 1, 1].
• p4: [1, 3, 2, 0, 2, 1, 1].

Only looking at these packets, packet p1 suggests port 2 on switch
S3 is connected to port 2 on switch S2; packet p2 suggests port 2
on switch S3 is connected to port 3 on switch S2. They are con-
flicting with each other. If we look at the paths they traverse, we
can see that packet p1 uses H1-S1-S3-S2-S3-S1-H1 and p2 uses
H1-S1-S3-S2-S4-S1-H1. The return path of p2 is not the same as
the departure path. To resolve this conflict, we need to send an-
other two probe packets, one with label stack [1, 2, 2, 2, 0, 1, 1] and
the other with label stack [1, 2, 2, 3, 0, 1, 1]. They would query the
switch ID of the first switch on the return path. From them, we
know that p1 uses the same path for the round trip and p2 does not.
Therefore, port 2 on switch S3 is connected to port 2 on switch S2.

1 H1 3
S1

1 2
S2 2

1

Figure 5: Example for parallel links.

Similarly, for p3 and p4 we need to send additional probe packets
to determine link S4-S2.

DiscoverH2: Finally, serverH1 sends probe packets to discover
nodes four hops away. Since there is only one switch three hops
away, the probe packets use label stacks [1, 2, 2, i, 0, j, 2, 1, 1]. The
probe packet with label stack [1, 2, 2, 1, 0, 1, 2, 1, 1] would return
to server H1 with the ID of server H2. This finishes the topology
discovery process.

Special case - parallel links: When there are multiple link between
two switches, we cannot determine the specific ports for each par-
allel link. For example, in Figure 5, there are two parallel links
between switch S1 and switch S2. The packets with label stacks
[1, 2, 0, 1, 1], [1, 2, 0, 2, 1], [1, 3, 0, 1, 1], and [1, 3, 0, 2, 1] will all
return to server H1. Even if we use another probe packet to test
the switch ID on the other side of the links, it will not make a dif-
ference as the switch is always switch S1. We can not tell whether
port 2 on switch S1 is connected to port 1 or 2 on switch S2.

However, it does not matter that we do not know the specific
ports for each parallel link. When we want to send traffic from
switch S1 to switch S2, we can use either port 2, port 3, or a
combination of them. The important thing is we know what ports
belong to these parallel links. Identifying the number of parallel
links and their ports is as follows. Let l1 and l2 be the labels to
and from switch S. When there are parallel links between switch
S and another switch S′, we will observe all probe packets with
[l1, i, 0, j, l2] where i ∈ P and j ∈ P ′. P are the ports of these
parallel links on switch S (P = {2, 3} in Figure 4(b)); P ′ are the
ports of these links on S′ (P ′ = {1, 2} in Figure 5).

Optimization - multiple servers: To make the explanation simple,
we have assumed the topology discovery runs on one server. It
is possible to run it on multiple servers. In this case, each server
begins the topology discovery without knowing of other servers.
After two servers discover each other, they compute the union of
their two partially discovered topologies. The union is simply a
union of the node set and link set. Then they divide the remaining
topology discovery plan into two parts and each server probes one
part.

Optimization - a blueprint: In many cases, operators have a blueprint
of their planned data center topology. A blueprint should indicate
the ID of each switch, and the port numbers on each side of each
link. Servers can use such a blueprint to speed topology discovery.
Instead of searching the network using BFS, servers can directly
generate packets that take paths on the blueprint. These probe pack-

1 H1 S1 1 2 S2 2 1 1 S3 2 1 S4

[1, 2, 1, 1]
✔

[1, 2, 2, 2, 1, 1, 1, 1]
✗

✔
[1, 2, 2, 1, 1, 1]

Figure 6: Example for topology monitoring.

ets verify that the physical topology is wired by the operator as ex-
pected. For the example in Figure 4, we send the following probe
packets to verify all the links, rather than trying different combina-
tions of labels for each link (different combinations of i and j in
probe packets).
• Link H1-S1: [1, 0, 1]
• Link S1-S3: [1, 2, 0, 1, 1]
• Link S1-S4: [1, 3, 0, 1, 1]
• Link S3-S2: [1, 2, 2, 0, 2, 1, 1] and [1, 2, 2, 2, 0, 1, 1]
• Link S4-S2: [1, 3, 2, 0, 3, 1, 1] and [1, 3, 2, 3, 0, 1, 1]
• Link S2-H1: [1, 2, 2, 1, 0, 1, 2, 1, 1]

Analysis: Now we analyze the overhead of topology discovery.
Since topology discovery is not frequently invoked, we focus on the
total traffic instead of the delay. Let the number of switches be n
and the maximum port count on a switch is k. Without a blueprint,
for each switch, we need to send at most 2k2 probe packets. The
total probe packets needed to discover a network are 2nk2. To
make this concrete, let n = 10000 and k = 48. Then the total
probe packets is 46.08 million. Let the packet size be the upper
bound 1500 B. Then the total probe traffic is 69.12 GB.

With a blueprint, we need to send at most 2 packets to verify
each link. Since there are nk/2 links, the total probe packets are
nk. When n = 10000 and k = 48, the total probe packets is 0.48
million. Let the packet size be the upper bound 1500 B. Then the
total probe traffic is 0.72 GB.

3.2 Topology Monitoring
Topology monitoring maintains an up-to-date view of the net-

work topology. Its job is to quickly detect topology changes, which
includes new links and nodes added to the network, existing links
and nodes removed from the network, and failures. The way to de-
tect links and nodes added to the network is similar to topology dis-
covery. Servers send probe packets to explore inactive switch ports,
in order to see whether new links or nodes are added to the network
and the ports become active. Since the topology has already been
discovered and most ports are active, the overhead of detecting ad-
ditions is much lower than topology discovery. Moreover, since
removals (manually by operators) and failures all behave as miss-
ing links and nodes in the topology graph, their detection solutions
are the same. Finally, we say that a node is removed if all of its links
are removed. Therefore, we focus on link removals in the rest of
this subsection and understand that it also includes node removals.

Basic idea: Servers send probe packets to traverse all the links to
detect link removals. If all the links are active, these packets would
return to the senders; if a packet does not return, it means at least
one link on the probe path of this packet has been removed. Upon
detecting link removals, we send more probe packets to locate the
removed links. There are two goals for the topology monitor: full
coverage (monitor all links) and high efficiency (detect removals
with low delay). To achieve full coverage, we compute a Euler

cycle for the topology and use the Euler cycle as the probe path
for a probe packet. A Euler cycle on a graph is a path that traverses
each edge exactly once and returns to the source. We treat each link
in the network as two directional edges and the entire network as a
directed graph. Based on graph theory, we can always find a Euler
cycle in a directed graph. With this, a server continuously sends
probe packets that traverse the Euler cycle to monitor all links in
the network. Since the packet traverses each directed edge only
once, the probe packets incur low overhead.

If a packet does not return to the server (after retrying a few
times), a link is considered to have been removed, and the next step
is to determine which link(s) on the path has(have) been removed.
We use binary search to quickly locate the removed links. Specifi-
cally, we divide the network into two parts and send a probe packet
for each part. If a probe packet does not return, then the corre-
sponding part has link removals. We do this recursively until we
have located the removed link(s).
Example: We use the example in Figure 6 to illustrate how to de-
tect a link removal. In the example, server H1 periodically sends
probe packets with label stack [1, 2, 2, 2, 1, 1, 1, 1] to monitor four
links (H1-S1, S1-S2, S2-S3, S3-S4). When all links are active, the
probe packets would return to server H1. Now suppose link S3-
S4 is removed (or fails). The probe packets would be dropped at
switch S3, indicting a link removal. Then server H1 sends more
probe packets to locate the link removal with binary search. The
probe packet with label stack [1, 2, 1, 1] returns to server H1, in-
dicting links H1-S1 and S1-S2 are active. Then server H1 sends
a probe packet with label stack [1, 2, 2, 1, 1, 1] to test link S2-S3.
This probe packet also returns. Therefore, link S3-S4 is removed.
Optimization: There are many ways to speed topology monitor-
ing; we introduce two of them here. First, large networks can have
hundreds of thousands of links. It takes a long time for a probe
packet to traverse all of these links and return to the server. Ac-
cordingly, we need to set a long timeout to determine a packet loss.
To solve this, we can divide the network into multiple parts and
transmit one probe packet per part. These probe packets can be
generated by a single server or multiple servers (to distribute probe
traffic load). In this way, we can reduce the timeout parameter and
thus reduce removal detection delay. Second, rather than using bi-
nary search, we can use k-ary search that divides the probe path
into k parts each time. In the extreme case, for a probe path with l
links, we can divide the path into l parts and send a probe packet to
test each link in one-shot. This can reduce the delay of localizing
the link removal to only one timeout.
Analysis: Now we analyze the delay to detect a link removal. Sup-
pose a probe path traverses l links and the delay of traversing one
link is t (including switching delay and propagation delay). Nor-
mally, a probe packet would take 2lt time to return. Suppose we
set time out to 3 times of that, i.e., 6lt. Upon a timeout, the k-ary
search uses one probe packet for each link. So it takes one timeout
to detect a link removal and one timeout to locate the link removal.
The total delay is 12lt. To make this concrete, let l be 100 and t be
10 µs. The total delay is 12 ms.

4. RELATED WORK
Data center network architectures: There are many papers on
data center network architectures [13, 14, 15, 16, 17]. They design
new topologies, new addressing schemes, and new traffic engineer-
ing algorithms that are tailored for data center networks. Instead
of focusing on topology, addressing and routing, Sourcey focus on
the division of labor between servers and switches. Sourcey is an
extreme design that pushes the entire control plane to servers.

Software-defined networking: SDN decouples the control plane
from the data plane, and aims to simplify network management.
OpenFlow is the de facto protocol of SDN [18]. Although simpler
than existing solutions, OpenFlow requires switches to implement
a flow table and keep flow state [5]. The protocol is becoming
more and more complicated with each new release. Sourcey takes
a fresh look at data center networks and proposes to completely re-
move unnecessary features from switches. As compared to the Link
Layer Discovery Protocol (LLDP), Sourcey completely eliminates
the need to implement a topology discovery protocol on switches
and thus greatly simplifies the switch design. In terms of the SDN
control plane, there are many works that propose techniques to
make the control plane scalable and high performance [19, 20, 21,
22, 23]. These techniques are orthogonal to, and can be used by
Sourcey.
Source Routing: Several works have proposed to use source rout-
ing in data centers [10, 11, 12, 13]. The novelty of Sourcey is
the fact that such a simple stateless building block can be used to
build a scalable, high-performance data center network, and the al-
gorithms that perform topology discovery and network monitoring
from servers.
Network Tomography: Network tomography uses end-to-end mea-
surements to discovery network topology and detect failures [24,
25, 26]. Although the high-level objective is similar, Sourcey’s
control plane algorithms are specially tailored for the minimal fea-
tures of Sourcey switches.

5. CONCLUSION
In this paper, we presented Sourcey, a new data center network

architecture with extremely simple switches. We strip out CPUs,
software, forwarding tables and state from switches. Sourcey switches
implement only a single operation in hardware. We completely
eliminate the need to configure switches. The entire control plane
is pushed to servers. We presented algorithms to efficiently detect
topology changes with server-based probing methods. This paper
shows a particular design of a data center network with minimal
features. We believe that Sourcey, and reducing the complexity of
switches in general, is a promising direction to pursue for future
data center networks.
Acknowledgments We thank the SOSR reviewers for their feed-
back. Xin Jin and Jennifer Rexford were supported by the NSF
under grant CNS-1162112.

6. REFERENCES
[1] “Google had its biggest quarter ever for data center spending.

Again.” http://tinyurl.com/kezfjv5.
[2] A. Greenberg, J. Hamilton, D. A. Maltz, and P. Patel, “The

cost of a cloud: Research problems in data center networks,”
SIGCOMM CCR, vol. 39, no. 1, 2008.

[3] “Introducing data center fabric, the next-generation
Facebook data center network.” http://tinyurl.com/kezfjv5.

[4] “OpenFlow Switch Specification 1.0.0.”
http://tinyurl.com/md8gge7.

[5] “OpenFlow Switch Specification 1.5.0.”
http://tinyurl.com/qcz3bow.

[6] M. Suchara, D. Xu, R. Doverspike, D. Johnson, and
J. Rexford, “Network architecture for joint failure recovery
and traffic engineering,” in ACM SIGMETRICS, June 2011.

[7] J. Perry, A. Ousterhout, H. Balakrishnan, D. Shah, and
H. Fugal, “Fastpass: A centralized zero-queue datacenter
network,” in ACM SIGCOMM, August 2014.

[8] M. Caesar, M. Casado, T. Koponen, J. Rexford, and
S. Shenker, “Dynamic route recomputation considered
harmful,” SIGCOMM CCR, vol. 40, pp. 66–71, April 2010.

[9] J. Mudigonda, P. Yalagandula, M. Al-Fares, and J. C. Mogul,
“SPAIN: COTS data-center Ethernet for multipathing over
arbitrary topologies,” in USENIX NSDI, April 2010.

[10] S. A. Jyothi, M. Dong, and P. Godfrey, “Towards a flexible
data center fabric with source routing,” in ACM SOSR, June
2015.

[11] R. M. Ramos, M. Martinello, and C. Esteve Rothenberg,
“SlickFlow: Resilient source routing in data center networks
unlocked by OpenFlow,” in IEEE Conference on Local
Computer Networks (LCN), October 2013.

[12] C. Guo, G. Lu, H. J. Wang, S. Yang, C. Kong, P. Sun, W. Wu,
and Y. Zhang, “SecondNet: A data center network
virtualization architecture with bandwidth guarantees,” in
ACM CoNEXT, November 2010.

[13] L. Fang, F. Chiussi, D. Bansal, V. Gill, T. Lin, J. Cox, and
G. Ratterree, “Hierarchical SDN for the hyper-scale, highly
elastic data center and cloud,” in ACM SOSR, June 2015.

[14] C. Guo, H. Wu, K. Tan, L. Shi, Y. Zhang, and S. Lu, “DCell:
A scalable and fault-tolerant network structure for data
centers,” in ACM SIGCOMM, August 2008.

[15] R. Niranjan Mysore, A. Pamboris, N. Farrington, N. Huang,
P. Miri, S. Radhakrishnan, V. Subramanya, and A. Vahdat,
“PortLand: A scalable fault-tolerant layer 4 data center
network fabric,” in ACM SIGCOMM, August 2009.

[16] A. Greenberg, J. R. Hamilton, N. Jain, S. Kandula, C. Kim,
P. Lahiri, D. A. Maltz, P. Patel, and S. Sengupta, “VL2: A
scalable and flexible data center network,” in ACM
SIGCOMM, August 2009.

[17] H. Abu-Libdeh, P. Costa, A. Rowstron, G. O’Shea, and
A. Donnelly, “Symbiotic routing in future data centers,” in
ACM SIGCOMM, August 2010.

[18] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar,
L. Peterson, J. Rexford, S. Shenker, and J. Turner,
“OpenFlow: Enabling innovation in campus networks,”
SIGCOMM CCR, vol. 38, April 2008.

[19] T. Koponen et al., “Onix: A distributed control platform for
large-scale production networks,” in USENIX OSDI, October
2010.

[20] “OpenDaylight Platform.” http://www.opendaylight.org/.
[21] T. Koponen, K. Amidon, P. Balland, M. Casado, A. Chanda,

B. Fulton, I. Ganichev, J. Gross, N. Gude, P. Ingram, et al.,
“Network virtualization in multi-tenant datacenters,” in
USENIX NSDI, April 2014.

[22] “Open Network Operating System (ONOS).”
http://onosproject.org/.

[23] “Cisco Application Policy Infrastructure Controller (APIC).”
http://tinyurl.com/orc2rxe.

[24] M. Coates, R. Castro, R. Nowak, M. Gadhiok, R. King, and
Y. Tsang, “Maximum likelihood network topology
identification from edge-based unicast measurements,” in
ACM SIGMETRICS, June 2002.

[25] A. Dhamdhere, R. Teixeira, C. Dovrolis, and C. Diot,
“NetDiagnoser: Troubleshooting network unreachabilities
using end-to-end probes and routing data,” in ACM CoNEXT,
December 2007.

[26] Y. Huang, N. Feamster, and R. Teixeira, “Practical issues
with using network tomography for fault diagnosis,”
SIGCOMM CCR, vol. 38, no. 5, pp. 53–58, 2008.

