
Catching the Microburst Culprits with Snappy
Xiaoqi Chen

Princeton University
xiaoqic@cs.princeton.edu

Shir Landau Feibish
Princeton University

sfeibish@cs.princeton.edu

Yaron Koral
AT&T Labs

yk216h@att.com

Jennifer Rexford
Princeton University
jrex@cs.princeton.edu

Ori Rottenstreich
Technion

or@cs.technion.ac.il

ABSTRACT
Short-lived tra�c surges, known as microbursts, can cause peri-
ods of unexpectedly high packet delay and loss on a link. Today,
preventing microbursts requires deploying switches with larger
packet bu�ers (incurring higher cost) or running the network at low
utilization (sacri�cing e�ciency). Instead, we argue that switches
should detect microbursts as they form, and take corrective ac-
tion before the situation gets worse. This requires an e�cient way
for switches to identify the particular �ows responsible for a mi-
croburst, and handle them automatically (e.g., by pacing, marking,
or rerouting the packets). However, collecting �ne-grained statis-
tics about queue occupancy in real time is challenging, even with
emerging programmable data planes. We present Snappy, which
identi�es the �ows responsible for a microburst in real time. Snappy
maintains multiple snapshots of the occupants of the queue over
time, where each snapshot is a compact data structure that makes
e�cient use of data-plane memory. As each new packet arrives,
Snappy updates one snapshot and also estimates the fraction of
the queue occupied by the associated �ow. Our simulations with
data-center packet traces show that Snappy can target the �ows
responsible for microbursts at the sub-millisecond level.

CCS CONCEPTS
• Networks → Network measurement; Programmable net-
works; Network monitoring;

ACM Reference Format:
Xiaoqi Chen, Shir Landau Feibish, Yaron Koral, Jennifer Rexford, and Ori Rot-
tenstreich. 2018. Catching the Microburst Culprits with Snappy. In SelfDN
2018: ACM SIGCOMM 2018 Afternoon Workshop on Self-Driving Networks
, August 24, 2018, Budapest, Hungary. ACM, New York, NY, USA, 7 pages.
https://doi.org/10.1145/3229584.3229586

1 INTRODUCTION
Queue utilization in network switches remains a major concern
for network administrators. Large queues cause packet loss and
delay, leading to performance degradation. Even on a link with low

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for pro�t or commercial advantage and that copies bear this notice and the full citation
on the �rst page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior speci�c permission and/or a
fee. Request permissions from permissions@acm.org.
SelfDN 2018, August 24, 2018, Budapest, Hungary
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5914-6/18/08. . . $15.00
https://doi.org/10.1145/3229584.3229586

Microburst Micro	burst5x

4x

3x

2x

1x

16:00:00 20:00:00 0:00:00 4:00:00 8:00:00 12:00:00 16:00:00

Time in GMT

Bu
ffe

rU
til
iz
at
io
n

Figure 1: Carrier grade network router bu�er utilization
measurements. The y-axis indicates the increase in bu�er
utilization compared to the average usage.

average utilization, a large queue can arise due to a microburst—a
short-lived spike of legitimate or adversarial tra�c that exceeds
the average volume by several orders of magnitude. In data-center
networks, microbursts quickly cause queues to become fully uti-
lized, leading to immediate packet loss [5]. Microbursts also pose
challenges for network planning in carrier networks. While router
bu�ers are extremely underutilized most of the time, and studies
show that shorter bu�ers should be su�cient [3, 14], the long-tail
nature of the tra�c still introduces signi�cant microbursts. Figure 1
shows an example of router bu�er utilization measurements over a
24-hour time period in a carrier network. As can be seen, some of
the bursts cause a 4x increase in bu�er utilization, compared to the
average tra�c volume, whereas most of the time bu�er utilization
does not surpass a factor of 2x.

To maintain high quality of service during microbursts, admin-
istrators are forced to deploy equipment with larger bu�ers and
run their networks at lower utilization, hence incurring higher cost.
While preventing microbursts is the obvious goal, even detecting
them in time poses a signi�cant challenge. Today’s state-of-the-art
commercial network equipment reports tra�c statistics at the scale
of minutes or at best seconds, while observing a microburst requires
monitoring at the scale of microseconds. These measurement tech-
niques rely on exporting raw, prede�ned measurements from the
data plane, to be analyzed in the control plane. Exporting infor-
mation at the millisecond timescale requires moving tremendous
amounts of data, which is very expensive and harms the network
performance. Furthermore, the short time scale of microbursts may
sometimes make controller assisted remediation less adequate.

Microbursts have been de�ned in a number of ways, based on
the congestion [11] or loss [6] that they cause. We focus on the
length of the queue as the backlog builds; here, a microburst is a
group of packets that consume a signi�cant fraction of the tra�c in

SelfDN 2018, August 24, 2018, Budapest, Hungary Chen et al.

the queue when the queue has passed a given threshold length. This
allows us to detect microbursts as they form, therefore allowing the
network device to quickly take action to mitigate them, before the
queue is full and packet loss is inevitable. We focus on identifying
the weight of the individual �ows in the queuing bu�er, and partic-
ularly heavy-hitter �ows that consume a signi�cant fraction of the
queuing bu�er during a microburst. These weights could be used
to mitigate microbursts by, say, dropping a packet with probability
proportionally to its �ow’s contribution to the queue length. Alter-
natively, we could mark ECN �ags only on those �ows contributing
to a signi�cant fraction of queue during congestion. With the new
capabilities provided by programmable switches, detecting these
forming bursts is now possible, and we present a mechanism which
does so quickly, right in the data plane. Such timely detection of
microbursts could be especially useful for detecting di�erent types
of Denial of Service (DoS) attacks, such as low-rate TCP-targeted
DoS attacks [16].

A straightforward approach for detecting the signi�cant �ows
causing the microbursts would require tracking the volume of each
�ow in the queue. This in turn requires maintaining per-�ow state
and updating the information on packet arrivals and departures.
This approach is not realistic even with programmable switches,
as we will discuss in Section 2.2. Fortunately, we can exploit three
relaxations to the general problem of measuring queue occupancy,
i.e., measuring the exact volume of each �ow in the queue:

(1) Perform detection only when the queue is long: This
allows us to use approximation techniques. In particular,
we divide groups of incoming packets into snapshots, and
estimate the queue’s content by looking some number of
snapshots. This may cause large relative error when the
queue is very short, but can yield a reasonable approximation
when the queue is su�ciently long.

(2) Target only the heavy�ows: Since we are only concerned
with detecting the large �ows, we can use sketches or other
approximation techniques, removing the need to keep per-
�ow state. Hence, our snapshots are sketches of the sizes of
the �ows in the queue.

(3) Take action directly in the data plane: The switch acts
on incoming packets (e.g., by marking, dropping, or rate
limiting) that belong to heavy �ows. Since we only need to
identify heavy �ows when an associated packet arrives, we
do not need to store and report �ow identi�ers.

Based on these insights, we present Snappy, a scalable framework
for detectingmicrobursts quickly, within the data plane. The Snappy
framework periodically records queue snapshots with incoming
packets. These snapshots consist of sketches of part of the queue,
and allow us to e�ectively estimate the queue’s content when the
queue is experiencing an ongoing build-up due to a burst of tra�c.
By using approximate snapshots, the detection algorithm is scalable
and highly e�cient even for high capacity routers. Our technique
can run on commodity programmable switches, as we explain in
detail in Section 2.

We evaluate Snappy via simulationwith real packet traces. Snappy
is capable of reacting to sub-millisecond queue buildup, and can
capture several types of microburst culprit �ows such as �ows that
surpass a certain threshold or heavy hitters that consist of a certain

4 3 7 3 3 3 3 2 9

SiSi+1Si+2Si+3 …………

Figure 2: Three-packet snapshots of queue occupants.

fraction of the queue. Simulation evaluation using data center net-
work trace shows Snappy achieves high accuracy (� 90% precision
and recall) when identifying culprit �ows during microbursts, using
10 snapshots each consuming less than 1 KB of stateful memory, a
reasonable resource consumption in programmable switches.

2 SNAPPY FRAMEWORK
Our discussion assumes one link with a single FIFO queue with
capacity (maximum queue length) C . To simplify the discussion,
we assume unit-sized packets; it is straightforward to extend our
solution to variable packet sizes.

2.1 Heavy Hitters With Subtraction
To answer which �ow is occupying signi�cant queuing bu�er space
is essentially solving the Heavy Hitters Detection problem, but with
subtractions: a packet’s size is added to its �ow’s size when it enters
the queue, and a packet exiting the queue should be subtracted from
its �ow size. Subsequently, we can identify which �ow is occupying
a signi�cant fraction of the entire queue.

We �rst present an ideal algorithm to answer this problem. The
ideal algorithm maintains a key-value table mapping �ow IDs to
�ow size counters. Whenever a packet p of �ow f enters the queue,
we increment its appropriate counter: count[f]+=1. At the other end
of the queue, for each departing packet p0 of �ow f 0, we decrease
its counter: count[f 0]-=1. If the current queue length l exceeds a
threshold, we would like to �nd all �ows occupying more than (say)
1% of the bu�er space (i.e. �ows with count[f] � 1% ⇥ l).

However, the ideal algorithm requires simultaneous update to the
data structure from both ends of the queue, as packets are constantly
entering and leaving the queue. Such simultaneous update to the
data structure is impractical to implement in any of today’s high
throughput switches.

2.2 PISA Constraints
A Protocol Independent Switch Architecture (PISA) switch is com-
posed of a pipeline of stages, and each stage consists of a match-
action table and a �xed amount of state. In order to maintain line-
speed packet processing, the amount of work that can be performed
at each stage is limited. A typical high-performance PISA switch
may have 4 � 32 hardware stages, each with access to O(10MB)
stateful memory.

The PISA architecture poses many constraints for algorithm
implementation. We highlight some of these constraints, which are
important for understanding the design challenges and decisions
in Snappy. PISA allows only constant-time actions at each stage,
and the number of hardware stages is limited. Furthermore, the
overall amount of memory is limited, thus making it impractical to
maintain accurate per-�ow counters within the data plane.

Catching the Microburst Culprits with Snappy SelfDN 2018, August 24, 2018, Budapest, Hungary

Additionally, in order to prevent concurrent memory access to a
single memory location, each stateful memory location may only
be accessed from one particular stage of the packet processing
pipeline. Due to this constraint, PISA does not allow access to the
same memory (or data) twice in a pipeline. Therefore, as a packet
traverses the pipeline, it may only access a register in a single
stage of the pipeline, meaning that a register cannot be accessed
both when a packet enters the queue and as it leaves the queue.
We remove the second memory access (and eliminate the need
for simultaneous updates to the data structure) by introducing
snapshots in Section 2.3. We address other hardware limitations
mentioned above in Section 2.4 and 2.5.

Additionally, current P4 speci�cations [8, 9] are quite vague re-
garding the structure and behaviour of the queuing mechanism.
Queuing dynamics information such as queue capacity and utiliza-
tion are not necessarily accessible from either ingress or egress
pipeline. However, from our study of current implementations, we
observed that often a packet does not have access to the queue
length during the ingress pipeline. This is because routing deci-
sions are �nalized only after the packet has pass through the entire
ingress pipeline. Meanwhile, in commodity programmable switches,
current queue length and packet queue-arrival time are generally
available at the egress pipeline. Therefore, our algorithm should
be performed in the egress pipeline to allow access to this crucial
information.

2.3 Queue Snapshots for Batch Subtraction
When a packet arrives in a constant-throughput FIFO queue, we
know the time it will exit the queue, based on current queue length
l . Similarly, given current queue length l , we can observe the con-
tent of the queue by looking into l most recently arrived packets.
Although arbitrary access to exactly l past packet arrivals may be
unfeasible, we can approximate this by partitioning the arriving
packet stream into snapshot windows. We present the �rst key
component of Snappy framework, snapshots, illustrated in Figure 2,
as a solution to avoid concurrent memory update while observing
queue occupancy. Instead of maintaining one data structure and
subtracting packets from it, we maintain many snapshots, each
capturing a window ofw bytes of tra�c. When a packet arrives, we
add it to the most recent snapshot; afterw bytes of tra�c have ar-
rived, we advance to a new snapshot. We exploit the FIFO property,
which guarantees that packets exit the queue in the same order in
which they enter the queue.

We denote [f] as rounding value f to the nearest integer. When
the queue length is l , we can combine themost recent [lw] snapshots
to approximate the content of the queue and �nd heavy �ows.
When the queue is longer due to more severe congestion, we look
at more snapshots. Combining snapshots inevitably causes some
rounding errors near the head of the queue. If the queue length is
shorter than one snapshot, the relative rounding error can become
large; however, since we focus on microburst-caused congestion,
the queue is rather long, and the rounding error is less signi�cant.

An old snapshot is simply ignored after all its packets have left
the queue, equivalent to batch-subtracting those packets from the
estimate. Thus, we avoid the need to update any part of the data
structure twice.

2.4 Approximate Snapshot Data Structure
PISA switches do not support maintaining per-�ow counters for
all �ows directly in the data plane. Fortunately, to catch microburst
culprits, accurately estimating the size of heavy �ows would su�ce.
We can use an approximate data structure to estimate �ow statis-
tics while satisfying architectural limitation on memory access. To
enable actionable mitigation during microbursts, all we need is to
recognize that an arriving packet belongs to a heavy �ow in the
queue.

One popular option to use in PISA is the Count-Min Sketch
(CMS) [10]. A CMS maintains r rows with b counter buckets in
each row. For each packet being added to CMS, the packet ID is
hashed by r di�erent hash functions to locate one bucket at each
row, and its size is added to those buckets. To estimate �ow size
given a �ow ID, we gather the value of those buckets and compute
their minimum.

We implement each snapshot as a Count-Min Sketch. When a
new packet enters the queue, it is added to the CMS of the current
snapshot, and also looks up estimated �ow size from the CMS of
previous snapshots. Based on the estimated �ow size, we can decide
if this packet belongs to a heavy �ow in the queue.

We note that the CMS does not keep state-per-�ow and therefore
does not maintain the �ow IDs. The ID of a heavy �ow is extracted
from subsequent packets of that �ow, when they arrive at the switch.
These packets are used to "report" their own �ow as being a heavy
�ow. If no subsequent packets of a heavy �ow arrive, no action can
be taken against this �ow. However, this is the desired behavior
of our system, since, in this case, such a �ow does not continue to
contribute to congestion.

CMS may incur overestimation, and the approximation error
for a given �ow ID depends on the number of hash collisions at
buckets it hashed to. Following the analysis presented in [10], if we
want to identify all �ows that take up at least 1

k of the snapshot
window, achieving an �-error in �ow size estimates with probability
1 � � , then we need a CMS with ln(1�) rows and

e
� buckets per row.

Therefore, for example for � = 1
2k and k = 10, using 64 > e

� buckets
per row and four rows gives an � < 0.1 and � < 0.02, which is
su�cient for our purposes. Further insight on the selected size of
the CMS can be seen in the evaluation in Section 3.

2.5 Round-Robin Rotation of Snapshots
Maintaining in�nitely many old snapshots is impractical and un-
necessary. With queue capacity C , we need to look into at most
[Cw] most recent snapshots. This leads to the second core compo-
nent of Snappy, using Round-Robin on a �nite number of snapshots,
clearing old snapshots to make space for new ones.

Wemaintainh snapshots in total, and use them in a Round-Robin
fashion, as shown in Figure 3. Every packet entering the queue is
added to the “current” snapshot, and the size of its �ow is read from
several most recent snapshots. We de�ne a snapshot window to be
w bytes. The role of these snapshots are rotated after everyw bytes
that enter the queue. Since l C , as long as h � 2 � [Cw],we have a
su�cient number of recent snapshots to read from.

To illustrate the idea further, let us assign h variable indexes to
indicate which snapshot to read, write, or clean: Iw is the write
index, Ic is the clean index and I r1 , · · · , I rh�2 are the read indexes.

SelfDN 2018, August 24, 2018, Budapest, Hungary Chen et al.

Snapshots

Sn
ap
sh
ot
	1

…
Re

ad

Sn
ap
sh
ot
	2

Re
ad

Sn
ap
sh
ot
	3

W
rit
e

Sn
ap
sh
ot
	4

Cl
ea
n

Sn
ap
sh
ot
	5

Re
ad

Sn
ap
sh
ot
	h

Re
ad…

Figure 3: Round-Robin between Snapshots

Snapshot1

Packet	p
Flow		f

s=read(f)

Packet	p
Flow	f
p.fsize s

Snapshot2 Snapshot3

Read Write Clean

s'=read(f)+p.size
write(f,	s’)

Packet	p
Flow	f

p.fsize s+s’

Packet	p
Flow	f

p.fsize s+s’

clean

Figure 4: Snapshots in PISA Pipeline

Within a snapshot window, for each packet p of �ow f that arrives
at the switch, the following is performed:

(1) In snapshot Iw we increment the count of �ow f by 1.
(2) To extract the estimated �ow size in the queue for f , we �rst

decide to read the n = [lw] most recent snapshots based on
the queue length l when p enters. Subsequently, we sum the
estimated �ow sizes reported by I r1 , · · · , I rn .

(3) Memory area of snapshot Ic is cleared for future use.
For the structure depicted in Figure 3, without loss of generality

wemay assume these indexes are initialized to be I r1 = 1, · · · , I rh�2 =
h � 2, Iw = h � 1 and Ic = h. Every time w (more) bytes have
entered the queue, these indexes are cyclically incremented by
1. For example, after the �rst w bytes, we cycle indexes to I r1 =
2, · · · , I rh�2 = h � 1, Iw = h and Ic = 1. After cycling 4 times, we
have Iw = 3, Ic = 4, as shown in Figure 3.

As depicted in Figure 4, in a practical implementation on a PISA
switch, we maintain snapshots at di�erent stages, implement CMS
using stateful memory, and utilize the match-action table to select
the appropriate action to read from, write to, or clean the snapshot
data structures.

In the data plane, the programmable switch cannot clear out a
large chunk of memory at once. Therefore, we use the ongoing
tra�c to help us clear the oldest snapshot, using each packet to
clear one index of memory.

In the illustrated example, we have h = 3 snapshots, each snap-
shot (with its Count-Min Sketch data structure) spans across 3
stages, with CMS using 3 rows and 8 buckets per row. Di�erent
snapshots reside in di�erent set of stages across the pipeline.

The �rst snapshot is currently used for reading. The rules in the
match-action table hash the �ow ID f to locate counter buckets,

Qu
eu

e
Le

ng
th

 (M
B)

Figure 5: Queue buildup on the UW Trace using throughput
200Mbps.

then estimate �ow size s based on counter values. This estimation
is kept as metadata inside the packet.

The second snapshot is in the writing role and accumulates the
size of the incoming packet p.size . The packet size is added to
the appropriate buckets, based on hashing �ow ID, and the latest
estimated �ow size s 0 is also put in the packet metadata. In this
manner, the total estimated size of the �ow p. f size re�ects the
packets in the latest snapshot window as well.

Finally, the third snapshot is currently being cleaned. Each packet
traversing the switch is assigned a single memory index to clear, in
a round-robin fashion.

3 PERFORMANCE EVALUATION
In this section, we evaluated Snappy using realistic data center
network trace. We �rst analyze the trace empirically and show
characteristics of microbursts. Subsequently, we show Snappy can
achieve high accuracy when identifying culprit �ows, using a rea-
sonable amount of hardware resource. Finally, we also demonstrate
Snappy can yield good estimate size for both small and large �ow,
producing an accurate �ow size distribution.

3.1 Characterizing Microbursts
We evaluate our solution on the publicly available University of
Wisconsin Data Center Measurement trace UNI1 (UW trace) [5].
We expose the underlying burstiness of its tra�c to cause queue
buildup, by letting all packets go through a single FIFO queue. In
our simulation, packets enter the queue based on their timestamp in
the trace �le, and depart from the queue with a constant throughput.
In this manner, when packets arrive faster than they depart, the
queue grows longer; when packets arrive slower, the queue becomes
empty. We note that in a real-world scenario each output port has
its own queue, our evaluation simulates a single port queue.

Figure 5 shows the queue buildup when running the above sim-
ulation on the UW trace, which appears to have a similar bursty
pattern as the carrier grade network tra�c shown in Figure 1. Us-
ing a throughput of 200Mbps the queue builds up to at most ~7MB,
albeit having a relatively low average link utilization (26Mbps, 13%)
and low average queue utilization (50KB). Most of the time the

Catching the Microburst Culprits with Snappy SelfDN 2018, August 24, 2018, Budapest, Hungary

Figure 6: Cumulative distribution of burst duration.

Figure 7: Precision vs. snapshot data structure size.

queue length is relatively short, but on rare occasions when traf-
�c bursts, the queue quickly builds up, then quickly shrinks back
down. We varied queue throughput from 200Mbps to 500Mbps and
observed similar bursty patterns. Setting throughput close to 1Gbps
causes no buildup since the incoming rate never exceeds 1Gbps,
while throughput as low as 100Mbps causes the queue to grow
excessively long in certain parts of the trace.

For the rest of our evaluation we use throughput 200Mbps and
queue capacityC = 8MB.Modern shallow-bu�er commodity switches
typically have a bu�er size of several MB. We arbitrarily choose
�C = 1MB as a congestion threshold, and de�ne a burst be any
period that the queue is longer than threshold. Once the threshold
is passed, a practical switch should start to react to queue buildup
by dropping or marking new packets.

As shown in the lower curve in Figure 6, the duration of these
bursts vary greatly, ranging from a fraction of millisecond to almost
a second. Figure 6 also shows that if Snappy performs a draconian
evasive action to start dropping subsequent packets of the heaviest
�ow (with the largest estimated �ow size) in the queue when the
queue length exceeds a threshold, it can e�ectively reduce the burst
duration by an order of magnitude. Although such evasive action is
quite primitive, it does illustrate the potential of microburst suppres-
sion by targeting at individual bursty �ows. We note that di�erent
tra�c patterns will likely exhibit di�erent �ow size distribution
during microbursts, and hence may require taking action that is
tailored to the di�erent weights of the �ows.

Figure 8: Recall vs. snapshot window size.

3.2 Accuracy for Limited Memory and Stages
We evaluate the accuracy of Snappy by testing if it can correctly
identify the microburst culprit, using a practical amount of resource
in programmable switch. We de�ne a microburst to occur when
the queue length is � 1MB, at which point Snappy starts to decide
which incoming packets belong to culprit �ows, de�ned as the �ows
occupying at least 1% of the queue length. Snappy is evaluated by
the accuracy of its estimated culprit �ow set, in terms of Precision
and Recall. Precision refers to the number of actual culprit �ows
identi�ed out of all �ows identi�ed by the system. Recall is the
number of culprits identi�ed out of all the actual culprits.

In the design space of Snappy there are two primary design
choices, the memory size allocated for the snapshot data structure
and the snapshot tra�c window size. Using more memory to con-
struct a larger Count-Min Sketch (CMS) data structure reduces
collision and improve accuracy, but stateful memory is a scarce
resource on programmable switches. Using a smaller window pro-
vides better granularity when approximating the queue’s boundary,
at the cost of using more pipeline stages, which is also scarce in
hardware.

We �rst evaluate the memory needed to achieve adequate accu-
racy. In each snapshot, we use a 4-row CMS to record and estimate
the total �ow size for each �ow during each snapshot window.
When memory is insu�cient, CMS su�ers from hash collisions and
over-estimate the size of �ows, reporting more false positives and
lowering Precision (but Recall doesn’t change since CMS produces
no false negatives). Figure 7 shows the e�ect of varying the total
number of counters in the CMS on Precision. The Precision plateaus
at 24~32 counters (6 to 8 columns per row) with diminishing re-
turns for allocating additional counters. The trace simulation has
an average of 56 distinct �ows in the queue during microbursts,
with an average of 3 heavy �ows.

Next, we evaluate the e�ect of snapshot window granularity on
accuracy. We focus on improving Recall in this evaluation, since
Figure 7 already demonstrated that the estimation yields high Pre-
cision when given enough memory. The multiple curves in Figure 8
overlap, as providing more than enough memory has no impact
on Recall. Increasing the number of snapshots (therefore using a
shorter window per snapshot) improves Snappy’s approximation of

SelfDN 2018, August 24, 2018, Budapest, Hungary Chen et al.

True flow size (MB)

Es
tim

at
ed

 (M
B)

Figure 9: Estimated vs. actual �ow sizes in the queue.

the end of the queue. Using fewer snapshots (and a larger window)
causes the heavy �ows in the o�set period near the end of queue
(but not actually in the queue) to be erroneously reported, lowering
the Recall. In the worst case, Snappy can only look at one snapshot
and cannot adapt to changing queue length, therefore reporting
only conventional link-level heavy hitters. As shown in Figure 8, by
aggregating a maximum of 4 to 8 snapshots each spanningw =1 to
2 MB of tra�c, we can achieve a high Recall, and have diminishing
return afterwards. As can be seen, adding more memory yields
negligible di�erence in Recall.

3.3 Estimating the Flow Size Distribution
The Count-Min Sketch produces �ow weight estimates for all �ows,
not necessarily the largest ones. Thus, we can use the snapshots to
report an in-queue �ow size distribution. A network operator may
use such a distribution to gain insights on the nature of microburst
in a speci�c switch, and decide on the most appropriate action. For
example, if there’s usually only one large �ow occupying 90% of
the queue, then it may be sensible to mark or drop the heaviest
�ow.

We evaluate the accuracy of this estimation by comparing esti-
mated versus actual size for all �ows present in the queue when
burst happens. In this evaluation, shown in Figure 9, we use param-
eters derived from previous experiments to achieve high accuracy
using minimal resources: maintaining h = 8 + 2 snapshots (read
 8), each accumulating tra�c in a window ofw =1MB, and each
using 32-counter CMS. Since the heavy �ows occupy most of the
queue, their estimated size are close to integer multiples of snap-
shot window, causing the "staircase" like graph that is seen. For
the smaller �ows, a small absolute error is normally achieved. The
mean estimation error is 6.2KB while median estimation error is
0.24 KB, implying the estimation is relatively accurate for a majority
of �ows.

4 RELATEDWORK
Existing solutions such as Fastpass [12] o�er a centralized tra�c
orchestration approach for treating queue buildup using scheduling
methods. These attempts are too slow for detecting microbursts, as
most of the damage is already done by the time high delay or loss
can be detected centrally. Other solutions, such as DRILL [11] and
CONGA [2], take action to disperse the load within the data plane

using load balancing. General solutions such as routing changes
or load balancing may disrupt the well-behaved �ows, not just the
culprits. Instead, solving the problem requires a better understand-
ing of the nature of a microburst as opposed to just detecting it. For
instance, �nding out that a microburst consists of a single �ow or
of a certain application opens the opportunity for a targeted reme-
diation such as marking packets, rate limiting or selective dropping.
Zhang et al. [15] implemented a high-precision microburst mea-
surement framework in data-center networks and analyzed the
duration and inter-arrival time of microbursts. However, the sys-
tem provides limited insight into the contents of the bursts, such
as �ow-size distribution and the ID of most signi�cant �ows.

An alternative method to prevent bursty �ows from a�ecting
other tra�c is to use fair queuing. Sharma et al. [13] recently pro-
posed an approximate per-�ow fair queuing mechanism using pro-
grammable switches. While they present an innovative solution,
their method relies on using multiple-FIFO queues per port and
quickly rotating their priority. Not all target switches support such
functionality and therefore this method may not be deployable in
such targets.

We note that our proposed framework continues a series of works
which present streaming algorithms for identifying heavy hitters
in a sliding window [1, 4, 7]. Previous work mainly focused on a
constant-sized window. However, the context of our work deals
with a dynamic queue length. This requires detection of heavy
�ows in varying lengths of the queue history and therefore requires
lookup of heavy �ows within a variable-length window. Addition-
ally, as far as we know, ours is the �rst solution provided which
has been adapted to the computational constraints posed by pro-
grammable switches.

5 CONCLUSION
Wepresent Snappy, a novel way to gain visibility into queue buildups
caused bymicrobursts, based on round-robin snapshots of incoming
packets using programmable data plane switches. Evaluation using
data-center traces shows that Snappy can achieve good accuracy
estimating the heaviest queue occupant �ows during microbursts,
and can yield a good approximation of �ow size distribution in the
queue, using a reasonable amount of hardware resources.

We are currently exploring extensions to the model we have
discussed, including a multi-queue scenario or non-FIFO queues.
Furthermore, we may extend Snappy to identify rapid changes in
individual �ow throughput, which can help us better understand
the dynamics of microbursts. Meanwhile, we are considering how
better remediation schemes can be realized using in-queue �ow
size estimates. We also plan to perform further testing to exhibit
how Snappy can bring real world performance improvement.

6 ACKNOWLEDGMENTS
This research is supported by NSF grant CCF-1535948, gifts from
AT&T, Intel, and The Eric and Wendy Schmidt Fund for Strategic
Innovation. We thank the anonymous reviewers of SelfDN’18 for
their helpful comment and suggestions. In addition, we would like
to thank Vladimir Braverman, Alan Liu, and Praveen Tammana for
their feedback during the writing of this paper.

Catching the Microburst Culprits with Snappy SelfDN 2018, August 24, 2018, Budapest, Hungary

REFERENCES
[1] Yehuda Afek, Anat Bremler-Barr, Shir Landau Feibish, and Liron Schi�. 2018.

Detecting Heavy Flows in the SDN Match and Action Model. Computer Networks
136 (2018), 1–12.

[2] Mohammad Alizadeh, Tom Edsall, Sarang Dharmapurikar, Ramanan
Vaidyanathan, Kevin Chu, Andy Fingerhut, Vinh The Lam, Francis Ma-
tus, Rong Pan, Navindra Yadav, and George Varghese. 2014. CONGA: Distributed
congestion-aware load balancing for datacenters. In ACM SIGCOMM Conference.
503–514.

[3] Guido Appenzeller, Isaac Keslassy, and Nick McKeown. 2004. Sizing router
bu�ers. In ACM SIGCOMM Conference. 281–292.

[4] Ran Ben-Basat, Gil Einziger, Roy Friedman, and Yaron Kassner. 2016. Heavy
Hitters in Streams and Sliding Windows. Technical Report CS-2016-01. Computer
Science, Technion.

[5] Theophilus Benson, Aditya Akella, and David A. Maltz. 2010. Network tra�c
characteristics of data centers in the wild. In ACM SIGCOMM Internet Measure-
ment Conference. 267–280.

[6] Theophilus Benson, Ashok Anand, Aditya Akella, and Ming Zhang. 2010. Under-
standing data center tra�c characteristics. ACM SIGCOMM Computer Communi-
cation Review 40, 1 (2010), 92–99.

[7] Vladimir Braverman, Ran Gelles, and Rafail Ostrovsky. 2014. How to catch
L2-heavy-hitters on sliding windows. Theoretical Computer Science 554 (2014),
82–94.

[8] The P4 Language Consortium. 2018. P416 Language Speci�cations. (2018).
https://p4.org/p4-spec/docs/P4-16-v1.0.0-spec.pdf

[9] The P4 Language Consortium. 2018. P416 Portable Switch Architecture. (2018).
https://p4.org/p4-spec/docs/PSA-v1.0.0.pdf

[10] Graham Cormode and S. Muthukrishnan. 2005. An improved data stream sum-
mary: The count-min sketch and its applications. Journal of Algorithms 55, 1
(2005), 58–75.

[11] Soudeh Ghorbani, Zibin Yang, Philip Brighten Godfrey, Yashar Ganjali, and Amin
Firoozshahian. 2017. DRILL: Micro Load Balancing for Low-latency Data Center
Networks. In ACM SIGCOMM Conference. 225–238.

[12] Jonathan Perry, Amy Ousterhout, Hari Balakrishnan, Devavrat Shah, and Hans
Fugal. 2014. Fastpass: A centralized "zero-queue" datacenter network. In ACM
SIGCOMM Conference. 307–318.

[13] Naveen Kr. Sharma, Ming Liu, Kishore Atreya, and Arvind Krishnamurthy. 2018.
Approximating Fair Queueing on Recon�gurable Switches. InUSENIX Symposium
on Networked Systems Design and Implementation.

[14] Damon Wischik and Nick McKeown. 2005. Part I: Bu�er Sizes for Core Routers.
ACM SIGCOMM Computer Communication Review 35, 3 (July 2005), 75–78.

[15] Qiao Zhang, Vincent Liu, Hongyi Zeng, and Arvind Krishnamurthy. 2017. High-
resolution measurement of data center microbursts. In ACM SIGCOMM Internet
Measurement Conference. ACM, 78–85.

[16] Ying Zhang, Zhuoqing Morley Mao, and Jia Wang. 2007. Low-Rate TCP-Targeted
DoS Attack Disrupts Internet Routing. In Network and Distributed System Security
Symposium.

