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ABSTRACT

Traditionally, Internet Service Providers (ISPs) makefiptry pro-
viding Internet connectivity, while content providers & Play the
more lucrative role of delivering content to users. As nekaeon-
nectivity is increasingly a commodity, ISPs have a strongeim
tive to offer content to their subscribers by deploying thaivn
content distribution infrastructure. Providing contert\éces in
an ISP network presents new opportunities for coordinatien
tween traffic engineering (to select efficient routes for titadfic)
and server selection (to match servers with subscribers)this
work, we develop a mathematical framework that consideesth
models with an increasing amount of cooperation betweehSRe
and the CP. We show that separating server selection arfit traf
engineering leads to sub-optimal equilibria, even whenGReis
given accurate and timely information about the ISP’s nétvio

a partial cooperation. More surprisingly, extra visilyilinay re-
sult in a less efficient outcome and such performance detipada
can be unbounded. Leveraging ideas from cooperative gaeae th
ory, we propose an architecture based on the concept of Nash b
gaining solution. Simulations on realistic backbone topgas are
performed to quantify the performance differences amoadtttee
models. Our results apply both when a network provider gitem
to provide content, and when separate ISP and CP entitiéstwis
cooperate. This study is a step toward a systematic understa
ing of the interactions between those who provide and operet:
works and those who generate and distribute content.

Categories and Subject Descriptors
C.4 [Performance of Systemf [Performance attributes]

General Terms
Design, Economics, Performance

1. INTRODUCTION

Internet Service Providers (ISPs) and content providelPsj@re
traditionally independent entities. ISPs only provide reectivity,
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or the “pipes” to transport content. As in most transpootatiusi-
nesses, connectivity and bandwidth are becoming comrasditid
ISPs find their profit margin shrinking [1]. At the same timene
tent providers generate revenue by utilizing existing emtimity to
deliver content to ISPs’ customers. This motivates ISPo& &nd
distribute content to their customers. Content can be priser
oriented, like web-based services, or residential-bal#asl triple
play as in AT&T's U-Verse [2] and Verizon FiOS [3] deployment
When ISPs and CPs operate independently, they optimizepibei
formance without much cooperation, even though they inflaen
each other indirectly. When ISPs deploy content serviceseek
cooperation with CP, they face the question of how much can be
gained from such cooperation and what kind of cooperationlsh
be pursued.

A traditional service provider’s primary role is to deplayfrias-
tructure, manage connectivity, and balance traffic loadlegs
network. In particular, an ISP solves thaffic engineering(TE)
problem, i.e., adjusting the routing configuration to thevailing
traffic. The goal of TE is to ensure efficient routing to miraei
congestion, so that users experience low packet loss, highdh-
put, and low latency, and that the network can gracefullyoebs
flash crowds.

To offer its own content service, an ISP replicates contgst 0
a number of strategically-placed servers and directs stgte dif-
ferent servers. The CP, whether as a separate businessardg
a new part of an ISP, solves therver selectioSS) problem, i.e.,
determining which servers should deliver content to eachuser.
The goal of SS is to meet user demand, minimize network Igtenc
to reduce user waiting time, and balance server load to asere
throughput.

To offer both network connectivity and content delivery,|SR
is faced with coupled TE and SS problems, as shown in Figure 1.
TE and SSinteract because TE affects the routes that carGRis
traffic, and SS affects the offered load seen by the netwodtu-A
ally, the degrees of freedom are also the “mirror-image” adhe
other: the ISP controls routing matrix, which is the consizar
rameter in the SS problem, while the CP controls traffic matri
which is the constant parameter in the TE problem.

In this paper, we study several approaches an ISP could take i
managing traffic engineering and server selection, rangiog
running the two systems independently to designing a joist s
tem. We refer to CP as the part of the system that managegs serve
selection, whether it is performed directly by the ISP or tsep-
arate company that cooperates with the ISP. This study allesv
to explore a migration path from the status-quo to differantiels
of synergistic traffic management. In particular, we coesttiree
scenarios with increasing amounts of cooperation betwesfict
engineering and server selection:



Optimality Gap Information Exchange Fairness | Architectural Change

Model | Large, not Pareto-optimal No exchange No Current practice

Measurement only

Model I Improved, not Pareto-optimal Topology, routes, capacit No Minor CP changes
Social-optimal in special case | Background traffic level Better SS algorithm
More info. may hurt the CP

Model Ill | Pareto-optimal Topology Yes Clean-slate design
5-30% performance improvementLink prices Incrementally deployable

CP given more control

Table 1: Summary of results and engineering implications.
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Figure 1: The interaction between traffic engineering (TE) aad
server selection (SS).

e Model I: no cooperation (current practice).
e Model II: improved visibility (sharing information).
e Model lll: a joint design (sharing control).

Model I. Content services could be provided by a CDN that runs
independently on the ISP network. However, the CP has linite
visibility into the underlying network topology and rouginand
therefore has limited ability to predict user performanca timely

Sharing information requires minimal extensions to eRgs0-
lutions for TE and SS, making it amenable to incremental @epl
ment. Similar to the results in the parallel work [8], we atveeand
prove that TE and SS separately optimizing over their owi var
ables is able to converge to a global optimal solution, when t
two systems share the same objectives with the absence lof bac
ground traffic. However, when the two systems have diffecent
even conflicting performance objectives (e.g., SS minimized-
to-end latency and TE minimizes congestion), the equiliris
notoptimal. In addition, we find that model Il sometimes perferm
worsethan model I—that is, extra visibility into network conditis
sometimes leads tolass efficienbutcome—and the CP’s latency
degradation can be unbounded. The facts that both Model | and
Model Il in general do not achieve optimality, and that extfar-
mation (Model 1l) sometimes hurts the performance, mogivet to
consider a clean-slate joint design for selecting servedsrautes
next.

Model llI. A joint design should achievieareto optimalityfor TE
and SS. In particular, our joint design’s objective funot@ives rise
to Nash Bargaining Solutioff]. The solution not only guarantees
efficiency but alsofairnessbetween synergistic or even conflicting
objectives of two players. Itis a point on the Pareto optimake

and accurate manner. We model a scenario where the CP measurewhere both TE and SS have better performance compared to the

the end-to-end latency of the network and greedily assigch e
user to the servers with the lowest latency to the user, &egira
some CPs employ today [4]. We call tH8S with e2e infoln ad-
dition, TE assumes the offered traffic is unaffected by itging
decisions, despite the fact that routing changes can gitttla-
tencies and therefore the CP’s traffic. When the TE problerttza
SS problem are solved separately, their interaction candzetad
as a game in which they take turns to optimize their own neksvor
and settle in a Nash equilibrium, which may notRaeto optimal

Not surprisingly, performing TE and SS independently is of-
ten sub-optimal because (i) server selection is based omiplete
(and perhaps inaccurate) information about network canditand
(ii) the two systems, acting alone, may miss opportunitesfoint
selection of servers and routes. Models Il and 11l captuesé¢ttwo
issues, allowing us to understand which factor is more ingoiin
practice.

Model Il. Greater visibility into network conditions should enable
the CP to make better decisions. There are, in general, ypest
of information that could be shared: (i) physical topologforma-
tion [5, 6, 7], (ii) logical connectivity information, e.grouting in
the ISP network, (iii) dynamic properties of links, e.g., R¥Slink
weights, background traffic, and congestion level, anddywjamic
properties of nodes, e.g., bandwidth and processing pdwecan

Nash equilibrium. We then apply the optimization decomipasi
technique [10] so that the joint design can be implemented in
distributed fashion with a limited amount of informatiorclange.

The analytical and numerical evaluation of these three sode
allows us to gain insights for designing a cooperative TE &6d
system, summarized in Table 1. The conventional approach of
Model | requires minimum information passing, but suffeimnf
sub-optimality and unfairness. Model Il requires only ntiobanges
to the CP’s server selection algorithm, but the result ¥ stit
Pareto optimal and performance is not guaranteed to impeves
possibly degrading in some cases. Model Il ensures opitynal
and fairness through a distributed protocol, requires aaraid in-
crease in information exchange, and is incrementally gejble.
Our results show that letting CP have some control over nétwo
routing is the key to effective TE and SS cooperation.

We perform numerical simulations on realistic ISP topodsgi
which allow us to observe the performance gains and loss aver
wide range of traffic conditions. The joint design shows Bigant
improvement for both the ISP and the CP. The simulation tesul
further reveal the impact of topologies on the efficiencied fair-
ness of the three system models.

Our results apply both when a network provider attemptsaoe pr
vide content, and when separate ISP and CP entities wistotm co

be shared. Our work focuses on a combination of these types oferate. For instance, an ISP playing both roles would find fie o

information, i.e., (i)-(iii), so that the CP is able to soltlee SS
problem more efficiently, i.e., to find thaptimal server selection

timality analysis useful such that a low efficiency operatiagion
can be avoided. And cooperative ISP and CP would appretiate t



Notation Description

G: Network graphG = (V,E). V set of nodesE set of links
S: ScV, the set of CP servers

T: T CV, the set of users

C: Capacity of linkl

n: Proportion of flowi — | traversing link

R: The routing matrixR: {r,}, TE variable

Rog Background routing matriR: {r' }; j st

X: Traffic matrix of all communication pair§ = {Xij } i j)evxv
Xst Traffic rate from servesto usert

Xep: Xep= {xst}(s.t)esﬂ, SS variable

M : Usert’s demand rate for content

Bs: Service capacity of server

>35t : The amount of traffic fo(s,t) pair on linkl

Xep:  Xep={X"}(st)es<T- the generalized SS variable
P CP’straffic on linkl

flbg : Background traffic on link

fi: fi = £°P+ £9, total traffic on linkl. f = {fi }ice
Dp: Delay of pathp

D : Delay of linkl

a(): Cost function used in ISP traffic engineering
h(-): Cost function used in CP server selection

Table 2: Summary of key notation.

distributed implementation of Nash bargaining soluticat tillows
for an incremental deployment.

The rest of the paper is organized as follows. Section 2 ptese
a standard model for traffic engineering. Section 3 presantsvo
models for server selection, when given minimal informatjoe.,
Model 1) and more information (i.e., Model Il) about the unge
ing network. Section 4 studies the interaction between TESS
as a game and shows that they reach a Nash equilibrium. 8éctio
analyzes the efficiency loss of Model | and Model Il in general
We show that the Nash equilibria achieved in both models ate n
Pareto optimal. In particular, we show that more informaim®not
always helpful. Section 6 discusses how to jointly optiniEeand
SS by implementing a Nash bargaining solution. We proposd-an
gorithm that allows practical and incremental implemeatat\We
perform large-scale numerical simulations on realistié t8polo-
gies in Section 7. Finally, Section 8 presents related warld
Section 9 concludes the paper and discusses our future work.

2. TRAFFIC ENGINEERING (TE) MODEL

In this section, we describe the network model and formulate
optimization problem that the standard TE model solves. Mk a
start introducing the notation used in this paper, whichuimma-
rized in Table 2.

Consider a network represented by grapk= (V,E), whereV
denotes the set of nodes aBdlenotes the set of directed physical
links. A node can be a router, a host, or a server. ¥etlenote
the rate of flow(i, j), from nodei to nodej, wherei, j € V. Flows
are carried on end-to-end paths consisting of some linke. @y
of modeling routing I8V = {wp, }, i.e.,wp = 1if link | is on path
p, and O otherwise. We do not limit the number of pathsAéo
can includeall possible paths, but in practice it is often pruned to
include only paths that actually carry traffic. The capaoity link
leEisC > 0.

Given the traffic demand, traffic engineering changes rgtin
minimize network congestion. In practice, network opeistmn-
trol routing either by changing OSPF link weights [11] or lsyah-
lishing MPLS label-switched paths [12]. In this paper we tree
multi-commodity flow solution to route traffic, because aibp-
timal, i.e., it gives the routing with minimum congestionstoand
b) it can be realized by routing protocols that use MPLS tlinge
or as recently shown, in a distributed fashion by a new litaktes
routing protocol PEFT [13]. Let’ € [0,1] denote the proportion
of traffic of flow (i, j) that traverses link. To realize the multi-
commodity flow solution, the network splits each flow over anu
ber of paths. LeR= {r } be the routing matrix.

Let f; denote the total traffic traversing linkand we have; =
> Gi.j) % -rl”. Now traffic engineering can be formulated as the fol-
lowing optimization problem:

TE(R|X):

minimize TE = Zg|(f|) 1)
subjectto f| = z Xij -r,ij <G, Vvl
(i.1)

i =l Y00, §), e VA i}
I:Ie%l(v) I I:Iegut(w | ]

variables 0O< rlij <1,v(i,j),Vl

whereg; (-) represents a link’s congestion cost as a function of the
load, I\—j is an indicator function which equals 1vf= j and 0O
otherwise, Irfv) denotes the set of incoming links to nodeand
Out(v) denotes the set of outgoing links from node

In this model, TE does not differentiate between the CPffidcra
and background traffic. In fact, TE assumes a constant traffic
trix X, i.e., the offered load between each pair of nodes, which can
either be a point-to-point background traffic flow, or a flowrfra
CP’s server to a user. As we will see later, this common assamp
is undermined when the CP performs dynamic server selection

We only consider the case where cost funciip) is a convex,
continuous, and non-decreasing functionfof By using such an
objective, TE penalizes high link utilization and balantmesd in-
side the network. We will discuss later the analytical forhgd-)
which the ISP may use in practice.

3. SERVER SELECTION (SS) MODELS

While traffic engineering usually assumes that traffic maisi
point-to-point and constant, both assumptions are vidlatben
some or all of the traffic is generated by the CP. A CP usualyy ha
many servers that offer the same content, and the servexdesg!
for each user depend on the network conditions. In this @ecti
we present two novel CP models which correspond to models |
and Il introduced in Section 1. The first one models the cdirren
CP operation, where the CP relies on end-to-sr@hsuremenof
the network condition in order to make server selectionsiens;
the second one models the situation when the CP obtains lkenoug
information from the ISP tealculatethe effect of its actions.

3.1 Server Selection Problem

The CP solves the server selection problem to optimize the pe
ceived performance of all of its users. We first introduceribe
tation used in modeling server selection. In the ISP’s ndiwet
ScV denote the set of CP’s servers, which are strategicallyeplac
at different locations in the network. For simplicity we as® that
all content is duplicated at all servers, and our resultshEaex-
tended to the general case. Jett V denote the set of users who



request content from the servers. A user T has a demand for
content at ratd/;, which we assume to be constant during the time
a CP optimizes its server section. We allow a user to simettan
ously download content from multiple servers, because had@
be viewed as an edge router in the ISP’s network that aggretjae
traffic of many endhosts, which may be served by differentessr

To differentiate the CP’s traffic from background traffic, de-
note xst as the traffic rate from serverto usert. To satisfy the
traffic demand, we need

ZSXQ = Mt .
se

In addition, the total amount of traffic aggregated at a ges\s
limited by its service capacitis, i.e.,

Z Xst < Bs.
te

We denoteXcp = {Xst}scsteT @s the CP’s decision variable.

One of the goals in server selection is to optimize the oleral
performance of the CP’s customers. We use an additive lisk co
for the CP based on latency models, i.e., each link has aaodt,
the end-to-end path cost is the sum of the link costs alongvétye
As an example, suppose the content is delay-sensitive ([@TV),
and the CP would like to minimize the average or total enéid-
delay of all its users. Lddp, denote the end-to-end latency of a path
p, andD(f|) denote the latency of link, modeled as a convex,
non-decreasing, and continuous function of the amount of fio
on the link. By definition,Dp = 3,Di(f). Then the overall
latency experienced by all CP’s users is

ss=Y 5 xp-Dp(f)
(

st) peP(st)
=Y Y - yDih
(st) peP(st) lep

: @
=ZD|(f|)'<Z > %

st) peP(st):lep

:Zf|Cp~D|(f|)

whereP(s,t) is the set of paths serving flogs,t) and x%‘ is the
amount of flow(s;t) traversing patfp € P(s;t).

Leth(-) represent the cost of liflk which we assume is convex,
non-decreasing, and continuous. In this exantple,"?, ;) = fP-
D|£f| ). Thus, the link coslty (+) is a function of the CP’s total traffic
flc on the link, as well as the link’s total traffi§, which also
includes background traffic.

Expression (2) provides a simple way to calculate the tcatat-u
experienced end-to-end delay—simply sum over allitiles, but it
requires the knowledge of the load on each link, which is iptess
only in Model II. Without such knowledge (Model 1), the CP can
rely only onend-to-endneasurement of delay.

3.2 Server Selection with E2E Info: Model |

In today’s Internet architecture, a CP does not have acoess t
ISP’s network information, such as topology, routing, lirepac-
ity, or background traffic. Therefore a CP relies on measared
inferred information to optimize its performance. To miimits
users’ latencies, for instance, a CP can assign each usenvers
with the lowest (measured) end-to-end latency to the useatdc-
tice, content distribution networks like Akamai’'s servetestion
algorithm is based on this principle [4]. We callS§ with e2e info
and use it as our first model.

CP monitors the latencies from all servers to all users, asacein
server selection decisions to minimize users’ total defigce the

demand of a user can be arbitrarily divided among the serwars
can think of the CP as greedily assigning each infinitesiraalahd
to the best server. The placement of this traffic may chargpath
latency, which is monitored by the CP. Thus, at the equilitrithe
servers which send (nonzero) traffic to a user should havestime
end-to-end latency to the user, because otherwise thersgithe
lower latency will be assigned more demand, causing itsitgtéo
increase, and the servers not sending traffic to a user shanrtel
higher latency than those that serve the user. This is somsti
called theWardrop equilibrium[14]. The SS model with e2e info
is very similar to selfish routing [15, 16], where each flovesrio
minimize its average latency over multiple paths withoubrcld
nating with other flows. It is known that the equilibrium pbin
selfish routing can be viewed as the solution to a global coope
timization problem [15]. Therefore, SS with e2e info has &ue
equilibrium point under mild assumptions.

Although the equilibrium point is well-defined and is the so-
lution to a convex optimization problem, in general it is dao
compute the solution analytically. Thus we leverage the infeQ-
learning [17] to implement a distributed iterative algbnit to find
the equilibrium of SS with e2e info. The algorithm is guasst
to converge even under dynamic network environments withscr
traffic and link failures, and hence can be used in practicéhby
CPs. The detailed description and implementation can bedfou
in [18]. As we will show, SS with e2e info is not optimal. We use
it as a baseline for how well a CP can do with only the end-tb-en
latency measurements.

3.3 Server Selection with Improved Visibility:
Model Il

We now describe how a CP can optimize server selection given
completevisibility into the underlying network, but not into the ISP
objective. That is, this is the best the CP can do wittahanging
the routing in the network. We also present an optimizateymf-
lation that allows us to analytically study its performance

Suppose that content providers are able to either obtagr-inf
mation on network conditions directly from the ISP, or iniieby
its measurement infrastructure. In the best case, the Cliled@
obtain the complete information about the network, i.aufirg de-
cision and link latency. This situation is characterizedobgblem
(3). To optimize the overall user experience, the CP solveddl-
lowing cost minimization problem:

SSXcp|R):

minimize ~ SS= Zh' (P ) )

subjectto P = > Xst- i, vl
(st)

fi=fP+19<q, v

stst =M, Wt
se

szt S BS7 Vs
te

variables  xst >0, V(s;t)

where we denoté,bg = ¥(ij)4(sn % 1 as the non-CP traffic on
link I, which is a parameter to the optimization problem. If the
cost functionh (-) is increasing and convex on the variatf|%°,
one can verify that (3) is a convex optimization problem, deen
has a unique global optimal value. In the remainder of thepa
we ignore the server capacity constraint by assuming sefffiyi
large server capacities, since we are more interested iimibect



of SS on the network than the decision of load balancing among
congested servers.

SS with improved visibility (3) is amenable to an efficient-im
plementation. The problem can either be solved centrally, at
the CP’s central coordinator, or via a distributed algaenithimi-
lar to that used for Model I. We solve (3) centrally in our slezu
tions, since we are more interested in the performance wepnent
brought by complete information than any particular aldon for
implementing it.

4. ANALYZING TE-SS INTERACTION

In this section, we study the interaction between the ISP and
the CP when they operate independently without coordinatio
both Model | and Model Il, using a game-theoretic model. The
game formulation allows us to analyze the stability condiitii.e.,
we show that alternating TE and SS optimizations will reach a
equilibrium point. In addition, we find that when the ISP ahd t
CP optimize the same system objective, their interactidmeaes
global optimalityunder Model Il. Results in this section are also
found in a parallel work [8].

4.1 TE-SS Game and Nash Equilibrium

We start with the formulation of a two-player non-coopesati
Nash game that characterizes the TE-SS interaction.

Definition 1. TheTE-SS gameonsists of a tuplgN,A,U]. The
player set N= {isp,cp}. The action set & = {R} and Ap =
{Xcp}, where the feasible set of R angdpare defined by the con-
straints in (1) and (3) respectively. The utility functicare Usp =
—TE and Yp=—SS.

Figure 1 shows the interaction between SS and TE. In both Mode

I and Model Il, the ISP plays the best response strategytlielSP
always optimizes (3) given the CP’s strategy. Similarly, the CP
plays the best response strategy in Model Il when given full i
formation. However, the CP’s strategy in Model | is not thetbe
response, since it does not optimize (3) due to the lack eforét
visibility. Indeed, the utility the CP implicitly optimizein SS with
e2e info is [15]

Uep = —lgE/Of' Dy (U)du

This later helps us understand the stability conditiondefgame.

Consider a particular game procedure in which the ISP and the
CP take turns to optimize their own objectives by varyingirthe
own decision variables, treating that of the other playerastant.
Specifically, in thegk+ 1)-th iteration, we have

R — argmin T E(><c<l;§))
R

XékH) (4)

o~ =argmin S§RKHY))

Xep

Note that the two optimization problems may be solved on dif-
ferent timescales. The ISP runs traffic engineering at thedcale
of hours, although it could run on a much smaller timescale- D
pending on the CP’s design choices, server selection imgad a
few times a day, or at a smaller timescale like seconds ortesnf
a typical content transfer duration. We assume that eagieiptas
fully solved its optimization problem before the other oterts.

Next we prove the existence of Nash equilibrium of the TE-
SS game. We establish the stability condition when two playe
use general cost functiomgs(-) andh (-) that are continuous, non-
decreasing, and convex. While TE'’s formulation is the same i

Model | and Model I, we consider the two SS models, i.e., SB wi
e2e info and SS with improved visibility.

Theorem 1. The TE-SS game has a Nash equilibrium for both
Model | and Model II.

Proof Sketchit suffices to show that (i) each player’s strategy space
is a nonempty compact convex subset, and (ii) each playgFs u
ity function is continuous and gquasi-concave on its strasgIace,
and follow the standard proof in [19]. The ISP’s strategycgpa
is defined by the constraint set of (1), which are affine etjeali
and inequalities, hence a convex compact set. Sipcegis con-
tinuous and convex, we can easily verify that the objectivéld

is quasi-convex oR = {r'}. CP’s strategy space is defined by
the constraint set of (3), which is also convex and compaith- S
ilarly, if by (f°P) is continuous and convex, the objective of (3) is
quasi-convex orXcp. In particular, consider the special case in
which CP minimizes latency (2). When CP solves SS with e2e
info, hy(f)) = fof' D (u)du. When CP is solves SS with improved
visibility, hy (fF) = f°PDy(f)). In both cases, iD)(-) is continu-
ous, non-decreasing, and convex, shj{s). One can again verify
the quasi-convexity of the objective in (3).

The existence of a Nash equilibrium does not guaranteehbat t
trajectory (4) leads to one. In Section 7 we demonstratedhesr-
gence of iterative player optimization in simulation. Imgeal, the
Nash equilibrium may not be unique, in terms of both decisami
ables and objective values. Next, we discuss a special casgw
the Nash equilibrium is unique and can be attained by altiexgpa
player moves (4).

4.2 Global Optimality under Same Objective
and Absence of Background Traffic

In the following, we consider a special case of the TE-SS game
in which the ISP and the CP optimize teameobjective function,

i.e,g(-)=Mh() so

TE:SS:ZCM(]CD7 (5)
when there is10 background trafficOne example is when the net-
work carriesonly the CP traffic, and both the ISP and the CP aim to
minimize the average traffic latency, i.@,(f;) = f;-Di(f;). An
interesting question that naturally arises is whether W filay-
ers’ alternating best response to each other’s decisioteeainto a
socially optimal point.

Define a notion ofjlobal optimumwhich is the optimal point to
the following optimization problem.

TE-SS-SpecialKcp):

minimize Zdw(ﬁ) (6)
subjectto fi = % <G,V
<S:t)

ﬁt_ ﬁt =M lyet, WgS VteT
525 (I:Ie%l(v) I:Iegut(v) t t

variables x™ > 0, V(st),VI

wherex' denotes the traffic rate for flows,t) delivered on link

I. The variablex® allows a global coordinator to route a user's
demand from any server in any way it wants, thus problem (6) es
tablishes an upper-bound on how well one can do to minimige th
traffic latency. Note tha)tlSt captures bottR andXcp, which offers
more degrees of freedom for a joint routing and server-felec



Figure 2: An Example of the Paradox of Extra Information

problem. Its mathematical properties will be further dissed in
Section 5.2.

| link | |1ZBD| |QZBE | |3ZCD | |4ZCE|

G 1+¢ 1+¢ l+¢ 1+¢
D(f)| f | meg | men|
g (%) 91() = 92(-) = g3(") = 9a(")

Table 3: Link capacities, ISP’s and CP’s link cost functionsin
the example of Paradox of Extra Information.

the analysis and deliver the most essential message framexhi
ample, suppose that both TE and SS costs on the four thin links
are negligible so the four bold links constitute thatleneclkof the
network. In Table 3, we list the link capacities, ISP’s castd-

tion g (-), and link latency functiom, (). Suppose the CP aims to
minimize the average latency of its traffic. We compare thetNa

The special case TE-SS game (5) has a Nash equilibrium, asequilibrium of two situations when the CP optimizes its natby

shown in Theorem 1. Nash equilibrium may not be unique in gen-

eral. This is because when there is no traffic between a sasesr
pair, the TE routing decision for this pair can be arbitranghw
out affecting its utility. In the worst case, a Nash equililbon can

be arbitrarily suboptimal to the global optimum. Now assuttrat

there exists non-zero traffic demand between any serverpase
as in [8]. Then the alternating player moves in (4) reachigue

Nash equilibrium, which is also global optimum to (6). TE-8S
teraction does not sacrifice any efficiency in this speciaécand
the optimal operating point can be achieved by alternategj te-
sponse unilaterally, without the need of a global coordamatThis

result is shown in [8] where the idea is to prove the equivadenf

Nash equilibrium and the global optimum. An alternativegirs

to first transform problem (6) and consider alternating getipns
of variables onto a convex set [18].

The special case analysis establishes a lower bound onfihe ef
ciency loss of TE-SS interaction. In general, there areethoeirces
of mis-alignment between the optimization problems of TE 86:
(1) different shapes of the cost functions, (2) differeqtety of de-
lay modeled by the cost functions, and (3) existence of hackgl
traffic in the TE problem. The above special case illustrateat
might happen if differences (1) and (3) are avoided, whitedbal-
uation results in Section 7 highlight the impact of diffecerf2). As
we will show next, difference in objective functions and ggece
of background traffic can lead to significant efficiency loss.

5. EFFICIENCY LOSS

We next study the efficiency loss in the general case of th&BE-
game, which may be caused by incomplete information, o&atmil
eral actions that miss the opportunity to achieve a jointtpia-
able optimal point. We present two case studies that ibitstthese
two sources of suboptimal performance. We first present agby
work and show that under certain conditions the CP perforran e
worse in Model Il than Model |, despite having more inforroati
about underlying network conditions. We next propose th@no
of Pareto-optimality as the performance benchmark, andtiya
the efficiency loss in both Model | and Model II.

5.1 The Paradox of Extra Information

Consider an ISP network illustrated in Figure 2. We desigaat
end user nodel = {F}, and two CP server§= {B,C}. The end
user has a content demandMg = 2. We also allow two back-
ground traffic flows,A — D and A — E, each of which has one
unit of traffic demand. Edge directions are noted on the figswe
one can figure out the possible routes, i.e., there are twts fjat
each traffic flow (clockwise and counter-clockwise). To difgp

SS with e2e info and SS with improved visibility.

The stability condition for the ISP at Nash equilibriungig f1) =
o,(f2) = d5(f3) = g, (fa). Since the ISP’s link cost functions are
identical, the total traffic on each link must be identicaln e
other hand, the stability condition for the CP at Nash ehriiim
is that(B,F) and(C,F) have the same marginal latency. Based on
the observations, we can derive two Nash equilibrium points

When the CP takes the strategy of SS with e2e info, let

Xcp Z{XBF =1 XcFr= 1}

CF _ CF _

Model I: R:{rlBlefa, tBF—a, 1i§F=a, 1$F=1-q,

MP=a,rP=1-0a,rmE=1-a,rt= a}

One can check that this is indeed a Nash equilibrium solution
wherefy = fp = f3=f4 =1, andDgr =Dcg =1—0a +a/e.
The CP’s objective$ =2(1—a + a/¢).

When the CP takes the strategy of SS with improved visibility
let

Xcp I{XBF =1 XcF= 1}

Model II: R:{rlBF —a,i3F=1-a,r§F=1-0a,1§F =a,
MP=1-qa,MP=a, r’f=aq, rﬁEzl—a}

This is a Nash equilibrium point, wheffg = f, = f3 = f4, =1, and
dsr = decr = a(1+a)+ (1—a)(l/e +(1—a)/e?). The CP’s
objectiveS$ = 2(a + (1—a)/e).

When 0< € < 1,0 < a < 1/2, we have the counter-intuitive
S§ < SS: more information may hurt the CP’s performance. In
the worst case,

lim S5 =00
a—0,e—0 Ss

i.e., the performance degradation can be unbounded.

This is not surprising, since the Nash equilibrium is gelera
non-unique, both in terms of equilibrium solutions and éhQui
rium objectives. When ISP and CP’s objectives are mis-atign
the ISP’s decision may route CP’s traffic on bad paths from the
CP’s perspective. In this example, the paradox happens tigen
ISP privilegesthe CP traffic in Model | (although SS relies on e2e
info only) by assigning it to good paths, and when the ISP mis-
routes the CP traffic to bad paths in Model Il (although SSgain



improved visibility). In practice, such a scenario is likeb hap-
pen, since the ISP cares about link congestion (link utibizg,
while the CP cares about latency, which depends not onlyrdn li
load, but also on propagation delay. Thus ISP and CP’s padia
laboration by only passing information is not sufficient thizve
global optimality.

5.2 Pareto Optimality and Illustration of Sub-
Optimality

As in the above example, one of the causes of sub-optimality i
that TE and SS’s objectives are not necessarily aligned. dam
sure efficiency in a system with multiple objectives, a comrap-
proach is to explore th@areto curve For points on the Pareto
curve, we cannot improve one objective further without imgrthe
other. The Pareto curve characterizes the tradeoff of fiatgn
conflicting goals of different parties. One way to trace ttaeleoff
curve is to optimize a weighted sum of the objectives:

minimize TE+y-SS
variablesRe %, Xep € Zcp

@)

wherey > 0 is a scalar representing the relative weight of the two
objectives.Z and Z¢,, are the feasible regions defined by the con-
straints in (1) and (3):

%x%cp:{r.'hxsuozr.” <1, x>0,

z r:j - g r,” =ly=j,WeV\{i},
l:leln(v) 1:1eOut(v)
fi = Xij'ﬂ”ﬁoh Xst:Mt}

& 2

The formulation of problem (7) is not easy to solve. In fabg t
objective of (7) is no longer convex in VariabléﬁSt7Xst}y and the
feasible region defined by constraints of (7) is not convexe O
way to overcome this problem is to consider a relaxed detisio
space that is a superset of the original solution spaceeddsof
restricting each player to its own operating domain, i.8R ton-
trols routing and CP controls server selection, we intredaigoint
routing and content delivery problem. L)qi‘ denote therate of
traffic carried on link that belongs to flows,t). Such a convexi-
fication of the original problem (7) gives more freedom tajol E
and SS problem. Denote the generalized CP decision varéable
Xep = ' sestet, andRog = {r}' }i j)¢s.T as background rout-
ing matrix. Consider the following optimization problem:

TE-SS-weighted&ep. Rog)

minimize TE+y-SS

subject to P = > X, vl
(st)

fi="f"P+ xij -1l <G, vl
(i,)¢SxT

rl — N =1, VG0, ]) ¢ Sx T, e V\{i}
I:Ie%l(v) I:Ie;.]t(v)

S ; - g KU =M -, WES VEEeT
seS \ llleln(v) 1:1eOut(v)

variables %' > 0,0 < r:j <1

®)

Denote the feasible space of the joint variablezas= {)A(Cp, Rog}-

Measure of efficiency loss

——Pareto Curve
W Model |
@ Model Il

5.5]
[ ]

operating region

SS cost

9 9.2 9.4

TE cost
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Figure 3: A numerical example illustrating sub-optimality.

If we vary y and plot the achieved TE objectives versus SS objec-
tives, we obtain the Pareto curve.

To illustrate the Pareto curve and efficiency loss in Modeid a
Model II, we plot in Figure 3 the Pareto curve and the Nashldgui
ria in the two-dimensional objective space (TE,SS) for teevork
shown in Figure 2. The simulation shows that when the CP {ever
ages the complete information to optimize (3), it is abledbieve
lower delay, but the TE cost suffers. Though it is not cleaicivh
operating point is better, both equilibria are away from Baeeto
curve, which shows that there is room for performance imgrov
ment in both dimensions.

6. AJOINT DESIGN: MODEL Il

Motivated by the need for a joint TE and SS design, we propose
the Nash bargaining solution to reduce the efficiency lossnled
above. Using the theory of optimization decomposition, vee d
rive a distributed algorithm by which the ISP and the CP can ac
separately and communicate with a limited amount of infaroma
exchange.

6.1 Motivation

An ISP providing content distribution service in its ownwetk
has control over both routing and server selection. So tReckh
consider the characteristics of both types of traffic (backgd and
CP) and jointly optimize a carefully chosen objective. Toiafly
optimized system should meet at least two goals: (i) opttgal
i.e., it should achieve Pareto optimality so the networloueses
are efficiently utilized, and (i) fairness, i.e., the traffebetween
two non-synergistic objectives should be balanced so batties
benefit from the cooperation.

One natural design choice is to optimize the weighted sum of
the traffic engineering goal and server selection goal ag/stio
(8). However, solving (8) for each and adaptively tuning in
a trial-and-error fashion is impractical and inefficient. First, it is
not straightforward to weigh the tradeoff between the twgecb
tives. Second, one needs to compute an appropriate weight pa
rametery for every combination of background load and CP traffic
demand. In addition, the offline computation does not adagy/t
namic changes of network conditions, such as cross trafficlor
failures. Last, tuning/ to explore a broad region of system operat-
ing points is computationally expensive.

Besides the system considerations above, the economigeoers
tive requires dair solution. Namely, the joint design should benefit
both TE and SS. In addition, such a model also applies to a more
general case when the ISP and the CP are different busingss en



ties. They cooperate only when the cooperation leads to awmivin
situation, and the “division” of the benefits should be fa#,, one
who makes greater contribution to the collaboration shoeldble
to receive more reward, even when their goals are conflicting

While the joint system is designed from a clean state, it khou
accept an incremental deployment from the existing infuastire.

In particular, we prefer that the functionalities of rogtiand server
selection be separated, with minor changes to each compdiiean
modularized design allows us to manage each optimizatide-in
pendently, with a judicious amount of information exchanbe-
signing for scalability and modularity is beneficial to botle ISP
and the CP, and allows their cooperation either as a singjity en
as different ones.

Based on all the above considerations, we apply the conéept o
Nash bargaining solutiof9, 20] from cooperative game theory. It
ensures that the joint system achieveg#icientandfair operating
point. The solution structure also allows a modular impletae
tion.

6.2 Nash Bargaining Solution

Consider a Nash bargaining solution which solves the fatigw
optimization problem:

maximize (TEp—TE)(S$—S9
variables {Xcp,Rog} € o

9)

where(T Ey, S9) is a constant called thdisagreement pointvhich
represents the starting point of their negotiation. Nam@l¥o, SS)

is the status-quo we observe before any cooperation. Famnics,

one can view the Nash equilibrium in Model | as a disagreement
point, since it is the operating point the system would reaith-

out any further optimization. By optimizing the product arfor-
mance improvements of TE and SS, the Nash bargaining solutio
guarantees the joint system is optimal and fair. A Nash lairgga
solution is defined by the following axioms, and is the onligton

that satisfies all of four axioms [9, 20]:

e Pareto optimality A Pareto optimal solution ensures effi-
ciency.

e Symmetry The two players should get equal share of the
gains through cooperation, if the two players’ problems are

symmetric, i.e., they have the same cost functions, and have

the same objective value at the disagreement point.

e Expected utility axiomThe Nash bargaining solution is in-
variant under affine transformations. Intuitively, thisar
suggests that the Nash bargaining solution is insensitive t
different units used in the objective and can be efficiently
computed by affine projection.

e Independence of irrelevant alternativéshis means that adding
extra constraints in the feasible operating region does no
change the solution, as long as the solution itself is féasib

The choice of the disagreement point is subject to diffeeent
nomic considerations. For a single network provider whdessto
provide both services, it can optimize the product of improent
ratio by setting the disagreement point to be the origin, @guiv-
alent toTE-SY(TEy- S$). For two separate ISP and CP entities
who wish to cooperate, the Nash equilibrium of Model | may be
a natural choice, since it represents the benchmark peaforenof
current practice, which is the baseline for any future coafpen.

It can be obtained from the empirical observations of thegrage

performance. Alternatively, they can choose their pref&perfor-
mance level as the disagreement point, written into theraotitin
this work, we use the Nash equilibrium of Model | as the disagr
ment point to compare the performances of our three models.

6.3 COST Algorithm

In this section, we show how Nash bargaining solution cambe i
plemented in a modularized manner, i.e., keeping SS and id fu
tionalities separate. This is important because modddrgesign
increases the re-usability of legacy systems with minongks,
like existing CDNs deployment. In terms of cooperation hesw
two independent financial entities, the modularized stmegpresents
the possibility of cooperation without revealing confidehinter-
nal information to each other.

We next develop COST (COoperative Server selection and Traf
fic engineering), a protocol that implements NBS by separ&e
and SS optimizations and communication between them. g app
the theory of optimization decomposition [10] to decomppsah-
lem (9) into subproblems. ISP solves a new routing problehichv
controls the routing of background traffic only. The CP sslee
new server selection problem, given the network topolodgrin
mation. The ISP also passes the routing control of contefiidto
the CP, offering more freedom to how content can be delivered
the network. They communicate via underlyilivgk prices which
are computed locally using traffic levels on each link.

Consider the objective of (9), which can be converted to

logTEy—TE)+log(SS —S9

since the log function is monotonic and the feasible sofusipace
is unaffected. The introduction of the log functions helpea
the decomposition structure of the original problem. Twrikary

variableﬁ and flbg are introduced to reflect the preferred CP traf-
fic level from the ISP’s perspective and the preferred bamgd
traffic level from the CP’s perspective. (9) can be rewritisn

max. logTEy— Zg| (fP9+T°P)) —Hog(S%—Zm (FEP+ 1P9))

maximize

(10)

st (=5 5, 9= Xij 1)), V1
(sD) (i, =T
R f°p+fbg<C|,VI

r' =ly=j, V(i,j) ¢ SxT,YweV\{i}
I'Iegut(v I g )

Xt — XU =M -lyey, WS VEET
sgS (I:Ie n(v) I:Iegut(v

var. x>0, 0<r <1, v(i,j) ¢ SxT, 1P, 1P

t The consistency constraint on the auxiliary variable aedtiginal

variable ensures that the solution equivalent to problem ®e
take a partial Lagrangian of (10) as

LOSr), FP €09, A, u|, )
—log(TEg— Zg| + 1) N+ 3 m 29— 1P9)

+log(S$ - Zh| (fEP+ £P9)) +Zv| (fEP—TP)

+ Z/\. (G — P9 £P)



Ay is thelink price, which reflects the cost of overshooting the link
capacity, andy, v, are theconsistency pricesvhich reflect the cost
of disagreement between ISP and CP on the preferred linkmeso
allocation. Observe that®™ and £ can be separated in the La-
grangian function. We take a dual decomposition approactl, a
(10) is decomposed into two subproblems:

SS-NBSXF‘,@):
max. logs$ -y h (fEP+ £09)) + S FEP— P9 — A £CP)

(11)
s.t.

fP = > ]
<S,t)

- KU =M lvot, WES VT
sgs (I:Ie n(v) I:Iegut(v)

var, X' >0,¥(st) € Sx T, ﬁ

and

TE-NBS(r}, £ P):
max. logTE 3 g (£P9+ 7)) + > (u £29 — v FEP — A, £°9)

(12)

s.t. flbg = Xij ~|’|ij7 vl
(i,)¢SxT

1 =1, V(i,j) ¢ Sx T, We V\{i}
I:Ie%(v) I:Iegut(v) I :

' —
var. 0<r <1¥(i,j) ¢ SxT, P
The optimal solutions of (11) and (12) for a given set of psice
U, vy, andA; define the dual function Dugly,vi,A). The dual
problem is given as:
minimize Dualy, v, A)
variable A} >0, , v

(13)

We can solve the dual problem with the following price update

R
Mt+1) = }\l(t)—ﬁ/\l(q—ﬁbg_fle) al

(14)
B (t+1) = b (t) — B (FP9— 129), v (15)
Vi(t+1) = w(t) = Bu (P = £°P), VI (16)

wheref3’s are diminishing step sizes or small constant step sizes
often used in practice [21]. Table 4 presents the COST dlyguri
that implements the Nash bargaining solution distriblyive

In COST, the ISP solves the new version TE, i.e., TE-NBS, and
the CP solves the new version SS, i.e., SS-NBS. In terms of-inf
mation sharing, the CP learns the network topology from 8t |
They do not directly exchange information with each othestead,

they reportf,"P andflng information to underlying links, which pass
the computed price information back to TE and SS. It is pdssdh
further implement TE or SS in a distributed manner, such aken
user/server levels.

There are two main challenges on practical implementatfon o
COST. First, TE needs to adapt quickly to network dynamiest F
timescale TE has recently been proposed in various worlkrfse
an extra price update component is required on each linkgtwhi

COST (COoperative SS and TE)
ISP: TE algorithm

(i)  Receives link price\| and consistency pricg, v, from
physical linksl € E
(i) ISP solves (12) and comput& for background traffic
(i) ISP passesflbg, fP information to each link
(iv) Go backto (i)
CP: SS algorithm
(i)  Receives link price\| and consistency pricg, v, from
physical linksl € E
(i)  CP solves (11) and computég, for content traffic.
(i) CP passed P, £ information to each link
(iv) Go backto (i)
Link: price update algorithm
0] Initialization step: sed|; > 0, andy,, v, arbitrarily
(i)  Updates link priceA; according to (14)
(i)  Updates consistency pricgg, v according to (15)(16)
(iv) Passed\, Vv information to TE and SS
(v)  Go back to (ii)

Table 4: Distributed algorithm for solving problem (9).

involves price computation and message passing betweemdE a
SS. This functionality can be potentially implemented intevs.

The COST algorithm is precisely captured by the decomposi-
tion method described above. Certain choice of step sineb, &
B(t) = Bo/t, wherefy > 0, guarantees that the algorithm converges
to a global optimum [22].

Theorem 2. The distributed algorithm COST converges to the op-
timum of (9) for sufficiently small step siz@g, 3, and ;.

7. PERFORMANCE EVALUATION

In this section, we use simulations to demonstrate the efigi
loss that may occur for real network topologies and trafficiais.
We also compare the performance of the three models. We solve
the Nash bargaining solution centrally, without using th@ST al-
gorithm, since we are primarily interested in its perforcenCom-
plementary to the theoretical analysis, the simulationltesllow
us to gain a better understanding of the efficiency loss uretf
istic network environments. These simulation results plewide
guidance to network operators who need to decide which appro
to take, sharing information or sharing control.

7.1 Simulation Setup

We evaluate our models under ISP topologies obtained frooh-Ro
etfuel [23]. We use the backbone topology of the researcharit
Abilene [24] and several major tier-1 ISPs in north Ameri¢ée
choice of these topologies also reflects different geometoper-
ties of the graph. For instance, Abilene is the simplest fyraith
two bottleneck paths horizontally. The backbones of AT&T an
Exodus have a hub-and-spoke structure with some shortedts b
tween nodes pairs. The topology of Level 3 is almost a coraplet
mesh, while Sprint is in between these two kinds. We simulate
traffic demand using a gravity model [25], which reflects the-p
wise communication pattern on the Internet. The contentatheim
of a CP user is assumed to be proportional to the node populati

The TE cost functiomy(-) and the SS cost functidn(-) are cho-
sen as follows. ISPs usually model congestion cost with &eon
increasing function of the link load. The exact shape of tirect
tion g (f}) is not important, and we use the same piecewise linear



cost function as in [11], given below:

fi 0<f/C <1/3
3fi —2/3G 1/3<1/C <2/3
10f;, — 16/3C 2/3< /G <9/10
9 (MG =1 70 _178/3 9/10< f,/C < 1
500f, — 1468/3C 1< 1/C < 11/10
5000f, —16318/3C; 11/10< f/C <

The CP’s cost function can be the performance cost like ¢gten
financial cost charged by ISPs. We consider the case where la-
tency is the primary performance metric, i.e., the conteffic is
delay sensitive like video conferencing or live streamii@p we
let the CP’s cost functiom () be of the form given by (2), i.e.,
h(fi) = f°P-Di(f;). Alink's latencyDj (-) consists of queuing de-
lay and propagation delay. The propagation delay is praput
to the geographical distances between nodes. The queumgide
approximated by the M/M/1 model, i.e.,

1
Dqueue= le fi <G

fi’
with a linear approximation when the link utilization is 0\@9%.

We relax the link capacity constraints in both TE and SS and pe
nalize traffic overshooting the link capacity with high csfThe
shapes of the TE link cost function and queuing delay funcéie
illustrated in Figure 4. We intensionally choose the costcfions

of TE and SS to be similar in shape. This allows us to quantiéy t
efficiency loss of Model | and Model Il even when their objees
are relatively well aligned, as well as the improvement giaiby
Model Il1.

TE link cost function, C‘=10 Queuing delay function, C‘=10
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Figure 4: ISP and CP cost functions.

7.2 Evaluation Results

7.2.1 Tussle between background and CP’s traffic

We first demonstrate how CP’s traffic intensity affects theralt
network performance. We fix the total amount of traffic andetun
the ratio between background traffic and CP’s traffic. Weaxtal
the performance of different models when CP traffic growsnfro
1% to 100% of the total traffic. Figure 5 illustrates the résoin
Abilene topology.

The general trend of both TE and SS objectives for all threg-mo
els is that the cost first decreases as CP traffic percentagesgr
and later increases as CP’s traffic dominates the networ&.d€h
creasing trend is due to the fact that CP’s traffic is selfrojzed by
selecting servers close to a user, thus offloading the nktvildre
increasing trend is more interesting, suggesting that vehieigher

10

TE cost v.s. CP traffic volume SS cost v.s. CP traffic volume
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Figure 5: The TE-SS tussle v.s. CP’s traffic intensity (Abilee
topology)

percentage of total traffic is CP-generated, the negatiextedf
TE-SS interaction is amplified, even when the ISP and the @rResh
similar cost functions. Low link congestion usually means &nd-
to-end latency, and vice versa. However, they differ in thitov-
ing: (i) TE might penalize high utilization before queueidglay
becomes significant in order to leave as much room as pogsible
accommodate changes in traffic, and (ii) CP considers batp-pr
agation delay and queueing delay so it may choose a moderatel
congested short path over a lightly-loaded long path. Tkjéaéns
why the optimization efforts of two players are at odds.

7.2.2 Network congestion v.s. performance improve-
ment

We now study the network conditions under which more perfor-
mance improvement is possible. We evaluate the three models
the Abilene topology. Again, we fix the total amount of tratiied
vary the CP’s traffic percentage. Now we change link capeiti
and evaluate two scenarios: when the network is moderately ¢
gested and when the network is highly congested. We show the
performance improvement of Model Il and Model Il over Model
I (in percentages) and plot the results in Figure 6. Figu(asb$
show the improvement of the ISP and the CP when the network is
under low load. Generally, Model Il and Model IIl improve hot
TE and SS, and Model Il outperforms Model Il in most cases,
with the exception that Model Il is biased towards SS somegim
However, both ISP and CP’s improvement are not substamidéé (
the different scales of-axes), except when CP traffic is insignif-
icant (1%). This is because when the network is under low,load
the slopes of TE and SS cost functions are “flat,” thus lealittig
space for improvement.

Figure 6(c-d) show the results when the network is under high
load. Improvement becomes more significant, especiallyeatvto
extremes: when CP’s traffic is insignificant or prevalentisEgain
suggests that when CP traffic is dominant, there is a largeedp#t
for improvement even when two objectives are similar in ghap
However, observe that while model Il always improves TE and
SS, Model Il could sometimes perform worse than Model .

7.2.3 Impact of ISP topologies

We evaluate our three models on different ISP topologiee Th
topological properties of different graphs are discusseliez. The
CPrs traffic is 80% of the total traffic and link capacities @t
such that networks are under high traffic load. Our findings ar
depicted in Figure 7. Note that performance improvemenglis-r
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Figure 7: Performance evaluation over different ISP topolgies. Abilene: small cut graph; AT&T, Exodus: hub-and-spole with
shortcuts; Level 3: complete mesh; Sprint: in between.

tively more significant in more complex graphs. Simple topats
with small min-cut sizes are networks where the appareradoer
of more (incomplete) information is likely to happen. Besidhe
TE and SS objectives, we also plot the maximum link utilizati
to illustrate the level of congestion in the network. Highetwork
load shows more space for potential improvement. Also, midide
improves this metric generally, which might be another intguat
consideration for network providers.

8. RELATED WORK

This paper is an extension of our earlier workshop paper. [26]
Additions in this paper include the following: a more gehé®
model, analysis of optimality conditions in three cooperatmod-
els, paradox of extra information, implementation of Naatghin-
ing solution, and large scale evaluation.

The most similar work is a parallel work [8], which studieeth
interaction between content distribution and traffic eegiing. It
shows the optimality conditions for two separate probleonsan-
verge to a socially optimal point, as discussed in Secti@n 4t
also provides a theoretical bound on efficiency loss andudises
generalizations to multiple ISPs and overlay networks.

Some earlier work studied the self-interaction within ISPEPs
themselves. In [16], the authors used simulation to showvslé
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ish routing is close to optimal in Internet-like environnewithout
sacrificing much performance degradation. [27] studiedpttod-
lem of load balancing by overlay routing, and how to allewiatce
conditions among multiple co-existing overlays. [28] stadthe
resource allocation problem at inter-AS level where |ISRemete
to maximize their revenues. [29] applied Nash bargainirgtsm
to solve an inter-domain ISP peering problem.

The need for cooperation between content providers and net-
work providers is raising much discussion in both the redeaom-
munity and industry. [30] used price theory to reconcile tie
sle between peer-assisted content distribution and |S&Bsurce
management. [6] proposed a communication portal betweRn IS
and P2P applications, which P2P applications can consul&fe-
biased network information to reduce network providersteuith-
out sacrificing their performances. [5] proposed an oraetgise
run by the ISP, so P2P users can query for the ranked neigisbor |
according to certain performance metrics. [7] utilizedsérig net-
work views collected from content distribution networksdiave
biased peer selection in BitTorrent, so cross-ISP traffictzasig-
nificantly reduced and download-rate improved.

[31] studied the interaction between underlay routing aver-o
lay routing, which can be thought of as a generalization ofese
selection. The authors studied the equilibrium behavidremiwo



CP no change
current practice
partial collaboration

CP change
partial collaboration
joint system design

ISP no change
ISP change

Table 5: To cooperate or not: possible strategies for conten
provider (CP) and network provider (ISP)

problems have conflicting goals. Our work explores when ang w

sub-optimality appears, and proposes a cooperative goltdgiad-
dress these issues. [32] studied the economic aspectsiiional
transit providers and content providers, and applied catpe
game theory to derive an optimal settlement between thaizen

9. CONCLUSION AND FUTURE WORK

We examine the interplay between traffic engineering and con

tent distribution. While the problem has long existed, thenaht-
ically increased amount of content-centric traffic, e.gdNCand
P2P traffic, makes it more significant. With the strong mdidra
for ISPs to provide content services, they are faced withgthes-
tion of whether to stay with the current design or to startisiga

information or control. This work sheds light on ways ISPsl an

CPs can cooperate.

This paper serves as a starting point to better understanic-th
teraction between those that operate networks and thoselitha
tribute content. Traditionally, ISPs provide and operae pipes,
while content providers distribute content over the pidasgerms

of what information can be shared between ISPs and CPs artd wha

control can be jointly performed, there are four generatgaties
as summarized in Table 5. The top left corner is the currest-pr
tice, which may give an undesirable Nash equilibrium. Thidoo
right corner is the joint design, which achieves optimalragien
points. The top right corner is the case where the CP receixes
tra information and adapts control accordingly, and theédooteft
corner is the case of content-aware networking. This paiper s
ies three of the four corners in the table. Starting from the c
rent practice, to move towards the bottom right corner oftéinte,
while the two parties remain separate business entitiegyines
unilaterally-actionable, backward-compatible, and éncentally-
deployable migration paths yet to be discovered.
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