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ABSTRACT
Traditionally, Internet Service Providers (ISPs) make profit by pro-
viding Internet connectivity, while content providers (CPs) play the
more lucrative role of delivering content to users. As network con-
nectivity is increasingly a commodity, ISPs have a strong incen-
tive to offer content to their subscribers by deploying their own
content distribution infrastructure. Providing content services in
an ISP network presents new opportunities for coordinationbe-
tween traffic engineering (to select efficient routes for thetraffic)
and server selection (to match servers with subscribers). In this
work, we develop a mathematical framework that considers three
models with an increasing amount of cooperation between theISP
and the CP. We show that separating server selection and traffic
engineering leads to sub-optimal equilibria, even when theCP is
given accurate and timely information about the ISP’s network in
a partial cooperation. More surprisingly, extra visibility may re-
sult in a less efficient outcome and such performance degradation
can be unbounded. Leveraging ideas from cooperative game the-
ory, we propose an architecture based on the concept of Nash bar-
gaining solution. Simulations on realistic backbone topologies are
performed to quantify the performance differences among the three
models. Our results apply both when a network provider attempts
to provide content, and when separate ISP and CP entities wish to
cooperate. This study is a step toward a systematic understand-
ing of the interactions between those who provide and operate net-
works and those who generate and distribute content.

Categories and Subject Descriptors
C.4 [Performance of Systems]: [Performance attributes]

General Terms
Design, Economics, Performance

1. INTRODUCTION
Internet Service Providers (ISPs) and content providers (CPs) are

traditionally independent entities. ISPs only provide connectivity,
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or the “pipes” to transport content. As in most transportation busi-
nesses, connectivity and bandwidth are becoming commodities and
ISPs find their profit margin shrinking [1]. At the same time, con-
tent providers generate revenue by utilizing existing connectivity to
deliver content to ISPs’ customers. This motivates ISPs to host and
distribute content to their customers. Content can be enterprise-
oriented, like web-based services, or residential-based,like triple
play as in AT&T’s U-Verse [2] and Verizon FiOS [3] deployments.
When ISPs and CPs operate independently, they optimize their per-
formance without much cooperation, even though they influence
each other indirectly. When ISPs deploy content services orseek
cooperation with CP, they face the question of how much can be
gained from such cooperation and what kind of cooperation should
be pursued.

A traditional service provider’s primary role is to deploy infras-
tructure, manage connectivity, and balance traffic load inside its
network. In particular, an ISP solves thetraffic engineering(TE)
problem, i.e., adjusting the routing configuration to the prevailing
traffic. The goal of TE is to ensure efficient routing to minimize
congestion, so that users experience low packet loss, high through-
put, and low latency, and that the network can gracefully absorb
flash crowds.

To offer its own content service, an ISP replicates content over
a number of strategically-placed servers and directs requests to dif-
ferent servers. The CP, whether as a separate business entity or as
a new part of an ISP, solves theserver selection(SS) problem, i.e.,
determining which servers should deliver content to each end user.
The goal of SS is to meet user demand, minimize network latency
to reduce user waiting time, and balance server load to increase
throughput.

To offer both network connectivity and content delivery, anISP
is faced with coupled TE and SS problems, as shown in Figure 1.
TE and SS interact because TE affects the routes that carry the CP’s
traffic, and SS affects the offered load seen by the network. Actu-
ally, the degrees of freedom are also the “mirror-image” of each
other: the ISP controls routing matrix, which is the constant pa-
rameter in the SS problem, while the CP controls traffic matrix,
which is the constant parameter in the TE problem.

In this paper, we study several approaches an ISP could take in
managing traffic engineering and server selection, rangingfrom
running the two systems independently to designing a joint sys-
tem. We refer to CP as the part of the system that manages server
selection, whether it is performed directly by the ISP or by asep-
arate company that cooperates with the ISP. This study allows us
to explore a migration path from the status-quo to differentmodels
of synergistic traffic management. In particular, we consider three
scenarios with increasing amounts of cooperation between traffic
engineering and server selection:
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Optimality Gap Information Exchange Fairness Architectural Change
Model I Large, not Pareto-optimal No exchange No Current practice

Measurement only
Model II Improved, not Pareto-optimal Topology, routes, capacity No Minor CP changes

Social-optimal in special case Background traffic level Better SS algorithm
More info. may hurt the CP

Model III Pareto-optimal Topology Yes Clean-slate design
5-30% performance improvementLink prices Incrementally deployable

CP given more control

Table 1: Summary of results and engineering implications.

Non−CP Traffic

TE:

Minimize Congestion Minimize Delay

Routes

CP Traffic

SS:

Figure 1: The interaction between traffic engineering (TE) and
server selection (SS).

• Model I: no cooperation (current practice).

• Model II: improved visibility (sharing information).

• Model III: a joint design (sharing control).

Model I. Content services could be provided by a CDN that runs
independently on the ISP network. However, the CP has limited
visibility into the underlying network topology and routing, and
therefore has limited ability to predict user performance in a timely
and accurate manner. We model a scenario where the CP measures
the end-to-end latency of the network and greedily assigns each
user to the servers with the lowest latency to the user, a strategy
some CPs employ today [4]. We call thisSS with e2e info. In ad-
dition, TE assumes the offered traffic is unaffected by its routing
decisions, despite the fact that routing changes can affectpath la-
tencies and therefore the CP’s traffic. When the TE problem and the
SS problem are solved separately, their interaction can be modeled
as a game in which they take turns to optimize their own networks
and settle in a Nash equilibrium, which may not bePareto optimal.

Not surprisingly, performing TE and SS independently is of-
ten sub-optimal because (i) server selection is based on incomplete
(and perhaps inaccurate) information about network conditions and
(ii) the two systems, acting alone, may miss opportunities for a joint
selection of servers and routes. Models II and III capture these two
issues, allowing us to understand which factor is more important in
practice.

Model II. Greater visibility into network conditions should enable
the CP to make better decisions. There are, in general, four types
of information that could be shared: (i) physical topology informa-
tion [5, 6, 7], (ii) logical connectivity information, e.g., routing in
the ISP network, (iii) dynamic properties of links, e.g., OSPF link
weights, background traffic, and congestion level, and (iv)dynamic
properties of nodes, e.g., bandwidth and processing power that can
be shared. Our work focuses on a combination of these types of
information, i.e., (i)-(iii), so that the CP is able to solvethe SS
problem more efficiently, i.e., to find theoptimal server selection.

Sharing information requires minimal extensions to existing so-
lutions for TE and SS, making it amenable to incremental deploy-
ment. Similar to the results in the parallel work [8], we observe and
prove that TE and SS separately optimizing over their own vari-
ables is able to converge to a global optimal solution, when the
two systems share the same objectives with the absence of back-
ground traffic. However, when the two systems have differentor
even conflicting performance objectives (e.g., SS minimizes end-
to-end latency and TE minimizes congestion), the equilibrium is
not optimal. In addition, we find that model II sometimes performs
worsethan model I—that is, extra visibility into network conditions
sometimes leads to aless efficientoutcome—and the CP’s latency
degradation can be unbounded. The facts that both Model I and
Model II in general do not achieve optimality, and that extrainfor-
mation (Model II) sometimes hurts the performance, motivate us to
consider a clean-slate joint design for selecting servers and routes
next.

Model III. A joint design should achievePareto optimalityfor TE
and SS. In particular, our joint design’s objective function gives rise
to Nash Bargaining Solution[9]. The solution not only guarantees
efficiency, but alsofairnessbetween synergistic or even conflicting
objectives of two players. It is a point on the Pareto optimalcurve
where both TE and SS have better performance compared to the
Nash equilibrium. We then apply the optimization decomposition
technique [10] so that the joint design can be implemented ina
distributed fashion with a limited amount of information exchange.

The analytical and numerical evaluation of these three models
allows us to gain insights for designing a cooperative TE andSS
system, summarized in Table 1. The conventional approach of
Model I requires minimum information passing, but suffers from
sub-optimality and unfairness. Model II requires only minor changes
to the CP’s server selection algorithm, but the result is still not
Pareto optimal and performance is not guaranteed to improve, even
possibly degrading in some cases. Model III ensures optimality
and fairness through a distributed protocol, requires a moderate in-
crease in information exchange, and is incrementally deployable.
Our results show that letting CP have some control over network
routing is the key to effective TE and SS cooperation.

We perform numerical simulations on realistic ISP topologies,
which allow us to observe the performance gains and loss overa
wide range of traffic conditions. The joint design shows significant
improvement for both the ISP and the CP. The simulation results
further reveal the impact of topologies on the efficiencies and fair-
ness of the three system models.

Our results apply both when a network provider attempts to pro-
vide content, and when separate ISP and CP entities wish to coop-
erate. For instance, an ISP playing both roles would find the op-
timality analysis useful such that a low efficiency operating region
can be avoided. And cooperative ISP and CP would appreciate the

2



Notation Description
G : Network graphG = (V,E). V set of nodes,E set of links
S: S⊂V, the set of CP servers
T : T ⊂V, the set of users
Cl : Capacity of linkl
r i j
l : Proportion of flowi → j traversing linkl

R : The routing matrixR : {r i j
l }, TE variable

Rbg Background routing matrixR : {r i j
l }(i, j)/∈S×T

X : Traffic matrix of all communication pairsX = {xi j }(i, j)∈V×V
xst : Traffic rate from servers to usert
Xcp : Xcp = {xst}(s,t)∈S×T , SS variable
Mt : Usert ’s demand rate for content
Bs : Service capacity of servers
xst

l : The amount of traffic for(s,t) pair on link l
X̂cp : X̂cp = {xst

l }(s,t)∈S×T , the generalized SS variable
f cp
l : CP’s traffic on linkl

f bg
l : Background traffic on linkl

fl : fl = f cp
l + f bg

l , total traffic on linkl . ~f = { fl}l∈E
Dp : Delay of pathp
Dl : Delay of link l
g(·) : Cost function used in ISP traffic engineering
h(·) : Cost function used in CP server selection

Table 2: Summary of key notation.

distributed implementation of Nash bargaining solution that allows
for an incremental deployment.

The rest of the paper is organized as follows. Section 2 presents
a standard model for traffic engineering. Section 3 presentsour two
models for server selection, when given minimal information (i.e.,
Model I) and more information (i.e., Model II) about the underly-
ing network. Section 4 studies the interaction between TE and SS
as a game and shows that they reach a Nash equilibrium. Section 5
analyzes the efficiency loss of Model I and Model II in general.
We show that the Nash equilibria achieved in both models are not
Pareto optimal. In particular, we show that more information is not
always helpful. Section 6 discusses how to jointly optimizeTE and
SS by implementing a Nash bargaining solution. We propose anal-
gorithm that allows practical and incremental implementation. We
perform large-scale numerical simulations on realistic ISP topolo-
gies in Section 7. Finally, Section 8 presents related work,and
Section 9 concludes the paper and discusses our future work.

2. TRAFFIC ENGINEERING (TE) MODEL
In this section, we describe the network model and formulatethe

optimization problem that the standard TE model solves. We also
start introducing the notation used in this paper, which is summa-
rized in Table 2.

Consider a network represented by graphG = (V,E), whereV
denotes the set of nodes andE denotes the set of directed physical
links. A node can be a router, a host, or a server. Letxi j denote
the rate of flow(i, j), from nodei to node j , wherei, j ∈V. Flows
are carried on end-to-end paths consisting of some links. One way
of modeling routing isW = {wpl}, i.e.,wpl = 1 if link l is on path
p, and 0 otherwise. We do not limit the number of paths soW
can includeall possible paths, but in practice it is often pruned to
include only paths that actually carry traffic. The capacityof a link
l ∈ E isCl > 0.

Given the traffic demand, traffic engineering changes routing to
minimize network congestion. In practice, network operators con-
trol routing either by changing OSPF link weights [11] or by estab-
lishing MPLS label-switched paths [12]. In this paper we usethe
multi-commodity flow solution to route traffic, because a) itis op-
timal, i.e., it gives the routing with minimum congestion cost, and
b) it can be realized by routing protocols that use MPLS tunneling,
or as recently shown, in a distributed fashion by a new link-state
routing protocol PEFT [13]. Letr i j

l ∈ [0,1] denote the proportion
of traffic of flow (i, j) that traverses linkl . To realize the multi-
commodity flow solution, the network splits each flow over a num-
ber of paths. LetR= {r i j

l } be the routing matrix.
Let fl denote the total traffic traversing linkl , and we havefl =

∑(i, j) xi j · r
i j
l . Now traffic engineering can be formulated as the fol-

lowing optimization problem:

TE(R|X):

minimize TE = ∑
l

gl ( fl ) (1)

subject to fl = ∑
(i, j)

xi j · r
i j
l ≤Cl , ∀l

∑
l :l∈In(v)

r i j
l − ∑

l :l∈Out(v)
r i j
l = Iv= j , ∀(i, j), ∀v∈V\{i}

variables 0≤ r i j
l ≤ 1, ∀(i, j), ∀l

wheregl (·) represents a link’s congestion cost as a function of the
load, Iv= j is an indicator function which equals 1 ifv = j and 0
otherwise, In(v) denotes the set of incoming links to nodev, and
Out(v) denotes the set of outgoing links from nodev.

In this model, TE does not differentiate between the CP’s traffic
and background traffic. In fact, TE assumes a constant trafficma-
trix X, i.e., the offered load between each pair of nodes, which can
either be a point-to-point background traffic flow, or a flow from a
CP’s server to a user. As we will see later, this common assumption
is undermined when the CP performs dynamic server selection.

We only consider the case where cost functiongl (·) is a convex,
continuous, and non-decreasing function offl . By using such an
objective, TE penalizes high link utilization and balancesload in-
side the network. We will discuss later the analytical form of gl (·)
which the ISP may use in practice.

3. SERVER SELECTION (SS) MODELS
While traffic engineering usually assumes that traffic matrix is

point-to-point and constant, both assumptions are violated when
some or all of the traffic is generated by the CP. A CP usually has
many servers that offer the same content, and the servers selected
for each user depend on the network conditions. In this section,
we present two novel CP models which correspond to models I
and II introduced in Section 1. The first one models the current
CP operation, where the CP relies on end-to-endmeasurementof
the network condition in order to make server selection decisions;
the second one models the situation when the CP obtains enough
information from the ISP tocalculatethe effect of its actions.

3.1 Server Selection Problem
The CP solves the server selection problem to optimize the per-

ceived performance of all of its users. We first introduce theno-
tation used in modeling server selection. In the ISP’s network, let
S⊂V denote the set of CP’s servers, which are strategically placed
at different locations in the network. For simplicity we assume that
all content is duplicated at all servers, and our results canbe ex-
tended to the general case. LetT ⊂V denote the set of users who
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request content from the servers. A usert ∈ T has a demand for
content at rateMt , which we assume to be constant during the time
a CP optimizes its server section. We allow a user to simultane-
ously download content from multiple servers, because nodet can
be viewed as an edge router in the ISP’s network that aggregates the
traffic of many endhosts, which may be served by different servers.

To differentiate the CP’s traffic from background traffic, wede-
note xst as the traffic rate from servers to usert. To satisfy the
traffic demand, we need

∑
s∈S

xst = Mt .

In addition, the total amount of traffic aggregated at a server s is
limited by its service capacityBs, i.e.,

∑
t∈T

xst ≤ Bs.

We denoteXcp = {xst}s∈S,t∈T as the CP’s decision variable.
One of the goals in server selection is to optimize the overall

performance of the CP’s customers. We use an additive link cost
for the CP based on latency models, i.e., each link has a cost,and
the end-to-end path cost is the sum of the link costs along theway.
As an example, suppose the content is delay-sensitive (e.g., IPTV),
and the CP would like to minimize the average or total end-to-end
delay of all its users. LetDp denote the end-to-end latency of a path
p, andDl ( fl ) denote the latency of linkl , modeled as a convex,
non-decreasing, and continuous function of the amount of flow fl
on the link. By definition,Dp = ∑l∈p Dl ( fl ). Then the overall
latency experienced by all CP’s users is

SS= ∑
(s,t)

∑
p∈P(s,t)

xst
p ·Dp( f )

= ∑
(s,t)

∑
p∈P(s,t)

xst
p · ∑

l∈p

Dl ( fl )

= ∑
l

Dl ( fl ) · ∑
(s,t)

∑
p∈P(s,t):l∈p

xst
p

= ∑
l

f cp
l ·Dl ( fl )

(2)

whereP(s,t) is the set of paths serving flow(s,t) and xst
p is the

amount of flow(s,t) traversing pathp∈ P(s,t).
Let hl (·) represent the cost of linkl , which we assume is convex,

non-decreasing, and continuous. In this example,hl ( f cp
l , fl )= f cp

l ·
Dl ( fl ). Thus, the link costhl (·) is a function of the CP’s total traffic
f cp
l on the link, as well as the link’s total trafficfl , which also

includes background traffic.
Expression (2) provides a simple way to calculate the total user-

experienced end-to-end delay—simply sum over all thelinks, but it
requires the knowledge of the load on each link, which is possible
only in Model II. Without such knowledge (Model I), the CP can
rely only onend-to-endmeasurement of delay.

3.2 Server Selection with E2E Info: Model I
In today’s Internet architecture, a CP does not have access to an

ISP’s network information, such as topology, routing, linkcapac-
ity, or background traffic. Therefore a CP relies on measuredor
inferred information to optimize its performance. To minimize its
users’ latencies, for instance, a CP can assign each user to servers
with the lowest (measured) end-to-end latency to the user. In prac-
tice, content distribution networks like Akamai’s server selection
algorithm is based on this principle [4]. We call itSS with e2e info
and use it as our first model.

CP monitors the latencies from all servers to all users, and makes
server selection decisions to minimize users’ total delay.Since the

demand of a user can be arbitrarily divided among the servers, we
can think of the CP as greedily assigning each infinitesimal demand
to the best server. The placement of this traffic may change the path
latency, which is monitored by the CP. Thus, at the equilibrium, the
servers which send (nonzero) traffic to a user should have thesame
end-to-end latency to the user, because otherwise the server with
lower latency will be assigned more demand, causing its latency to
increase, and the servers not sending traffic to a user shouldhave
higher latency than those that serve the user. This is sometimes
called theWardrop equilibrium[14]. The SS model with e2e info
is very similar to selfish routing [15, 16], where each flow tries to
minimize its average latency over multiple paths without coordi-
nating with other flows. It is known that the equilibrium point in
selfish routing can be viewed as the solution to a global convex op-
timization problem [15]. Therefore, SS with e2e info has a unique
equilibrium point under mild assumptions.

Although the equilibrium point is well-defined and is the so-
lution to a convex optimization problem, in general it is hard to
compute the solution analytically. Thus we leverage the idea of Q-
learning [17] to implement a distributed iterative algorithm to find
the equilibrium of SS with e2e info. The algorithm is guaranteed
to converge even under dynamic network environments with cross
traffic and link failures, and hence can be used in practice bythe
CPs. The detailed description and implementation can be found
in [18]. As we will show, SS with e2e info is not optimal. We use
it as a baseline for how well a CP can do with only the end-to-end
latency measurements.

3.3 Server Selection with Improved Visibility:
Model II

We now describe how a CP can optimize server selection given
completevisibility into the underlying network, but not into the ISP
objective. That is, this is the best the CP can do withoutchanging
the routing in the network. We also present an optimization formu-
lation that allows us to analytically study its performance.

Suppose that content providers are able to either obtain infor-
mation on network conditions directly from the ISP, or inferit by
its measurement infrastructure. In the best case, the CP is able to
obtain the complete information about the network, i.e., routing de-
cision and link latency. This situation is characterized byproblem
(3). To optimize the overall user experience, the CP solves the fol-
lowing cost minimization problem:

SS(Xcp|R):

minimize SS= ∑
l

hl ( f cp
l , fl ) (3)

subject to f cp
l = ∑

(s,t)

xst · r
st
l , ∀l

fl = f cp
l + f bg

l ≤Cl , ∀l

∑
s∈S

xst = Mt , ∀t

∑
t∈T

xst ≤ Bs, ∀s

variables xst ≥ 0, ∀(s,t)

where we denotef bg
l = ∑(i, j) 6=(s,t) xi j · r

i j
l as the non-CP traffic on

link l , which is a parameter to the optimization problem. If the
cost functionhl (·) is increasing and convex on the variablef cp

l ,
one can verify that (3) is a convex optimization problem, hence
has a unique global optimal value. In the remainder of this paper,
we ignore the server capacity constraint by assuming sufficiently
large server capacities, since we are more interested in theimpact
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of SS on the network than the decision of load balancing among
congested servers.

SS with improved visibility (3) is amenable to an efficient im-
plementation. The problem can either be solved centrally, e.g., at
the CP’s central coordinator, or via a distributed algorithm simi-
lar to that used for Model I. We solve (3) centrally in our simula-
tions, since we are more interested in the performance improvement
brought by complete information than any particular algorithm for
implementing it.

4. ANALYZING TE-SS INTERACTION
In this section, we study the interaction between the ISP and

the CP when they operate independently without coordination in
both Model I and Model II, using a game-theoretic model. The
game formulation allows us to analyze the stability condition, i.e.,
we show that alternating TE and SS optimizations will reach an
equilibrium point. In addition, we find that when the ISP and the
CP optimize the same system objective, their interaction achieves
global optimalityunder Model II. Results in this section are also
found in a parallel work [8].

4.1 TE-SS Game and Nash Equilibrium
We start with the formulation of a two-player non-cooperative

Nash game that characterizes the TE-SS interaction.

Definition 1. TheTE-SS gameconsists of a tuple[N,A,U ]. The
player set N= {isp,cp}. The action set Aisp = {R} and Acp =
{Xcp}, where the feasible set of R and Xcp are defined by the con-
straints in (1) and (3) respectively. The utility functionsare Uisp =
−TE and Ucp = −SS.

Figure 1 shows the interaction between SS and TE. In both Model
I and Model II, the ISP plays the best response strategy, i.e., the ISP
always optimizes (3) given the CP’s strategyXcp. Similarly, the CP
plays the best response strategy in Model II when given full in-
formation. However, the CP’s strategy in Model I is not the best
response, since it does not optimize (3) due to the lack of network
visibility. Indeed, the utility the CP implicitly optimizes in SS with
e2e info is [15]

Ucp = − ∑
l∈E

∫ fl

0
Dl (u)du

This later helps us understand the stability conditions of the game.
Consider a particular game procedure in which the ISP and the

CP take turns to optimize their own objectives by varying their
own decision variables, treating that of the other player asconstant.
Specifically, in the(k+1)-th iteration, we have

R(k+1) = argmin
R

TE(X(k)
cp )

X(k+1)
cp = argmin

Xcp

SS(R(k+1))
(4)

Note that the two optimization problems may be solved on dif-
ferent timescales. The ISP runs traffic engineering at the timescale
of hours, although it could run on a much smaller timescale. De-
pending on the CP’s design choices, server selection is optimized a
few times a day, or at a smaller timescale like seconds or minutes of
a typical content transfer duration. We assume that each player has
fully solved its optimization problem before the other one starts.

Next we prove the existence of Nash equilibrium of the TE-
SS game. We establish the stability condition when two players
use general cost functionsgl (·) andhl (·) that are continuous, non-
decreasing, and convex. While TE’s formulation is the same in

Model I and Model II, we consider the two SS models, i.e., SS with
e2e info and SS with improved visibility.

Theorem 1. The TE-SS game has a Nash equilibrium for both
Model I and Model II.

Proof Sketch:It suffices to show that (i) each player’s strategy space
is a nonempty compact convex subset, and (ii) each player’s util-
ity function is continuous and quasi-concave on its strategy space,
and follow the standard proof in [19]. The ISP’s strategy space
is defined by the constraint set of (1), which are affine equalities
and inequalities, hence a convex compact set. Sincegl (·) is con-
tinuous and convex, we can easily verify that the objective of (1)
is quasi-convex onR = {r i j

l }. CP’s strategy space is defined by
the constraint set of (3), which is also convex and compact. Sim-
ilarly, if hl ( f cp

l ) is continuous and convex, the objective of (3) is
quasi-convex onXcp. In particular, consider the special case in
which CP minimizes latency (2). When CP solves SS with e2e
info, hl ( fl ) =

∫ fl
0 Dl (u)du. When CP is solves SS with improved

visibility, hl ( f cp
l ) = f cp

l Dl ( fl ). In both cases, ifDl (·) is continu-
ous, non-decreasing, and convex, so ishl (·). One can again verify
the quasi-convexity of the objective in (3).

The existence of a Nash equilibrium does not guarantee that the
trajectory (4) leads to one. In Section 7 we demonstrate the conver-
gence of iterative player optimization in simulation. In general, the
Nash equilibrium may not be unique, in terms of both decisionvari-
ables and objective values. Next, we discuss a special case where
the Nash equilibrium is unique and can be attained by alternating
player moves (4).

4.2 Global Optimality under Same Objective
and Absence of Background Traffic

In the following, we consider a special case of the TE-SS game,
in which the ISP and the CP optimize thesameobjective function,
i.e.,gl (·) = hl (·), so

TE = SS= ∑
l

Φl ( fl ), (5)

when there isno background traffic. One example is when the net-
work carriesonly the CP traffic, and both the ISP and the CP aim to
minimize the average traffic latency, i.e.,Φl ( fl ) = fl ·Dl ( fl ). An
interesting question that naturally arises is whether the two play-
ers’ alternating best response to each other’s decision canlead to a
socially optimal point.

Define a notion ofglobal optimum, which is the optimal point to
the following optimization problem.

TE-SS-Special(̂Xcp):

minimize ∑
l

Φl ( fl ) (6)

subject to fl = ∑
(s,t)

xst
l ≤Cl , ∀l

∑
s∈S



 ∑
l :l∈In(v)

xst
l − ∑

l :l∈Out(v)
xst

l



 = Mt · Iv=t , ∀v /∈ S, ∀t ∈ T

variables xst
l ≥ 0, ∀(s,t),∀l

wherexst
l denotes the traffic rate for flow(s,t) delivered on link

l . The variablexst
l allows a global coordinator to route a user’s

demand from any server in any way it wants, thus problem (6) es-
tablishes an upper-bound on how well one can do to minimize the
traffic latency. Note thatxst

l captures bothR andXcp, which offers
more degrees of freedom for a joint routing and server-selection
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Figure 2: An Example of the Paradox of Extra Information

problem. Its mathematical properties will be further discussed in
Section 5.2.

The special case TE-SS game (5) has a Nash equilibrium, as
shown in Theorem 1. Nash equilibrium may not be unique in gen-
eral. This is because when there is no traffic between a server-user
pair, the TE routing decision for this pair can be arbitrary with-
out affecting its utility. In the worst case, a Nash equilibrium can
be arbitrarily suboptimal to the global optimum. Now assumethat
there exists non-zero traffic demand between any server-user pair
as in [8]. Then the alternating player moves in (4) reach aunique
Nash equilibrium, which is also global optimum to (6). TE-SSin-
teraction does not sacrifice any efficiency in this special case, and
the optimal operating point can be achieved by alternating best re-
sponse unilaterally, without the need of a global coordination. This
result is shown in [8] where the idea is to prove the equivalence of
Nash equilibrium and the global optimum. An alternative proof is
to first transform problem (6) and consider alternating projections
of variables onto a convex set [18].

The special case analysis establishes a lower bound on the effi-
ciency loss of TE-SS interaction. In general, there are three sources
of mis-alignment between the optimization problems of TE and SS:
(1) different shapes of the cost functions, (2) different types of de-
lay modeled by the cost functions, and (3) existence of background
traffic in the TE problem. The above special case illustrateswhat
might happen if differences (1) and (3) are avoided, while the eval-
uation results in Section 7 highlight the impact of difference (2). As
we will show next, difference in objective functions and presence
of background traffic can lead to significant efficiency loss.

5. EFFICIENCY LOSS
We next study the efficiency loss in the general case of the TE-SS

game, which may be caused by incomplete information, or unilat-
eral actions that miss the opportunity to achieve a jointly attain-
able optimal point. We present two case studies that illustrate these
two sources of suboptimal performance. We first present a toynet-
work and show that under certain conditions the CP performs even
worse in Model II than Model I, despite having more information
about underlying network conditions. We next propose the notion
of Pareto-optimality as the performance benchmark, and quantify
the efficiency loss in both Model I and Model II.

5.1 The Paradox of Extra Information
Consider an ISP network illustrated in Figure 2. We designate an

end user node,T = {F}, and two CP servers,S= {B,C}. The end
user has a content demand ofMF = 2. We also allow two back-
ground traffic flows,A → D and A → E, each of which has one
unit of traffic demand. Edge directions are noted on the figure, so
one can figure out the possible routes, i.e., there are two paths for
each traffic flow (clockwise and counter-clockwise). To simplify

link l1 : BD l2 : BE l3 : CD l4 : CE

Cl 1+ ε 1+ ε 1+ ε 1+ ε
Dl ( fl ) f1

1
1+ε− f2

1
1+ε− f3

f4
gl (x) g1(·) = g2(·) = g3(·) = g4(·)

Table 3: Link capacities, ISP’s and CP’s link cost functionsin
the example of Paradox of Extra Information.

the analysis and deliver the most essential message from this ex-
ample, suppose that both TE and SS costs on the four thin links
are negligible so the four bold links constitute thebottleneckof the
network. In Table 3, we list the link capacities, ISP’s cost func-
tion gl (·), and link latency functionDl (·). Suppose the CP aims to
minimize the average latency of its traffic. We compare the Nash
equilibrium of two situations when the CP optimizes its network by
SS with e2e info and SS with improved visibility.

The stability condition for the ISP at Nash equilibrium isg′1( f1) =
g′2( f2) = g′3( f3) = g′4( f4). Since the ISP’s link cost functions are
identical, the total traffic on each link must be identical. On the
other hand, the stability condition for the CP at Nash equilibrium
is that(B,F) and(C,F) have the same marginal latency. Based on
the observations, we can derive two Nash equilibrium points.

When the CP takes the strategy of SS with e2e info, let

Model I:



































XCP :

{

xBF = 1, xCF = 1

}

R :

{

rBF
1 = 1−α, rBF

2 = α, rCF
3 = α, rCF

4 = 1−α,

rAD
1 = α, rAD

3 = 1−α, rAE
2 = 1−α, rAE

4 = α
}

One can check that this is indeed a Nash equilibrium solution,
where f1 = f2 = f3 = f4 = 1, andDBF = DCF = 1−α + α/ε.
The CP’s objectiveSSI = 2(1−α +α/ε).

When the CP takes the strategy of SS with improved visibility,
let

Model II:



































XCP :

{

xBF = 1, xCF = 1

}

R :

{

rBF
1 = α, rBF

2 = 1−α, rCF
3 = 1−α, rCF

4 = α,

rAD
1 = 1−α, rAD

3 = α, rAE
2 = α, rAE

4 = 1−α
}

This is a Nash equilibrium point, wheref1 = f2 = f3 = f4 = 1, and
dBF = dCF = α(1+ α) + (1−α)(1/ε + (1−α)/ε2). The CP’s
objectiveSSII = 2(α +(1−α)/ε).

When 0< ε < 1,0 ≤ α < 1/2, we have the counter-intuitive
SSI < SSII : more information may hurt the CP’s performance. In
the worst case,

lim
α→0,ε→0

SSII
SSI

= ∞

i.e., the performance degradation can be unbounded.
This is not surprising, since the Nash equilibrium is generally

non-unique, both in terms of equilibrium solutions and equilib-
rium objectives. When ISP and CP’s objectives are mis-aligned,
the ISP’s decision may route CP’s traffic on bad paths from the
CP’s perspective. In this example, the paradox happens whenthe
ISPprivilegesthe CP traffic in Model I (although SS relies on e2e
info only) by assigning it to good paths, and when the ISP mis-
routes the CP traffic to bad paths in Model II (although SS gains
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improved visibility). In practice, such a scenario is likely to hap-
pen, since the ISP cares about link congestion (link utilization),
while the CP cares about latency, which depends not only on link
load, but also on propagation delay. Thus ISP and CP’s partial col-
laboration by only passing information is not sufficient to achieve
global optimality.

5.2 Pareto Optimality and Illustration of Sub-
Optimality

As in the above example, one of the causes of sub-optimality is
that TE and SS’s objectives are not necessarily aligned. To mea-
sure efficiency in a system with multiple objectives, a common ap-
proach is to explore thePareto curve. For points on the Pareto
curve, we cannot improve one objective further without hurting the
other. The Pareto curve characterizes the tradeoff of potentially
conflicting goals of different parties. One way to trace the tradeoff
curve is to optimize a weighted sum of the objectives:

minimize TE+ γ ·SS (7)

variablesR∈ R, Xcp ∈ Xcp

whereγ ≥ 0 is a scalar representing the relative weight of the two
objectives.R andXcp are the feasible regions defined by the con-
straints in (1) and (3):

R×Xcp =

{

r i j
l , xst | 0≤ r i j

l ≤ 1, xst ≥ 0,

∑
l :l∈In(v)

r i j
l − ∑

l :l∈Out(v)
r i j
l = Iv= j ,∀v∈V\{i},

fl = ∑
(i, j)

xi j · r
i j
l ≤Cl , ∑

s∈S
xst = Mt

}

The formulation of problem (7) is not easy to solve. In fact, the
objective of (7) is no longer convex in variables{rst

l ,xst}, and the
feasible region defined by constraints of (7) is not convex. One
way to overcome this problem is to consider a relaxed decision
space that is a superset of the original solution space. Instead of
restricting each player to its own operating domain, i.e., ISP con-
trols routing and CP controls server selection, we introduce a joint
routing and content delivery problem. Letxst

l denote therate of
traffic carried on linkl that belongs to flow(s,t). Such a convexi-
fication of the original problem (7) gives more freedom to joint TE
and SS problem. Denote the generalized CP decision variableas
X̂cp = {xst

l }s∈S,t∈T , andRbg = {r i j
l }(i, j)/∈S×T as background rout-

ing matrix. Consider the following optimization problem:

TE-SS-weighted(̂Xcp,Rbg)

minimize TE+ γ ·SS (8)

subject to f cp
l = ∑

(s,t)

xst
l , ∀l

fl = f cp
l + ∑

(i, j)/∈S×T

xi j · r
i j
l ≤Cl , ∀l

∑
l :l∈In(v)

r i j
l − ∑

l :l∈Out(v)
r i j
l = Iv= j , ∀(i, j) /∈ S×T,∀v∈V\{i}

∑
s∈S



 ∑
l :l∈In(v)

xst
l − ∑

l :l∈Out(v)
xst

l



 = Mt · Iv=t , ∀v /∈ S, ∀t ∈ T

variables xst
l ≥ 0, 0≤ r i j

l ≤ 1

Denote the feasible space of the joint variable asA = {X̂cp,Rbg}.
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Figure 3: A numerical example illustrating sub-optimality.

If we vary γ and plot the achieved TE objectives versus SS objec-
tives, we obtain the Pareto curve.

To illustrate the Pareto curve and efficiency loss in Model I and
Model II, we plot in Figure 3 the Pareto curve and the Nash equilib-
ria in the two-dimensional objective space (TE,SS) for the network
shown in Figure 2. The simulation shows that when the CP lever-
ages the complete information to optimize (3), it is able to achieve
lower delay, but the TE cost suffers. Though it is not clear which
operating point is better, both equilibria are away from thePareto
curve, which shows that there is room for performance improve-
ment in both dimensions.

6. A JOINT DESIGN: MODEL III
Motivated by the need for a joint TE and SS design, we propose

the Nash bargaining solution to reduce the efficiency loss observed
above. Using the theory of optimization decomposition, we de-
rive a distributed algorithm by which the ISP and the CP can act
separately and communicate with a limited amount of information
exchange.

6.1 Motivation
An ISP providing content distribution service in its own network

has control over both routing and server selection. So the ISP can
consider the characteristics of both types of traffic (background and
CP) and jointly optimize a carefully chosen objective. The jointly
optimized system should meet at least two goals: (i) optimality,
i.e., it should achieve Pareto optimality so the network resources
are efficiently utilized, and (ii) fairness, i.e., the tradeoff between
two non-synergistic objectives should be balanced so both parties
benefit from the cooperation.

One natural design choice is to optimize the weighted sum of
the traffic engineering goal and server selection goal as shown in
(8). However, solving (8) for eachγ and adaptively tuningγ in
a trial-and-error fashion is impractical and inefficient. First, it is
not straightforward to weigh the tradeoff between the two objec-
tives. Second, one needs to compute an appropriate weight pa-
rameterγ for every combination of background load and CP traffic
demand. In addition, the offline computation does not adapt to dy-
namic changes of network conditions, such as cross traffic orlink
failures. Last, tuningγ to explore a broad region of system operat-
ing points is computationally expensive.

Besides the system considerations above, the economic perspec-
tive requires afair solution. Namely, the joint design should benefit
both TE and SS. In addition, such a model also applies to a more
general case when the ISP and the CP are different business enti-
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ties. They cooperate only when the cooperation leads to a win-win
situation, and the “division” of the benefits should be fair,i.e., one
who makes greater contribution to the collaboration shouldbe able
to receive more reward, even when their goals are conflicting.

While the joint system is designed from a clean state, it should
accept an incremental deployment from the existing infrastructure.
In particular, we prefer that the functionalities of routing and server
selection be separated, with minor changes to each component. The
modularized design allows us to manage each optimization inde-
pendently, with a judicious amount of information exchange. De-
signing for scalability and modularity is beneficial to boththe ISP
and the CP, and allows their cooperation either as a single entity or
as different ones.

Based on all the above considerations, we apply the concept of
Nash bargaining solution[9, 20] from cooperative game theory. It
ensures that the joint system achieves anefficientandfair operating
point. The solution structure also allows a modular implementa-
tion.

6.2 Nash Bargaining Solution
Consider a Nash bargaining solution which solves the following

optimization problem:

maximize (TE0−T E)(SS0−SS) (9)

variables {X̂cp,Rbg} ∈ A

where(TE0,SS0) is a constant called thedisagreement point, which
represents the starting point of their negotiation. Namely, (TE0,SS0)
is the status-quo we observe before any cooperation. For instance,
one can view the Nash equilibrium in Model I as a disagreement
point, since it is the operating point the system would reachwith-
out any further optimization. By optimizing the product of perfor-
mance improvements of TE and SS, the Nash bargaining solution
guarantees the joint system is optimal and fair. A Nash bargaining
solution is defined by the following axioms, and is the only solution
that satisfies all of four axioms [9, 20]:

• Pareto optimality. A Pareto optimal solution ensures effi-
ciency.

• Symmetry. The two players should get equal share of the
gains through cooperation, if the two players’ problems are
symmetric, i.e., they have the same cost functions, and have
the same objective value at the disagreement point.

• Expected utility axiom. The Nash bargaining solution is in-
variant under affine transformations. Intuitively, this axiom
suggests that the Nash bargaining solution is insensitive to
different units used in the objective and can be efficiently
computed by affine projection.

• Independence of irrelevant alternatives. This means that adding
extra constraints in the feasible operating region does not
change the solution, as long as the solution itself is feasible.

The choice of the disagreement point is subject to differenteco-
nomic considerations. For a single network provider who wishes to
provide both services, it can optimize the product of improvement
ratio by setting the disagreement point to be the origin, i.e., equiv-
alent toT E ·SS/(TE0 ·SS0). For two separate ISP and CP entities
who wish to cooperate, the Nash equilibrium of Model I may be
a natural choice, since it represents the benchmark performance of
current practice, which is the baseline for any future cooperation.
It can be obtained from the empirical observations of their average

performance. Alternatively, they can choose their preferred perfor-
mance level as the disagreement point, written into the contract. In
this work, we use the Nash equilibrium of Model I as the disagree-
ment point to compare the performances of our three models.

6.3 COST Algorithm
In this section, we show how Nash bargaining solution can be im-

plemented in a modularized manner, i.e., keeping SS and TE func-
tionalities separate. This is important because modularized design
increases the re-usability of legacy systems with minor changes,
like existing CDNs deployment. In terms of cooperation between
two independent financial entities, the modularized structure presents
the possibility of cooperation without revealing confidential inter-
nal information to each other.

We next develop COST (COoperative Server selection and Traf-
fic engineering), a protocol that implements NBS by separateTE
and SS optimizations and communication between them. We apply
the theory of optimization decomposition [10] to decomposeprob-
lem (9) into subproblems. ISP solves a new routing problem, which
controls the routing of background traffic only. The CP solves a
new server selection problem, given the network topology infor-
mation. The ISP also passes the routing control of content traffic to
the CP, offering more freedom to how content can be deliveredon
the network. They communicate via underlyinglink prices, which
are computed locally using traffic levels on each link.

Consider the objective of (9), which can be converted to

maximize log(TE0−TE)+ log(SS0−SS)

since the log function is monotonic and the feasible solution space
is unaffected. The introduction of the log functions help reveal
the decomposition structure of the original problem. Two auxiliary

variable f cp
l and f bg

l are introduced to reflect the preferred CP traf-
fic level from the ISP’s perspective and the preferred background
traffic level from the CP’s perspective. (9) can be rewrittenas

max. log(TE0−∑
l

gl ( f bg
l + f cp

l ))+ log(SS0−∑
l

hl ( f cp
l + f bg

l ))

(10)

s.t. f cp
l = ∑

(s,t)

xst
l , f bg

l = ∑
(i, j)/∈S×T

xi j · r
i j
l , ∀l

f cp
l = f cp

l , f bg
l = f bg

l , f cp
l + f bg

l ≤Cl , ∀l

∑
l :l∈In(v)

r i j
l − ∑

l :l∈Out(v)
r i j
l = Iv= j , ∀(i, j) /∈ S×T,∀v∈V\{i}

∑
s∈S



 ∑
l :l∈In(v)

xst
l − ∑

l :l∈Out(v)
xst

l



 = Mt · Iv=t , ∀v /∈ S, ∀t ∈ T

var. xst
l ≥ 0, 0≤ r i j

l ≤ 1, ∀(i, j) /∈ S×T, f cp
l , f bg

l

The consistency constraint on the auxiliary variable and the original
variable ensures that the solution equivalent to problem (9). We
take a partial Lagrangian of (10) as

L(xst
l , r i j

l , f cp
l , f bg

l ,λl ,µl ,νl )

= log(TE0−∑
l

gl ( f bg
l + f cp

l ))+∑
l

µl ( f bg
l − f bg

l )

+ log(SS0−∑
l

hl ( f cp
l + f bg

l ))+∑
l

νl ( f cp
l − f cp

l )

+∑
l

λl (Cl − f bg
l − f cp

l )
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λl is thelink price, which reflects the cost of overshooting the link
capacity, andµl ,νl are theconsistency prices, which reflect the cost
of disagreement between ISP and CP on the preferred link resource
allocation. Observe thatf cp

l and f bg
l can be separated in the La-

grangian function. We take a dual decomposition approach, and
(10) is decomposed into two subproblems:

SS-NBS(xst
l , f bg

l ):

max. log(SS0−∑
l

hl ( f cp
l + f bg

l ))+∑
l

(νl f cp
l −µl f bg

l −λl f cp
l )

(11)

s.t. f cp
l = ∑

(s,t)

xst
l , ∀l

∑
s∈S



 ∑
l :l∈In(v)

xst
l − ∑

l :l∈Out(v)
xst

l



 = Mt · Iv=t , ∀v /∈ S, ∀t ∈ T

var. xst
l ≥ 0,∀(s,t) ∈ S×T, f bg

l

and

TE-NBS(r i j
l , f cp

l ):

max. log(T E0−∑
l

gl ( f bg
l + f cp

l ))+∑
l

(µl f bg
l −νl f cp

l −λl f bg
l )

(12)

s.t. f bg
l = ∑

(i, j)/∈S×T

xi j · r
i j
l , ∀l

∑
l :l∈In(v)

r i j
l − ∑

l :l∈Out(v)
r i j
l = Iv= j , ∀(i, j) /∈ S×T,∀v∈V\{i}

var. 0≤ r i j
l ≤ 1,∀(i, j) /∈ S×T, f cp

l

The optimal solutions of (11) and (12) for a given set of prices
µl ,νl , andλl define the dual function Dual(µl ,νl ,λl ). The dual
problem is given as:

minimize Dual(µl ,νl ,λl ) (13)

variable λl ≥ 0,µl ,νl

We can solve the dual problem with the following price updates:

λl (t +1) =

[

λl (t)−βλ l
(

Cl − f bg
l − f cp

l

)

]+

, ∀l (14)

µl (t +1) = µl (t)−βµ l ( f bg
l − f bg

l ), ∀l (15)

νl (t +1) = νl (t)−βν l ( f cp
l − f cp

l ), ∀l (16)

whereβ ’s are diminishing step sizes or small constant step sizes
often used in practice [21]. Table 4 presents the COST algorithm
that implements the Nash bargaining solution distributively.

In COST, the ISP solves the new version TE, i.e., TE-NBS, and
the CP solves the new version SS, i.e., SS-NBS. In terms of infor-
mation sharing, the CP learns the network topology from the ISP.
They do not directly exchange information with each other. Instead,

they reportf cp
l and f bg

l information to underlying links, which pass
the computed price information back to TE and SS. It is possible to
further implement TE or SS in a distributed manner, such as onthe
user/server levels.

There are two main challenges on practical implementation of
COST. First, TE needs to adapt quickly to network dynamics. Fast
timescale TE has recently been proposed in various works. Second,
an extra price update component is required on each link, which

COST (COoperative SS and TE)
ISP: TE algorithm

(i) Receives link priceλl and consistency priceµl ,νl from
physical linksl ∈ E

(ii) ISP solves (12) and computesRbg for background traffic
(iii) ISP passesf bg

l , f cp
l information to each linkl

(iv) Go back to (i)
CP: SS algorithm

(i) Receives link priceλl and consistency priceµl ,νl from
physical linksl ∈ E

(ii) CP solves (11) and computesXcp for content traffic.

(iii) CP passesf cp
l , f bg

l information to each linkl
(iv) Go back to (i)

Link: price update algorithm
(i) Initialization step: setλl ≥ 0, andµl ,νl arbitrarily
(ii) Updates link priceλl according to (14)
(iii) Updates consistency pricesµl ,νl according to (15)(16)
(iv) Passesλl ,µl ,νl information to TE and SS
(v) Go back to (ii)

Table 4: Distributed algorithm for solving problem (9).

involves price computation and message passing between TE and
SS. This functionality can be potentially implemented in routers.

The COST algorithm is precisely captured by the decomposi-
tion method described above. Certain choice of step sizes, such as
β (t) = β0/t, whereβ0 > 0, guarantees that the algorithm converges
to a global optimum [22].

Theorem 2. The distributed algorithm COST converges to the op-
timum of (9) for sufficiently small step sizesβλ l ,βµ l andβν l .

7. PERFORMANCE EVALUATION
In this section, we use simulations to demonstrate the efficiency

loss that may occur for real network topologies and traffic models.
We also compare the performance of the three models. We solve
the Nash bargaining solution centrally, without using the COST al-
gorithm, since we are primarily interested in its performance. Com-
plementary to the theoretical analysis, the simulation results allow
us to gain a better understanding of the efficiency loss underreal-
istic network environments. These simulation results alsoprovide
guidance to network operators who need to decide which approach
to take, sharing information or sharing control.

7.1 Simulation Setup
We evaluate our models under ISP topologies obtained from Rock-

etfuel [23]. We use the backbone topology of the research network
Abilene [24] and several major tier-1 ISPs in north America.The
choice of these topologies also reflects different geometric proper-
ties of the graph. For instance, Abilene is the simplest graph with
two bottleneck paths horizontally. The backbones of AT&T and
Exodus have a hub-and-spoke structure with some shortcuts be-
tween nodes pairs. The topology of Level 3 is almost a complete
mesh, while Sprint is in between these two kinds. We simulatethe
traffic demand using a gravity model [25], which reflects the pair-
wise communication pattern on the Internet. The content demand
of a CP user is assumed to be proportional to the node population.

The TE cost functiong(·) and the SS cost functionh(·) are cho-
sen as follows. ISPs usually model congestion cost with a convex
increasing function of the link load. The exact shape of the func-
tion gl ( fl ) is not important, and we use the same piecewise linear
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cost function as in [11], given below:

gl ( fl ,Cl ) =







































fl 0≤ fl/Cl < 1/3

3 fl −2/3Cl 1/3≤ fl/Cl < 2/3

10fl −16/3Cl 2/3≤ fl/Cl < 9/10

70fl −178/3Cl 9/10≤ fl/Cl < 1

500fl −1468/3Cl 1≤ fl/Cl < 11/10

5000fl −16318/3Cl 11/10≤ fl/Cl < ∞

The CP’s cost function can be the performance cost like latency,
financial cost charged by ISPs. We consider the case where la-
tency is the primary performance metric, i.e., the content traffic is
delay sensitive like video conferencing or live streaming.So we
let the CP’s cost functionhl (·) be of the form given by (2), i.e.,
hl ( fl ) = f cp

l ·Dl ( fl ). A link’s latencyDl (·) consists of queuing de-
lay and propagation delay. The propagation delay is proportional
to the geographical distances between nodes. The queuing delay is
approximated by the M/M/1 model, i.e.,

Dqueue=
1

Cl − fl
, fl < Cl

with a linear approximation when the link utilization is over 99%.
We relax the link capacity constraints in both TE and SS and pe-
nalize traffic overshooting the link capacity with high costs. The
shapes of the TE link cost function and queuing delay function are
illustrated in Figure 4. We intensionally choose the cost functions
of TE and SS to be similar in shape. This allows us to quantify the
efficiency loss of Model I and Model II even when their objectives
are relatively well aligned, as well as the improvement brought by
Model III.

0 0.2 0.4 0.6 0.8 1
0

100

200

300

400

500

600

f
l
/C

l

g l(f
l)

TE link cost function, C
l
=10

0 0.2 0.4 0.6 0.8 1
0

20

40

60

80

100

120

f
l
/C

l

de
la

y

Queuing delay function, C
l
=10

(a) TE link cost (b) Link queuing delay

Figure 4: ISP and CP cost functions.

7.2 Evaluation Results

7.2.1 Tussle between background and CP’s traffic
We first demonstrate how CP’s traffic intensity affects the overall

network performance. We fix the total amount of traffic and tune
the ratio between background traffic and CP’s traffic. We evaluate
the performance of different models when CP traffic grows from
1% to 100% of the total traffic. Figure 5 illustrates the results on
Abilene topology.

The general trend of both TE and SS objectives for all three mod-
els is that the cost first decreases as CP traffic percentage grows,
and later increases as CP’s traffic dominates the network. The de-
creasing trend is due to the fact that CP’s traffic is self-optimized by
selecting servers close to a user, thus offloading the network. The
increasing trend is more interesting, suggesting that whena higher
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Figure 5: The TE-SS tussle v.s. CP’s traffic intensity (Abilene
topology)

percentage of total traffic is CP-generated, the negative effect of
TE-SS interaction is amplified, even when the ISP and the CP share
similar cost functions. Low link congestion usually means low end-
to-end latency, and vice versa. However, they differ in the follow-
ing: (i) TE might penalize high utilization before queueingdelay
becomes significant in order to leave as much room as possibleto
accommodate changes in traffic, and (ii) CP considers both prop-
agation delay and queueing delay so it may choose a moderately-
congested short path over a lightly-loaded long path. This explains
why the optimization efforts of two players are at odds.

7.2.2 Network congestion v.s. performance improve-
ment

We now study the network conditions under which more perfor-
mance improvement is possible. We evaluate the three modelson
the Abilene topology. Again, we fix the total amount of trafficand
vary the CP’s traffic percentage. Now we change link capacities
and evaluate two scenarios: when the network is moderately con-
gested and when the network is highly congested. We show the
performance improvement of Model II and Model III over Model
I (in percentages) and plot the results in Figure 6. Figures 6(a-b)
show the improvement of the ISP and the CP when the network is
under low load. Generally, Model II and Model III improve both
TE and SS, and Model III outperforms Model II in most cases,
with the exception that Model II is biased towards SS sometimes.
However, both ISP and CP’s improvement are not substantial (note
the different scales ofy-axes), except when CP traffic is insignif-
icant (1%). This is because when the network is under low load,
the slopes of TE and SS cost functions are “flat,” thus leavinglittle
space for improvement.

Figure 6(c-d) show the results when the network is under high
load. Improvement becomes more significant, especially at the two
extremes: when CP’s traffic is insignificant or prevalent. This again
suggests that when CP traffic is dominant, there is a large space left
for improvement even when two objectives are similar in shape.
However, observe that while model III always improves TE and
SS, Model II could sometimes perform worse than Model I.

7.2.3 Impact of ISP topologies
We evaluate our three models on different ISP topologies. The

topological properties of different graphs are discussed earlier. The
CP’s traffic is 80% of the total traffic and link capacities areset
such that networks are under high traffic load. Our findings are
depicted in Figure 7. Note that performance improvement is rela-
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Figure 6: TE and SS performance improvement of Model II and III over Model I. (a-b) Abilene network under low traffic load:
moderate improvement; (c-d) Abilene network under high traffic load: more significant improvement, but more information (in
Model II) does not necessarily benefit the CP and the ISP (the paradox of extra information).
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Figure 7: Performance evaluation over different ISP topologies. Abilene: small cut graph; AT&T, Exodus: hub-and-spoke with
shortcuts; Level 3: complete mesh; Sprint: in between.

tively more significant in more complex graphs. Simple topologies
with small min-cut sizes are networks where the apparent paradox
of more (incomplete) information is likely to happen. Besides the
TE and SS objectives, we also plot the maximum link utilization
to illustrate the level of congestion in the network. Highernetwork
load shows more space for potential improvement. Also, model III
improves this metric generally, which might be another important
consideration for network providers.

8. RELATED WORK
This paper is an extension of our earlier workshop paper [26].

Additions in this paper include the following: a more general CP
model, analysis of optimality conditions in three cooperation mod-
els, paradox of extra information, implementation of Nash bargain-
ing solution, and large scale evaluation.

The most similar work is a parallel work [8], which studied the
interaction between content distribution and traffic engineering. It
shows the optimality conditions for two separate problems to con-
verge to a socially optimal point, as discussed in Section 4.2. It
also provides a theoretical bound on efficiency loss and discusses
generalizations to multiple ISPs and overlay networks.

Some earlier work studied the self-interaction within ISPsor CPs
themselves. In [16], the authors used simulation to show that self-

ish routing is close to optimal in Internet-like environments without
sacrificing much performance degradation. [27] studied theprob-
lem of load balancing by overlay routing, and how to alleviate race
conditions among multiple co-existing overlays. [28] studied the
resource allocation problem at inter-AS level where ISPs compete
to maximize their revenues. [29] applied Nash bargaining solution
to solve an inter-domain ISP peering problem.

The need for cooperation between content providers and net-
work providers is raising much discussion in both the research com-
munity and industry. [30] used price theory to reconcile thetus-
sle between peer-assisted content distribution and ISP’s resource
management. [6] proposed a communication portal between ISPs
and P2P applications, which P2P applications can consult for ISP-
biased network information to reduce network providers’ cost with-
out sacrificing their performances. [5] proposed an oracle service
run by the ISP, so P2P users can query for the ranked neighbor list
according to certain performance metrics. [7] utilized existing net-
work views collected from content distribution networks todrive
biased peer selection in BitTorrent, so cross-ISP traffic can be sig-
nificantly reduced and download-rate improved.

[31] studied the interaction between underlay routing and over-
lay routing, which can be thought of as a generalization of server
selection. The authors studied the equilibrium behaviors when two
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CP no change CP change
ISP no change current practice partial collaboration

ISP change partial collaboration joint system design

Table 5: To cooperate or not: possible strategies for content
provider (CP) and network provider (ISP)

problems have conflicting goals. Our work explores when and why
sub-optimality appears, and proposes a cooperative solution to ad-
dress these issues. [32] studied the economic aspects of traditional
transit providers and content providers, and applied cooperative
game theory to derive an optimal settlement between these entities.

9. CONCLUSION AND FUTURE WORK
We examine the interplay between traffic engineering and con-

tent distribution. While the problem has long existed, the dramat-
ically increased amount of content-centric traffic, e.g., CDN and
P2P traffic, makes it more significant. With the strong motivation
for ISPs to provide content services, they are faced with theques-
tion of whether to stay with the current design or to start sharing
information or control. This work sheds light on ways ISPs and
CPs can cooperate.

This paper serves as a starting point to better understand the in-
teraction between those that operate networks and those that dis-
tribute content. Traditionally, ISPs provide and operate the pipes,
while content providers distribute content over the pipes.In terms
of what information can be shared between ISPs and CPs and what
control can be jointly performed, there are four general categories
as summarized in Table 5. The top left corner is the current prac-
tice, which may give an undesirable Nash equilibrium. The bottom
right corner is the joint design, which achieves optimal operation
points. The top right corner is the case where the CP receivesex-
tra information and adapts control accordingly, and the bottom left
corner is the case of content-aware networking. This paper stud-
ies three of the four corners in the table. Starting from the cur-
rent practice, to move towards the bottom right corner of thetable,
while the two parties remain separate business entities, requires
unilaterally-actionable, backward-compatible, and incrementally-
deployable migration paths yet to be discovered.
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