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Abstract

The rapid growth of the World Wide Web has caused serious
performance degradation on the Internet. This paper offers
an end-to-end approach to improving Web performance by
collectively examining the Web components — clients, prox-
ies, servers, and the network. Our goal is to reduce user-
perceived latency and the number of TCP connections, im-
prove cache coherency and cache replacement, and enable
prefetching of resources that are likely to be accessed in the
near future. In our scheme, server response messages in-
clude piggybacked information customized to the requesting
proxy. Our enhancement to the existing request-response
protocol does not require per-proxy state at a server, and a
very small amount of transient per-server state at the proxy,
and can be implemented without changes to HT'TP 1.1. The
server groups related resources into volumes (based on ac-
cess patterns and the file system’s directory structure) and
applies a proxy-generated filter (indicating the type of in-
formation of interest to the proxy) to tailor the piggyback
information. We present efficient data structures for con-
structing server volumes and applying proxy filters, and a
transparent way to perform volume maintenance and pig-
gyvback generation at a router along the path between the
proxy and the server. We demonstrate the effectiveness of
our end-to-end approach by evaluating various volume con-
struction and filtering techniques across a collection of large
client and server logs.

Keywords: Web, piggybacking, caching, coherency, prefetch-
ing, volumes, filters

1 Introduction

The exponential rate of growth of the World Wide Web has
led to a dramatic increase in Internet traffic, as well as a sig-
nificant degradation in user-perceived latency while access-
ing “Web pages.” Web servers store hundreds or thousands
of pages each of which consist of one or more typed resources
(text, inline images, applets, etc.). As the popularity of the
Web increases, these servers support an increasing number
of requests to transfer resources and validate copies that are

cached in other locations. Additionally, these data trans-
fers impart a heavy load on the network links and routers
between the server and client sites. The round-trip delays
in establishing a TCP connection and initiating a request,
as well as the waiting time at the server and the limited
network bandwidth for transferring the response message,
translate into user-perceived latency. In this paper, we offer
an end-to-end approach to improving Web performance by
collectively examining the various Web components — client,
proxies, servers, and the network. We present efficient tech-
niques for organizing and transmitting useful information
about resources at the server, tailored to the needs of the
contacting proxy.

Previous research has focused on improving the perfor-
mance of individual components in the Web, with limited
use of the information present in other components. Begin-
ning with proxies, we discuss each of the Web components to
examine the potential use of external information. Proxies
have emerged as an important intermediary between large
groups of clients and servers. In the process of relaying
traffic between client browsers and remote servers, a proxy
can cache resources in the hope of satisfying future client
requests directly at the proxy. Since many resources are re-
quested multiple times by one or more clients, proxy caching
can greatly reduce user-perceived latency, as well as the load
on the network and the server. Recent performance studies
have shown that proxy caches have a 30-50% hit rate [1-
3]. New cache allocation and replacement schemes improve
cache performance by extending the conventional LRU pol-
icy to incorporate resource size and other notions of cost [4—
6]. Cache performance is constrained by the proxy’s limited
knowledge about resources that are likely to be requested in
the near future and their cachability.

Even when the cache can satisfy the client request, the
proxy may have to validate the cached resource to avoid re-
turning out-of-date information. Often, the proxy enforces a
time-to-live on the cached resource to limit the likelihood of
returning a stale copy [7,8]. Beyond the time-to-live period,
the proxy must check with the server to see if the resource
has changed, which imposes additional load on the server
and increases user-perceived latency. In fact, studies show
that 15-25% of all server response messages are simply Not
Modified responses to validate cached resources [9,10]. To
avoid the latency and overhead of establishing a TCP con-
nection for each Web transfer, extensions to HT'TP permit
proxies to maintain persistent connections to servers, which
enable pipelining of multiple requests and responses [11, 12].
For example, a persistent connection permits embedded im-
ages in an HTML document to be downloaded without new



TCP connections. To reduce the number of TCP connec-
tions, a proxy can allow multiple clients to share a single
persistent connection to a server. Similarly, a client via
a persistent connection to the proxy can access multiple
servers [3]. Although a uniform timeout mechanism (say,
60 seconds) can be used to close persistent connections, this
approach does not favor proxies that are likely to generate
additional requests in the near future.

Recent studies have begun to consider the potential ben-
efits of using server information to enhance the proxy’s poli-
cies. For example, the server can aid the proxy in cache al-
location and replacement decisions by sending estimates of
the time between successive accesses to a resource [13, 24].
Similarly, using access patterns to predict future requests,
the server can speculatively disseminate resources to the
proxy [14] or guide proxy prefetching decisions [15-18], at
the expense of increasing the load on the network and the
server. In addition, the server can improve cache coherency
by sending a list of resources that have been modified [19, 20]
or validating a list of cached resources at the proxy [10]. In
this paper, we focus on an end-to-end information exchange
that involves both the proxy and the server, with an em-
phasis on determining what additional information should
be exchanged, how this information can be maintained and
exchanged efficiently, and how the proxy can exploit this
information.

An efficient exchange between servers and proxies is en-
abled by the server piggybacking information about its re-
sources onto regular response messages, avoiding establish-
ment of any new TCP connections; in fact, small piggyback
messages can often be transmitted without requiring any
new packets. The server constructs volumes of related re-
sources, based on the file system’s directory structure and
the likelihood that pairs of resources are accessed together.
A proxy-generated filter is applied to customize the piggy-
back information to the requesting proxy. The key contri-
butions of our approach are:

e Scalable protocol: We enhance the request-response ex-
change between the proxy and the server without re-
quiring changes to the underlying HT'TP 1.1 protocol.
Our mechanisms do not require new TCP connections
or per-proxy state at the servers. A small amount of
transient state is maintained on a per-server basis at
the proxies. Our changes are thus scalable.

e Server volume: We propose and evaluate techniques
for servers to group related resources into volumes,
based on the file system’s directory structure and the
likelihood that resources are accessed together, and
combinations of these schemes. We present efficient
data structures and algorithms for constructing and
maintaining volumes and applying proxy filters.

o Volume thinning: Grouping resources that are accessed
together can result in large volumes which need to
be trimmed and tailored depending on the proxy ap-
plication. Since constructing optimal volumes is NP-
complete [21], we introduce heuristics for thinning vol-
umes to improve accuracy and reduce redundancy in
the piggyback information.

e Proxy filter: We introduce several methods to tailor
volume information to the proxy in order to reduce
the frequency and size of piggyback messages. We
present efficient proxy data structures for construct-
ing these filters based on knowledge of recent volumes
piggybacked by the server.

o Transparent volume center: We propose that volume
maintenance and piggyback generation be performed
transparently at a router or gateway along the path
between the proxy and server. This volume center can
construct volumes, apply filters, and generate piggy-
back messages on behalf of several servers, allowing
piggyback messages to include information about re-
sources at multiple sites. Transparent volume center
is explained in [21].

In this paper, we focus on one-level caching, though our
techniques are applicable to the general case of hierarchical
caching.

To illustrate the usefulness of our proposed scheme, we
present several example proxy policies for cache coherency,
cache replacement, and prefetching that exploit the informa-
tion in the piggyback messages. The performance of these
policies depends on the server’s ability to generate accu-
rate predictions with minimal overhead. Hence, our perfor-
mance evaluation focuses on the volume construction, filter-
ing, and piggybacking techniques. While previous perfor-
mance studies of the Web have focused on either server logs
or client/proxy traces, we evaluate a set of client logs (from
Digital Equipment Corporation and AT&T) and server logs
(from Amnesty International USA [ATUSA], Apache Group,
Marimba Corporation, and Sun Microsystems). Unfortu-
nately, any one proxy trace or server log does not have suf-
ficient information for an end-to-end evaluation of any par-
ticular application of our protocol, since the proxy and the
server each lack knowledge of activity at the other site. In
the absence of a coordinated end-to-end trace, we evaluate
our protocol by selectively joining the information available
in the client and server logs.

The rest of the paper is organized as follows. Section 2
describes how the proxy and server piggyback information
on request and response traffic, respectively, and how the
proxy constructs filters to customize the piggyback messages
from the server. We also describe how piggybacking of fil-
ters and volume information can be incorporated in HTTP
1.1. Section 3 presents and evaluates several techniques for
the server to construct volumes, based on the filesystem’s di-
rectory structure and the likelihood that pairs of resources
are accessed together. The performance evaluation focuses
on our proposed volume construction, filtering, and piggy-
backing techniques based on a collection of proxy and server
logs. These results are used to discuss several proxy applica-
tions that exploit the piggybacked information in Section 4.
Section 5 concludes the paper with a discussion of future
research directions. Appendix A describes our collection of
client and server logs.

2 Exchanging Filter and Volume Information

Our generalized piggybacking protocol employs proxy fil-
ters and server volumes to generate customized information
without maintaining complex data structures or requiring
new TCP connections. After presenting the information ex-
change, we describe how the proxy controls the frequency
and size of piggyback messages, and tailors their contents
to the characteristics of the cache. We then show how to
piggyback filter and volume information in the context of

HTTP 1.1.

2.1 Piggybacking Protocol

Additional information about resource characteristics and
access patterns at the server could improve the effectiveness



of proxy policies for cache replacement, cache coherency, and
prefetching. The server has considerable knowledge about
each resource, including the size and content type, as well
as the frequency of resource modifications. By accumulating
information about requests from a large number of proxies
and clients, the server can gauge the popularity of each re-
source and the likelihood that certain resources are accessed
together. On the other hand, the proxy has knowledge about
its pool of clients and their access patterns, including the re-
quests that are satisfied without contacting the server. The
proxy also has information about the size of its cache, as
well as the policies for cache allocation, replacement, and
coherency. The proxy may not cache certain content types
(such as images) or resources that exceed a certain size.

To bridge the knowledge gap between servers and prox-
ies, we propose that servers should send information about
their resources customized to interested proxies. However,
the exchange of this additional information should not im-
pose an excessive burden on any of the Web components.
Though the server may measure access patterns across its
collection of resources, the server cannot afford to maintain
state for each proxy; similarly, the proxy cannot afford to
maintain state for all servers. To limit the load on the net-
work, this additional information exchange should not sig-
nificantly increase the bandwidth consumption or the num-
ber of TCP connections. The combination of proxy filters,
server volumes, and piggybacking provides an effective way
to send useful information to the proxy without requiring
complex data structures.

Fach piggyback element contains the identifier, size, and
Last-Modified time of a resource at the server, from the
same volume as the requested resource. The proxy filter
controls the number of piggybacked elements and the kind
of resources included in them. The proxy stores the resource
identifier of each resource r in the cache, along with the
Last-Modified time (indicating the version of the resource
at the server) and the expiration time (indicating when the
cached resource requires validation before use). To illustrate
the operation of the piggybacking protocol, we describe the
handling of a client GET request for a resource r:

Proxy receives a client request: If the cache has a copy
of resource r and the expiration time has not been reached,
the proxy returns the resource directly to the client. A cache
miss triggers a regular GE'T request to the server, and a
cache hit with an ezpired copy of r generates a GET request
with an [f-Modified-Since modifier and the Last-Modified
time of the proxy’s copy of the resource. In either case, the
proxy piggybacks a filter onto the GET request to aid the
server in customizing the volume information for resource r.
Server receives a proxy request: If the server receives a
GET request with an If-Modified-Since modifier, and if the
proxy-specified Last-Modified time is greater or equal to the
Last-Modified time at the server, the server simply validates
the resource by sending a Not Modified response. Otherwise,
the server transmits an OK response with a fresh version
of the resource as it would in the case of a regular GET
request. In either case, the server constructs a piggyback
message with the volume id and information about related
resources based on r and the proxy-specified filter.

Proxy receives a server response: Upon receiving the
server response message, the proxy returns the resource to
the client and updates the cache. When caching a new copy
of r as part of an OK response, the proxy saves the Last-
Modified time and assigns the expiration time (A seconds in
the future, where A is the freshness interval). The proxy also

updates the expiration time upon receiving a Not Modified

response from the server. Next, the proxy processes each
resource p in the piggyback list. If p is not in the cache, it
could be prefetched. If p is in the cache and is fresh, its ex-
piration time is updated; otherwise the stale copy is deleted
and a fresh copy could be prefetched. The prefetching deci-
sion or the order of prefetching could be guided by the size
attributes in the piggyback message.

2.2 Proxy Filters

Despite the potential benefits of the piggyback messages, a
direct application of the protocol may repeatedly send the
same information to the proxy when there are several ac-
cesses to the same server in a short period of time. This
introduces unnecessary overhead on the server, the proxy,
and the network. To avoid excess traffic, the protocol should
limit the frequency of piggyback messages to each of the
proxy sites. If the server were to explicitly regulate the
transmission of piggyback messages by tracking recent trans-
missions to each proxy, it would have to maintain per-proxy
state. Instead, the protocol provides an effective way for the
proxy request messages to implicitly control the pacing of
piggyback responses from the server.

To control piggyback traffic without maintaining state,
the proxy can randomly set an enable/disable bit, or employ
simple frequency control techniques, such as disabling pig-
gyvbacks from servers which have sent piggybacks within the
last minute. The frequency control techniques can be ran-
domized or augmented with information about usefulness of
recently piggyvbacked responses. These techniques do not re-
quire the proxy to maintain any additional per-resource or
per-volume state beyond the information that is typically
in the cache. The simple frequency control techniques are
thus particularly efficient for servers with a large number
of volumes, as would occur with probability-based volumes
discussed in Section 3.3.

Alternatively, when the number of volumes is small, the
proxy can maintain transient information about recent pig-
gyvback communication from the servers. In particular, the
proxy stores a list of recently piggybacked volumes (RPVs)
for each server, or for a small subset of servers that are
visited frequently. Each list element includes the volume
identifier and the time the last piggyback message for that
volume was received. The proxy can limit the RPV list
based on a timeout or a maximum size basis, and main-
tain them efficiently as FIFO lists in a hash table keyed
on the server IP address. Based on this information, the
proxy could conceivably disable piggyback messages when
it requests a resource that is in one of the volumes in the
RPV list. However, this would require the proxy to store
the volume identifier for each resource in the cache. More
importantly, the proxy does not know the volume identifier
for resources that are not yet in the cache, and the server
may change volume memberships across time.

Instead, the proxy request message includes the RPV list
as a filter, allowing the server to decide whether or not to
piggyback volume information in the reply message. A pig-
gyback reply includes the resource’s volume identifier, which
can be added to the RPV list at the proxy. The appropriate
time interval for removing an element from the RPV list de-
pends on the freshness interval A in the cache, as well as the
frequency of accesses to the server. For example, the proxy
should not keep a volume in an RPV list for longer that A
time units, since this would preclude the server from send-
ing refresh information for resources in this volume. Even
smaller time intervals are appropriate to further improve the



freshness of the proxy cache, at the expense of additional
piggyback traffic.

In addition to limiting the frequency of piggyback traffic,
the proxy filter customizes the contents of each piggyback
message. Even though server volumes are constructed from
anticipated or measured access patterns, these volumes are
likely to include some information that is not useful to a
given proxy. Different proxies may serve vastly different
communities of users, and impose a wide range of policies
that affect the type of piggyback information that is useful.
The proxy can customize the piggyback message, for exam-
ple, by specifying a maximum number of elements, a limit
on the size or content type of the resources included in the
list, or a minimum threshold of access frequency or probabil-
ity. For example, clients on low-bandwidth wireless links are
likely to disable the transfer of images and avoid download-
ing large resources; hence, a proxy serving such a group does
not need to receive piggyback information for these items.
Similarly, a proxy that must provide up-to-date information,
such as stock quotes for business clients, may decide to dis-
able caching of resources that change frequently; since the
proxy always contacts the server directly to handle these
client requests, the server need not piggyback information
about rapidly changing resources.

2.3 Piggybacking in HTTP 1.1

Piggybacking of filter and volume information can be incor-
porated into HTTP 1.1 [22]. A proxy can specify a filter as
an extra field in the HT'TP request message. A cooperating
server parses the filter and sends relevant piggyback infor-
mation appended to the response. Although the response
could easily be piggybacked in a new response header, we
avoid delaying the actual body of the response while the
piggyback is being constructed. HTTP 1.1 permits chun-
ked transfer-coding whereby additional information may be
sent in the trailer of the response. The proxy uses the TE
request header field indicating its willingness to accept such
a chunked coding. A proxy’s GET or HEAD request would
thus include TE: chunked and Piggy-filter request head-
ers, with the latter listing the filter attributes. A GET re-
quest enhanced by a proxy filter might look like:

GET /mafia.html HTTP/1.1

host: sig.com

TE: chunked

Piggy-filter: maxpiggy=10; rpv="3,4";

The proxy specifies a filter with a maxpiggy of 10 indicating
that a maximum of ten elements to be piggybacked. The
rpv field identifies the most recently piggybacked volumes
obviating the need for the server to send information about
those volumes again. Alternately, the proxy could have spec-
ified a different filter: a probability threshold p; requiring
piggybacked volume elements to occur together with the re-
quested resource with a probability greater or equal to this
threshold. The server response might look like:

HTTP/1.1 200 OK
Trailer: P-volume
Transfer-encoding: chunked
< Size-of-chunk >
<data>

0
P-volume: vol=7; pe='"u4,895527629,5465";
pe="u3,891527021,1290" ; pe="u7,821993421,1290"
CRLF

The piggybacked information appears in the response header
field in the trailer of the response. The server must include
a Trailer header field indicating the later appearance of
the P-volume response header field. The server’s chunked
response ends with the mandatory zero-length chunk. The
P-volume response header line includes a volume id and re-
sources 1n the volume. Note that the resources are not from
volumes 3 or 4 and the number of elements piggybacked is
less than the maxpiggy of 10, in keeping with the proxy’s
filter requirement.

A piggybacked message consists of a 2 byte volume iden-
tifier (allowing up to 32767 volumes per server) and a se-
quence of piggyback elements. Each piggyback element con-
sists of a URL, Last-Modified time, and a resource size. In
our logs the length of a typical URL is about 50 bytes, af-
ter omitting the redundant server name portion. The Last-
Modified time and the resource size can be represented by
8 byte integers. This results in an average of 66 bytes for
each piggyback element.

For example, using probability based volumes with the
Sun logs, an average of 6 piggyback elements (other logs had
even smaller piggyback sizes) were necessary to predict 75%
of the future accesses in the next five-minute interval (as can
be seen later in Figure 6(b)). This would result in an overall
addition of 398 bytes for the entire piggybacked message,
which might often fit in the same packet as the response or at
most require one additional packet. The piggyback messsage
is small relative to the mean response size of 13900 bytes
(with a median of 1530 bytes). Note that filtering will ensure
that not all messages include a piggyback response. Also,
since every future TCP connection obviated saves at least
two packets, our scheme should reduce the total number of
packets.

3 Server Volumes

The effectiveness of the piggybacking protocol depends on
the server’s ability to group related resources into volumes.
Upon receiving a request for a resource, the server generates
a list of other resources that are likely to be requested in
the near future. After formulating the volume construction
problem, we describe and evaluate two effective heuristics
based on the file system’s directory structure and the proba-
bility that resources are accessed together. The performance

evaluation draws on the client and server logs discussed in
Appendix A.

3.1 Optimization Criteria

In evaluating volume construction techniques, we consider
three key metrics that relate to how various applications
would use the piggybacked information:

e Fraction predicted: The likelihood that a resource re-
quested at the proxy has appeared in at least one pig-
gvback message in the last T seconds. This metric
captures the recall of the prediction scheme, or the
fraction of client accesses that can capitalize on recent
piggyback information, and is important for all of the
proxy policies.

o True prediction fraction: The likelihood that a re-
source that appears in a piggyback message will be
accessed by a client in the next T seconds. Resources
that appear in multiple piggyback messages in the
same time interval are counted as a single prediction.
This metric captures the precision of the prediction,



Directory | % Seen Median
Level Before | Interarrival
0 98.5% 0.9 sec
1 91.8% 1.5 sec
2 78.0% 19.7 sec
3 66.3% 766.2 sec
4 61.6% 1812.0 sec

(a) Directory prefix statistics
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Figure 1: Spacing of requests within directory-based volumes for AT&T proxy trace

and is important for prefetching policies. Note that
recall (prediction fraction) can be high without a cor-
responding increase in precision (true prediction frac-
tion) and vice-versa.

o Update fraction: The likelihood that a resource re-
quested at the proxy has been predicted in the last
T seconds and appeared in a previous request in the
last C seconds, where C' > T'. This metric captures
the likelihood that the client request accesses a cached
resource that has been updated by a recent piggyback
message, and is important for cache coherency and
cache replacement policies.

In addition to maximizing these three performance metrics,
a good volume construction scheme should limit the aver-
age size of piggyback messages. An optimal volume would
maximize the fraction predicted or the update fraction sub-
ject to a constraint on either the average piggyback size or
the fraction of true predictions. However, constructing op-
timal volumes is an NP-complete problem [21]. Instead, we
present heuristics for grouping resources into volumes, and
use these metrics as the basis of our performance evaluation.

3.2 Directory-Based Volumes

We first consider a simple static heuristic that groups re-
sources based on the fields in the URL. Our evaluation of
this heuristic draws on both the client and server logs, and
considers filters based on access frequency and the list of
recently piggybacked volumes.

3.2.1 Volume Construction and Maintenance

Each volume consists of one or more volume elements, where
each element includes a resource identifier, size, and Last-
Modified time. The simplest approach to maximizing the
fraction of requests that are predicted in advance is to com-
bine all of the server’s resources into a single site-wide vol-
ume [20]. To reduce the volume size, the server can group
resources with the same directory prefix in their pathnames,
up to some number of levels. One-level volumes would as-
sign www.foo.com/a/b.html and www.foo.com/a/d/e.html
to the same volume, though www.foo.com/f/g.html would

belong to a different volume; if volumes were based on zero-
level prefixes, all three resources would belong to the same
volume. Directory-based volumes are based on the heuris-
tic that resources in the same directory or subdirectory are
likely to have related content and/or occur as embedded
HREF links in the same (or related) Web pages.

Based on a static volume definition, the server can main-
tain volume elements in a collection of FIFO lists partitioned
by resource sizes and content type. For example, the vol-
ume could have one list for large images, and another list
for small text pages, since the proxy filter can specify that
the server piggyback message include popular items of cer-
tain content types and sizes. Using the last-access-time as
the popularity metric for adding, removing, updating, and
filtering volume elements, permits constant-time operations
for maintaining the volumes at the server. An approximate
way to rank volume elements in order of popularity is us-
ing move-to-front semantics to place a requested resource at
the head of its FIFO; this ensures that piggyback messages
include the most recently accessed elements in the volume.
The server can control the size of volumes by removing un-
popular entries from the tail of the logical FIFO.

3.2.2 Performance Evaluation

Figure 1 shows the locality of reference at several levels of di-
rectory prefixes, using the AT&T proxy trace. The statistics
in Figure 1(a) report the proportion of client requests that
have a directory prefix that occurred earlier in the trace, as
well as the median time between successive accesses. For ex-
ample, 98.5% of requests access a server (level-0 directory)
that has been accessed before, perhaps by a different client;
on average, such accesses are just over an hour apart, with
a median of 0.9 seconds. Many accesses occur in a small
period of time, as shown by the cumulative distribution in
Figure 1(b). In fact, many accesses are less than ten seconds
apart, even within volumes based on the first and second
levels of the directory structure. A server with directory-
based volumes could predict and/or refresh these resources
by piggybacking information on the earlier accesses.

Some of these accesses can be predicted easily, since they
stem from embedded images within other Web pages. These
embedded images are typically requested within a few sec-



onds of the enclosing page, unless the client disables the
transfer of images. Since the AT&T client log includes the
full content of the resources, we were able to determine
which URLs correspond to embedded references. Even with
these references removed, the trace still exhibits significant
temporal locality; the median interarrival times increase by
10—20% and the probability distributions retain their shape.
With or without embedded images, the probability distri-
butions show that over 55% of accesses occur less than fifty
seconds after another request in the same 2-level volume for
this trace. A succession of accesses on this time scale are
likely to be captured in a single piggyback message by us-
ing the RPV (recently piggybacked volume) list to disable
redundant piggyback messages, as discussed in Section 2.2.
More than 82% of requests would follow a piggyback mes-
sage that occurred within the previous two hours.

These experiments suggest that directory-based volumes
are effective in projecting future access. However, we can-
not use the proxy trace to determine how much excess in-
formation the server would send in piggyback messages. To
quantify these cost-performance trade-offs, we measured the
piggyback overhead and predictive power of directory-based
volumes for the four server logs. Figure 2 plots the average
piggyback size (the number of elements in a piggyback mes-
sage) for the ATUSA and Sun server logs across a range of
filters, where a filter of 100 indicates that piggyback mes-
sages do not include resources that are accessed less than
100 times in the entire trace. For efficient post-processing
of the server logs, we imposed a maximum piggyback size
and graphed the region with an average piggyback size of
less than 200. The experiment evaluates three different lev-
els of directory-based volumes; we do not evaluate a 0-level
directory for the Sun log, since this would result in a single
29436-element volume.

The number of elements in piggyback messages drops
dramatically when volumes are constructed based on longer
prefixes in the resource pathnames. In addition, the piggy-
back size decreases dramatically as a function of the filter;
even for 1-level volumes in the Sun logs, the average size
is less than 20 elements when the piggyback messages omit
information about resources with fewer than 5000 accesses.
Fortunately, this aggressive filtering does not substantially
reduce the effectiveness of the piggyback messages, as shown
in Figure 3(a), which plots the proportion of accesses by a
proxy that were predicted in a piggyback message to the
same proxy within the last five minutes. The 1- and 2-level
Sun volumes can predict approximately 60% of the future
accesses with an average piggyback size of just 30 elements,
with the 2-level volumes achieving slightly better predic-
tions. Larger piggyback messages offer diminishing returns.
Experiments with the Apache (not shown) and AIUSA logs
show similar trends, with higher peak prediction rates of
80% and lower piggyback sizes, due to the smaller number
of resources at these sites. In contrast, the Marimba logs
have very low prediction probabilities (as discussed in the
Appendix A).

Although the piggyback messages can predict 70-80% of
the accesses that will occur in the next five minutes, some
of these future requests will access resources that are not in
the proxy cache. Figure 3(b) plots the proportion of accesses
that are predicted by a piggyback message (within five min-
utes) and have appeared in a previous request in the last two
hours. This metric estimates what fraction of client requests
have been updated recently at the proxy cache, to either
freshen or invalidate the resource. For the Sun logs with
2-level volumes, nearly 20% of requests were updated in the

last five minutes; the update fraction increases to just over
20% if the experiment considers a 15-minute time interval
instead of a 5-minute interval. For the Apache (not shown)
and AITUSA logs, the update fraction is consistently in the
range of 5-10%. Given that cache hit rates are typically
around 30-50%, these results suggest that the piggybacking
protocol enables a significant portion of the cache hits to
access a fresh version of the resource (without requiring an
If-Modified-Since request to the server).

The combination of access filters and directory-based vol-
umes is effective in achieving a high fraction predicted with
a modest piggyback size. For further reductions in protocol
overhead, the proxy can tune the frequency of piggyback
message by maintaining a list of recently piggybacked vol-
umes (RPV). Figure 4(a) plots the average piggyback size
as a function of the minimum time between successive pig-
gvback messages, for 0- and 1-level volumes and two dif-
ferent access filters (10 and 50; i.e., limiting to resources
that have been accessed at least this many times) for the
Apache logs. The RPV list is extremely effective in reduc-
ing the amount of piggyback traffic with no significant loss
in the fraction of resources that are predicted, as shown in
Figure 4(b). Experiments with the other server logs show
the same trends. A 30-second minimum time between pig-
gvback messages achieves most of the necessary reduction;
this permits the proxy to impose a tight limit on the amount
of information stored in the RPV lists. Thinning the pig-
gyvback traffic, through both access filters and RPV lists,
permits the server to construct larger volumes, with larger
fraction predicted, without sending an excessive amount of
piggyback traffic.

3.3 Probability-Based Volumes

The server can provide more accurate predictions by esti-
mating the likelihood that resources are accessed together.
After describing how these access probabilities are computed,
we introduce heuristics to improve accuracy and reduce vol-
ume size by determining which predictions are most effec-
tive. Our evaluation of probability-based volumes draws on
the server logs, and considers the effectiveness of a probabil-
ity threshold for defining volume membership and various
heuristics for removing ineffective predictions.

3.3.1 Volume Construction and Maintenance

Instead of defining volumes based on a static heuristic, such
as the directory structure in resource pathnames, the server
can construct volumes by measuring access patterns. By
observing a stream of requests, the server can estimate the
pairwise dependencies between resources. Let p,|,. be the
proportion of requests for resource r that are followed by
a request for resource s by the same source within 7' sec-
onds. Resource s is included in r’s volume if p,|, is greater
than or equal to a threshold probability p:. When a proxy
requests resource r, the server constructs a piggyback mes-
sage from the set of resources s with p|, > p:. The server
can estimate the probabilities p,|, from the stream of re-
quests in a periodic fashion, such as once a day or once a
week, or in an online fashion if access patterns and resource
characteristics change frequently. Previous work has also
suggested and evaluated the use of pairwise dependencies to
guide prefetching decisions [14-16]. We extend this work by
presenting efficient techniques for constructing and thinning
probability-based volumes.

The server computes probabilities from counters c,|, for
pairs of resources that occur together, as well as counters ¢,
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for occurrences of individual resources, where p,|, = c,,/cr.
An efficient algorithm can compute these counters across the
requests by each source; the details of processing a trace to
compute these counters is described in more detail in [21].
Computing probability implications for a set of n resources
can potentially require n® counters, though many pairs of
resources do not typically occur together. To reduce the
memory requirements, the algorithm performs random sam-
pling to decide if and when to create a counter, and when to
simply ignore a pair of resources. For example, suppose a re-
source r occurs less than T' seconds before resource s. If the
counter c,|, does not exist, we create a counter with proba-
bility inversely proportional to the product of the frequency
of access to r and the threshold probability p;. Pairs that
often occur together are likely to have a counter c,|, and an
estimate of p,|., without needlessly generating counters for
pairs of resources with low implication probabilities.

Further reductions in processing and memory overhead
are possible by limiting the calculation of probability impli-
cations to pairs of resources that have the same directory
prefiz, at the expense of missing associations between re-
sources in different directories. In addition, using directory
prefixes to reduce the number of counters has the potential
to avoid locating pairs that inadvertently occur together be-
cause both resources are popular or are accessed during the
same time interval by two different clients of the same proxy.
Another way to reduce the number of counters is to create
a counter c,|, only if resource s is reachable directly from
resource r (e.g., s appears as an HREF in r), if such infor-
mation is readily available [16].

To improve the accuracy and reduce the size of probability
based volumes, the volumes can be trimmed by focusing on
effective predictions. Quite often, a request for resource s
is preceded by accesses to several other resources, each of
which is credited with generating a prediction for s. This is
particularly important when an access to s is often preceded
by a sequence of requests by the same proxy, as would occur
in downloading a Web page with multiple embedded images.
With a small amount of additional processing, it is possible
to measure how often an access to r generates a new predic-
tion for s. If most of r’s predictions are redundant (subject
to an effectiveness threshold), then s is removed from r’s
volume, leaving only the effective predictions.

3.3.2 Performance Evaluation

Directory-based volumes can achieve high prediction rates,
at the expense of sending excess piggyback information. In
contrast, estimating pairwise probabilities allows the server
to construct a very accurate volume for each resource, at
the expense of additional computational complexity and the
possibility that some popular resources occur in multiple
volumes (leading to duplication of elements in piggyback
messages). Across all four server logs, probability-based vol-
umes rarely had symmetric volume assignments, whereby a
pair of resources occur in each other’s volumes. For a time
interval of T' = 300 seconds and a probability threshold of
p: = 0.2, only 1% of resources belong to their own volumes,
and only 3%-18% of volume contents are symmetric. In ad-
dition, most resources occur in a small number of volumes
and most volumes have a small number of resources. These
statistics support the use of probability-based volumes as an
efficient alternative to partitioning resources based on their
directory prefixes.

To evaluate the predictive power of probability-based
volumes, Figure 5(a) plots the fraction of accesses that were

predicted by a piggyback message to the same proxy in the
last five minutes (7" = 300 seconds) (shown for Sun, other
logs are similar). The top curve corresponds to the base case
which computes probabilities p,|, for each pair of resources,
and includes in volumes all pairs where p,, > p:. The
next two curves in Figure 5(a) plot the prediction rate after
removing implications with effective probability below 0.1
and 0.2, respectively. Removing these implications does not
have a significant impact on the prediction rate. The bot-
tom curve in Figure 5(a) corresponds to combined volumes
that remove implications for resource pairs that do not have
the same 1-level directory prefix. For very small threshold
probabilities, these combined volumes are virtually identical
to the 1-level directory-based volumes.

Each of the logs has resource pairs with a range of impli-
cation probabilities, as shown in Figure 5(b). High probabil-
ities often stem from embedded images and popular HREF
links in a Web page. High prediction rates can always be
achieved using very large volumes. Large volumes, how-
ever, incur large average piggyback sizes and a high rate
of false predictions. Figure 6 plots the prediction rate as
a function of the average piggyback size, computed across
a range of probability threshold values, for the AITUSA and
Sun logs. As expected, the prediction rate grows with the
piggyback size, with diminishing returns for larger piggy-
back messages. Compared to the experiments for directory-
based volumes in Figure 3(a), the probability-based volumes
achieve a high prediction rate with a lower piggyback size.
Thinning the probability-based volumes by removing impli-
cations that were not effective or pairs in different 1-level di-
rectories offers a significant reduction in the piggyback size,
particularly for the Sun logs, as shown in Figure 6(b).

Focusing on effective predictions significantly reduces the
size of piggyback messages without reducing the prediction
rate. This substantially increases the fraction of true pre-
dictions, as shown in Figure 7 for both the AIUSA and
Sun logs. In general, for well-constructed volumes, the ratio
of true predictions should increase under smaller piggyback
sizes, since we expect higher values of p; to yield more accu-
rate predictions. As evidenced by the non-monotonic curve
in Figure 7(b), however, this is not always the case. This
non-monotonicity stems from many resource pairs with high
implication probability and low effective probability. Such
elements contribute to the piggyback size without increas-
ing the number of true predictions. They rarely generate
new true predictions, though they sometimes generate false
predictions. Such pairs occur from repeated sequences of
requests for resources in the same 5-minute interval, due to
popular HREF links and downloading of embedded images.
Removing pairs that fall below the effectiveness threshold
(as discussed in Section 3.3.1) not only reduces the aver-
age size of piggyback messages, but also has the desirable
monotonic dependence where smaller piggyback sizes yield
more accurate predictions. Although experiments with the
ATUSA and Apache logs show these effects, the results are
most dramatic for the larger and more popular Sun site.

Applications where false predictions incur large over-
heads (e.g., prefetching and cache replacement) must strike
a careful balance between recall (the fraction predicted in
Figure 6) and precision (the true predictions in Figure 7).
These two metrics are orthogonal but we would like to in-
crease recall if precision drops, for a particular volume con-
struction scheme. Removal of implications that were not
effective resulted in better tradeoffs between these two met-
rics, and considerable improvement was obtained for the Sun
logs. Figure 8 summarizes the relationship between these
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two metrics for volumes constructed with an effective prob-
ability threshold of 0.2, which consistently produced the best
volumes for a given piggyback size. The graph does not plot
the average piggyback size, which increases with the fraction
predicted on the x-axis; since effective implications result in
such small piggyback sizes, this overhead is less of a fac-
tor compared to the cost of making incorrect prefetching
and cache replacement decisions. By comparison, combined
volumes exhibited worse tradeoffs, and the directory-based
volumes (not shown), consistently generate a much larger
number of false predictions, often in the range of 70-90%,
even with the aid of filtering techniques.

The update fraction metric captures the effectiveness of
using piggybacked volumes to update the cache contents.
The second column of Table 1 shows the fraction of requests
that were preceded by a request for the same resource by the
same proxy within the last 2 hours. This can be thought of
as “cache hits.” The third column is the fraction of requests
that were preceded by a request for the same resource by the
same proxy within the last 5 minutes. This could be viewed
as if the cache already had a fresh copy. The fourth column
is the fraction of requests made to resources that were ac-
cessed within the last two hours but more than five minutes
ago and updated by a piggyback in the last five minutes
(i.e., sending volumes resulted in new updates to cached re-
sources). The parenthetical figures in columns 3 and 4 are
the fraction of the “cache hits.” The last column is the av-
erage piggyback size. The numbers reported in the fourth
and fifth columns are for volumes with probability thresh-
old p; = 0.25, effective probability 0.2, and time interval
T = 300. The update fraction metric is the sum of the third
and fourth columns; for example, the Sun logs have an up-
date rate of 20.6% (9.6%+11.0%) with an average piggyback
size of 5. As seen from the plots in Figure 3(b), directory-
based volumes exhibit considerably worse performance for
comparable piggyback sizes. Large average piggyback sizes
(50-100) allow for higher fraction of updates, but still, the
update fraction peaks lower than for probability-based vol-
umes. This inherent gap stems from requests that are not
preceded by a recent request for a resource with same 1- or
2-level directory prefix.

Ultimately, the appropriate volume construction and fil-
tering techniques depend on how the proxies use the piggy-
backed information and how much computational load can
be borne by the server. Probability-based volumes, thinned
to include only effective implications or resources with the

same directory prefix, can be used to guide prefetching deci-
sions. Although probability-based volumes introduce addi-
tional computational load at the server (or the transparent
volume center), volume construction does not have to occur
in an online fashion; in fact, in our experiments, we applied a
single set of volumes for the duration of each log. Directory-
based volumes are easier to create, though they generate
larger piggyback messages. Filtering recently-piggybacked-
volumes substantially reduces the size of the piggyback mes-
sages, without decreasing the fraction of accesses that are
predicted in advance. The directory-based volumes are well-
suited to proxy applications like cache coherency and, to a
lesser extent, cache replacement, where extra piggyback in-
formation does not incur a significant cost at the proxy.

4 Web Proxy Applications

The information in server piggyback messages can be used
to improve the effectiveness of a variety of proxy policies,
with different cost-performance trade-offs:

Cache coherency: Using the Last-Modified time informa-
tion in the piggyback message, the proxy can remove stale
items from the cache and freshen valid entries [10,20]. This
lowers the likelihood of returning out-of-date resources to
clients, and avoids the latency and TCP overheads of gener-
ating If-Modified-Since requests to the server on future client
requests. Instead of simply removing stale resources from
the cache, the proxy could construct an updated version by
requesting that the server transmit the difference between
the old and new versions; this proposed enhancement to
HTTP [23] should be very effective in reducing the amount
of data transfer, since most changes are small, relative to
the size of the resource. The update fraction metric allows
us to estimate the impact of volumes. About 40%-50% of
requests to cached objects are made to resources previously
requested within 5 minutes. Assuming the cache has fresh
copies of these resources, our best volumes (Section 3.3.2)
enabled a priori refreshment for an additional 22%-46% of
requests made to cached resources, using average piggyback
sizes of only 1-5.

Prefetching: The piggyback message can be used by the
proxy to prefetch resources, or by the server to automati-
cally send resources that are likely to be accessed soon. In
contrast to the cache-coherency application, piggyback mes-
sages that do not accurately predict future accesses incur a
significant cost to the proxy, which may wrongly consume
network bandwidth and cache space. The proxy may decide
not to prefetch items that have a recent Last-Modified time,
since these resources may change again before they are ac-
cessed by a client. In addition, to avoid the cost of fetching
and storing large resources, the proxy’s filter can ask the
server to generate a piggyback list that omits resources that
exceed a target size. Even if the proxy does not prefetch the
items in the piggyback message, the proxy and the server
can both decide to maintain an open TCP connection if the
piggyback information suggests that more proxy requests
are likely to occur in the near future. The fraction pre-
dicted metric indicates how many requests are predicted by
piggybacks and hence, can be prefetched. The true predic-
tion fraction metric measures the overhead of futile versus
useful prefetches. Our most accurate volumes (see Figure 8)
exhibited the following tradeoffs. For the Apache log, for
example, 40% of accesses can be prefetched with 20% futile
fetches (10% total increase in bandwidth) or 55% of accesses
can be prefetched with 50% futile fetches (27% increase in
bandwidth). On the Sun logs, prefetching 30% of requests



Server | prev. occ | prev. occ updated by piggybacks and average
Log < 2hr. < 5min 5min < prev. occ. < 2hr. | piggyback
AIUSA | 65% | 3.6% (55%) 2.0% (31%) 2.9
Apache 11.5% 5.4% (47%) 2.2% (19%) 1.6
Sun 23.7% | 9.6% (41%) 11.0% (46%) 5.0

Table 1: Update fraction for probability-based volumes

incurs 15% futile prefetches (5% bandwidth increase) and
70% prefetching incurs 50% futile prefetches (35% increase
in bandwidth).

Cache replacement: The server piggyback information
can help guide cache replacement decisions. Rather than
removing the least-recently-used item, the proxy could con-
tinue to cache items that have appeared in recent piggyback
messages, as long as the resource has not been modified at
the server. More generally, the proxy could combine pig-
gyback information with other “cost” metrics that impact
the cache replacement decision, including resource size, con-
tent, or frequency of modification. The effectiveness of the
cache replacement strategy depends on the accuracy of the
piggyback information, though a suboptimal cache replace-
ment decision may not impose as much load on the network
as an incorrect prefetching decision. The fraction updated
metric shows that the piggyback messages generate a con-
siderable number of predictions for requests for cached re-
sources. In addition, these predictions are accurate. Draw-
ing on these promising initial results, we have performed an
extensive comparison of server-assisted cache replacement
policies [24].

Adaptive freshness interval: The proxy can use the pig-
gyvback message to tune its caching policies, even when the
piggybacked items do not reside in the cache. Since the
piggyback includes the Last-Modified time of each resource,
the proxy can estimate and record how often the resource
changes, or query the server explicitly for this information.
If a client requests a resource not in the proxy’s cache, the
proxy can use the rate-of-change information to decide if it
should cache it or select an appropriate freshness interval
(A) for that resource (or for all the resources in its volume).
This permits the proxy to balance the cost of resource vali-
dation with the risk of sending stale information to a client.

Informed fetching: The piggybacks contain meta-attributes

of resources that are likely to be requested soon. These at-
tributes can be kept and used to prioritize the fetching queue
when users do issue the requests (the scheduling is performed
prior to contacting the servers). For example, shorter files
can be fetched first (when there is not enough bandwidth
for all outstanding requests). If the path between the proxy
and the server is congested, such a scheduling strategy de-
creases average per-user latency (users requesting small files
do not have to wait long and users with large requests wait
a bit longer.) Single users utilizing a low-bandwidth connec-
tion would first view text and small images when requesting
a page with embedded images. The relevant metric is the
fraction predicted. Our best volumes (Section 3.3.2) inform
the client with meta-attributes prior to issuing 55-80% of
requests, while using very small average piggyback sizes.

5 Conclusions and Future Work

We have presented an end-to-end approach that examines
the problem of network overload caused by the exponen-

tial increase in Web traffic. Our holistic approach permits
piggybacked exchange of the information present in the var-
ious Web components. We group resources into volumes to
maximize information available at the server and use filters
to tailor the piggyback information to the various proxies.
Based on efficient data structures and algorithms, we pre-
sented an in-depth evaluation of various volume construction
and thinning techniques on a collection of large server logs
(see Appendix A). Our proposed protocol changes can be
used in a variety of applications such as prefetching, cache
coherence, and cache validation. We also showed how the
required changes can be expressed in HT'TP 1.1.

As future work, we are formalizing a filter language that
can be the basis for proxy-specific tailoring of piggybacks.
Additional information that could be piggybacked includes
information about popular resources gathered in a separate
volume. We are also developing a variety of additional vol-
ume thinning techniques. The deployment of transparent
volume centers to obviate server modifications is also be-
ing examined in greater depth. At the application level,
we plan to examine the actual impact of our piggybacks on
several cache related issues such as replacement, validation,
coherency, and the use of multi-level caches. In addition, we
are studying ways for the proxy to piggyback information
to the server about accesses that are satisfied at the cache.
The combination of proxy-supplied information and server-
generated hints provides a effective framework for improving
end-to-end performance.
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A Client and Server Logs

The set of available client, proxy, and server traces does not
permit a complete end-to-end evaluation of our proposed
protocol. Ideally, we would like a collection of proxy traces
and server logs covering the same time period with a signif-
icant amount of traffic between the proxy/server pairs. In
the absence of such data, we post-processed the server logs
to construct pseudo-proxy traces by extracting the source
IP address for each request. However, the pseudo-trace is
inherently incomplete since the server logs do not include
any client requests that were satisfied at the proxy cache (if
any), or the proxy’s requests to other servers. In addition,



Client Requests | Distinct Unique
Log (days) | (millions) | Servers | Resources
Digital (7) 6.41 57,832 2,083,491
AT&T (18) 1.11 18,005 521,330

Table 2: Client log characteristics

Server Number of | Number of | Requests Unique
Log (days) Requests Clients per Source | Resources
ATUSA (28) 180,324 7,627 23.64 1,102
Marimba (21) 222,393 24,103 9.23 94
Apache (49) 2,916,549 271,687 10.73 788
Sun (9) 13,037,895 218,518 59.66 29,436

Table 3: Server log characteristics

the server logs do not include the Last-Modified times of the
resources. Thus, it is impossible to accurately simulate a
proxy cache from the server logs alone. Likewise, client logs
lack information about other resources at the server sites or
accesses from other sources, preventing us from determin-
ing which server resources would be included in piggyback
response messages.

Given these practical limitations, we did not attempt to
simulate the traffic mixture at an individual proxy cache.
Instead, we focused on the cost-performance metrics that
could be gathered from each of our client and server logs.
For example, the client logs include the pathname for each
access, allowing us to estimate the effectiveness of directory-
based volumes across requests to a wide range of servers.
However, the client logs did not permit us to quantify the
size of the piggyback messages, since we did not know the
number of resources in each directory at the server sites.
Hence, we use the client logs to evaluate the performance
of directory-based volumes. The server logs permit us to
evaluate both the cost and performance of the volume con-
struction heuristics. Based on the pseudo-proxy traces ex-
tracted from the server logs, we evaluated directory-based
and probability-based volumes, and estimated the usefulness
of the piggyback information for various proxy policies.

We used client logs from AT&T and Digital [10] and
server logs from Amnesty International USA, Marimba Inc.,
Apache Group, and Sun Microsystems. Table 2 summa-
rizes the key information about the client logs, which have
been described in detail in previous work [20,23]. 15.80%
and 18.7% of the requests resulted in Not Modified responses
while validating cached resources, for the Digital and AT&T
logs, respectively. The average response size was 12279 bytes
in Digital log and 8822 in AT&T. In the Digital log, the
top 1% of the servers were responsible for over 59% of the
resources accessed, and 3.4% of the servers accounted for
over half the 2083491 unique resources accessed. In the
AT&T log just the top 1% of the servers were responsi-
ble for over 55% of the resources accessed, and 5.6% of
the servers accounted for over half the 521330 unique re-
sources accessed [10]. For resources that were accessed at
least twice, about 15% of the responses in the AT&T log
reflected that a response had changed [25]. Since response
messages do not always include a Last-Modified time, and
since resources may be modified without a size change, this
estimate is necessarily conservative. In addition, it is im-
possible to determine if a resource changed multiple times
between accesses.

The server logs represent a range of Web sites in terms of

the number of resources and accesses, as shown in Table 3.
Across the server logs, a very small percentage of clients
were responsible for a majority of the accesses (often 10% of
clients were responsible for over 50% of all accesses). Most
of the requests were also for a small number of resources
(around 85% of the requests were for less than 10% of the
unique resources). These trends are consistent with studies
of other Web server logs [26]. The Marimba server log was
obtained from a site that served small amounts of data with
practically all requests using the POST method (to transmit
data from the client to the server) rather than GET.

We deleted apparent uncachable responses (resources with
the string “cgi” or query URLs with the “?” character), en-
sured time entries were within the log dates range, and com-
bined identical resources (e.g., http://www.foo.com/ and
http://www.foo.com). In addition, our analysis focused on
resources that were accessed at least ten times. These re-
sources account for 98 — 99% of requests. Removing the
requests for unpopular resources reduces the complexity of
generating probability-based volumes. By ignoring unpop-
ular resources during volume construction, we avoid gener-
ating unnecessary piggyback information.
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