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ABSTRACT
This paper settles a long-standing question with a positive
answer: optimal traffic engineering can be realized using just
link-state routing protocols. In conventional link-statepro-
tocols like OSPF and IS-IS, routers compute shortest paths
based on link weights, splitting traffic evenly when multiple
shortest paths exist. Unfortunately, in these particular cases
of link-state protocols, computing the optimal link weights
for a given traffic matrix is an NP-hard problem. Even the
best setting of the weights can lead to traffic loads that devi-
ate significantly from the ideal distribution of the traffic.In
this work, we show that splitting traffic over multiple paths
as an exponential function of path length can achieve opti-
mal traffic engineering. We also present a polynomial-time
algorithm for computing the optimal link weights, which in
practice is also much more efficient than the local-search
heuristics used today. In addition, we show how to apply
the algorithm to robust traffic engineering, where one set
of link weights must perform well for multiple traffic ma-
trices or failure scenarios. These results are based on our
new Network Entropy Maximization framework for routing-
protocol design, which parallels the role of Network Utility
Maximization for congestion control.

1. INTRODUCTION
Most large IP networks run link-state routing proto-

cols, like OSPF (Open Shortest Path First) and IS-IS
(Intermediate System-Intermediate System), that select
paths based on link weights. Routers use these proto-
cols to exchange link weights and construct a complete
view of the topology inside an Autonomous System.
Then, each router computes path lengths (as the sums
of the link weights along the paths), and forwards in-
coming packets to an outgoing link according to certain
rules. For example, OSPF and IS-IS forwards packets
along the shortest paths to the destination. When links
or nodes fail, the routers automatically compute new
paths based on the current topology and link weights.
To alleviate congestion in the network, operators simply
adjust one or two link weights to distribute the traffic
over different paths, in a process known as traffic engi-
neering (TE). In this paper, we show that new variants

of link-state protocols that split traffic over multiple
paths, based only on the link weights, can achieve op-
timal traffic engineering with a polynomial-time algo-
rithm for setting the link weights

1.1 Limitations of Traffic Engineering Today
In practice, the link weights are configured, by net-

work operators or automated management systems, to
satisfy traffic-engineering goals by minimizing an ob-
jective function that captures the congestion in the net-
work. Two common objectives are minimizing the max-
imum link utilization and minimizing the sum of a con-
vex cost function of the link utilizations [1]. These
objective functions define the meaning of optimality of
traffic engineering. Typically, the link weights are com-
puted by applying offline, centralized optimization tech-
niques, which may evaluate the effects of changes to the
link weights on the distribution of traffic in the net-
work. However, in OSPF, even the best setting of the
link weights leads to traffic loads that deviate signifi-
cantly from an optimal distribution of the traffic, where
the routers have complete freedom in how they forward
traffic. In addition, optimizing the link weights is an
NP-hard problem, forcing operators to resort to heuris-
tics like local search [2, 3]. Selecting the link weights is
even more difficult for robust traffic engineering, where
a single setting of the link weights must perform well
for multiple traffic matrices or failure scenarios [4, 5].

Computing the link weights and achieving optimal
performance are difficult for the same underlying rea-
son: today’s link-state protocols force all traffic to tra-
verse only the shortest paths , with even splitting of traf-
fic when multiple shortest paths exist. Although easy
to implement in the routers, even splitting over shortest
paths can make it impossible to express the optimal dis-
tribution of traffic through a setting of the link weights.
In contrast, an optimal traffic distribution can be re-
alized by dividing an arbitrary fraction of traffic over
many paths through the network, as is possible with
MultiProtocol Label Switching (MPLS) [6]; however,
optimality in MPLS routing comes with a cost for estab-
lishing many tunnels to forward data packets over these



Link-State Routing
Commodity Routing Shortest-Path Routing Exponential Splitting

Traffic Splitting Arbitrary Even Exponential
Scalability Low High High
Optimal TE Yes No Yes
Computational Complexity Polynomial NP Complete Polynomial

Convex Optimization +
Computation Techniques Convex Optimization Heuristic Combinatorial Algorithm

Table 1: Comparison of various traffic-engineering schemes (new contributions in italics)

paths. Other studies explore more flexible ways to split
traffic over shortest paths [7, 8], but these solutions do
not enable routers to independently compute the flow-
splitting ratios from link weights. Clearly, there is a
tension between the optimal but complex routing and
the simple but suboptimal link-state routing. This pa-
per shows that routing can be both simple and optimal.

Achieving optimal traffic engineering with link-state
routing requires changes to both

• how paths are determined from link weights (i.e.,
the online algorithm running on the routers) and

• how the link weights are computed (i.e., the offline
algorithm running in the management system).

On the first problem, it is important to realize that
link-state protocols do not have to use only the shortest
paths. Two recent studies proposed alternative ways for
routers to split traffic over multiple paths based solely
on the link weights. First, Fong et al. [9] suggested that
routers divide traffic over all paths in inverse propor-
tion to the path length, or as an exponential function
of path length. In both approaches, data packets may
traverse loops, since traffic does not always make for-
ward progress toward the destination. Second, Xu et
al. [10] proposed using only the “downward” paths that
move packets closer to the destination, splitting traf-
fic over the downward paths as an exponential function
of path length. Both papers argue that more flexible
flow-splitting rules would lead to simpler optimization
problems for setting the link weights, as well as better
distributions of traffic1.

1.2 Optimal Routing Using Only Link Weights
The work in [9] and [10] still leaves two important

questions unanswered: (i) can any of these link-state
routing protocols realize optimal traffic engineering? and
(ii) if so, can the optimal link weights be found in poly-
nomial time? In this paper, we show that the answers

1They also addressed several important concerns on imple-
menting non-shortest-path routing in practice, such as real-
izing non-even-splitting with hashing techniques, bounding
the worst-case delay, and ensuring similar performance if
link weights have to be integral.

to both questions are “yes” (Theorem 1 in Sec. 3.2). In
fact, we prove that dividing traffic over all paths as an
exponential function of their length (as suggested in [9])
can, in fact, achieve an optimal distribution of the traf-
fic, with an appropriate setting of the link weights. We
present a novel, polynomial-time algorithm for comput-
ing these link weights. The algorithm runs relatively
slow in practice, however, since it must solve a large sys-
tem of linear equations. Observing that optimal routing
rarely (if ever) creates flow loops, we limit the routers
to “downward paths” (as suggested in [10]) and present
a very efficient polynomial-time algorithm for optimiz-
ing the link weights. Our experiments show that the
running time can be 2000 times faster than local-search
methods for OSPF routing. We also show how to use
the algorithm for robust traffic engineering for a family
of traffic matrices and failure scenarios. Table 1 sum-
marizes the state of the art, with our new results high-
lighted in italics.

Demonstrating that optimal traffic engineering is pos-
sible using only link weights requires several innovations
in the analysis and design of network routing. In par-
ticular, it turns out that splitting traffic based on an ex-
ponential function is by no means an arbitrary choice.
Many other seemingly natural splitting rules, such as
inversely proportion to the path length, do not enable
optimal traffic engineering. The exponential function
falls naturally out of formulating the traffic-engineering
problem in terms of Network Entropy Maximization
(NEM). Although the general principle of entropy max-
imization has been used to solve other challenging net-
working problems [11–14], this is the first work connect-
ing entropy with IP routing. In addition, as we sum-
marize later in Table 6, our NEM framework for rout-
ing has interesting parallels with recent work relating
TCP congestion control to Network Utility Maximiza-
tion (NUM) [15–18].

The rest of the paper is organized as follows. Back-
ground on optimal traffic engineering is introduced in
Sec. 2. The algorithms for realizing optimal traffic engi-
neering with link-state protocols are presented in Sec. 3.
Extensive numerical experiments of using the algorithms
are shown in Sec. 4. In Sec. 5, the theoretical founda-
tion for the algorithms is presented. In Sec. 6, the algo-
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rithms are extended to robust traffic engineering con-
sidering multiple traffic matrices or link failures. The
interesting and general framework of Network Entropy
Maximization is further discussed in Sec. 7. The pa-
per is concluded in Sec. 8. The physical interpretation
of using entropy maximization is summarized in Ap-
pendix A, and the implementation of non-shortest path
routing covered in Appendix B.

2. BACKGROUND ON OPTIMAL TE
In this section, we formally define optimal traffic engi-

neering and summarize the well-known fact that multi-
commodity-flow routing can achieve the optimal distri-
bution of the traffic. The key notation used in this paper
is shown in Table 2.

2.1 Definitions of Optimality
Traffic engineering involves optimizing routing based

on the offered traffic. We model the network as a di-
rected graph G = (V, E), where V is the set of nodes
(where N = |V|), E is the set of links (where E = |E|),
and link (u, v) has capacity cu,v. The offered traffic
is represented by a traffic matrix D(s, t) that captures
the rate of traffic entering the network at node s and
leaving at node t. The traffic matrix can be computed
based on traffic measurements or may represent explicit
subscriptions or reservations from users.

The load fu,v on each link (u, v) depends on how the
network decides to route the traffic. An objective func-
tion enables quantitative comparisons between differ-
ent routing solutions in terms of the load on the links.
As a building block for the objective function, most
traffic-engineering studies consider a link-cost function
Φ(fu,v, cu,v) that is a strictly increasing function of fu,v,
to penalize solutions that place a high load on one or
more links. For example, Φ(fu,v, cu,v) could be the link
utilization fu,v/cu,v, leading to an objective of mini-
mizing max(u,v){Φ(fu,v, cu,v)} (a convex minimization),
which favors routing solutions that minimize the maxi-
mum link utilization in the network.

Minimizing the maximum link utilization can lead to
routing solutions that reduce the load on the most con-
gested link at the expense of using circuitous paths that
place a heavy load on many of the remaining links. In-
stead, most traffic-engineering studies choose a link-cost
function that prevents congestion by placing an increas-
ingly penalty on links as the load approaches capac-
ity [19], such as:

Φ(fu,v , cu,v) =





fu,v fu,v/cu,v ≤ 1/3
3fu,v − 2/3 cu,v 1/3 ≤ fu,v/cu,v ≤ 2/3
10fu,v − 16/3 cu,v 2/3 ≤ fu,v/cu,v ≤ 9/10
70fu,v − 178/3 cu,v 9/10 ≤ fu,v/cu,v ≤ 1
500fu,v − 1468/3 cu,v 1 ≤ fu,v/cu,v ≤ 11/10
5000fu,v − 16318/3 cu,v 11/10 ≤ fu,v/cu,v,

(1)

Notation Meaning

D(s, t) Traffic demand from source s to destination t

cu,v Capacity of link (u, v)
fu,v Flow on link (u, v)
c̃u,v Necessary capacity of link (u, v)
ft

u,v Flow on link (u, v) destined to node t
−→
f t

u Total incoming flow (destined to t) at u

wu,v Weight assigned to link (u, v)
wmin Lower bound of all link weights

dt
u The shortest distance from node u to node t. dt

t = 0

ht
u,v Gap of shortest distance, ht

u,v , dt
v + wu,v − dt

u

Γ(ht
u,v) Traffic allocation function

Table 2: Summary of Key Notation

leading to an objective function that considers the to-
tal cost

∑
(u,v)∈E

Φ(fu,v, cu,v) [1,7]. Often, a piece-wise
linear function is used for efficient computation of an
optimal solution.

More generally, we use “Φ({fu,v})” to represent the
objective function, and define “optimal traffic engineer-
ing” as a distribution of traffic {fu,v} that minimizes a
given, convex network objective function Φ.

Even at this point, we can observe that there is a
“gap” between the objective of optimal traffic engineer-
ing and the mechanism of link-state routing. Optimal
traffic engineering is defined directly in terms of the traf-
fic flows on the network, whereas link-state protocols
represent the paths indirectly in terms of link weights.
Bridging this gap is one of the challenges that have pre-
vented researchers from achieving optimal traffic engi-
neering using link-state routing thus far.

2.2 Optimal TE Via Multi-Commodity Flow
Optimal traffic engineering is possible in a routing

system that can distribute an arbitrary proportion of
traffic over multiple paths between each pair of nodes.
The solution can be computed by solving the a multi-
commodity-flow problem, where the flow destined to a
single destination is treated as a commodity, and f t

u,v

is amount of flow on link (u, v) destined to node t. The
formulation for a given traffic matrix is as follows:

COMMODITY:

min Φ({fu,v}) (2a)

s.t.
∑

z:(y,z)∈E

ft
y,z −

∑

x:(x,y)∈E

ft
x,y = D(y, t), ∀y 6= t (2b)

fu,v ,
∑

t∈V

ft
u,v ≤ cu,v, (2c)

vars. ft
u,v, fu,v ≥ 0. (2d)

Constraint (2b) ensures the conservation of traffic at
intermediate node y, and constraint (2c) ensures the
total flow on a link is bounded by the capacity.

For any convex network objective function, the opti-
mization problem (2) is a convex optimization that can

3



be solved in polynomial time:

Fact 1. Optimal traffic engineering for a given traffic
matrix with a convex network objective function can
be realized with multi-commodity-flow routing within
polynomial time.

Unfortunately, for a network with N nodes and E links,
the routing solution may require up to O(N2E) tunnels
(i.e., explicit routing) [20], making it difficult to scale.
In contrast, link-state routing is much simpler, requiring
only O(E) parameters (i.e., one per link). The next
section argues that optimal traffic engineering can, in
fact, be achieved using only link weights.

3. OPTIMAL TE WITH LINK WEIGHTS
In this section, we formally define link-state routing

protocols, where routers forward traffic based only on
link weights and a traffic-allocation function [10]. We
state our main result, proven later in Sec. 5, that an
exponential flow-splitting rule can achieve optimal traf-
fic engineering. We then present a polynomial-time al-
gorithm that the network-management system can run
to optimize the link weights for a given traffic matrix.
Then, we present a much more efficient algorithm that
can be used to optimize the link weights, if the network
runs a link-state routing protocol with a simple variant
of the exponential splitting rule, where routers direct
traffic only via “downward” paths.

3.1 Link-State Routing Protocols
In link-state routing, each node u makes an indepen-

dent decision on how to forward traffic destined to node
t among its outgoing links using only the link weights.
Each link (u, w) has a single, configurable weight wu,v.
Based on a complete view of the topology and link
weights, node u computes its shortest distance dt

u to
node t; dt

v + wu,v represents the distance from u to t
when routed through neighboring node v. To indicate
if link (u, v) lies on a shortest path from u to t, we de-
fine shortest distance gap, ht

u,v , dt
v + wu,v − dt

u, which
is always greater than or equal to 0. Then, (u, v) lies
on a shortest path to t if and only if ht

u,v = 0.
Link-state routing protocols vary in which paths they

use, and in what proportions. As such, we define a
traffic-allocation function Γ(ht

u,v) that indicates the rel-
ative amount of traffic destined to t that node u will for-
ward via outgoing link (u, v). To translate the traffic-
allocation function to the actual flow on each link, we

define
−→
f t

u as the total incoming flow (destined to t) at
node u. Then, the total outgoing flow of traffic (des-
tined to t) traversing link (u, v), f t

u,v, can be computed
as follows:

f t
u,v =

−→
f t

u

Γ(ht
u,v)∑

(u,j)∈E
Γ(ht

u,j)
. (3)

Consistent with hop-by-hop forwarding, u splits the traf-
fic over the outgoing links without regard to the source
node or the incoming link where the traffic arrived.

The traffic-allocation function allows us to readily de-
scribe different link-state routing protocols. For exam-
ple, in shortest-path routing (e.g., OSPF), each node
splits flow evenly across all the outgoing links along
shortest paths, leading to the following traffic-allocation
function:

ΓO(ht
u,v) =

{
1 if ht

u,v = 0,
0 if ht

u,v > 0.
(4)

In contrast, the work in Fong et al. [9] proposes two
new link-state routing protocols where nodes forward
traffic on all paths as a function of their length. First,
forwarding traffic in inverse proportion to the path length
corresponds to the following traffic-allocation function:

ΓI(h
t
u,v) =

1

(dt
v + ht

u,v)
β
, (5)

where β is a constant. Second, forwarding traffic on
paths with an exponential penalty on longer paths cor-
responds to the following traffic-allocation function:

ΓX(ht
u,v) = e−ht

u,v . (6)

Since these two traffic-allocation functions make use
of all paths, the traffic does not necessarily make for-
ward progress toward the destination at each hop; i.e.,
traffic may move “backwards” to a node that is further
away from the destination. To prevent flow loops, Xu et
al. [10] proposes a traffic-allocation function that only
directs traffic on “downward” paths, as follows:

ΓD(ht
u,v) =

{
e−ht

u,v if dt
u > dt

v,
0 otherwise.

(7)

They refer to the resulting link-state routing protocol
as Distributed Exponentially-weighted Flow Splitting
(DEFT).

3.2 Algorithm for Optimizing Link Weights
The key question now becomes: can optimal traf-

fic engineering be realized using only link weights for
some simple traffic-allocation function? Our main re-
sult, with a proof in Sec. 5, is as follows:

Theorem 1. Optimal traffic engineering for a given
traffic matrix can be realized with link weights, computed
within polynomial time, by using traffic-allocation func-
tion ΓX(·) in link-state routing protocols.
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In this subsection, we present a polynomial-time al-
gorithm for computing the link weights for the expo-
nential traffic-allocation function ΓX(·). The algorithm
consists of two main parts:

Computing the optimal traffic distribution for
a given traffic matrix: Given the traffic matrix and
the objective function, the solution to the COMMOD-
ITY problem (2) from Sec. 2.2 provides the optimal
distribution of traffic. We represent the resulting flow
on each link (u, v) as the necessary capacity c̃u,v , fu,v

(or c̃ as a vector). The necessary capacity is the mini-
mal (maybe not the minimum)2 set of link capacities to
realize optimal traffic engineering. Next, we consider a
new traffic-engineering problem on the same topology,
where the link capacities are c̃u,v. Note that any feasi-
ble routing solution, subject to the necessary capacities,
also achieves optimal traffic engineering for the original
network in terms of the Φ({fu,v}) objective.

1: Compute necessary capacities c̃ by solving (2)
2: w ← Any set of link weights
3: f ← Traffic Distribution(w)
4: while f 6= c̃ do
5: w ← Link Weight Update(f)
6: f ← Traffic Distribution(w)
7: end while
8: Return w/*final link weights*/

Algorithm 1: Optimize Over Link Weights

1: for each link (u, v) do
2: wu,v ← wu,v − α (c̃u,v − fu,v)
3: end for
4: Return new link weights w

Algorithm 2: Link-Weight Update(f)

Computing the link weights that would achieve
this distribution of the traffic: The second step uses
the traffic distribution found in the first step as input,
and need not consider the objective function any fur-
ther. Starting with an initial setting of the link weights,
the algorithm (see Algorithm 1) repeatedly updates the
link weights until the flow on each link is the same as
the necessary capacity. Each setting of the link weights
corresponds to a particular way of splitting the traf-
fic over a set of paths. The Traffic Distribution proce-
dure computes the resulting link loads fu,v, based on
the traffic matrix. Then, the Link Weight Update pro-
cedure (see Algorithm 2) increases the weight of each
link (u, v) linearly if the traffic exceeds the necessary
capacity, or decreases it otherwise. The parameter α is

2c̃ is minimal if @c̃′ : c̃′ 6= c̃ ∧ c̃′ � c̃ whereas c̃ is the

minimum if ∀c̃′ : c̃ � c̃′.

a positive step size, which can be constant or dynami-
cally adjusted; we find that setting α to the reciprocal
of the maximum necessary link capacity ( 1

max c̃u,v
) per-

forms well in practice, as discussed later in Sec. 4.
In terms of computational complexity, we know from

Sec. 2.2 that COMMODITY can be solved in polyno-
mial time. The complexity of Algorithm 2 is O(E).
The remaining questions are (i) whether Algorithm 1
terminates after a polynomial number of iterations and
(ii) whether Traffic Distribution can be solved in poly-
nomial time. In Sec. 5, we prove that the answer to
both questions is “yes” for the traffic-allocation function
ΓX(·). We present the polynomial-time Traffic Distribution
procedure for any traffic-allocation function (including
the function ΓX(·) of interest) in the next subsection.

3.3 Traffic Distribution with ΓX(·) Function
To compute the distribution of traffic, we must first

compute the shortest paths between each pair of nodes;
then, the lengths of the shortest paths can be used to
compute all values of ΓX(ht

u,v), as shown in the first
step of Algorithm 3. Computing the resulting distribu-
tion of traffic is complicated by the fact that ΓX(·) may
direct traffic “backwards” to a node that is further away
from the destination; that is, some traffic may “come
back” to a node. To capture these effects, recall that
−→
f t

u is the total incoming flow at node u (including traf-
fic originating at u as well as any traffic arriving from
other nodes) that is destined to node t. In particular,
the traffic D(s, t) that enters the network at node s and
leaves at node t satisfies the following linear equation:

−→
f t

s −
∑

x:(x,s)∈E

−→
f t

x

(
ΓX(ht

x,s)∑
(x,j)∈E

ΓX(ht
x,j)

)
= D(s, t). (8)

That is, the traffic D(s, t) entering the network at node

s matches the total incoming flow
−→
f t

s at node s (destined
to node t), excluding the traffic entering s from other
nodes. The transit flow is captured as a sum over all
incoming links from neighboring nodes x, which split

their incoming traffic
−→
f t

x over their links based on the
traffic-allocation function.

1: For link weights w, construct all-pairs shortest
paths (e.g. with Floyd-Warshall algorithm) and
compute ΓX(ht

u,v)

2: Compute
−→
f t

u by solving linear equations (8)

3: f t
u,v ←

−→
f t

u
ΓX (ht

u,v)∑
(u,j)∈E

ΓX (ht
u,j)

4: fu,v ←
∑

t∈V
f t

u,v

5: Return f/*set of fu,v, total flow on each link*/

Algorithm 3: Traffic Distribution(w) with ΓX(·)

Algorithm 3 computes the traffic distribution by solv-
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ing the system of linear equations (8) and computing the
resulting flow on each link (u, v). Though polynomial-
time solvable, the N2 linear equations require O(N4 log N)
time [21] to solve, due to the need for matrix inversion.
This can lead to a long running time for Algorithm 3
and, in turn, for each iteration of Algorithm 1.

3.4 Traffic Distribution with ΓD(·) Function
The key to further reducing the computational com-

plexity of the Traffic Distribution procedure is to ob-
serve that the optimal traffic distribution should not
have a flow loop. Thus, in the last iteration in Al-
gorithm 1, the loopback flow should be negligible. In
fact, preventing loopback flow in intermediate iterations
could lead to faster computation of the optimal traf-
fic distribution. This leads us to consider the traffic-
allocation function ΓD(·) that, while using an exponen-
tial splitting rule similar to ΓX(·), forwards traffic only
on “downward” paths. Therefore, the traffic distribu-
tion for each intermediate iteration can be computed
using a combinatorial algorithm, which is significantly
faster than solving linear equations (8).

1: For link weights w, construct all-pairs shortest
paths and compute ΓD(ht

u,v)
2: for each destination t do
3: for each source s 6= t in the decreasing order of

its shortest distance to t do
4:

−→
f t

s ← D(s, t) +
∑

x:(x,s)∈E
f t

x,s

5: f t
s,v ←

−→
f t

s
ΓD(ht

s,v)∑
(s,j)∈E

ΓD(ht
s,j)

6: end for
7: end for
8: fu,v ←

∑
t∈V

f t
u,v

9: Return f/*set of fu,v*/

Algorithm 4: Traffic Distribution(w) with ΓD(·)

As in Sec. 3.3, we first compute the shortest paths
between all pairs of nodes, as well as the values of
ΓD(ht

u,v), as shown in the first step of Algorithm 4.
Then, we consider each destination t independently, since
the flow to each destination can be computed with-
out regard to the other destinations. The computation
starts at the node with the longest distance to t, since
this node would never carry any traffic to t that origi-
nates at other nodes. Proceeding through the nodes s
in decreasing order of their distance to t, we compute
the total incoming flow at node s (destined to t) as the
sum of the flow originating at s (i.e., D(s, t)) and the
flow arriving from neighboring nodes x (f t

x,s). Then, we
use the total incoming flow at s to compute the flow of
traffic toward t on each of its outgoing links (s, v), using
the traffic-allocation function.

In Algorithm 4, computing the all-pairs shortest paths
with the Floyd-Warshall algorithm has time complexity

O(N3) [22]. For each destination, sorting the remaining
nodes based on distance requires O(N log N) time, and
summarizing the incoming flow and splitting across the
outgoing links requires O(N + E) time. Thus, the total
time complexity to run Algorithm 4 in each iteration of
Algorithm 1 is O(N3 + N(log N + E)) = O(N3). The
precise total running time for Algorithm 1 depends on
the time required to solve (2) and the total number of
iterations required for Algorithms 2 and 4.

4. PERFORMANCE EVALUATION
In this section, we present the numerical results of

various schemes under many practical scenarios. We
consider two network objective functions (Φ({fu,v})):
maximum link utilization, and total link cost (1). The
optimal values of both objectives are computed by solv-
ing linear program (2) with CPLEX 9.1 [23] via AMPL [24],
and serve as the performance benchmarks.

To determine link weights under OSPF, we use the
state-of-the-art local-search method in [2], which per-
forms the best among several typical approaches, in-
cluding UnitOSPF, RandomOSPF, InvCapOSPF, L2OSPF,
etc. (refer to [2] for detail). We adopt TOTEM 1.1 [25],
the open-source software project with IGP weight opti-
mization, which follows the same approach as [2], and
has similar quality of the results. We use the same pa-
rameter setting for local search as in [1, 2] where link
weight is restricted as an integer from 1 to 20, initial
link weights are chosen randomly, and the best result is
collected after 5000 iterations.

To determine link weights under DEFT, we run Algo-
rithm 1 with up to 5000 iterations of computing traffic
distribution and updating link weights. Step-size α is
set as the reciprocal of the maximum necessary link ca-
pacity. In this section, we use the term DEFT to denote
the traffic engineering with Algorithm 1 (including two
sub-Algorithms 2 and 4). However, we do not repro-
duce the performance of DEFT using the optimization
model developed in [10], which can obtain near-optimal
traffic distribution but with a much lower speed than
the algorithms developed in this paper.

4.1 Topologies and Traffic Matrices
We run the simulation on a real backbone network

and several synthetic networks. The properties of the
networks used are summarized in Table 3. First is the
Abilene network (Fig. 1) [26], which has 11 nodes and
28 directional links with 10Gbps capacity. In a transit
network, like Abilene, routers often have multiple egress
points for directing traffic toward an external destina-
tion [27]. In practice, they choose the closest egress
point in terms of IGP link weights as the early-exit or
hot-potato routing. We can convert a demand matrix in
a backbone network into a pure intra-domain traffic ma-
trix by creating a virtual node to represent each unique
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egress point set, and connecting each egress point to
the virtual node with an unidirectional link of unlim-
ited capacity [28]. We use the Netflow data on Nov.
15th, 2005, which has 29 distinct egress sets. The traf-
fic demands are extracted from the sampled Netflow
data with a sampling rate of 1/100. D(s, t) represent
the average traffic demand in an hour from source s to a
virtual destination t (egress point set). In addition, to
simulate networks with different congestion levels, we
create different test cases by uniformly decreasing the
link capacity until the maximal link utilization reaches
100% with optimal traffic engineering.
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Figure 1: Abilene Network

For fair comparison with the state-of-the-art OSPF
local search algorithms, we also test the algorithms on
the same topologies and traffic matrices as those in [2].
The 2-level hierarchical networks were generated using
GT-ITM, which consists of two kinds of links: local ac-
cess links with 200-unit capacity and long distance link
with 1000-unit capacity. In the random topologies, the
probability of having an link between two nodes is a con-
stant parameter and all link capacities are 1000 units.
In these cases, for a same network, traffic demands are
uniformly increased to simulate different congestion lev-
els.

Net. ID Topology Node # Link #
abilene Backbone 11 28
hier50a 2-level 50 148
hier50b 2-level 50 212
rand50 Random 50 228
rand50a Random 50 245
rand100 Random 100 403

Table 3: Networks for Performance Evaluation

4.2 Minimize Maximum Link Utilization
Given that the link capacities uniformly decrease or

traffic demands uniformly increase in different test cases
for the same network, we just need to compute the Max-
imum Link Utilization (MLU) for one test case in each
network because MLU is proportional to the ratio of
total demand over total capacity.

In addition to MLU, we are particularly interested in
the metric “capacity utilization”, η, which is defined as
the following ratio: the percentage of the traffic demand
satisfied when the MLU reaches 100% under a routing
scheme over that in optimal traffic engineering. The im-
provement on η is referred to as the “Internet capacity
increase” [2].

For any test case of a network, if MLU of optimal
traffic engineering, OSPF, and DEFT are ξ, ξO and ξD

respectively, then ηO = ξ
ξO

, and ηD = ξ
ξD

. Then DEFT
can increase Internet capacity over OSPF by ηD − ηO.

Table 4 shows the maximum link utilizations of opti-
mal traffic engineering, DEFT, and Local Search OSPF
for the test case with the lightest loading of each net-
work. Fig. 2 illustrates the capacity utilization of the
three schemes. They show that DEFT is very close
to optimal traffic engineering in minimizing MLU, and
increases Internet capacity over OSPF by 14.7% for
Abilene network and 23.8% for hier50b network respec-
tively.

Net. ID Optimal TE DEFT OSPF
abilene 33.9% 33.9% 39.8%
hier50a 56.4% 56.5% 58.6%
hier50b 44.7% 45.0% 59.2%
rand50 60.6% 60.6% 60.6%
rand50a 60.8% 60.8% 64.7%
rand100 55.0% 55.0% 71.5%

Table 4: Maximum link utilization of opti-
mal traffic engineering, DEFT and Local Search
OSPF for light-loading networks
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Figure 2: Capacity Utilization of Optimal traffic
engineering, DEFT and Local Search OSPF

4.3 Minimize Total Link Cost
As mentioned in [2, 10], maximum link utilization is

not a metric as accurate as total link cost since it cannot
reveal the number of congested links. We also employ
the cost function (1) as in [2]. Comparison is on the op-
timality gap, in terms of the total link cost, compared
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against the value achieved by optimal traffic engineer-
ing.

The results for different topologies with seven differ-
ent traffic matrices are shown in Fig. 4.3, where the
network loading is the ratio of total demand over total
capacity. From the results, we observe that the gap be-
tween OSPF and optimal traffic engineering can be very
significant (up to 821%) for the most congested case of
Abilene network. In contrast, DEFT can achieve almost
the same performance as the optimal traffic engineering
in terms of total link cost. Note that, within those fig-
ures, the maximum optimality gap of DEFT is only up
to 8.8% in Fig. 3(b), which can be further reduced to
1.5% with a larger step-size and more iterations (which
is feasible as the algorithm runs very fast to be shown
in Sec. 4.5).

4.4 Convergence Behavior
Fig. 4 shows the optimality gap in terms of total cost

achieved by DEFT of different step-sizes within the first
5000 iterations for Abilene network with the least link
capacities, which provides convergence behavior typi-
cally observed. The legends show the ratio of the step-
size over the default setting. It demonstrates that the
algorithms developed in Sec. 3 for DEFT protocol con-
verges very fast even with default setting, and reduces
the gap to 5% after 100 iterations and 1% after 3000
iterations. In addition, increasing step-size a little will
speed up the convergency, but too large a step-size (e.g.,
1.9 in the above example) would cause oscillation. More
elaborate or dynamically adjustable step-size-setting is
left as future work.

4.5 Running Time Requirement
The tests for DEFT and local search OSPF were per-

formed under the time-sharing servers of Redhat En-
terprise Linux 4 with Intel Pentium IV processors at
2.8∼3.2 Ghz. Note that the running time for local
search OSPF is sensitive to traffic matrix since a so-
lution with acceptable optimality can be reached very
fast for light traffic matrices. Therefore, we show their
average running times per iteration for qualitative ref-
erence.

Table 5 shows the running time for different networks.
We observe that our algorithm is very fast, which only
requires at most 2 minutes even for the largest network
tested, while the OSPF local search algorithms needs
tens of hours. Roughly speaking, the algorithm devel-
oped in this paper to find link weights for DEFT rout-
ing is 2000 times faster than local search algorithms for
OSPF routing.

5. THEORETICAL FOUNDATIONS
In this section, we provide theoretical support for the

algorithm (in Sec. 3) of realizing optimal traffic engi-
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Figure 3: Comparison of DEFT and Local
Search OSPF in terms of optimality gap on min-
imizing total link cost
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Figure 4: Evolution of optimality gap of DEFT
with different step sizes

Time per Iteration (second)
Net. ID DEFT OSPF
abilene 0.002 6.0∼13.9
hier50a 0.004 6.0∼13.9
hier50b 0.005 6.4∼17.4
rand50 0.005 3.2∼9.0
rand50a 0.005 6.1∼14.1
rand100 0.031 39.5∼105.1

Table 5: Average running time per iteration re-
quired by DEFT and local search OSPF to attain
the performance in Fig. 4.3

neering with link-state protocols. Some of the technical
difficulties to be solved in this section is briefly summa-
rized below.

• We develop the technique of using “necessary ca-
pacities” to define a new optimization problem that
only requires that link load not exceed the neces-
sary capacity. We know this problem has a solu-
tion, and now have an extra degree of freedom to
pick an objective function for the new optimiza-
tion problem. Based on intuition described in Ap-
pendix A, we pick an objective function based on
maximizing network entropy, thus formulating the
new Network Entropy Maximization (NEM) prob-
lem.

• NEM can be decomposed using standard optimiza-
tion techniques, leading to two independent sub-
problems, corresponding directly to the
Traffic Distribution and Link Weight Update pro-
cedures in Sec. 3. We also show that the decom-
position of the Traffic Distribution problem can be
solved independently for each (s, t) pair (called a
“traffic demand”) in the traffic matrix.

• Using the properties of the entropy function, the
solution to the optimization problem for each de-
mand produces a traffic allocation that corresponds
directly to ΓX(·). Using other objective functions
leads to traffic-splitting ratios that are not inde-

pendent of the source of the traffic and, as such,
cannot be expressed in terms of link weights.

For simplicity of exposition, our initial description
assumes that we can enumerate all of the simple (i.e.,
loop-free) paths in the network. This is clearly ineffi-
cient, since there may be an exponential number of such
paths. Fortunately, we can show that path enumeration
is not necessary.

5.1 Network Entropy Maximization
As mentioned in Sec. 2.2, optimal traffic engineer-

ing can be realized with multi-commodity-flow routing.
i.e., setting up one or multiple flow pipes (tunnel) for
every pair of node and reserving an appropriate amount
of bandwidth based on the result of a centralized opti-
mization. In fact, there are numerous ways of multi-
commodity-flow routing (different bandwidth reserva-
tions on the tunnels) to realize optimal traffic engineer-
ing. In the COMMODITY problem (2), if we replace
link capacity cu,v with the necessary capacity c̃u,v, we
are free to impose another objective function to favor
a particular optimal solution to the original problem.
A key challenge here is to design a new objective func-
tion such that the resulting routing of flow can be easily
realized distributively with link-state routing protocols.

To start with, consider the approach of describing all
the possible ways of flow routing and choosing the best
one in terms of the new objective function. Accordingly,
we first need to enumerate all the simple (i.e., loop-free)
paths for every node pair [19]. Note that, the number of
simple paths could be as high as the exponential func-
tion of total number of nodes in the network. Such
simple-path enumeration is only for analysis purpose,
and in the final solution, path enumeration is not re-
quired. Denote Ps,t as the set of simple paths from s
to t, and xi

s,t as the probability (fraction) of forward-

ing a packet of demand D(s, t) to the i-th path (P i
s,t).

Obviously, we have
∑

i xi
s,t = 1.

We now develop the framework of Network Entropy
Maximization. More discussions on the physical mean-
ing of entropy and the motivation of maximizing en-
tropy for routing are presented in Appendix A.

Denote z(xi
s,t) as the entropy function of xi

s,t, as is
common in previous studies of network entropy, which
is defined as −xi

s,t log xi
s,t. Using entropy (weighted by

D(s, t)) as the new objective, we define Network En-
tropy Maximization (NEM) problem (9) with the nec-
essary capacities as follows:
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NEM:

max
∑

s,t

D(s, t)



∑

P i
s,t

z(xi
s,t)


 (9a)

s.t.
∑

s,t,i:(u,v)∈P i
s,t

D(s, t)xi
s,t ≤ c̃u,v, (9b)

∑

i

xi
s,t = 1, (9c)

vars. 1 ≥ xi
s,t ≥ 0. (9d)

The NEM problem must have a feasible solution from
the optimal solution of the COMMODITY problem [20].
Then the NEM problem must have a globally optimal
solution, according to Lemma 1.

Lemma 1. A global optimal solution for the NEM
problem exists and can be found within polynomial time.

Proof : Since the NEM problem always has a feasible
solution and entropy function, z(xi

s,t), is strictly con-
cave, the NEM problem is a convex optimization with a
compact region. Thus NEM problem must have a global
optimal solution and polynomial-time solvable [29]. �

5.2 Solve NEM by Dual Decomposition
The NEM problem (9) can be solved with dual de-

composition. Although link-weight computation is a
centralized optimization procedure, a properly designed
decomposition of NEM is still highly valuable: it ex-
ploits the separability structures of NEM to show how
link weights can be discovered from the optimal solu-
tions of NEM.

Denote dual variables for constraints (9b) as λu,v for
link (u, v) (or λ as a vector). We first write the La-
grangian L(x, λ) associated with the NEM problem

L(x, λ)

=
∑

s,t D(s, t)
(∑

P i
s,t

z(xi
s,t)
)

−
∑

(u,v)∈E λu,v(
∑

s,t,i:(u,v)∈P i
s,t

D(s, t)xi
s,t − c̃u,v).

(10)

The Lagrange dual function is

Q(λ) = max L(x, λ),
1 � x � 0
||xs,t|| = 1.

(11)

where 0 and 1 are the vectors whose elements are all
zeros and ones respectively and xs,t is the vector of xi

s,t.
The dual problem is formulated as

min Q(λ)
s.t. λ � 0.

(12)

To solve the dual problem, we first consider problem
(11). The maximization of the Lagrangian over x can be
solved as a TRAFFIC-DISTRIBUTION problem (13):

TRAFFIC-DISTRIBUTION:

max
∑

(u,v)∈E

λu,v c̃u,v +
∑

s,t

D(s, t)



∑

P i
s,t

z(xi
s,t)


 (13a)

−
∑

(u,v)∈E

λu,v




∑

s,t,i:(u,v)∈P i
s,t

D(s, t)xi
s,t




s.t.
∑

i

xi
s,t = 1, (13b)

vars. 1 ≥ xi
s,t ≥ 0. (13c)

Then, dual problem (11) can be solved by using the
sub-gradient algorithm as

λu,v(q + 1)

=
[
λu,v(q) − α(q)

(
c̃u,v −

∑
s,t,i:(u,v)∈P i

s,t
D(s, t)xi

s,t(q)
)]+

,

= [λu,v(q) − α(q) (c̃u,v − fu,v(q))]+ ,
∀(u, v) ∈ E.

(14)

where for iteration q, α(q) is the step size, xi
s,t(q) are

solutions of the TRAFFIC-DISTRIBUTION problem
(13) for a given λ(q), and fu,v(q) is the total flow on link
(u, v), which removes the dependence on the concrete
values of D(s, t) and xi

s,t.
After the above dual decomposition, the following re-

sult can be proved using standard techniques in gradient
algorithm’s convergence analysis [30]:

Lemma 2. By solving the TRAFFIC-DISTRIBUTION
problem for the NEM problem, dual variables λ(q) con-
verge to the optimal dual solutions λ∗ and the corre-
sponding primal variables x∗ are the globally optimal
primal solutions of (9).

5.3 Solve TRAFFIC-DISTRIBUTION Problem
Note that, the TRAFFIC-DISTRIBUTION problem

is also separable, i.e., the traffic distribution for each
demand across its paths is independent of the others
since they are not coupled together with link capacity
constraint (like (9b)). So we can solve a subproblem
(15) below for each demand D(s, t) separately:

DEMAND-DISTRIBUTION:

max D(s, t)




∑

P i
s,t

z(xi
s,t)



 (15a)

−
∑

(u,v)∈E

λu,v




∑

i:(u,v)∈P i
s,t

D(s, t)xi
s,t





s.t.
∑

i

xi
s,t = 1, (15b)

vars. 1 ≥ xi
s,t ≥ 0. (15c)
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We write the Lagrangian associated with the DEMAND-
DISTRIBUTION subproblem in (16).

Lr(xs,t, µs,t)

= D(s, t)
(∑

P i
s,t

z(xi
s,t)
)
− µs,t(xi

s,t − 1)

−
∑

(u,v)∈E λu,v(
∑

i:(u,v)∈P i
s,t

D(s, t)xi
s,t)

(16)

where µs,t is the Lagrangian variable associated with
constraint (15b).

According to Karush-Kuhn-Tucker (KKT) conditions,
at the optimal solution of the DEMAND-DISTRIBUTION
subproblem, we have

z′(xi∗

s,t)−
∑

(u,v)∈P i
s,t

λu,v −
µ∗

s,t

D(s,t) = 0. (17)

For the entropy function, z(x) = −x log x, z′(x) =
−1− log x, we have

xi∗

s,t = e
−(
∑

(u,v)∈P i
s,t

λu,v+
µ∗

s,t
D(s,t)

+1)
. (18)

where xi∗

s,t, µ
∗
s,t are the values of the xi

s,t, µs,t respec-
tively at the optimal solution. Combined with (15b),
we can get unique values for µ∗

s,t and xi∗

s,t.
Then for two paths i, j from s to t, we have

xi∗

s,t

xj∗

s,t

=
e
−(
∑

(u,v)∈P i
s,t

λu,v)

e
−(
∑

(u,v)∈P
j
s,t

λu,v)
. (19)

If we use λu,v as the weight for link (u, v), i.e. wu,v,
the probability of using path P i

s,t is inversely propor-
tional to the exponential value of its path length. And
it is easy to verify the optimal solution to DEMAND-
DISTRIBUTION is equivalent to the traffic distribution
by employing traffic allocation function ΓX(·) (6) intro-
duced in Sec. 3.1.

It is important to observe at this point that, since (19)
has no factor of µ∗

s,t, an intermediate router can ignore
the source of the packet in forwarding. Thus the router
can treat all the packets as being initiated from itself
and distribute them across outgoing links according to
ΓX(·) (6). Equally importantly, from (14), in iteration
q, the procedure of link price (weight) updating does
not need the concrete values of xi

s,t(q). Instead, it just
needs fu,v(q), the aggregated bandwidth usage, which
can be quickly computed from ΓX(·) for a given demand
traffic by solving linear equations (8) shown in Sec. 3.3.

Now, the key Theorem 1 introduced in Sec 3.2 be-
comes an obvious conclusion from Fact 1, Lemmas 1
and 2, and (8).

Furthermore, recall that the linear equations (8) have
N2 equations and N2 variables, which demand very ef-
ficient algorithm to be solved for large networks. From
the basic observation that there exists no flow loop in
the optimal traffic distribution, we can see that, in the
last iteration in Algorithm 1, the loopback flow must

be negligible. In fact, there could be numerous sets
of dual variables λu,v (or link weights wu,v) to real-
ize the optimal traffic engineering. If the link weights
are large enough, the loopback flow is negligible even
in intermediate iterations due to Proposition 1. There-
fore, we can adopt ΓD(·) function to approximate traf-
fic distribution, which can be computed with a much
faster combinatorial algorithm (Algorithm 4). In prac-
tice (Sec. 4), the approximate solution with ΓD(·) also
can achieve near optimal traffic engineering. Therefore,
to use ΓD(·), we need to specify a large wmin, e.g. 10,
as in our numerical experiments, and use a set of link
weights with large values as the starting point for solv-
ing the NEM problem.

Proposition 1. If the smallest link weight wmin is
large enough, the loop flow is negligible in an optimal
solution of the TRAFFIC-DISTRIBUTION problem

Proof : For link (u, v), if the shortest distance to t of
u, dt

u ≤ dt
v, then ht

u,v = dt
v + wu,v − dt

u ≥ wu,v and
ΓX(ht

u,v) ≥ e−wu,v , and the flow destined to t on (u, v)

is close to 0 if wu,v is large enough, e.g., e−10 ≈ 0.005%.
Since most flow of optimal solution always makes for-
ward progress towards the destination, i.e., from the
router with larger dt

u to the router with smaller dt
u, the

loopback flow can be neglected.�

6. ROBUST TRAFFIC ENGINEERING
In robust traffic engineering, one set of link weights

must perform well for a family of traffic matrices or fail-
ure scenarios. Compared to the case with single traf-
fic matrix, selecting the link weights in robust traffic
engineering is more difficult or even impossible [4] un-
der OSPF. In this section, we first generalize multiple
traffic matrices and failures with a unifying notation of
scenario, and then extend the result for a single, given
traffic matrix in Sec. 5 to robust traffic engineering with
multiple scenarios.

We index the scenarios by θ, and denote Eθ and
Dθ(s, t) as the available edge set and demands for sce-
nario θ respectively. Obviously, θ covers the cases with
multiple traffic matrices (where Dθ(s, t) are different
among scenarios) and link failures (where Eθ ⊂ E).
Note that a node failure can be modeled by a scenario
where all of its incident links have failed.

Define Φθ as
∑

u,v∈Eθ Φ(fθ
u,v, cu,v), the sum of link

costs for scenario θ, where fθ
u,v is the total flow on link

(u, v) for scenario θ. There are many possible types
of convex compositions of Φθ. The simplest type is∑

θ Φθ, e.g., for multiple traffic matrices. Let θ = 0
(with Φ0) denote a normal scenario, θ = e (with Φe)
denote the scenario with a failure on link e. Then we
can get different optimization problems using different
types of convex composition as follows.
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Congestion Control (TCP) Traffic Engineering (IP)
Traffic type Elastic Inelastic
Flow distribution Fixed Variable
Participants End user and router Operator and router
Timescale Seconds Hours
Mathematical framework Network Utility Maximization Network Entropy Maximization
Reverse engineering Tahoe, Reno, Vegas, etc. Even splitting over shortest paths in OSPF
Forward engineering FAST TCP, etc. DEFT
Role of Lagrange multipliers Feedback prices Penalty weights

Efficient algorithm to compute
Important implications New, stabilized TCP protocols link weights achieving optimal TE

Table 6: Comparison of Congestion Control in TCP and IP layer (Our contributions in italics)

• min Φ0: Traffic engineering for non-failure scenario.

• min Φ0 + µ
∑
e∈E

Φe: Weighted traffic engineering

considering single link failure, where µ is a param-
eter weighing the seriousness of a single failure [4].

• min max
θ∈E

Φθ: The worst performance of a single

failure.

Denote Φ({fθ
u,v}) as a convex function coming from

any compositions of the functions Φ(θ) upon multiple
scenarios. Then we have a ROBUST-COMMODITY
problem (20) below to find optimal robust traffic engi-
neering with the minimum aggregated Φ cost:

ROBUST-COMMODITY:

min Φ({fθ
u,v}) (20a)

s.t.
∑

z:(y,z)∈Eθ

ft,θ
y,z −

∑

x:(x,y)∈Eθ

ft,θ
x,y = Dθ(y, t), ∀y 6= t (20b)

fθ
u,v =

∑

t∈V

ft,θ
u,v, (20c)

vars. ft,θ
u,v, fθ

u,v ≥ 0. (20d)

From the optimal solution to the ROBUST-COMMODITY
problem (20), we redefine the necessary capacity, c̃u,v =∑

θ fθ
u,v. Similarly, we can extend the NEM problem (9)

to a ROBUST-NEM problem (21) below:

ROBUST-NEM:

min
∑

θ

∑

s,t

Dθ(s, t)



∑

P
i,θ
s,t

z(xi,θ
s,t)


 (21a)

s.t.
∑

θ

∑

s,t,i:(u,v)∈P
i,θ
s,t

Dθ(s, t)xi,θ
s,t ≤ c̃u,v, (21b)

∑

i

x
i,θ
s,t = 1, (21c)

vars. 1 ≥ x
i,θ
s,t ≥ 0. (21d)

We can extend the approaches in Sec. 5. In particular,
the ROBUST-NEM problem must have a global optimal

solution and the Lagrangian dual variables, λ, can be
used as link weights. Then we have Theorem 2 blow.
The proof is omitted due to space limitation.

Theorem 2. Optimal robust traffic engineering for a
convex composition of various scenarios (including mul-
tiple traffic matrices and failures) can be realized with
link weights, computed within polynomial time, by us-
ing traffic allocation function ΓX(·) in link-state routing
protocols.

7. NEM: A FRAMEWORK FOR LINK-STATE
ROUTING

Before concluding the paper, we would like to high-
light the important differences between Network En-
tropy Maximization (NEM) and Network Utility Max-
imization (NUM), as well as the interesting parallels
between the two.

As explained in Section 5, NEM is developed in this
paper as a unifying mathematical model that both re-
covers existing link-state routing protocols (e.g., OSPF)
as a special case of solution, and enables the discovery
and development of new ones (e.g., DEFT). More dis-
cussions on the intriguing intuitions behind NEM can
be found in Appendix A.

On the other hand, TCP congestion control proto-
cols have been studied extensively since 1998 as solu-
tions to another family of optimization models called
NUM. The notion of network utility was first advocated
in the seminal paper [31] in 1995 for bandwidth alloca-
tion among elastic demands on source rates. The NUM
problem (22) was first introduced for TCP congestion
control (e.g., [15–18]). Consider a communication net-
work with L logical links, each with a fixed capacity of
cl bps, and S sources (i.e., end users), each transmit-
ting at a source rate of xs bps. Each source s emits
one flow, using a fixed set L(s) of links in its path, and
has an increasing (and often concave) function Us(xs)
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called utility function. Each link l is shared by a set S(l)
of sources. NUM, in its basic version, is the following
problem of maximizing the network utility

∑
s Us(xs),

over the source rates x, subject to linear flow constraints∑
s∈S(l) xs ≤ cl for all links l (Note that routing is fixed

in NUM formulation):

maximize
∑

s Us(xs)
subject to

∑
s∈S(l) xs ≤ cl, ∀l,

variables x � 0.
(22)

There is a useful economics interpretation of the dual-
based distributed algorithm for NUM, in which the La-
grange dual variables can be interpreted as shadow prices
for resource allocation, and each end user and the net-
work maximize their net utilities and net revenue, re-
spectively. Many reverse-engineering of existing TCP
variants and forward-engineering of new congestion con-
trol protocols have been developed with the NUM model
as a starting point.

The NEM problem proposed in this paper is not a
special case of NUM, since entropy is not an increas-
ing function, and the design freedom in NEM is routing
rather than rate control. Instead, there is a useful and
interesting parallelism between the framework of NEM
proposed this paper, for link-state routing protocols in
Layer 3, and that of NUM matured over the last decade,
for end-to-end congestion control protocols in Layer 4.
The comparison between the two frameworks is shown
at Table 6, where results achieved in this paper are high-
lighted in italics.

8. CONCLUDING REMARKS
Link-state routing protocols such as OPSF are simple,

while commodity-flow-based routing protocols such as
commodity-flow-based routing is optimal. Many years
of evidence suggest that optimal traffic engineering can-
not be realized by the simple link-state protocols that
let each router independently forward packets based just
on a set of link weights, no matter how smart the link-
weight computation is.

This paper proves that optimal traffic engineering, in
fact, can be achieved by link-state routing, and the right
link weights can be computed efficiently (polynomial-
time in theory and very fast in practice), as long as flow
splitting on non-shortest paths is allowed but properly
penalized. In terms of algorithmic methods, this pa-
per proposes highly efficient algorithms to compute link
weights that lead to optimal traffic engineering through
link-state routing, and develops a new proof logic, sev-
eral proof techniques, and the framework of Network
Entropy Maximization. In terms of practical implica-
tions, the paper shows how to compute link weights that
gives much lower total link cost, or maximum link uti-
lization, than OSPF local search, within a much shorter
amount of computation time.

Appendix
A Entropy Maximization and Most Likely Flow

Configuration
There are several intriguing relationships between the

framework of Network Entropy Maximization for link-
state routing and statistical physics. We speculate some
of the thought-provoking connections in this appendix.

In classical statistical mechanics, many microscopic
behaviors aggregate into macroscopic states, and an iso-
lated thermodynamic system will eventually reach an
equilibrium macroscopic state that is the most likely
one. Interestingly, entropy maximization for traffic en-
gineering can be motivated by an argument of most
likely flow configuration, as shown below.

Consider a network with only just one source-destination
(s, t) and P un-capacitated paths between them. If
there are T packets to be transmitted from s to t, let
Ti ≥ 0 be the number of packets on path i, with

∑
i Ti =

T . Each set of such {Ti}, which can be represented as
a vector, is referred to as a macroscopic state. In con-
trast, each collection of routing decisions for individual
packets represents a microscopic state. There are a to-
tal of PT possible microscopic states. The number of
microscopic states consistent with a given macroscopic
state can be viewed as a measure of likelihood of that
macroscopic state.

The number of microscopic states corresponding to
the macroscopic state {Ti} is K = T !∏

i Ti!
. We want to

search for the macroscopic state with the largest num-
ber of K, i.e., max K, or, equivalently,
max log K = max log T !∏

i Ti!
. For large system asymp-

tote, T and Ti are large numbers, hence using Stir-
ling’s approximation: n! ≈ nn e−n, we have log K ≈
log(e−T T T )−

∑
i log(e−TiT Ti

i ) = −T
∑

i
Ti

T log Ti

T .
This shows that the system equilibrium is the flow

configuration that maximizes the entropy,−
∑

i Txi log xi,
where xi = Ti

T is the fraction of flow on path i.
An interesting discovery made through the develop-

ments of this paper is that putting entropy in the ob-
jective function of problem (9) can lead to a flow con-
figuration that both (i) optimizes the Φ cost function
and (ii) is realizable by link weights. This is an im-
portant step in showing that optimal traffic engineering
is realizable through link-state routing. And there are
even clues suggesting that entropy is the unique ob-
jective function for problem (9) satisfying both (i) and
(ii). Similarly, exponential flow splitting function ΓX(·)
seems to be the unique function to realize optimal traf-
fic engineering. Proving these uniqueness properties is
an interesting next step of research.

B Implementing Non-Shortest Routing
with Shortest Routing

As long as link weights can be arbitrarily set, there
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is no significant difference, in terms of implementation,
between non-shortest routing and shortest routing since
the former can be realized by the latter. Note that, any
flow routing, subject to the necessary capacities, is also
the optimal solution of (23) [7] below since its optimal
objective value is only related with the necessary capac-
ities, i.e.,

∑
(u,v)∈E

c̃u,v.

min
∑

t∈V,(u,v)∈E

f t
u,v (23a)

s.t.
∑

z:(y,z)∈E

f t
y,z −

∑

x:(x,y)∈E

ft
x,y = D(y, t), ∀y 6= t (23b)

fu,v ,
∑

t∈V

f t
u,v ≤ c̃u,v, (23c)

vars. ft
u,v, fu,v ≥ 0. (23d)

The dual problem for (23) is (24) below [7]:

max
∑

t∈V,y∈V:y!=t

D(y, t) dt
y −

∑

(u,v)∈E

c̃u,v ŵu,v (24a)

s.t. dt
u − dt

v ≤ ŵu,v (24b)

dt
t = 0 (24c)

vars. dt
u ≥ 0, ŵu,v ≥ 0. (24d)

From [7, 8], solving (24) will give us a set of link
weights ŵ such that the traffic destined to t will only
be sent along shortest paths to t. Thus to realize non-
shortest path routing (like DEFT) with shortest rout-
ing, we can let routers broadcast two sets of link weights:
ŵ and w. ŵ is used in shortest paths calculation for
the decision on forwarding or not while w is for traffic
allocation function (like ΓD(·)) to determine how much
to forward.
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[16] H. Yäiche, R. R. Mazumdar, and C. Rosenberg, “A game
theoretic framework for bandwidth allocation and pricing in
broadband networks,” IEEE/ACM Transactions on
Networking, vol. 8, no. 5, pp. 667–678, 2000.

[17] S. H. Low, “A duality model of TCP and queue
management algorithms,” IEEE/ACM Transactions on
Networking, vol. 11, no. 4, pp. 525–536, 2003.

[18] R. Srikant, The Mathematics of Internet Congestion
Control (Systems and Control: Foundations and
Applications). Springer Verlag, 2004.

[19] D. Bertsekas and R. Gallager, Data networks. Upper
Saddle River, NJ, USA: Prentice-Hall, Inc., 1987.

[20] D. Mitra and K. G. Ramakrishnan, “A case study of
multiservice multipriority traffic engineering design for data
networks,” in GLOBECOM’99, Rio de Janeiro, Brazil,
Dec. 1999, pp. 1077–1083.

[21] A. Tveit, “On the complexity of matrix inversion,”
Mathematical Note, IDI, NTNU, Trondheim, Norway, Nov.
2003.

[22] T. Corman, C. Leiserson, and R. Rivest, Introduction to
Algorithms. The MIT Press, Cambridge, 1990.

[23] ILOG CPLEX, http://www.ilog.com/products/cplex/.
[24] R. Fourer, D. M. Gay, and B. W. Kernighan, AMPL: A

Modeling Language for Mathematical Programming.
Danvers, MA, USA: Boyd & Fraser Publishing Co., 1993.

[25] TOTEM, http://totem.info.ucl.ac.be.
[26] Abilene Backbone Network, http://abilene.internet2.edu/.
[27] R. Teixeira, T. G. Griffin, M. G. C. Resende, and

J. Rexford, “TIE breaking: Tunable interdomain egress
selection,” IEEE/ACM Transactions on Networking, Oct.
2007.

[28] M. G. Resende and P. M. Pardalos, Eds., Handbook of
Optimization in Telecommunications. New York: Spinger
Science + Business Media, February 2006.

[29] S. Boyd and L. Vandenberghe, Convex Optimization.
Cambridge University Press, 2004.

[30] D. P. Bertsekas, Nonlinear Programming, 2nd ed. Athena
Scientific, 1999. [Online]. Available:
http://www.athenasc.com/nonlinbook.html

[31] S. Shenker, “Fundamental design issues for the future
internet,” IEEE Journal on Selected Areas in
Communications (JSAC), vol. 13, no. 7, pp. 1176–1188,
September Sep. 1995.

14


