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ABSTRACT
Statistical techniques for detecting anomalous traffic can be
an invaluable tool for the operators of large IP networks.
However, the effectiveness of anomaly-detection schemes is
extremely sensitive to the data-reduction methods used to
manage the large volume of data and identify the statisti-
cal outliers. In this paper, we analyze the impact of sam-
pling, temporal aggregation, and IP address anonymization
on anomaly detection, focusing on one week of data for the
Abilene and Geant backbones. In contrast to previous work,
our evaluation methodology allows us to study two impor-
tant metrics—the false-positive rate and the anomaly type—
that are crucial for a meaningful evaluation. We find that, al-
though Abilene and Geant differ substantially in the number
and type of anomalies, they show similar trends for the ef-
fects of data-reduction techniques. All of the data-reduction
methods reduce the number and diversity of anomalies the
statistical techniques can detect. In addition, sampling intro-
duces extra false positives by making the data more “spiky,”
temporal aggregation can sometimes merge multiple anoma-
lies into a single time bin, and IP address anonymization
can sometime help in detecting IP scans. Our results are an
important step toward helping network operators make in-
formed trade-offs between the anomalies they wish to detect
and the system overheads they must endure.

1. INTRODUCTION
Traffic anomalies, such as flash crowds, denial-of-service

attacks, port scans, and the spreading of worms, can
have detrimental effects on Internet services. Detect-
ing and diagnosing these anomalies is critical to net-
work operators, who must take corrective actions to
alleviate congestion, block attacks, and warn affected
users. Anomaly detection requires digging into mas-
sive amounts of measurement data, which is a task best
left to automated analysis. A common approach to
this problem has been to discretize network traffic into
timeseries, which are analyzed by statistical-analysis
techniques, and to equate detected outliers with traffic
anomalies. Before such analysis can be performed, how-
ever, the operators apply data-reduction techniques—
such as sampling packets or aggregating in time or space—

because collecting, storing, and analyzing packet-level
traces at line rate from many vantage points in the net-
work is impractical. This paper investigates the impact
that these different data-reduction techniques have on
traffic anomaly detection.

The anomaly-detection pipeline depends on a number
of tunable parameters, such as the time scale at which
IP flows are binned, the packet sampling rate, the num-
ber of bits anonymized of IP addresses, the network-
wide representation (e.g., traffic matrix), the statistical-
analysis technique used to find outliers, and how this
technique is tuned (e.g., detection threshold). In this
paper, we investigate the influence of temporal aggrega-
tion, packet sampling, and IP address anonymization on
the effectiveness of Kalman filter-based traffic anomaly-
detection for a range of detection thresholds. Our study
yielded over 100 thousand combinations of parameter
settings, 200 million timeseries data points, and 15 mil-
lion statistical anomalies.

In order to gain a deeper understanding of the influ-
ence of the tunable parameters, we need to analyze more
meaningful metrics than the number of statistical out-
liers. Ultimately we wish to know how each parameter
impacts our ability to detect various kinds of underly-
ing network events, e.g. flash crowds, traffic shifts, and
DoS attacks. This is the distinction between a statisti-

cal anomaly and a traffic anomaly, and it is the latter
that gives us access to important metrics such as the
false-positive rate and the anomaly type—i.e., does a
given statistical anomaly correspond to an anomalous
underlying network event, and what type of event is it.

Unfortunately, the root-cause analysis necessary to
identify the specific traffic anomaly associated with a
given statistical anomaly is simultaneously too time-
consuming to be done manually and presently beyond
the capability of automated techniques. We therefore
need to reach a compromise between statistical and traf-
fic anomalies that gives us access to meaningful notions
of both ground truth and anomaly type, but can be de-
termined efficiently. Our approach therefore leverages
humans’ ability to readily identify the start and end of
a sequence of detected statistical anomalies, which falls



into an anomalous region that is distinct from mere
noise. In addition to providing a false-positive rate,
the anomalous region can be characterized in terms of
its statistical properties—e.g., whether it corresponds
to an increase or decrease in packet counts. We have
found that this procedure provides rich insights into the
influence of the parameters while also being efficient.

The software that implements our methodology con-
sists of two main components. The first component au-
tomatically parses hundreds of gigabytes of flow traces,
sweeps our parameter space, constructs entropy time-
series, applies a Kalman-filter based anomaly detec-
tor, and outputs databases with records for the en-
tropy timeseries and statistical anomalies. Since effi-
ciency is clearly imperative, this component was imple-
mented as a parallelized program and run on a com-
puter cluster. The second component—WebClass—is a
web-based tool that parses these databases and allows
human operators to interactively label a sequence of sta-
tistical anomalies as belonging to an anomalous region
or being a false positive. After a user has identified an
anomalous region, WebClass automatically determines
its type, before everything is stored back in the database
along with the id of the operator who classified the re-
gion. WebClass is designed for concurrent usage, which
has allowed us to classify nearly 400 thousand statisti-
cal anomalies. We intend to release our entire system
and resulting traces to the research community.

Applying our software to one week of network-wide IP
flow traces from both the Abilene and Geant backbone
networks, we show that the tunable parameters have a
significant impact on the effectiveness of traffic anomaly
detection. We find that Abilene has a much lower false-
positive rate and a large fraction of anomalous regions
correspond to very few anomaly types, which we argue
is consistent with their respective traffic mixes. More-
over, we find that temporal aggregation, sampling, and
IP address anonymization have similar impacts on both
networks. In particular, temporal aggregation and sam-
pling not only reduce the total number of statistical
anomalies, but also the variety in anomalies that can
be detected because the most prevalent anomalies are
often the least affected by aggregation. Aggressive sam-
pling also significantly increases the false-positive rate.

The remainder of this paper is organized as follows:
section 2 discusses related work; section 3 describes
our measurement data and our software for automat-
ically creating a traffic anomaly database; section 4 de-
scribes how our Web-based tool is used to identify false-
positives and the anomaly type; section 5 describes and
compares the Geant and Abilene networks using these
metrics while sweeping the Kalman detection threshold;
sections 6, 7, and 8 analyze the impact of varying the
temporal aggregation, IP anonymization, and sampling,
respectively; finally, section 9 contains our conclusions.

2. RELATED WORK
Traffic anomaly detection has received a great deal

of attention in the research literature. While there
has been some work that leverages clever data struc-
tures to find heavy-hitters [1, 2], most papers have uti-
lized statistical-analysis techniques to detect outliers
in traffic timeseries. Numerous techniques have been
evaluated, including wavelets [3], moving average vari-
ants, Fourier transforms [4, 5], Kalman filters [6], and
PCA [7]. Early work in this area often analyzed data
from a single link [3], whereas more recent papers have
shown very promising results by analyzing network-wide
measurements [8].

With such a large body of work, it becomes increas-
ingly important to be able to compare and contrast pre-
sented approaches. While there have been a few papers
that compared a subset of the statistical-analysis tech-
niques [4, 5], researchers have only very recently begun
investigating how data-reduction techniques impact the
ability to detect traffic anomalies [9]. Much in the same
way that early papers on traffic anomaly detectors had
a limited scope, this new line of work has analyzed the
impact of only one form of data-reduction [10], on only
one type of traffic anomaly [11], or analyzed data from
a small number of links [12]. This paper investigates
the impact of varying three important data-reduction
techniques and the detection threshold on the ability of
a network-wide traffic anomaly detector to effectively
detect a large variety of anomalies.

3. CREATING AN ANOMALY DATABASE
This section describes our methodology and software

for building a traffic anomaly database. We detail the
two backbone networks whose IP flow traces were thinned
according to our parameter space (3.1), aggregated into
traffic matrices (3.2), transformed into entropy time-
series (3.3), and analyzed by a Kalman filter in order to
identify statistical anomalies (3.4). We will end with a
description of our implementation of this methodology
(3.5).

3.1 Traffic Measurement Data
We use a full week of IP flow traces collected between

November 21st and 27th, 2005, for both the Abilene [13]
and Geant [14] backbone networks. Both networks col-
lect their flow statistics using Juniper’s J-Flow tool [15].
Abilene is an 11-node research backbone that connects
Internet2 universities and research labs across the con-
tinental United States. Abilene does not provide transit
services to the Internet at large. Instead, its customers
must maintain separate connections to the commodity
Internet [16]. Geant is a 23-node network that connects
national research and education networks representing
30 European countries. Unlike Abilene, Geant does pro-
vide Internet connectivity to its customers.
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Network Nodes Sampling Time Agg Anon
Abilene 11 1% 5 min 11 bits
Geant 23 0.1% 15 min 0 bits

Table 1: Networks studied

As in many backbone networks, the operators of Abi-
lene and Geant apply data-reduction techniques in col-
lecting and storing their measurement data. IP flow
traces are discretized into timeseries of measurement
values (e.g. packet counts), which allow for efficient pro-
cessing by statistical-analysis techniques. Abilene has
chosen to aggregate its IP flows into 5-minute time bins,
compared to 15-minute windows for Geant. Packet sam-
pling is another very common data-reduction technique.
Abilene randomly samples 1 out of every 100 packets for
inclusion in the flow statistics whereas Geant samples
packets at 1 out of 1000. Finally, Abilene anonymizes
the eleven least-significant bits of IP addresses in flow
records in order to protect user privacy, which also re-
duces the volume of measurement data. Geant performs
no such anonymization of IP header fields. These de-
fault data-reduction levels are summarized in table 1.

We evaluate the impact of these data-reduction tech-
niques by taking them further. Further temporal ag-
gregation occurs by combining adjacent time bins and
further anonymization is equally straightforward. Sub-
sampling is only slightly more complicated in that, for
every IP flow record that was said to have contained
n packets, we simulate sampling each of the n packets
at the given sampling rate. If a flow has 0 packets af-
ter subsampling then it is removed from the flow trace.
The exact parameter values that we chose to explore
will be detailed in the result sections, but the end re-
sult of these steps is a further thinned IP flow trace. We
clearly cannot analyze finer aggregation levels or lower
sampling rates than the operational networks originally
used in collecting the data.

3.2 Computing the Traffic Matrix
To effectively detect traffic anomalies, the network

operators must aggregate IP flows into a representa-
tion that is computationally manageable and reveals
underlying spatial and temporal trends. We represent
the data as a traffic matrix by aggregating the mea-
surement data based on where the traffic entered and
left the network (aka OD-flows). Identifying the ingress
router i for a given IP flow is straightforward because
both Abilene and Geant have separate traffic logs for
each ingress router in their respective networks. Iden-
tifying the egress router e can be more cumbersome,
however; performing this identification requires rout-
ing information from the relevant network, the ingress
router, the destination address, and the destination IP
address mask. The latter two pieces of information are

embedded in the IP flow records and we’ve already iden-
tified the ingress router, which leaves only parsing of the
routing data.

The purpose of parsing the routing data is to acquire
the mapping between every 〈i, p〉 combination (where p

is the masked destination IP address) and the associ-
ated egress point e. For Abilene it is sufficient to parse
only the BGP records exported by its Zebra BGP mon-
itors in order to acquire this mapping. Geant, on the
other hand, has one Zebra BGP monitor embedded in
an iBGP mesh that logs BGP records that identify a set
of possible egress points E for every prefix. One must
therefore also parse Geant’s IS-IS logs in order to find
the router e ∈ E that has the minimum-cost path from
i, which will give us the mapping, and traffic matrix we
seek. Therefore, the contents of each 〈i, e〉 cell in the
traffic matrix is, at this stage, all the IP flow records
for the traffic that entered the network at router i and
exited at router e.

3.3 Computing Entropy Time Series
Previous work [7] has demonstrated that traffic anomaly

detectors that analyze entropy timeseries of the four
main IP header features (source IP address, destina-
tion IP address, source port, and destination port) can
be quite effective. Entropy is used because it provides a
computationally efficient way to measure the dispersion
or concentration in a distribution, and a wide variety of
anomalies will manifest themselves as a shift in the dis-
tribution of one or more of these IP features. That is,
for every 〈i, e〉 cell in the traffic matrix, we compute the
entropy values of the four IP header features for all the
traffic that passed between ingress router i and egress
router e. The entropy of a random variable X is defined
as follows:

H(X) = −

n∑

i=1

Pr(X = xi) log2 Pr(X = xi) (1)

where Pr(X = xi) is the probability of event xi ∈ X oc-
curring. In our context, the events are observations of a
given IP feature. For example, the probability of seeing
port 80 is defined to be the number of sampled packets
using port 80 divided by the total number of packets
in the given time interval. A sudden flash crowd to a
Web-server will therefore cause a specific destination IP
address (the Web-server) and destination port (port 80)
to become much more prevalent than in previous time
steps, which will cause a decrease in the destination IP
address and destination port entropy timeseries, respec-
tively. A more complete explanation of the benefits of
using entropy for traffic anomaly detection can be found
in [7].

3.4 Applying Kalman Anomaly Detector
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After having constructed timeseries of entropy values,
one must use a statistical-analysis technique in order to
detect outliers—statistical anomalies. We have chosen
to use a traffic anomaly detector based on Kalman fil-
ters [6] because its performance has compared favorably
to other prominent statistical-analysis techniques [8].
The relevant Matlab code was written by Soule et al. [6].
At the high level, the algorithm takes a traffic matrix F

(corresponding to entropy values for only one of the IP
header fields) and detection threshold Th as input, and
returns a boolean for every point in the traffic matrix,
which indicates whether the given IP header feature of
the given OD flow at the given point in time was clas-
sified as a statistical outlier.

The anomaly detection method based on a Kalman
filter has three primary steps. The first stage is a cali-
bration step in which an Expectation-Maximization al-
gorithm is used to find the best linear model to fit the
data (e.g., a traffic matrix) as described in [17]. Second,
this model is utilized by the Kalman filter as detailed
below. The final step is to detect statistical outliers by
comparing the difference between the filtered and the
observed values, which are a part of the Kalman filter
procedure.

The Kalman filter is itself composed of two steps ap-
plied sequentially as soon a new measurement is avail-
able for analysis. The first step predicts the entropy
value at time t + 1 based on previously observed values
up to time t. The second step estimates the value at
time t + 1 based on the measured value at time t + 1
and the predicted value for time t + 1.

Prediction Step The prediction of the next entropy
value for all the OD-flows is accomplished by multiply-
ing the current estimated values F̂ (t) by the time up-
date matrix C obtained in the calibration phase. In
this matrix the diagonal elements capture the time evo-
lution of each OD-Flows whereas the non-diagonal el-
ements capture the correlation between the OD-Flows.
The predicted values F̃ (t) are derived from the time
update equations :

F̃ (t + 1) = CF̂ (t) (2)

Estimation Step The estimated value for the next
bin is defined as the predicted value adjusted by a cor-
rection factor:

F̂ (t + 1) = F̃ (t + 1) + K(F (t + 1) − F̃ (t + 1)) (3)

where K is the Kalman gain matrix, which accounts for
the confidence in the prediction model. The matrix K

and the variances of the time series are updated between
each iteration of the filter. The time series of the dif-
ference between the predicted and the estimated value
η(t) = F̃ (t) − F̂ (t) represents the modeling error, and
is often called the innovation in the Kalman literature.

Detection step If we assume that the model is cor-
rect, a large modeling error indicates an unexpected
change in the associated IP header feature time series.
Detecting anomalies consists of isolating these unex-
pected changes. In this paper we use the instantaneous
method presented in [6]: an anomaly is detected on the
ith OD-flow at time t whenever |ηi(t)| > Th ∗ σi where
σi is the estimate of the variance of the ith OD-Flow,
ηi is the innovation of the ith OD-Flow and Th is the
detection threshold.

3.5 Anomaly Database System
The original one week of IP flow traces contains roughly

100 gigabytes of data across both networks, and these
traces are altered thousands of different ways accord-
ing to our parameter space. In order to efficiently pro-
cess such large amounts of data, the software that im-
plements this part of our methodology was designed
as a parallelized program written largely in C using
LAM/MPI [18, 19] and run on a computer cluster. The
set of all entropy timeseries is stored in a database along
with the detected statistical outliers. Efficient access is
important because the database is linked in with our
Web-based front-end for classifying anomalies, which
will be described in section 4.4. The MySQL database
totals slightly over 30GB for both data and indexes.

4. ANOMALY CLASSIFICATION
In this section, we draw an important distinction

between a statistical outlier (output by the detection
technique) and a traffic anomaly (of interest to net-
work operators). Then, we discuss our human-assisted
methodology for classifying anomalies in terms of their
start/end times. Our definition of anomalous regions
also allows us to automatically calculate its type, which
we define here. Finally, we briefly summarize our Web-
based tool for classifying anomalies and generating the
labeled traces we analyze in the rest of the paper.

4.1 Statistical vs. Traffic Anomalies
Statistical anomalies are the outliers detected by a

given statistical-analysis technique. Statistical anoma-
lies are therefore the output of the vast majority of
traffic anomaly detectors, since they often utilize such
techniques. Statistical anomalies are not what network
operators are interested in, however; rather, they want
to detect and diagnose the network events that affect
their networks, such as DDoS attacks, worms, or port
scans, which we define as the traffic anomalies. In an
ideal world, therefore, we would evaluate anomaly de-
tectors according to their ability to detect a wide variety
of traffic anomalies.

Unfortunately, the root-cause analysis necessary to
determine the traffic anomaly (potentially) associated
with a given statistical anomaly is both too time con-
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suming to be done manually and presently beyond auto-
mated techniques. It is simply not feasible to manually
label entropy timeseries with millions of data-points,
built from IP flow traces with even more flows, and al-
tered thousands of different ways according to our pa-
rameter space. Yet, we still want a meaningful measure
of ground truth that allows us to independently evalu-
ate our traffic anomaly detector using metrics such as
false-positive rate and anomaly type as a function of our
parameter space. We therefore require a compromise
definition of anomaly that that lies in between statisti-
cal anomalies and traffic anomalies.

4.2 Manual Labeling
We therefore define an anomalous region to be a se-

quence of statistical anomalies, which do not appear to
be mere noise. We have found that this definition gives
us deep insights into the impact of our parameter space
on traffic anomaly detection, while also being efficient
for a human operator to identify. Efficiency is impor-
tant because the statistical anomalies in our one week
of measurement data must be inspected thousands of
times according to our parameter space, since every pa-
rameter alters the data itself.

While statistical-analysis techniques are admittedly
much better at finding statistical outliers than humans,
humans here provide a method-independent metric by
which to evaluate a traffic anomaly detector. Moreover,
statistical techniques do have flaws and shortcomings—
e.g. potentially small threshold or a polluted definition
of normal traffic patterns—which lead them to make
mistakes that a human operator can detect. Our ar-
chitecture is also built to allow multiple operators to
classify the same statistical anomaly, which will allow
us to achieve even greater confidence in our labeling.

As anomalous regions—and hence all the statistical
anomalies within them—are defined to be true posi-
tives, the false-positive rate follows immediately. We
will always specify it as a percent of all statistical anoma-
lies. We do not provide any false-negative rate, however,
because providing such labeled traces does not scale
whatsoever. That is, the original one week of IP flow
traces for two networks leads to timeseries with over 200
million data-points due to our parameter space, which
clearly cannot be individually inspected by hand in or-
der to identify all anomalous regions. It would, in fact,
take one person over 6 years to manually label all our
traces if he averaged one data-point inspected per sec-
ond.

4.3 Anomaly Type
In addition to providing a meaningful false-positive

rate, the identification of the anomalous region allows
us to characterize the anomaly in terms of its statis-
tical properties, e.g., how it alters the entropy time-

Σ meaning
+ [+5%, ∞〉
− 〈∞, −5%]
0 〈−5%, +5%〉

Table 2: Meaning of alphabet for anomaly types

τ Potential Description
------ temporary outage
----+- DoS
----++ alpha flow
---++- port scan
-+--+- host scan
+-+-++ flash crowd
-+-+++ point-to-multipoint

Table 3: Prevalent Anomaly Types

series. For example, the fact that an anomaly is a de-
crease in source and destination IP address entropy is
strong circumstantial evidence for the hypothesis that
the anomaly occurs between a small set of IP addresses.
We have therefore constructed a definition of anomaly
type that describes how the timeseries is changed by the
anomaly, and can be determined automatically. That
is, after the human labeler has identified the anomalous
region, our tool will automatically determine and store
its anomaly type.

While only entropy timeseries are analyzed by our
Kalman filter for detection, we include the change in
two additional features in our anomaly type definition,
namely the number of packets and bytes-per-packet (b/p)
for a given OD-flow. These two features allow us, for
example, to separate a likely alpha flow (an IP flow
containing a large number of bytes and packets) from
a possible DoS attack, both of which would correspond
to decreases in source and destination IP address en-
tropy timeseries, but have opposite effects on the (b/p)
timeseries.

We define the start of the anomalous region as the last
point before the statistical anomalies, whereas the end of
the region is the first point in time after the statistical
anomalies. The percent change between the mean of
the endpoints and mean of values in-between determines
whether a given feature si increased (+), decreased (−),
or remained unchanged (0), as described in table 2. The
type τ of an anomalous region (henceforth referred to
as ‘anomaly type’ for convenience) is therefore defined
as a sequence of six letters which describe how the six
features mentioned above change during the anomalous
period:

τ ∈ {‘s1s2s3s4s5s6’|si ∈ Σ} ∪ {‘xxxxxx’} (4)

s1 through s6 refer to entropy timeseries for source IP
addresses, destination IP addresses, source port num-
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Figure 1: WebClass: Web-based Anomaly Classification Tool

bers, and destination port numbers, in addition to the
packet and (b/p) timeseries. Table 3 gives descriptions
for some of the more prevalent anomaly types. For ex-
ample, the alpha flow we discussed earlier could have
an anomaly type τ = ----++ because it also coincides
with a concentration in the distribution of port num-
bers used and an increase in the total number of pack-
ets. The anomaly type ‘xxxxxx’ is to accommodate
anomalies that do not have a discernible end, which
prevents us from performing the endpoint versus mid-
dle comparison. These anomalies are most often sud-
den, persistent shifts in traffic. Furthermore, figures in
the result sections that use our definition of anomaly
type will also contain the distinction “other”, which is
not a separate anomaly type but rather the sum (in
terms of frequency) of all anomaly types that are not
individually distinguished in the graphs. Previous work
has done clustering based on entropy values of the four
IP header fields [7], but using the change in these fields
to characterize an anomaly’s type is a contribution of
this paper.

4.4 Anomaly Classification Tool
WebClass is our web-based classifier that allows op-

erators to label the start and end of anomalous regions
and distinguish these from false positives; its main in-
terface can be seen in figure 1. For every statistical
anomaly, WebClass shows the associated OD-flow time-
series, which is parsed from the MySQL database de-
scribed in section 3.4. Every anomaly is denoted by
a red error line and upon mouse-over on any anomaly,

the techniques and specific configurations that detected
it are shown, as illustrated in the figure. The tool is
built to allow multiple operators to label anomalies con-
currently, which has allowed us to classify nearly 400
thousand statistical anomalies across over 20 thousand
anomalous regions. We plan to make our tool available
to the community, as we think it can play a valuable role
in enabling reproducible research on anomaly detection
using a larger collection of traces 1.

5. DEFAULT NETWORK PROPERTIES
The following section compares Abilene and Geant

under (1) their default data-reduction configurations,
and (2) the minimal amount of additional reduction
necessary to put them in the same configuration. The
former allows us to compare them in an unaltered set-
ting with the most detailed data whereas the latter
compares them on the same footing. In addition to
highlighting the similarities and differences, we use the
metrics we have previously defined to investigate the
impact of altering the detection threshold. The differ-
ences observed between the two networks are explained
by inherent properties of the two networks.

5.1 Anomaly Frequency
Figure 2(a) plots the number of statistical anomalies

detected by our Kalman filter as a function of the detec-
tion threshold for both Abilene and Geant. There are

1A manual has already been written but cannot presently be
shared due to the double-blind submission policy. A URL
to access WebClass also already exists.
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Figure 2: Impact of altering detection threshold

two curves for each network in order to allow us to eval-
uate the networks under (1) their default level of data-
reduction, and also (2) under the same level of data-
reduction (10−3 packet sampling, 11 bits IP anonymiza-
tion, and 15-minute time bins). The curves using the
default settings have the name of the respective net-
works whereas the “network altered” curves share the
same data-reduction settings. Throughout our paper,
all figures of this type are normalized to mean number of
detections per day. Figure 2(b) plots the false-positive
rate under the same conditions as figure 2(a). The for-
mer metric is important because it signifies the number
of alarms that a network operator must deal with, and
we have already established the importance of the false-
positive rate. We chose not to explore threshold values
lower than 6σ because we believe a mean rate of 100
anomalies per day is more than what a network opera-

tor will wish to deal with. Many small anomalies will
also be included at such low detection thresholds; 6σ

yields more than one statistical anomaly per time in-
terval for Geant ( 60

15
× 24 × 7 = 672 intervals total). It

is possible to have more than one anomaly per time in-
terval because every time interval contains multiple OD
flows.

Figure 2(a) shows that while both networks have a
similar number of statistical anomalies for low threshold
levels under their default data-reduction levels (within
6% of one another for 6σ), there are much greater dif-
ferences at higher levels (nearly 60% at 11σ). In other
words, the drop off in number of anomalies as the detec-
tion threshold is increased is more pronounced for Geant
(90%) than it is for Abilene (76%). While further IP
anonymization barely affects that number of detected
statistical anomalies for Geant, the added temporal ag-
gregation and sampling greatly reduces the number of
detected anomalies for Abilene at the lower detection
thresholds. The impact of each of these data-reduction
techniques will be studied, and explained, in further de-
tail in later result sections.

Figure 2(b) shows a steady decline in false-positive
rate for the Geant network between thresholds 6σ (12%)
and 11σ (3%) for the default data-reduction levels, which
is quite intuitive. The false-positive rate for the Abi-
lene network, however, starts at a remarkably low 2%
for detection threshold 6σ and reaches 0% already at
detection threshold 9σ. The false-positive rates for the
two networks are more similar when comparing them
under the same data-reduction techniques, but Geant
still has more than twice has many false positives, per-
centage wise. Note that while the overall trend of false-
positive rate a function of the threshold is decreasing,
this need not be a monotonic trend, as evidenced be-
tween 7σ and 9σ for Geant in figure 2(b). The reason
that this phenomenon is not inconsistent is that it is
possible to remove “false” anomalies at a faster rate
than “true” anomalies, as the detection threshold is in-
creased.

When taken together, figures 2(a) and 2(b) support
the hypothesis that Abilene’s traffic timeseries is more
volatile than Geant’s. That is, the definition of normal
for the Abilene timeseries is already so volatile that any
statistical anomaly that stands out even 6σ compared to
this mean is quite significant. Geant, on the other hand,
is more stable, which leads to a reasonable false-positive
rate. While the two networks have more similar false-
positive rates under the same data-reduction parame-
ters, there is still a 2X difference and Abilene then has
much fewer statistical anomalies. Our hypothesis that
Abilene is more volatile than Geant is consistent with
the stated purpose of the two networks. That is, not
only is Abilene used for research traffic, but it does not
provide access to the commodity Internet. For exam-
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ple, large individual bulk transfers between individuals
correspond to a large percentage of anomalies in Abi-
lene whereas such events are more frequently drowned
out in Geant. We will further support this claim in the
next subsection.

5.2 Anomaly Type Distribution
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Figure 3: Anomaly type distribution as a func-

tion of detection threshold for default data-

reduction settings

The area plot in figure 3(a) shows the distribution of
anomaly types as a function of the detection threshold
for Abilene, and figure 3(b) is the same graph for Geant.
These figures use the default data-reduction settings,
for maximum information. All included anomalies have
been labeled as true positives. Any anomaly type that
corresponds to more than 5% of the total number of
anomalies for any detection threshold is represented by

a separate region, and the sum of all remaining anomaly
types is included in the catchall group “other”. All re-
gions are listed in the legend in the same order as they
appear in the figure. The graphs clearly illustrate that
there is a great deal of homogeneity in Abilene anoma-
lies, in that a very small number of anomaly types
account for majority of detected statistical anomalies.
Furthermore, this trend becomes more pronounced as
the detection threshold is increased, to the point that
only three anomaly types account for nearly 90% of sta-
tistical anomalies at 11σ, compared to more than twice
the number of types for Geant at the equivalent thresh-
old.

The networks do agree in the types of anomalies that
are least sensitive to increases in the detection thresh-
old, namely likely temporary outages (τ = ------) and
potential DoS attacks (τ = ----+-), with the latter one
more generally being a network event that increases the
number of packets between two hosts using specific port
numbers but very few bytes per packet. The graphs
clearly show that high detection thresholds lead to a
great loss of richness in the types of anomalies that are
detected. In other words, determining how high the de-
tection threshold should be set is not only a tradeoff
between number of detected statistical anomalies and
false-positive rate, but also a tradeoff between variety
in anomalies and false-positive rate. For this reason, we
will use detection threshold 6σ for all remaining plots
in the paper unless we specify otherwise.

Finally, as was noted in the previous subsection, net-
work events that involve only two hosts correspond to a
much higher percentage of detected statistical anoma-
lies in Abilene than Geant. Alpha flows (τ = ----++),
for example, are detected about twice as frequently in
the Abilene network compared to Geant. And potential
port scans (τ = ---++-) are a prominent anomaly type
in Abilene with over 10% of detected statistical anoma-
lies at the higher detection thresholds whereas they are
much less conspicuous in Geant. Again, this need not
mean that there are more underlying port scans in Abi-
lene than Geant, but rather that they manage to stand
out against the less diverse background traffic in Abi-
lene.

6. TEMPORAL AGGREGATION
The length of time bin chosen when discretizing IP

flow traces determines the level of temporal aggregation,
and has a strong impact on the ability to detect certain
kinds of anomalies. We tested time bin lengths of 15,
30, 45, and 60 minutes for both networks, in addition to
5 minutes for Abilene. Lower values than these are not
possible due to the networks’ default configurations.

Figure 4(a) plots the number of statistical anoma-
lies as a function of temporal aggregation, whereas fig-
ure 4(b) plots the impact of temporal aggregation on
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Figure 4: Impact of temporal aggregation

the false-positive rate. Figure 4(a) shows that the num-
ber of statistical anomalies decreases monotonically for
both networks as temporal aggregation is increased. For
Abilene, the percentage decrease is roughly proportional
to the decrease in number of points in the timeseries
whereas for Geant the rate of decrease is slightly higher.

As explained in section 5.1, Abilene has a very low
false-positive rate to begin with, and hence additional
temporal aggregation does not significantly impact its
false-positive rate, as seen in figure 4(b). Geant’s false-
positive rate monotonically decreases as a function of
the temporal aggregation. An improved false-positive
rate is a natural consequence here since only the largest
anomalies will remain significant enough to be detected
despite the longer time window (and hence other traf-
fic) within which they are placed. This improvement is
insignificant, however, when compared with the loss of

in number of statistical anomalies seen in figure 4(a).
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Figure 5: Reasons for anomalies disappearing

and appearing

There are several possible reasons for why the num-
ber of statistical anomalies decreases in figure 4(a) as
a function of the temporal aggregation. Two adjacent
statistical anomalies may be merged into one detection
at a higher level of temporal aggregation. The other
primary alternative is that a smaller traffic anomaly be-
comes statistically insignificant when placed in a larger
time bin, and hence disappears, which means that the
underlying network event goes unnoticed. Finally, our
methodology introduces a human element, which might
introduce error or ambiguity as an anomaly is swapped

from true-positive to false-positive when increasing the
temporal aggregation.

The percent contribution of each of the above reasons
for the decrease in number of statistical anomalies can

9



be seen in figure 5(a), which is plot for Abilene. The
graph shows that, for lower aggregation levels ti, the
decrease in number of statistical anomalies when go-
ing to ti+1 is predominantly due to anomalous regions
simply disappearing. This supports the conclusion that
shorter-lived anomalies are “lost” early as one aggre-
gates further. As the aggregation increases, however,
the decrease in number of statistical anomalies between
ti and ti+1 is increasingly caused by anomalies being
merged. Our experience has been that only very large
and relatively long-lived anomalies remain at this point,
which are combined into one time bin upon further tem-
poral aggregation.

Naturally temporal aggregation is not exclusively a
negative thing. Longer time bins lead to sparser time-
series, hence less data being stored and processed by
the traffic anomaly detector. Moreover, some amount
of temporal aggregation can reveal important temporal
correlations in the underlying trace. That is, increased
temporal aggregation may reveal traffic anomalies that
straddle multiple time bins at lower levels but may not
be conspicuous enough in any individual time bin to
be classified as an outlier. In order to investigate the
frequency of this phenomenon, figure 5(b) plots for any
given temporal aggregation level ti, the proportion of
statistical anomalies that are the result of a merging of
statistical-anomalies that were already detected at ti−1

versus entirely new anomalies relative to ti−1. In other
words, figure 5(b) explains the area under the curve of
figure 4(a) for Abilene. The figure clearly shows that
time bins larger than 5 minutes reveal very few new
anomalies. That is, less than 10% of all anomalies de-
tected when using a 15-minute time window were not
already detected using the 5-minute window, and a 30-
minute window gains nothing relative to 15 minutes.
When taken together with figure 5(a), this strongly dis-
courages using time windows longer than 5 minutes.

Figure 6 shows the distribution of anomaly types as a
function of the temporal aggregation for Abilene. The
graph shows that increasing the temporal aggregation
significantly reduces the diversity of anomalies. Taken
together with figure 5(a), it shows that the anomalies
that get drowned out with an increase in aggregation
level are not only short-lived but also frequently the
rarer ones. In other words, the most prevalent anoma-
lies, e.g. temporary outages (τ = ------) and poten-
tial DoS attacks (τ = ----+-), are most impervious to
temporal aggregation. Our experience has been that
the very long-lived anomalies are often temporary out-
ages, which were already easy to detect at lower levels
of temporal aggregation.

Figures 7(a) and 7(b) show the impact of sweeping
both the temporal aggregation and detection thresh-
old on the number of detected statistical anomalies and
false-positive rate, respectively. The graphs show that
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Figure 6: Anomaly distribution of Abilene for

temporal aggregation

the interaction between these two knobs is quite intu-
itive: both the number of statistical anomalies and the
false-positive rate decrease nearly monotonically as a
function of the temporal aggregation, regardless of the
detection threshold—i.e. at no point do the curves in-
tersect. The graphs also highlight the importance of
using multiple metrics when determining how to set the
level of temporal aggregation and detection threshold.
That is, aggregating into 60-minute time bins will lead
to a false-positive rate of 0% even when using a de-
tection threshold as low as 7σ (similarly for any choice
of time bin greater than or equal to 30 minutes when
using detection threshold greater than or equal to 9σ),
but this comes at a great cost in terms of number of sta-
tistical anomalies and variety of anomalies that can be
detected. While these two figures relate only to Geant,
the Abilene plots are quite similar.

In summary, temporal aggregation beyond 5 minutes
is not advisable. Even using such “short” time intervals
(i.e. shorter than the default for Geant), the benefit of
the few numbers of new anomalies detected by increased
aggregation is greatly outweighed by the loss of smaller
and less frequent anomalies. Moreover, from a practi-
cal standpoint, longer time bins straightforwardly mean
that it takes more time to “fill” a bin, which worsens
response time in an online detection and diagnosis set-
ting. Fortunately, the detection threshold and level of
temporal aggregation interact intuitively, which makes
it easier to predict the outcome of tuning them.

7. IP ADDRESS ANONYMIZATION
The number of bits anonymized from IP addresses is

the IP anonymization parameter. We evaluated anonymiza-
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Figure 7: Impact of temporal aggregation on

Geant across multiple detection thresholds

tion values of 0 through 31 bits, inclusive, but will only
analyze false-positive rates for Geant due to space con-
straints.

Figure 8(a) plots the number of detected statistical
anomalies as a function of the IP anonymization for
both Abilene and Geant. Note that Abilene begins at 11
bits of anonymization because this is the level at which
its IP traces are exported. Furthermore, overly aggres-
sive anonymization becomes semantically meaningless;
because every bit anonymized reduces the space of IP
subnets by half, the increases at aggregations higher
than /5 correspond to only 32 subnets, which results in
very small entropy values and a substantial amounts of
noise. This can be further observed in figure 8(b) for
Geant, which plots the false-positive rate as a function
of IP anonymization, and shows a strongly increasing
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Figure 8: Impact of IP anonymization

trend to the point that nearly 30% of detected anoma-
lies are false alarms when anonymizing 16 bits.

While IP anonymization tends to increase the overall
false-positive rate, it may make certain kinds of anoma-
lies easier to detect. That is, an IP scan corresponds
to a dispersion in the distribution of destination IP ad-
dresses seen, but this dispersion may not be significant
enough to cause a detection without further aggrega-
tion. But when IP addresses are anonymized, the con-
secutive addresses scanned may become part of a single
IP subnet and hence be detected as a concentration.
This can clearly be seen in figure 9, which plots a single
anomaly that occurred on the 21st of December, 2005
and traversed the Geant network from Greece (gr1) to
Germany (de2). Each line corresponds to a different
level of IP anonymization, with the upper lines being
less aggregated (e.g., /32) whereas the lower lines are
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to concentration

heavily aggregated. The striking feature of these plots
is that the same underlying network event causes an
increase in entropy at lower aggregation levels and a
decrease at higher aggregation levels.

Figure 9 also makes a strong argument for leverag-
ing IP address aggregation for traffic anomaly detection
and diagnosis. For example, concurrently analyzing
multiple IP anonymization levels would allow a traffic
anomaly detector to both detect and diagnose IP scans
by searching for the symptom observed in this figure.
In addition, it is likely that the exact aggregation levels
at which the positive and (separately) negative change
in entropy is the greatest, would give insights into the
scope (in terms of number of affected IP addresses) and
potentially location, of the IP scan.
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Figure 10: Percent anomalies transformed into

IP address space concentrations

In order to investigate the prevalence of dispersions
being transformed into concentrations by anonymizing
IP address bits, figure 10 plots the percent of anoma-
lous regions that are swapped from a ’+’ or ’0’ (corre-
sponding to a potential dispersion) to a ’-’ (a concen-
tration) as we increase the IP anonymization. The plot
shows that there is a marked increase in the percent-
age of anomalies that are transformed into concentra-
tions between 8 and 14 bits. IP address anonymization
has admittedly nontrivial interactions with the entropy
timeseries, which makes it a difficult data-reduction pa-
rameter to analyze, but this figure suggests that a sig-
nificant fraction of detected IP scans correspond to /8
to /15, which corresponds to between 256 and 32k hosts
scanned.

8. SAMPLING
The large volume of traffic that passes through mod-

ern backbones forces network operators to perform packet
sampling. Router manufacturers may implement dif-
ferent sampling techniques, such as “pick every n’th
packet” or “randomly pick 1 in n packets”, but we
chose to use only the latter policy to further sample
our data sets. The sampling rate chosen at a given net-
work is very important and we have found it to have a
strong impact on the ability to detect anomalies. Abi-
lene and Geant have different default sampling rates,
which means that 10−2 could only be evaluated for Abi-
lene, but 10−3, 10−4, 10−5 were studied for both net-
works. Note that the plots in this section are the only
ones in our paper where the detection threshold is set to
a value (9σ) other than 6σ. The reasons for the change
will be explained later in this section.

Figure 11(a) plots the number of statistical anomalies
as a function of the sampling rate for both Geant and
Abilene. The curves for both networks have a down-
ward trend, with an acceleration in fall off as sampling
is increased. Not only does sampling lead to fewer de-
tected statistical anomalies, but we have also found that
aggressive sampling leads to a tremendous loss in de-
tail, as can be seen in figure 11(b), which plots the
false-positive rate as a function of the sampling rate.
Both networks show an increase in the percent of false
positives as sampling is increased, but clearly the in-
crease for Geant dwarfs that for Abilene. We believe
the reasons for this discrepancy is largely explained by
the differences between the two networks—detailed in
section 5.1—primarily the volatility in Abilene’s trace,
which leads to a lot of “true” anomalous regions.

The reason that plots in this section are not using
the default 6σ detection threshold is because the inter-
action between detection threshold and sampling rate
is more complicated than for the other data-reduction
techniques. Figure 12(a) plots the number of statisti-
cal anomalies as a function of the detection threshold
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Figure 11: Impact of sampling

for multiple sampling rates. Notice how the curves in-
tersect, i.e. the highest sampling rate has the highest

number of detections at the lowest detection threshold
but the lowest number of detections at the highest de-
tection threshold. The reason for this is that sampling
tends to make timeseries increasingly spiky. At very
low detection thresholds, all of these spikes are marked
as being outliers whereas at high detection thresholds
these spikes are more correctly interpreted as noise. The
increased level of noise leads to extremely high false-
positive rates—seen in figure 12(b)—due to the poor
diversity in traffic in conjunction with small volumes
caused by high sampling rates, which make statistical
techniques ineffective.

Independent of which network is studied, it is very
clear that overly aggressive sampling can have a pro-
found negative impact on one’s ability to detect traf-
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Figure 12: Impact of sampling on Geant for mul-

tiple detection thresholds

fic anomalies. The impact is not only measured in
the false-positive rate, but also in the types of anoma-
lies that can be detected. That is, it has long been
assumed that sampling rate has a more detrimental
impact on network events that involve fewer packets,
and figure 13 provides tangible support for this hy-
pothesis. The figure plots the anomaly type distribu-
tion as a function of the sampling rate for Abilene,
and there is a clear loss of variety. While the group
“other” corresponds to over 30% of the anomalies at
10−2, this number is monotonically reduced to nearly
5% when sampling at 10−5. Once again we see that tem-
porary outages (τ = ------) and potential DoS attacks
(τ = ----+-)—both of which can drastically alter the
number of packets in a given interval—are least affected
by data-reduction techniques. While a higher sampling

13



102 103 104 1050

10

20

30

40

50

60

70

80

90

100

Sampling rate (1/n)

Cu
m

m
ul

at
ive

 p
er

ce
nt

 a
no

m
al

ie
s

abilene

 

 

−−−−+−
−−−−++
−−−−−−
−−−++−
−−++++
−−−−−+
other

Figure 13: Anomaly distribution for sampling

rate reduces the CPU load on routers, the loss in both
number and variety of detected anomalies is also com-
pounded by a very large increase in the false-positive
rate. For these reasons, the sampling rate is a knob that
must be tuned with great care—the lower you are able
to keep the sampling rate, the better traffic anomaly
detectors will tend to perform.

9. CONCLUSIONS
Data-reduction techniques are an unavoidable part

of anomaly detection in modern IP networks, both to
reduce overhead and to reveal underlying correlations.
In this paper, we have studied the effects of three main
data-reduction techniques—temporal aggregation, IP ad-
dress aggregation, and sampling—on the effectiveness of
anomaly detection on traffic-matrix data in two back-
bone networks. In some cases, the data-reduction tech-
niques make it easier to detect anomalies. For exam-
ple, IP address anonymization can make IP scans eas-
ier to detect and diagnose, and temporal aggregation
may reveal some anomalies that straddle multiple time
bins at smaller levels of aggregation. However, for the
most part, data-reduction techniques reduce the effec-
tiveness of anomaly detection by lowering the number
of detectable anomalies. In particular, excessive sam-
pling and aggregation dilute most anomalies except for
very large changes in traffic volume. Sampling, in par-
ticular, significantly increases the false-positive rate by
making the entire timeseries more spiky.

Our results suggest a number of promising avenues for
future research. We explored only part of a large param-
eter space. For example, future work could go beyond
OD flows to consider other network-wide representa-
tions of the traffic, such as the link matrix. Another nat-

ural direction to pursue is evaluating, and comparing,
other statistical-analysis techniques. We believe that
our evaluation methodology, and our software tools,
would be quite useful for these future studies. In addi-
tion, the value of our anomaly-classification system will
increase as more researchers use it; for example, with
more people independently classifying each anomaly, we
could provide confidence intervals for the labeling of
the data. Further manual exploration of the data could
shed light on the underlying causes of the anomalies we
detect, which could help refine our methodology for au-
tomatically identifying the anomaly type. Finally, the
many differences we see between the Abilene and Geant
data suggest that it would be valuable to analyze more
traces, from more networks, to investigate whether our
conclusions can be further generalized.

In summary, our research shows that data-reduction
techniques have a significant impact on the effectiveness
of traffic anomaly detection. Our primary contributions
are therefore: (1) a methodology and tool for sweeping
the large associated parameter space, (2) a methodol-
ogy and tool for evaluating the effectiveness of traffic
anomaly detectors based on the false-positive rate and
a novel definition of anomaly type, and (3) a first step
towards quantifying the effects of data-reduction tech-
niques to allow operators to make informed trade-offs
between the number/type of anomalies they wish to de-
tect and the system overheads they must endure.

10. REFERENCES
[1] C. Estan, S. Savage, and G. Varghese, “Automatically

inferring patterns of resource consumption in network
traffic,” in ACM SIGCOMM, (Karlsruhe, Germany),
pp. 137–148, 2003.

[2] Y. Zhang, S. Singh, S. Sen, N. Duffield, and C. Lund,
“Online identification of hierarchical heavy hitters:
Algorithms, evaluation, and applications,” in ACM
Internet Measurement Conference, (Taormina, Sicily,
Italy), pp. 101–114, 2004.

[3] P. Barford, J. Kline, D. Plonka, and A. Ron, “A signal
analysis of network traffic anomalies,” in ACM Internet
Measurement Workshop, (Marseille, France), pp. 71–82,
2002.

[4] B. Krishnamurthy, S. Sen, Y. Zhang, and Y. Chen,
“Sketch-based change detection: Methods, evaluation, and
applications,” in ACM Internet Measurement Conference,
(Miami Beach, FL, USA), pp. 234–247, 2003.

[5] Y. Zhang, Z. Ge, A. Greenberg, and M. Roughan,
“Network anomography,” in ACM Internet Measurement
Conference, (Berkeley, California, USA), October 2005.

[6] A. Soule, K. Salamatian, and N. Taft, “Combining filtering
and statistical methods for anomaly detection,” in ACM
Internet Measurement Conference, (Berkeley, California,
USA), October 2005.

[7] A. Lakhina, M. Crovella, and C. Diot, “Mining anomalies
using traffic feature distributions,” in ACM SIGCOMM,
(Philadelphia, Pennsylvania, USA), pp. 217–228, 2005.

[8] A. Lakhina, M. Crovella, and C. Diot, “Diagnosing
network-wide traffic anomalies,” in ACM SIGCOMM,
(Portland, Oregon, USA), pp. 219–230, 2004.

[9] A. Soule, H. Ringberg, F. Silveira, J. Rexford, and C. Diot,
“Detectability of traffic anomalies in two adjacent
networks,” Passive And Active Measurement Conference,

14



2007.
[10] J. Mai, C.-N. Chuah, A. Sridharan, T. Ye, and H. Zang, “Is

sampled data sufficient for anomaly detection?,” in ACM
Internet measurement Conference, (Rio de Janeriro,
Brazil), pp. 165–176, 2006.

[11] J. Mai, A. Sridharan, C.-N. Chuah, H. Zang, and T. Ye,
“Impact of packet sampling on portscan detection,” IEEE
Journal on Selected Areas in Communication, vol. 24,
December 2006.

[12] D. Brauckhoff, B. Tellenbach, A. Wagner, M. May, and
A. Lakhina, “Impact of packet sampling on anomaly
detection metrics,” in ACM Internet measurement
Conference, (Rio de Janeriro, Brazil), pp. 159–164, 2006.

[13] Abilene Backbone Network. abilene.internet2.edu/.
[14] Geant Network. www.geant.net/.
[15] Juniper J-Flow. www.juniper.net/techpubs/software/

erx/junose61/swconfig-routing-vol1/ht%ml/

ip-jflow-stats-config2.html.
[16] Abilene Participation Agreement.

abilene.internet2.edu/community/connectors/
AbileneConnectionAgreement20%06.pdf.

[17] Z. Ghahramani and G. E. Hinton, “Parameter estimation
for linear dynamical systems,” Tech. Rep. CRG-TR-96-2,
University of Toronto, February 1996.

[18] G. Burns, R. Daoud, and J. Vaigl, “LAM: An Open Cluster
Environment for MPI,” in Proceedings of Supercomputing
Symposium, pp. 379–386, 1994.

[19] J. M. Squyres and A. Lumsdaine, “A Component
Architecture for LAM/MPI,” in Proceedings, 10th European
PVM/MPI Users’ Group Meeting, (Venice, Italy), 2003.

15


