
Scalable Video Conferencing Using SDN Principles
Oliver Michel

Princeton University
omichel@princeton.edu

Satadal Sengupta
Princeton University

satadals@princeton.edu

Hyojoon Kim
University of Virginia
joonkim@virginia.edu

Ravi Netravali
Princeton University

rnetravali@princeton.edu

Jennifer Rexford
Princeton University
jrex@princeton.edu

Abstract
Video-conferencing applications face an unwavering surge in traffic,
stressing their underlying infrastructure in unprecedented ways.
This paper rethinks the key building block for conferencing in-
frastructures — selective forwarding units (SFUs). SFUs relay and
adapt media streams between participants and, today, run in soft-
ware on general-purpose servers. Our main insight, discerned from
dissecting the operation of production SFU servers, is that SFUs
largely mimic traditional packet-processing operations such as
dropping and forwarding. Guided by this, we present Scallop, an
SDN-inspired SFU that decouples video-conferencing applications
into a hardware-based data plane for latency-sensitive and frequent
media operations, and a software control plane for the (infrequent)
remaining tasks, such as analyzing feedback signals and session
management. Scallop is a general design that is suitable for a va-
riety of hardware platforms, including programmable switches
and SmartNICs. Our Tofino-based implementation fully supports
WebRTC and delivers 7-422× improved scaling over a 32-core com-
modity server, while reaping performance improvements by cutting
forwarding-induced latency by 26×. We also present an implemen-
tation of Scallop on the BlueField-3 SmartNIC.

CCS Concepts
• Networks→ Programmable networks;Middle boxes / net-
work appliances; In-network processing; Application layer proto-
cols.

Keywords
video conferencing, programmable data planes, selective forward-
ing units, SDN, P4, WebRTC

ACM Reference Format:
Oliver Michel, Satadal Sengupta, Hyojoon Kim, Ravi Netravali, and Jennifer
Rexford. 2025. Scalable Video Conferencing Using SDN Principles. In ACM
SIGCOMM 2025 Conference (SIGCOMM ’25), September 8–11, 2025, Coim-
bra, Portugal. ACM, New York, NY, USA, 19 pages. https://doi.org/10.1145/
3718958.3750489

This work is licensed under a Creative Commons Attribution 4.0 International License.
SIGCOMM ’25, Coimbra, Portugal
© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1524-2/2025/09
https://doi.org/10.1145/3718958.3750489

1 Introduction
Video-conferencing applications (VCAs) such as Google Meet and
Zoom have become essential for remote work, education, and social
interactions. The past decade has seen substantial efforts to improve
these applications, e.g., via more efficient codecs [16, 52, 62], rate-
adaptation algorithms [3, 11, 14, 63], and measurement studies [2,
4, 36, 41]. Though effective, prior work has primarily focused on
end users, with the scaling challenges that VCA operators face to
support exploding traffic rates [15, 37] being far less explored.

At the core of VCA infrastructure are selective forwarding units
(SFUs) [18, 25, 35, 39]. These servers are tasked not only with re-
laying media streams among meeting participants, but also with
monitoring and adapting media signals to match the time-varying
network capabilities of users. Unfortunately, their deployment on
general-purpose servers – the status quo today – makes scaling
very difficult, particularly given several fundamental properties of
VCAs (§2):
• The workload of an SFU is hard to predict and can change rapidly.
Beyond diurnal variation, the number of streams that an SFU
must handle grows quadratically with the number of participants
in a meeting, i.e., even a single new participant in a meeting
introduces substantial load since their media streams must be
relayed to all other participants, and they must receive all media
streams from all other participants.

• And yet, the replication and forwarding that SFUs perform
on media packets is on the latency-critical path of user inter-
actions. At hundreds of packets/sec./stream, operating-system
delays for software packet processing (e.g., scheduling, context
switches, interrupts, socket-buffer copying) can lead to signifi-
cant user-perceived jitter and latency, especially in the face of
under-provisioned resources.
As a result, VCA operators are left with two options today: mas-

sively over-provision SFU server infrastructure to handle peak loads,
which is costly and wasteful, or (reactively) auto-scale those re-
sources using traditional mechanisms [47, 56] which risks harming
QoE for users.

In this paper, we forego ephemeral SFU scaling enhancements
(e.g., improved software packet processing or provisioning mech-
anisms) in favor of a fundamental rethink of VCA infrastructure
that can support long-term traffic forecasts. Guided by our detailed
study of production SFUs and real campus VCA traces (§3), our
key insight is that: despite the large semantic gap, the forwarding
and adapting of media signals at SFUs — the most frequent tasks
that account for the lion’s share of scaling overheads — is strikingly
similar to traditional packet-processing tasks. Indeed, relaying and

https://doi.org/10.1145/3718958.3750489
https://doi.org/10.1145/3718958.3750489
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3718958.3750489

SIGCOMM ’25, September 8–11, 2025, Coimbra, Portugal Oliver Michel, Satadal Sengupta, Hyojoon Kim, Ravi Netravali, and Jennifer Rexford

adapting media signals in today’s SFUs can be distilled down to
primitives such as packet replication and selective dropping that
network hardware is optimized for.

Fueled by this insight, we present Scallop1 a newhardware/software
co-designed SFU that is built on top of theWebRTC standard. Draw-
ing inspiration from SDN principles, Scallop decouples SFUs into
(1) an efficient data plane that adapts and relays high-volume me-
dia streams using line-rate network switching hardware, and (2) a
two-tier software control plane that handles the remaining infre-
quent tasks, e.g., session management, periodic feedback handling,
and signaling. The potential benefits are significant, with promises
of 7-422× improved packet-processing performance over general-
purpose servers at similar cost with fixed per-packet delays to
eliminate SFU-induced jitter.

Yet, decoupling SFUs in this manner requires a rethink of their
design and introduces three challenges, which we describe next.

First, since not all SFU functions are amenable to processing in
hardware, we decouple SFUs into a 3-tier architecture that reflects
the different time scales and latency requirements of SFU opera-
tions as well as the locality of their data. Specifically, (a) session
management is complex but occurs at low frequency and benefits
from a global view of the system, making it suitable for centralized
processing in software; (b) network feedback processing and rate
estimation occur at medium frequency and are local to each SFU in-
stance, requiring a responsive—but not ultra-low-latency—control
loop in software on each Scallop network device; and (c) media
forwarding occurs at hundreds of packets per second per stream
and critically depends on low latency in the data plane. Decoupling
these tasks in practice, however, is challenging while preserving all
application semantics and the correctness of the forwarding and
adaptation logic. To address this, we present a detailed analysis of
the SFU workload and then place all of the many different SFU func-
tions on one or more of these tiers while maximizing performance.
Moreover, we describe a series of methods for filtering, routing,
and processing the many feedback messages in VCAs to maintain
faithful SFU operation in this redesigned architecture.

Second, Scallop’s data planemust implement themedia-replication
and forwarding tasks of an SFU in hardware.Most packet-processing
platforms have packet mirroring capabilities; however, unlike mir-
roring where only one packet replica is created, VCAs require as
many replicas as there are receivers. To address this mismatch,
we present a general but hardware-amenable solution that can be
implemented on a wide range of packet-processing platforms and
accelerators, including switches, SmartNICs, or eBPF. From this, we
derive two platform-optimized designs for programmable switches
(here the Intel Tofino2) and SmartNICs (here the NVIDIA BlueField-
3). These designs play to the strengths of the respective platforms
while accommodating their constraints.

Third, to build a system that is practical and deployable, we
follow WebRTC, a widely adopted standard for real-time communi-
cation. To do so, we must ensure that our SFU implementation is
transparent to unmodified WebRTC clients running in browsers or
on mobile devices. We do this in two ways. First, owing to the peer-
to-peer (P2P) design of video-conferencing protocols like WebRTC,
SFUs traditionally operate as split proxies that terminate and spawn

1Wordplay on "scale up".

new client connections. However, this design would burden the
SFU with tasks typically handled by end hosts and unsuited for
network hardware (e.g., packet de/re-encryption), ultimately in-
creasing control-plane overheads and reducing scalability. Instead,
we aim to run SFUs as true proxies by capitalizing on the observation
that most of these functions already run individually at clients and
need not be replicated at SFUs. Doing so, while remaining faithful
to all SFU semantics, requires a redesign of the way WebRTC es-
tablishes sessions and handles feedback signals at each participant.
Second, our proxy SFU design must ensure that all traffic (media
and control) appears to clients exactly as if it were sent from another
client, without intermediate processing. Among other challenges
discussed in the paper, this is especially difficult when adjusting the
media rate to adapt to network conditions, which, if done naively,
creates sequence gaps that WebRTC receivers interpret as network
losses, triggering unnecessary retransmissions. To maintain the
P2P illusion, the SFU must rewrite sequence numbers to mask in-
tentional gaps in the stream. However, such rewriting is inherently
difficult, especially in the presence of network-induced loss and re-
ordering—even software implementations cannot do this perfectly.
Our experiments reveal that leaving extra gaps is preferable to
masking legitimate ones: missing sequence numbers trigger packet
retransmissions, while incorrect rewrites break the decoder’s state,
leading to a permanent freeze that can only be recovered by a new
key frame, causing severe video freezing. Based on this finding, we
design a hardware-friendly sequence-number rewriting heuristic
that minimizes retransmissions while preserving stream continuity,
even under high loss or reordering. We further discuss possible
changes to the WebRTC protocols and reference implementation
that would enable more efficient in-network processing of media
streams to improve overall system scalability.

We implemented Scallop using P4 on a 12.8 Tbit/s Intel Tofino2
ASIC and a NVIDIA BlueField-3 SmartNIC. In experiments replay-
ing campus-scale Zoom traces, Scallop handles 96.5% of all packets
and 99.7% of bytes entirely in the hardware-based data plane. On
the Tofino, this enables Scallop to support up to 128,000 concurrent
meetings on a single switch, a 7-422× improvement over a 32-core
commodity server running existing SFUs [39]. Further, Scallop re-
duces the latency introduced by SFUs by a factor of 26.8, improving
QoE for all participants. We will publicly release our Scallop imple-
mentation post publication.
Ethics. The campus traces and Zoom API data used in this study
were anonymized with a one-way hash and media payloads were
removed at source. All data were inspected and sanitized by an
authorized network operator to remove all personal data before
being accessed by researchers. In the packet traces, the media pay-
loads have been removed as well before researchers gained access.
This study was conducted with approval from Princeton University,
including its Institutional Review Board (IRB).

2 SFU Scaling Challenges
2.1 Meeting Topologies and SFUs
Need for SFUs.Modern VCAs use SFUs as the de-facto standard
to connect participants for two main reasons: First, while P2P con-
nections are possible for meetings with more than two participants,
they are impractical due to the need for each participant to encode

Scalable Video Conferencing Using SDN Principles SIGCOMM ’25, September 8–11, 2025, Coimbra, Portugal

SFUP2P

720p

720p downlink
congestion

reduce quality
to 360p

360p

Figure 1: VCA Architectures: P2P vs. SFU

and send media to every other participant (Figure 1, left). This
results in significant computational overhead and requires sub-
stantial uplink bandwidth which is often unavailable in residential
and wireless Internet settings. Second, an intermediate (publicly
routable) server solves challenges associated with network address
translators (NATs), making SFUs useful even for two-party calls.
For example, Google Meet always uses an SFU for two-party calls.
SFU Scaling Properties.While the use of SFUs solves the problem
of constrained uplink bandwidth and reduces the required CPU
resources at clients, SFUs do not entirely solve the scalability prob-
lem in multi-party video conferencing as sometimes suggested [24].
The number of streams required in an SFU scenario still grows
quadratically with the number of participants. There are 𝑁 2 media
streams for 𝑁 participants (per media type, i.e., video, audio, or
screen share) in an SFU topology (see Figure 1) which even grows
slightly faster compared to the 𝑁 (𝑁 − 1)/2 streams in a P2P topol-
ogy. The key difference is that all these streams are now sent to or
received by the SFU, effectively moving the bottleneck from the
clients to the SFU. The second important observation is that the
amount of work that an SFU needs to perform is determined by the
number of media streams and not by the number of participants
which therefore leads to quadratic scaling behavior at the SFU. This
is due to the fact that every incoming stream needs to be replicated
for each of the downstream participants and then sent out. Figure 1
shows an example of this with three participants where P2P con-
nections result in a total of six streams while the SFU handles nine
streams.
SFU Load in Campus Trace. Of course, meeting participants do
not share both audio and video at all times. To get an understanding
of the actual number of streams per meeting in a real-world video-
conferencing application, we analyzed Zoom usage data taken from
the Zoom Account API [64] on our University campus (more in
Appendix A). The data was collected over the course of two weeks
in October 2022 and contains 19,704 meetings. More details on the
data set can be found in Appendix A. Figure 2 shows the range
(gray bars) and median number (blue dots) of media streams at the
SFU for each meeting as a function of the maximum number of
participants within each meeting on our campus. A media stream
was counted when it was active for at least 10% of the meeting’s
duration. The dashed line indicates the upper bound of streams
possible if every participant shares both audio and video which can
be exceeded in practice when participants also share their screen,
as seen in this figure. Even for meetings with 10 participants, the
SFU already handles up to 200 media streams. Meetings with 25
participants, a typical classroom size, generate over 700 streams at
the SFU in our data set and can theoretically produce up to 1250
streams.

2.2 Consequences of Under-Provisioning
SFU Performance Implications. In contrast to signaling and rate
adaptation, media distribution is latency-sensitive. SFUs must touch
each of these media packets, and as such, any delay introduced by
the SFU is added to the end-to-end delay a user experiences, directly
impacting QoE. Consequently, it is crucial that the forwarding
delay and induced jitter are minimal. However, software packet
processing is subject to OS-level delay artifacts due to scheduling,
context switches, interrupts, etc., adding to the forwarding delay. At
hundreds of packets/sec./stream (typically between 800 and 1400
Bytes in size for video and around 200 Bytes in size for audio),
SFU operations require copying significant amounts of data among
socket buffers for receiving packets and before sending them out,
resulting in high CPU load and frequent context switching. These
delays are hard to predict and impair session quality o the point
where the VCA becomes unusable.
QoE Degradation under High Load. To confirm the suspected
quality impacts of under-provisioning SFUs, we conducted an ex-
periment using the Mediasoup open-source SFU [39] which we
deployed on a server with a 40-core Intel Xeon Silver 4114 CPU
and 96GB of RAM in our testbed (§8). A second emulated clients
using headless Chrome and was directly connected to the SFU via a
10Gbit/s Ethernet link. We pinned the Mediasoup server to a single
CPU and incrementally built up to 15 meetings with 10 participants
each, adding one participant every ten seconds. We measured the
quality of the first meeting using the WebRTC statistics API [58]
as we added more participants to the SFU. The server reached
100% CPU utilization at around 80 participants. Figure 3 shows the
receive jitter. Tail jitter is high throughout the experiment before ex-
ceeding 100ms, causing significant mouth-to-ear delay and freezes,
as depicted in Figure 3. Figure 4 shows that the video frame rate
starts dropping at around 60 participants and making the session
effectively unusable beyond 100 participants.
Takeaways. In summary, SFUs share scaling properties (e.g., diur-
nal usage patterns) with other user-facing services. Additionally,
however, they exhibit unique scaling challenges due to the quadrati-
cally growing amount of media streams to be forwarded. Dynamics
and unpredictability within meetings, for example, due to partici-
pants joining or leaving or starting or stopping to share a particular
media type (e.g., video, audio, or screen), further exacerbate this
problem. At the same time, under-provisioned SFUs can rapidly hit
high utilization levels, which have a direct, noticeable, and some-
times prohibitive impact on the session quality. Taken together,
VCA operators either vastly over-provision their infrastructure to
accommodate such dynamics or they jeopardize QoE.

3 SFUs as Packet Processors
Before presenting Scallop, we provide an overview of SFU opera-
tions and the key insights guiding our design.
SFU Design Choices. As opposed to earlier generations of inter-
mediate servers, SFUs do not mix or transcode media streams but
instead operate on packetized media. WebRTC is the only widely
adopted standard and open-source framework for video conferenc-
ing, yet it does not provide any guidance on how SFUs should be
implemented or how they should handle RTP streams. The simplest
way to implement an SFU is to maintain separate P2P connections

SIGCOMM ’25, September 8–11, 2025, Coimbra, Portugal Oliver Michel, Satadal Sengupta, Hyojoon Kim, Ravi Netravali, and Jennifer Rexford

0

400

800

1200

0 5 10 15 20 25
Participants per Meeting

S

tr
ea

m
s

at
 S

F
U

Figure 2: Number of media streams per
meeting in campus trace

0

100

200

300

400

0 50 100 150
Number of Participants

V
id

eo
 R

x.
 J

itt
er

 [m
s]

Median

95%

99%

Figure 3: Video jitter while adding par-
ticipants to the SFU

0

5

10

15

20

25

0 50 100 150
Number of Participants

R
x.

 F
ra

m
e

R
at

e
[fp

s]

Figure 4: Video frame rate while adding
participants to the SFU

P2

P3

Split-Proxy SFU

P1

WebRTC PeerConnection

RTP Packet Stream

Proxy SFU P2

P3

P1

RTP Packet Stream

Codec-Level Units
(e.g., H.264 NAL)

Figure 5: SFU design choices

and distinct RTP streams between the SFU and each participant.
This approach is similar to a split-proxy design, a term we will use
going forward and is illustrated on the left side of Figure 5. Existing
WebRTC SFUs (e.g., MediaSoup [39]) operate in this way.
Alternative Approaches. In contrast to the aforementioned split-
proxy design, we design Scallop using a powerful insight that makes
the design of SFUs computationally simpler: SFU functionality
can be accomplished by replicating packets and rewriting header
fields. These tasks are supported by traditional packet processors
(e.g., switches) and do not require software processing. We look
for evidence of such a design in the real-world by collecting and
analyzing packet-level traces of meetings on our campus (see Ap-
pendix B). In accordance with previous studies [20, 41], we find that
the SFU servers used by Zoom—one of the market leaders in video
conferencing—send exact copies (except for rewritten IP addresses
and port numbers) of the incoming RTP packets to all downstream
participants. While we do not know Zoom’s full architecture or
how their SFUs are implemented, these findings lend credibility to
Scallop’s design.
Rate Adaptation in Zoom’s SFUs. Rate adaptation becomes nec-
essary when the network conditions of a participant change, e.g.,
due to network congestion or if it is not necessary to forward high-
resolution video to a participant due to device characteristics, such
as a smaller screen on a cell phone. Without rate adaptation at the
SFU, media senders would all have to reduce their sending rate to re-
lieve congestion, resulting in lower quality for all participants, even
those unaffected by congestion (see §5.3). Realizing this function-
ality (without transcoding media) requires using a scalable media
stream, for example using Scalable Video Coding (SVC). In SVC,
video is encoded in multiple layers, each with a different bitrate. The
media stream is packetized so that a given packet always belongs
to exactly one layer. As a result, reducing the media resolution or
frame rate can be achieved by dropping a specific subset of packets.
This insight is the second foundation of our design. Our analysis
of Zoom’s SFU reveals that it uses a combination of Simulcast and

(1) >10ms latency, every few min.

(2) <10ms latency, 2-3 per sec.

(3) <1ms latency, 100s per sec.

e.g., session management, signaling

e.g., handling feedback messages
and connectivity checks

e.g., replication and selective
forwarding of media packets

re
qu

ire
s

lo
w

er
 la

te
nc

y

re
qu

ire
s

m
or

e
pr

og
ra

m
m

ab
ilit

y

Controller

Switch
Agent

Data
Plane

ha
rd

w
ar

e
so

ftw
ar

e

on
 s

w
itc

h
ce

nt
ra

l.

hi
gh

er
 e

ve
nt

 ra
te

Figure 6: Latency and programmability requirements of key
SFU responsibilities and resulting placement

SVC to achieve rate adaptation, providing further credibility to our
design. We explain SVC using a real-world example in Appendix C.
Takeaways. Taken together, the core work of SFUs can be im-
plemented by replicating packets and sending copies out to all
receiving participants. Furthermore, if SVC is used, adapting a me-
dia stream reduces to forwarding a clearly defined subset of packets
to a given participant.

4 Introducing Scallop
Based on the insights from §3, we introduce Scallop, a novel SFU
design leveraging SDN principles and programmable networking
hardware to improve the scalability and performance of video-
conferencing infrastructure. Scallop offloads all media replication,
forwarding, and rate-adaptation tasks to high-speed hardware, yet
several operations SFUs perform are not amenable for such an
implementation. Consequently, we require a split of functionality
where we leave as many tasks as possible inside the data plane
and only carefully leave operations in software when absolutely
necessary.
A Taxonomy of SFU Operations. Scallop’s control/data-plane
split is driven by the latency requirements, computational com-
plexity, and frequency of the tasks an SFU performs. Along these
axes, we classify SFU tasks into 3 categories as shown on the left
side of Figure 6: (1) infrequent tasks that are not latency-sensitive,
including session management and signaling; (2) latency-sensitive
tasks (on the order of 10s of milliseconds), including deciding the
correct target sending rate of a media stream based on feedback
signals, as well as handling connectivity checks performed by the
STUN protocol [38]; (3) ultra-low-latency tasks (sub-millisecond),
including the actual handling of media packets, i.e., forwarding and
dropping them if necessary.

Scalable Video Conferencing Using SDN Principles SIGCOMM ’25, September 8–11, 2025, Coimbra, Portugal

Three-Tier SFU Design. The resulting architecture (right side of
Figure 6) is inspired by the design of SDN systems but goes a step
further by introducing a third plane between a centralized controller
and the switch data plane for the aforementioned latency-sensitive
tasks. Here, the central controller is only involved when (1) a new
session is created, (2) a participant joins or leaves a meeting, or
(3) a participant starts or stops sharing a particular media type
(i.e., audio, video, or screen). The controller is centralized as it is
designed to manage multiple distributed Scallop instances to enable
more efficient forwarding topologies (§9). Finally, the data plane
handles truly latency-sensitive tasks on the critical path for QoE.
Scallop’s Switch Agent. All remaining tasks that are either (1)
not amenable to implementation in the data plane due to their
complexity, or (2) fall in the category of latency-sensitive tasks
that not on the critical path for QoE, run in software directly on
the switch (i.e., the switch’s CPU and operating system). This, for
example, includes processing feedback signals that are subsequently
used for rate adaptation. We call this intermediate component the
switch agent. Importantly, the switch agent is not involved in media
forwarding, and none of the above-mentioned tasks require any
media or feedback to be sent back from the switch agent; rather, the
switch agent only receives copies of packets, analyzes them, and
reconfigures the data plane if required. Its location on the switch
enables a low-latency control loop.
Deployment Setting. Today, production-scale SFUs are deployed
on data-center servers of cloud providers. Increasingly, these servers
are connected using programmable top-of-the-rack switches. Be-
sides, these servers are often equipped with SmartNICs to offload
networking tasks. While Scallop is not tied to a data-center set-
ting, data-center switches, and SmartNICs are natural and readily
available deployment settings for Scallop. Going further, switches
implementing Scallop can entirely replace multiple SFU servers,
increasing traffic served per rack at comparable operating costs.
Support on Packet Processors (also see Appendix D). Modern
programmable switches have higher capacity than SmartNICs (Tbps
vs. hundreds of Gbps) and more advanced capabilities (e.g., scalable
replication, register arrays) in the hardware data plane. Scallop
requires three main capabilities in the hardware: deep header pars-
ing (Appendix E), scalable replication (§6), and stateful sequence-
number rewriting (§7). Consequently, Scallop’s potential can be
fully realized on switches such as the Intel Tofino2, which is our
evaluation platform (§8). We also implement Scallop on the hard-
ware pipeline of a representative SmartNIC (NVIDIA BlueField-3).

5 Control-Plane Prototype
Scallop’s control plane must handle two key tasks: (1) establishing
and managing WebRTC sessions between participants such that
the SFU is inserted as a proxy between them and (2) handling
the infrequent but important remaining tasks that cannot run in
the data plane. The first set of tasks are handled by a centralized
controller (§5.1) while the second set of tasks are handled by the
switch agent, a lightweight control program on the switch CPU
(§5.2-5.5). Both applications are written in C++ and communicate
with each other using remote procedure calls. The switch agent can
additionally exchange packets with the data plane via the switch
CPU port. Figure 7 shows the resulting architecture.

Controller (infrequent, less latency-sensitive)

Switch Agent (medium-latency requirement)

Switch Data Plane (low-latency requirement)
Client

SDP
Signaling

SDP
Signaling

Session Management

SVC Layer
Selection

Packet Replication Selective Forwarding

STUN
Handling

RTP

STUN

RTCP

SVC DDs RTCP RRsSTUN Install Data-
Plane Rules

Configure Meetings

Web Server

SVC DD
Analysis

REMB
Analysis

Client
RTP

STUN

RTCP

Figure 7: Scallop’s 3-tiered architecture

5.1 Session and Connectivity Management
The core task of the central controller is to manage WebRTC ses-
sions and connectivity between participants such that all media
traffic is sent to and can be received from Scallop as opposed to
another client, realizing our proxy architecture.
WebRTC Signaling.WebRTC uses the Session Description Proto-
col (SDP) to negotiate media-session parameters between partic-
ipants, including codecs, their parameters, and IP addresses and
ports [42, 51]. This negotiation, known as signaling, is initiated by
participants whenever a new media stream is created. Scallop’s
controller acts as the signaling server that exchanges SDP messages
between participants and maintains state about participants and
their media streams to correctly configure the data plane.
Controlling Signaling to Create Proxy Topology. Each SDP
message includes a list of connection candidates, which convey the
IP addresses and ports RTP media is being sent from or can be
received at. Using this information, we can insert the SFU as an in-
termediate entity between participants while appearing to meeting
participants as their sole peer. Scallop achieves this by intercepting
SDP messages and modifying the connection candidates on the fly.
STUN and Connectivity Management.WebRTC uses periodic
Session Traversal Utilities for NAT (STUN) [38] packets to contin-
uously check reachability between participants. Scallop handles
STUN in the switch agent as processing STUN packets is too com-
plex for the data plane due to their header format. This is fine since
STUN packets are not classified as latency critical. A connection is
only deemed interrupted after multiple consecutive connectivity
checks fail.

5.2 Bandwidth Estimation
Rate Adaptation in SFU Architectures. Continuous and timely
bandwidth estimation and rate adaptation are critical tasks in video
conferencing as trying to send media at a higher bitrate than the
network can support rapidly leads to high latency and, ultimately,
loss, severely degrading QoE. When an SFU is used, this task is
split into two parts: (1) each sender sends at the highest rate any
of the receivers can receive at (§5.2-§5.3), and (2) for receivers that
can only support lower rates than the highest rate, the SFU scales
down the stream by selectively dropping packets (§5.4). WebRTC
uses Google Congestion Control (GCC) [3] to estimate link capacity,
which is then used to adjust media bitrate.

SIGCOMM ’25, September 8–11, 2025, Coimbra, Portugal Oliver Michel, Satadal Sengupta, Hyojoon Kim, Ravi Netravali, and Jennifer Rexford

GCC Modes. GCC can operate in two ways. In sender-driven
mode, the sender computes available bandwidth based on frequent
feedback from receivers. Scallop uses receiver-driven mode where
each receiver independently estimates bandwidth based on packet
arrival-time variation and then periodically informs the sender of
the new bandwidth estimate using Receiver-Estimated Bandwidth
(REMB) messages. Although REMB messages are still too compli-
cated for the data plane to process, the frequency of them is pro-
portional to the frequency of the link capacity changing, unlike
in sender-driven mode, where the receiver sends a message every
10-20 media packets. Scallop intercepts REMB messages and adapts
media bit rates based on the reported estimates.

5.3 Preserving Feedback Semantics
Bandwidth Estimation in a Proxy Architecture. Realizing cor-
rect bandwidth estimation in our proxy-based Scallop architecture,
however, is challenging. This is because forwarding feedback among
participants, rather than using individual control loops (as in a split
proxy), mixes signals, incorporating uplink measurements from
all senders instead of reflecting a specific downlink. As a result,
feedback converges on the lowest-bandwidth receiver, forcing the
sender to lower the media bitrate unnecessarily for all participants.
Mixed Feedback Signals. To illustrate the problem, consider a 3-
party meeting as depicted in Figure 8. Participant 1 (𝑃1, blue) and 2
(𝑃2, red) share video while participant 3 (𝑃3) only receives. Solid
lines depict media streams and dashed lines depict Real-Time Trans-
port Control Protocol (RTCP) feedback messages. Done naively,
two problems arise. First, RTCP combines feedback messages con-
cerning multiple media streams into a single RTCP packet which
is too complex to parse, analyze, and correctly forward in the data
plane. Second, they also mix feedback from different media streams
in a way that feedback is not actionable anymore. For example, the
bandwidth estimated by 𝑃3 now is based on feedback from both 𝑃1’s
and 𝑃2’s uplinks (to SFU) in addition to 𝑃3’s downlink (from SFU).
This estimate is irrelevant for the SFU since it cannot do anything
about uplink capacity. More importantly, it leads to the problem
that when naively forwarding the combination of all feedback to
𝑃1, 𝑃1’s media will be encoded at a bitrate adapted to 𝑃2’s uplink
performance. Put differently, all send rates will converge to the
lowest capacity of all uplinks in the meeting which defeats the
purpose of even having rate adaptation in the SFU.
Solution Part 1: Split Connections. We solve these problems
using two techniques (Figure 8). First, we split each WebRTC UDP
stream (the scope for bandwidth estimation) by participant, such
that every receiver’s RTCP feedback pertains to exactly one sender.
This eliminates the need to parse and filter combined RTCP mes-
sages carrying reports for multiple streams—Scallop simply for-
wards each receiver’s feedback directly to its corresponding sender.
Solution Part 2: Selectively Forward Feedback. In our example,
𝑃3 now has a dedicated stream to receive media from 𝑃1 and a
second stream to receive media from 𝑃2. Consequently, 𝑃3’s REMB
messages only include information about the path between 𝑃3 and
𝑃1 or 𝑃2, respectively, and not about the combination of all paths. A
filter function 𝑓 at the SFU selects the best-performing downlink per
sender and configures the data plane to only forward thesemessages
to the respective sender. The selection is done by computing an

EWMA over each receiver’s bandwidth estimates and periodically
selecting the maximum out of the EWMAs. The rationale for this
is that each sender should send at the highest rate allowed by its
uplink and the best downlink. As all packets traverse the sender’s
uplink, its performance is inherently accounted for in the feedback.
The SFU then handles adaptation for lower-bandwidth downlinks,
explained next.

5.4 SVC Analysis and Layer Selection
Scalable Video Coding (SVC). Scallop leverages SVC [52] with
the AV1 codec’s L1T3 profile [12, 54] to adapt media streams to
network capacity. This allows the SFU to choose among three tem-
poral layers (frame rates) for video streams. While the data plane
handles the actual forwarding, the control plane decides the quality
level to send to each participant. The SVC structure can change
with each key frame (sent when a stream starts or the resolution
changes), requiring the SFU to adapt the data plane’s forwarding
rules accordingly. Figure 9 shows an L1T3 SVC stream’s dependen-
cies.
AV1 Extension and Dependency Descriptor. In AV1, each RTP
packet contains an RTP AV1 extension header indicating its layer
through a unique template id. Key frames additionally contain a
dependency descriptor that carries the semantics of the SVC struc-
ture [54]. In our example, template ids 0 and 1 represent the base
layer (7.5 fps), id 2 the first enhancement layer (15 fps), and ids 3
and 4 the second enhancement layer (30 fps). Dropping frame ids 3
and 4 would reduce the frame rate from 30 fps to 15 fps. The data
plane parses the AV1 extension header (primarily its template id) to
decide whether the packet should be dropped or not. Appendix E
describes the parsing process and its associated challenges.
Selecting a Quality Layer. Parsing the dependency descriptor is
beyond the data plane’s capabilities. Thus, Scallop sends key frames
to the control plane for analysis. Whenever a bandwidth estimate
(i.e., an REMB message) is received, the switch agent invokes a
function that can be defined by adopters of Scallop. This function
is declared as follows:
selectDecodeTarget(currDT, estHist, newEst) → newDT.
The function takes as input the current decode target (currDT), a his-
tory of past estimates (estHist), and the new estimate (newEst) from
the REMBmessage; it returns the new decode target. If the returned
decode target is different from the previous one, the switch agent
reconfigures the data plane. Importantly, while we implemented
a simple heuristic that switches between quality levels based on
fixed capacity-estimate thresholds, using this model, arbitrary rate-
adaptation algorithms can be implemented.

5.5 Handling other RTCP Messages
Besides REMB, additional feedback messages are delivered through
RTCP. From the receiver side, negative acknowledgments (NACKs)
request the retx. of a specific media packet, and picture-loss indica-
tion messages (PLI) notify the sender to send an intra-coded video
frame. NACK and PLI messages are sent from a receiver experienc-
ing loss to the respective sender (Figure 10). While PLIs, NACKs,
and REMB messages are forwarded to their intended destinations
through the data plane without delay, the data plane also creates

Scalable Video Conferencing Using SDN Principles SIGCOMM ’25, September 8–11, 2025, Coimbra, Portugal

SFU

P2

P3

P1

Link 1 (L1)

Link 2 (L 2)

Link 3 (L3)

Problem 1
P3 combines feedback
messages

Problem 2
feedback reports about
both L2 and L3

+
+ P1+P3→P2

P2+P3→P1

SFU
P2

P3

P1
Link 1 (L1)

Link 2 (L 2)

Link 3 (L3)

1

2

3

1

2

3

1

2

3

1

2

3

1

2

3

1

2

3

f(P2/1,P3/1)→P1

f(P1/2,P3/2)→P2

f

f
P3 sends separate
feedback for each
incoming media stream

Feedback to P1 is specific
to media sent from P1

Figure 8: Splitting WebRTC connections per participant and forwarding feedback messages of the best-performing downlink
only preserves feedback semantics and ensures effective rate adaptation.

0

3

2

4

1

3

2

4

DT1→ 15fps

DT2→ 30fps

DT0→ 7.5fps

1 2 3 4 5 6 7 8
~8.3sTime

Frame Number:

Key Frame

Figure 9: Frame dependencies in AV1 L1T3 SVC.

P3

P2

Peer
Conn

Peer
ConnSwitch Data Plane

P1

Switch CPU

RTP

SR/SDES
RR/REMB

Media

SVC DDs RR/REMB
NACK/PLI

Peer
Conn

RTP RTCP
Install/modify data-plane rules

NACK/PLI
RTCP Loss

NACK

Rate ControllerSVC Analysis

Figure 10: Flow of all types of media and control packets in
a Scallop 3-party conference.

copies of them on-the-fly, sending them to the switch CPU for
further analysis (e.g., for the filter function described earlier).

6 Scalable Media Replication
Background and Challenges. Scallop must enable scalable repli-
cation of media packets in hardware to support thousands of si-
multaneous meetings. This entails two core challenges: First, for
each meeting, Scallop stores both the list of active participants and
each participant’s rate-adaptation status. On every incoming media
packet, this state determines which downstream recipients receive
a replica. Since memory is limited on packet-processing hardware,
supporting a large number of concurrent meetings becomes diffi-
cult. Second, once the recipients are known, Scallop must generate
and forward replicas to them efficiently. Although modern packet-
processing platforms offer hardware-assisted replication, their fea-
tures vary widely, and no prior work demonstrates how to map SFU
packet replication onto them. Scallop addresses these challenges
in two parts. First, we introduce a general, memory-efficient algo-
rithm for SFU replication on hardware packet-processing platforms.

Algorithm 1: General Packet Replication in Scallop (RA-
driven logic highlighted in green)

1 Sender2Meeting:Map{Participant: Meeting}
2 Meeting2Participants: Map{{Meeting, ReplicaID}: Participant}
3 Template2Layer: Map{{Meeting, Template}: Layer}
4 ExcludedReceivers: Map{{Meeting, Layer, Participant}: Bool}
5 ExcludedSenderReceivers:Map{{Meeting, Layer, Participant, Participant}:

Bool}
6 Function scallop_replicate (Packet 𝑝𝑘𝑡):
7 Participant 𝑠𝑒𝑛𝑑𝑒𝑟 := {𝑝𝑘𝑡 .𝑖𝑝.𝑠𝑟𝑐 , 𝑝𝑘𝑡 .𝑢𝑑𝑝.𝑠𝑟𝑐 , 𝑝𝑘𝑡 .𝑟𝑡𝑝.𝑠𝑠𝑟𝑐}
8 Meeting𝑚𝑒𝑒𝑡𝑖𝑛𝑔 := Sender2Meeting[𝑠𝑒𝑛𝑑𝑒𝑟]
9 Layer 𝑙𝑎𝑦𝑒𝑟 := Template2Layer[{𝑚𝑒𝑒𝑡𝑖𝑛𝑔, 𝑝𝑘𝑡 .𝑎𝑣1.𝑡𝑒𝑚𝑝𝑙𝑎𝑡𝑒_𝑖𝑑 }]

10 ReplicaID 𝑟𝑒𝑝𝑙𝑖𝑐𝑎_𝑖𝑑 := 1
11 while Meeting2Participants[𝑚𝑒𝑒𝑡𝑖𝑛𝑔, 𝑟𝑒𝑝𝑙𝑖𝑐𝑎_𝑖𝑑].hit do
12 𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑟 := Meeting2Participants[𝑚𝑒𝑒𝑡𝑖𝑛𝑔, 𝑟𝑒𝑝𝑙𝑖𝑐𝑎_𝑖𝑑]
13 if 𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑟 != 𝑠𝑒𝑛𝑑𝑒𝑟 then
14 if ExcludedReceivers[{𝑚𝑒𝑒𝑡𝑖𝑛𝑔, 𝑙𝑎𝑦𝑒𝑟 , 𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑟 }].miss &&

ExcludedSenderReceivers[{𝑚𝑒𝑒𝑡𝑖𝑛𝑔, 𝑙𝑎𝑦𝑒𝑟 , 𝑠𝑒𝑛𝑑𝑒𝑟 ,
𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑟 }].miss then

15 Packet 𝑝𝑘𝑡2 := replicate(𝑝𝑘𝑡)
16 send_packet_to(𝑝𝑘𝑡2, 𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑟)

17 𝑟𝑒𝑝𝑙𝑖𝑐𝑎_𝑖𝑑 := 𝑟𝑒𝑝𝑙𝑖𝑐𝑎_𝑖𝑑 + 1

Second, we adapt and optimize this algorithm for two represen-
tative platforms—programmable switches (e.g., Intel Tofino2) and
SmartNICs (e.g., NVIDIA BlueField-3).

6.1 General, Memory-Efficient Replication
For our platform-agnostic design, we rely on three basic primitives
available on all programmable packet-processing platforms: match-
action (MA) tables populated by the control plane (in Scallop, the
switch agent), a replication (mirroring) function that produces a sin-
gle copy of an input packet, and a recirculation function that feeds
packets back into the ingress pipeline for further iterations. Our
replication algorithm then proceeds in two parts: (1) Participant-
driven, which replicates each packet according to the meeting-to-
participants mapping, and (2) Rate Adaptation (RA)-driven, which
excludes replication for a subset of rate-adapted participants.
Solution Part 1: Participant-Driven Replication. Consider a
meeting𝑀 with 𝑁 participants. Scallop must replicate each incom-
ing packet from any participant (sender) to the other 𝑁–1 partici-
pants (receivers). In a naive approach, we could assign a separate
replica ID (RID) to every sender-receiver pair in𝑀 and store them as
MA-table records of the form: key={sender, RID}, value={receiver}.
When a packet arrives from a sender, we create a replica for its
receiver with RID=1, recirculate the packet and create a replica for

SIGCOMM ’25, September 8–11, 2025, Coimbra, Portugal Oliver Michel, Satadal Sengupta, Hyojoon Kim, Ravi Netravali, and Jennifer Rexford

its receiver with RID=2, and so on. While this technique works, it
requires 𝑁 (𝑁–1) or O(𝑁 2) records per meeting. A more efficient
strategy (outlined in Algorithm 1) is to assign a global replica ID
to each participant in𝑀 (line 2). This reduces the memory require-
ment to 𝑁 records (O(𝑁)). However, now when Scallop iterates
over the replica IDs (lines 1, 7-8), it would encounter the sender
itself. Fortunately, the sender is trivially known from the packet
headers (line 7), so we skip that iteration (line 13). Once created,
the replica is addressed to the receiver’s IP and UDP port, and
forwarded (line 16). Since this logic is sufficient for meetings not
subject to RA, we also call it the non-rate-adapted (NRA) technique.
Solution Part 2: RA-Driven Replication. In some meetings, in-
dividual receivers might have lower receive bandwidth than other
participants, requiring RA. To support RA, Scallop must replicate
only the necessary quality layers for each affected receiver. For
example, if a receiver can handle only 7.5 fps instead of the full
30 fps, Scallop should replicate the base layer but omit the two
enhancement layers (see §5.4). Scallop identifies each packet’s qual-
ity layer by looking up its AV1 template ID in an MA table, which
uses constant memory per meeting (lines 3, 9). Once the layer is
known, Scallop must determine which participants should receive
replicas. Because RA is often not required, we record only the ex-
cluded receivers rather than the included ones. Exclusions fall into
two categories: (1) Receiver-driven RA (RA-R), where a receiver re-
ceives the same reduced quality (e.g., 7.5 fps) from all senders, and
(2) Sender–Receiver-driven RA (RA-SR), where a receiver receives
different qualities from different senders. RA-SR happens when
some senders send media at a higher bitrate than others. Scallop
implements exclusions using two disjoint MA tables for RA-R and
RA-SR (lines 4-5). In the worst case, RA-R consumes O(𝑁) records
and RA-SR consumes O(𝑁 2), respectively, although actual usage is
much lower. During each iteration, Scallop checks both tables and
skips any excluded receiver before replicating the packet (line 14).
Optimizing Bandwidth and Latency. Our general solution runs
entirely in hardware and is memory-efficient—a significant improve-
ment over software SFUs. However, the while loop in Algorithm 1
(lines 11–17) has two drawbacks. First, it recirculates the original
packet 𝑁–1 times, consuming recirculation capacity. Second, it
produces the final replica only after 𝑁–1 recirculations, incurring
O(𝑁) latency. Fortunately, some packet-processing platforms, such
as Intel Tofino and Juniper Trio [60] programmable switches, pro-
vide hardware primitives to generate hundreds of packet replicas
at once. In §6.2, we describe how we leverage one such platform
(Intel Tofino2) to address both drawbacks. On platforms without
bulk-replication support (e.g., NVIDIA BlueField-3), we replace the
while loop with a recursive, perfect binary-tree routine that pro-
duces all replicas within ⌈log2 𝑁 ⌉ iterations and therefore a uniform
O(log𝑁) latency (§6.3).

6.2 Scalable replication on the Tofino2
Background. The Tofino Packet Replication Engine (PRE) is a spe-
cialized hardware module designed for efficient multicast through
a hierarchical, three-level structure called a multicast group or a
multicast tree (Figure 11). The PRE sits in the Traffic Manager be-
tween the ingress and the egress pipelines of the switch, allowing
the ingress pipeline to invoke replication on a packet, the PRE to

perform the replication, and the egress pipeline to process each
replica before forwarding it. The control plane configures the PRE
at runtime in three steps: (1) Allocate level-2 (L2) nodes, each asso-
ciated with one egress port ; (2) Allocate level-1 (L1) nodes, each
identified by a node ID (unique across the PRE), a replica ID or RID
(unique across a multicast tree), and a set of allocated L2 nodes;
(3) Create multicast trees, each with a unique multicast group ID
(MGID) and an associated set of allocated L1 nodes.
Replication: The ingress pipeline sets a packet’s mgid metadata
field to map it to an existing multicast tree. When the packet arrives
at the root of that tree, the PRE stores the packet in a buffer and
creates a pointer. Then, it replicates this pointer to L1 nodes, and
further to L2 nodes. At each L2 node, a replica is created from the
pointer, attached to the associated egress port, and forwarded to
the egress pipeline.
Pruning: The PRE also supports branch-pruning. The control plane
configures pruning by assigning an L1 XID to each L1 node, and
an L2 XID to each egress port. The data plane’s ingress invokes
pruning by setting the packet’s l1_xid (for L1-pruning), and rid and
l2_xid (for L2-pruning) metadata.
Opportunity and Challenges. Due to its specialized design, the
PRE neither requires recirculations nor does it pass around pack-
ets. Consequently, it can replicate a packet hundreds of times with
minimal latency. Scallop can benefit greatly from the PRE, but it
must address two challenges. First, mapping VCA entities (meet-
ings, senders, receivers) onto the PRE’s tree hierarchy (root, L1
nodes, L2 nodes) is not obvious. No prior work has used the PRE
(on Tofino or similar switches) for such purposes, requiring us to
explore the design space from the ground up. Second, the PRE
comes with resource constraints. While it can support up to 224 L1
nodes, 216 RIDs per tree, and all of the switch’s egress ports per L1
node, it can only support T=64K multicast trees. Furthermore, only
one L1-XID and L2-XID can be set per packet, limiting pruning
flexibility. Scallop must adapt its solution to the PRE and maximize
its utilization under these constraints.
Two-Party Meetings.Meetings with only two participants (60%
in our campus dataset) do not require replication. Therefore, we do
not allocate multicast trees for them thus saving PRE resources.
NRADesign. For meetings with𝑁>2 and not requiring RA, Scallop
aggregates all 𝑁 meeting participants into a single replication tree
(Fig. 12a). The root represents the entire meeting, each L1 node
represents a participant and each L2 node maps a participant to
their egress port. This design supports T concurrent meetings
and consumes O(𝑁) L1 nodes. We use L2-pruning to prevent the
sender from receiving its own packet. To further increase efficiency,
Scallop aggregates multiple (𝑚) meetings into a single replication
tree (Fig. 12b), supporting𝑚T concurrent meetings. However, in
addition to L2-pruning, this approach requires L1-pruning to en-
sure that packets of one meeting are not received by participants of
another. For example, in Figure 12b, replication to𝑀2’s participants
is suppressed for a packet from𝑀1, and vice-versa. The PRE’s prun-
ing limitations force𝑚 to be 2. Scallop can support 128K concurrent
meetings using this design (§8.2).
RA Design. Since both L1- and L2-pruning are consumed in the
NRA design, we need alternatives to handle RA. For RA-R, Scallop
creates one tree (following NRA design) per SVC layer. When a rate-
adapted receiver should not receive a particular layer, it is removed

Scalable Video Conferencing Using SDN Principles SIGCOMM ’25, September 8–11, 2025, Coimbra, Portugal

Ingress
Pipeline

Egress
Pipeline

PRE
Multicast
Groups

(64K total)

Level-1 Nodes
(16.8M total)

Level-2
Nodes

Active
Node
Pruned
Node

Mcast
Group/
Tree 1

Node 2
rid=2, xid=1

Port 2
xid=10

Node 1
rid=1, xid=1

Node 1
rid=1, xid=2

Port 1
xid=10

Port 3
xid=20

pkt.mgid=1

pkt.l1_xid=2 pkt.rid=2 &&
pkt.l2_xid=20

rid:
replication id
xid:
exclusion id

Figure 11: Tofino’s Packet Replication Engine (PRE)

(a) One meeting per tree (b) Multiple meetings per tree

M1

P1

E(P2)

E(P1)

E(P3)

P2

P3

Packet
from P1

Pi: Participant i
Mi: Meeting i
E(Pi): Egress port of i

Pkt. from
 M1P1

M1P1

E(M1P2)

E(M1P1)

M1P2

E(M2P1)

E(M2P2)

E(M1P3)
M1

M2

+ M1P3

M2P1

M2P2

Figure 12: Constructing efficient replication trees by
aggregating meetings and using dynamic pruning

[0] [1]

+[0] +[1] +[0] +[1]

M1

0 1

00 01 10 11
RID=0 RID=1 RID=2 RID=3

P1

P2 P3P1

Figure 13: Packet Replication using Perfect Binary Tree

from that layer’s tree. With 𝑞=3 SVC layers, Scallop can support up
to𝑚T/𝑞 concurrent meetings, which evaluates to 42.7K (§8.2). For
RA-SR, Scallop cannot do better than aggregating two senders (and
their receivers) per SVC layer into a single tree. Scallop consumes
2T L1 nodes to support 2T/𝑞𝑁 concurrent RA-SR meetings, which
evaluates to 4.3K, compared to 192 on a 32-core server (assuming
10-party meetings, all sending video and audio).
Dynamic Migration across Designs. Since RA (especially RA-
SR) is not always required for a meeting, Scallop dynamically and
seamlessly migrates each meeting across two-party, NRA, RA-R,
and RA-SR designs as needed. This maximizes the PRE’s utilization,
ensuring the bottleneck remains the switch’s bandwidth rather
than its replication capacity, whenever possible.

6.3 Scalable Replication on the Bluefield-3
Unlike Tofino2, some packet-processing platforms, such as the
BlueField-3 SmartNIC, cannot replicate in bulk and require recir-
culation to create multiple replicas. However, we can improve the
replication latency on such platforms using a perfect binary tree
design (as shown in Figure 13). During meeting setup, the switch
agent populates three MA tables: one mapping each participant
to its meeting ID, another mapping every (meeting ID, replica ID)
pair back to a participant, and a third recording, for each meet-
ing, the maximum tree depth ⌈log2 𝑁 ⌉ (where 𝑁 is the number of
participants). This depth ensures the tree will have at least 𝑁 leaves.

Figure 13 shows an example meeting with 𝑁=3 (and so, maxi-
mum depth = 2). When a media packet from sender 𝑃1 arrives in
the data plane, we encode two fields in its header: a running replica
ID (RID) and the current depth, both initialized to zero. The Smart-
NIC hardware mirrors the packet, then recirculates both copies.
Conceptually, one copy traverses the left subtree and the other the
right. Each time a mirrored packet returns, we append the bit value

0 (for left) or 1 (for right) to its RID, increment its depth, mirror it
again, and recirculate. This process repeats until the packet’s depth
equals the precomputed maximum depth for that meeting.

At the end, each packet carries a full-length RID. In our example,
we end up with RIDs 0 (00), 1 (01), 2 (10), and 3 (11). RID 0 corre-
sponds to the sender, and RID 3 has no matching participant, so
both are dropped. The remaining two replicas with RIDs 1 and 2
map to 𝑃2 and 𝑃3 respectively, and are forwarded accordingly. We
then layer our RA schemes (RA-R and RA-SR) on top of this repli-
cation mechanism, following the logic described in Algorithm 1.
This method can be further optimized by preemptively checking
whether a downstream subtree will yield valid replicas and skipping
its mirroring if not; we leave this as future work.

7 Transparent Rate Adaptation
Background and Challenges. Under WebRTC’s P2P model in a
split-proxy architecture, each receiver expects a continuous, un-
modified media stream from the SFU. However, in our true-proxy
architecture, Scallop performs RA by suppressing packets associ-
ated with a specific quality layer to match network conditions. If
not handled explicitly, this suppression would create gaps in RTP se-
quence numbers, which receivers would interpret as packet losses,
triggering unnecessary retransmissions (retxs.). To preserve a con-
tinuous RTP packet stream, Scallop rewrites sequence numbers
after replication. However, rewriting sequence numbers perfectly—
when intentional suppression coincides with network-induced loss
and reordering—is impossible without buffering packets.
Naive Solution. To illustrate, consider the example in Figure 14.
Here, the sender sends packets with sequence numbers 1 to 5. Pack-
ets 1, 4, and 5 are base-layer packets while packets 2 and 3 are
enhancement-layer packets to be suppressed. In a straw-man de-
sign (Fig. 14a), Scallop would simply increment a counter every
time it sends out a packet to a receiver. This approach would pre-
serve a continuous stream of sequence numbers and the receiver
would not trigger negative acknowledgments (NACKs) for missing
packets, thus avoiding retx. of intentionally suppressed packets.
This design, however, would also mask network-induced packet
losses, leading to the receiver’s decoder state breaking and the video
freezing until a picture-loss indication (PLI) to reset the decoder is
triggered (Fig. 14b). This situation, which we refer to as an error of
type 1, would lead to an unacceptable stall for the affected receiver.
AcceptableHeuristic Error. Instead, we design a hardware-amenable
heuristic that uses a combination of per-meeting, per-stream, and
per-packet data to infer whether a sequence number skipped due to

SIGCOMM ’25, September 8–11, 2025, Coimbra, Portugal Oliver Michel, Satadal Sengupta, Hyojoon Kim, Ravi Netravali, and Jennifer Rexford

1235 1SS?3SFU

123L5 1SS?2SFU

1SS2312345 SFU

5→2 No NACK → Decoder Stall

NACK 2

1235 1SS?3SFU
NACK 2

LL

(4→2), 5→3

(4→2), 5→3

No NACK
(a) Naive Sequence-Number Rewriting without Loss

(b) Naive Sequence-Number Rewriting with Loss (Error Type 1)

(c) Scallop’s Sequence-Number Rewriting Heuristic

(d) Rewriting Heuristic leaving unnecessary Gap (Error Type 2)

Base-Layer Packet

Enhancement-Layer
Packet

L

Lost Packet

S Intentionally Suppressed
(Dropped) Packet

4→2, 5→3

Figure 14: Example of sequence-number rewriting and associated error types in Scallop

a loss corresponds to a packet that was supposed to be suppressed
anyway. If so, Scallop increments the sequence number by one.
If the packet belongs to a base layer (required for the decoder),
Scallop will preserve the sequence gap to trigger a NACK and retx.
(Fig. 14c). There are, however, cases where no online algorithm for
this problem can exactly determine which layer the packet with
the skipped sequence number belongs to. Consider the last case
(Fig. 14d) where packet 4 carries the enhancement layer which is
supposed to be suppressed. Assuming Scallop cannot infer that 4 is
a candidate for suppression, it preserves the sequence-number gap.
This leads to a NACK for packet 2 (originally packet 4), causing its
retx. which is unnecessary. Our experiments show that, while this
retx. wastes some bandwidth, it does not cause any QoE degrada-
tion. Therefore, this error, which we call error type 2, is acceptable
but slightly expensive. We design our heuristic to never commit
type-1 errors, and to minimize type-2 errors. Figure 27 in Appen-
dix F shows that the overhead of unnecessary retxs. from type-2
errors grows with the loss rate but is low even at significant loss
(e.g., under 5% overhead at 10% loss).
Heuristic Design. To rewrite sequence numbers correctly, Scallop
must determine an accurate offset (difference between original and
rewritten sequence numbers) for each replicated packet in each
rate-adapted sender-receiver media stream. This is challenging
because the rewriting must be done post-replication, i.e., in the
egress pipeline, where suppressed packets are never “seen”. The
task is further complicated by network loss and reordering, as
described above. Our main insight is that the offset’s accuracy
depends on how accurately we reconstruct the state of the media
frame the replica belongs to, and the one immediately preceding
it. For this, we rely on (1) per-packet state: current frame number,
sequence number, frame start and end markers from headers; (2)
per-stream state: the offset, max. frame number seen, max. sequence
number seen of the max. frame, a flag indicating whether the max.
frame’s end marker was seen, the cadence of frames suppressed by
RA (e.g., every second frame) populated by the control plane, and
a history of the offsets for the last few unsuppressed frames. For
each incoming packet, first, we check whether the offset should be
updated according to the following cases, and then we rewrite its
sequence number based on the offset:
(1) If current frame equals max. frame, don’t update offset;
(2) If current frame succeeds max. frame, add to the offset the best

estimate of the no. of suppressed packets in between;
(3) If current frame precedes max. frame (late reordered packet),

rewrite using offset in history if found, else drop.
Accuracy vs. Memory Efficiency. If the loss (and reordering)
rate is low, a short history of offsets suffices; otherwise, we need

Proto./Type Packets Pct. Per sec. KBytes Pct.
RTP 170,870 94.5 284.30 166,762 99.47
- Audio 29,746 16.46 49.49 3,826 2.28
- Video 141,124 78.09 234.81 162,935 97.19
- AV1 DS* 5 ≪ 0.008 6 ≪

RTCP 9,153 5.06 15.22 801 0.48
- SR/SDES 3,456 1.91 5.75 304 0.18
- RR* 240 0.39 0.13 15 0.01
- RR/REMB* 5,457 3.02 9.07 482 0.29
STUN* 695 0.38 1.15 89 0.05
Ctrl. Plane 6397 3.54 10.64 593 0.35
Data Plane 174,326 96.46 290.06 167,066 99.65
Total 180,718 100 300.69 167,653 100

Table 1: Packets per participant sent to SFU (10 min.)

a longer history. Thus, there is a trade-off between accuracy (i.e.,
unnecessary retxs.) and per-stream memory, with the optimal bal-
ance dictated by the loss rate. We implement several variants of
our heuristic to explore the design space. Below, we describe two:
Seq. Rewriting-Low Memory (S-LM) stores no history of frames
beyond the max. frame, minimizing memory usage.
Seq. Rewriting-Low Retx. (S-LR) stores the history of three addi-
tional frames to accommodate 150 ms of suppressed (15 fps) video,
the max. recommended RTC end-to-end delay [23]. This reduces
unnecessary retxs. under higher loss rates.
We discuss the Tofino2-based prototypes of these variants and
evaluate their modest overhead in Appendix F.

8 Evaluation
Experimental Setup.We deploy the data plane of Scallop on an
12.8 Tbit/s Intel Tofino2 hardware switch. The switch agent runs on
the CPU of this switch, an 8-core Intel Pentium with 8GB of RAM.
The controller is deployed on a 40-core Intel Xeon server with 96
GB memory. We use another server with the same configuration
for both Scallop and MediaSoup (where applicable) clients.

8.1 Control Plane
We first analyze the amount of packets and bytes that our controller
needs to process compared with the amount of packets that stay
entirely in the data plane. This ratio demonstrates the feasibility of
Scallop’s control/data-plane split. We collect a packet-level trace of
a real three-party meeting using Scallop where participants send
audio and 720p AV1 SVC video. We then determine the number
of packets and bytes that can be processed in the data plane. The
experiment ran for ten minutes with a total of 180,718 packets.

Table 1 shows the results. 94.5% of these packets were RTP pack-
ets which can be handled in the data plane with the exception of five

Scalable Video Conferencing Using SDN Principles SIGCOMM ’25, September 8–11, 2025, Coimbra, Portugal

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
RTP RTT [ms]

C
D

F

Scallop
Mediasoup

Figure 15: Forwarding Latency
in Scallop

1
2

3

0 100 200 300 400

0
10
20
30

0
10
20
30

0
10
20
30

Time [s]

T
x.

 F
ra

m
e

R
at

e
[fp

s]
(a) Send Frame Rate

1
2

3

0 100 200 300 400

0
10
20
30

0
10
20
30

0
10
20
30

Time [s]

R
x.

 F
ra

m
e

R
at

e
[fp

s]

(b) Receive Frame Rate

0

200

400

600

800

0 100 200 300 400
Time [s]

R
x.

 B
itr

at
e

[k
bi

t/s
]

P1 P2

(c) Receive Bit Rate at P3

Figure 16: Scallop Rate Adaptation: Part. 3’s receive bit rate is reduced twice.

No Loss 1% Loss

0 10 20 30 0 10 20 30
0.00
0.25
0.50
0.75
1.00

Frame Rate [fps]

C
D

F

Rate Adapt.

with

without

Figure 17: Frame rate under loss and rate adaptation

Resource type Scaling be-
havior

Usage under peak
campus load (avg.)

Parsing depth Constant Ing. 27, Eg. 7
No. of stages Constant Ing. 7, Eg. 5
PHV containers Constant 17.9%
Exact xbars Constant 5.66%
Ternary xbars Constant 2.52%
Hash bits Constant 4.62%
Hash dist. units Constant 6.94%
VLIW instr. Constant 7.29%
Logical table ID Constant 21.87%
SRAM Linear 6.77%
TCAM Linear 1.38%
Egress Tput. Quadratic 1.2 Gb/s

Table 2: Resource usage of the Tofino2 hardware prototype.

RTP packets containing an AV1 dependency descriptor. RTCP ac-
counted for 5.06% of all packets and 0.48% of all bytes, out of which
our switch agent uses RTCP receiver reports and REMBmessages to
control the RA logic. These packets accounted for 3.41% of overall
packets. Finally, STUN packets accounted for 0.38% of all packets
and also need to be processed in software. In summary, 96.46% of all
packets and 99.65% of all bytes can be processed in the data plane,
showing that this workload is well-suited for a control/data-plane
split. More importantly, the remaining packets, except for a few
STUN packets at the start of a session, are not blocking.

8.2 Data Plane
Tofino Resource Utilization. We implement Scallop’s data plane
using ∼2000 lines of P416 code on the Tofino2. Table 2 summa-
rizes the resource utilization of the Tofino2. We categorize resource
types by how they scale with the number of concurrent participants
supported by Scallop—constant, linear, or quadratic. For the non-
constant types, we report the average utilization under peak campus
traffic load, as observed in our campus dataset. The high ingress

parsing depth is evidence of the deep, flexible parsing required to
extract the SVC quality layer information, as we describe in Ap-
pendix E. The number of stages consumed by Scallop falls squarely
within the bounds of the maximum available on the Tofino2. For the
rest of the components with constant scaling behavior, we report
the average utilization across all stages. This analysis shows that
Scallop’s resource usage is low enough such that other network
applications can be supported simultaneously on the switch.

8.3 Latency and Impact on Session Quality
Latency.We demonstrate that leveraging a hardware-based data
plane significantly reduces SFU-induced delay. This is shown by
comparing per-packet RTTs of RTP media packets in a two-party
call. Two participants are connected either through Scallop’s Tofino
or theMediasoup’s SFU server. Figure 15 shows that Scallop achieves
26.8× lower median latency while cutting 99%ile latency by 8.5×.
Session Quality during Rate Adaptation. To show that Scallop
is faithful to the core SFU functionality, we validate that our SVC-
based rate adaptation effectively reduces bit rate without causing
freezes or other QoE degradation. We conduct two experiments.
First, we start a three-party call, where all participants send and
receive video. We collect WebRTC performance statistics [58] from
Google Chrome, including receive frame rate, stall time, video res-
olution, and more; they correspond to the media stream after de-
coding and, thus, are an accurate representation of actual playback
quality. Figure 16 confirms that Scallop successfully reduces the
frame rate from 30 to 15 fps for the bandwidth-constrained par-
ticipant 3 while maintaining a decodable media stream without
incurring otherwise lower QoE (e.g., via freezes). Second, we con-
duct four 5-minute experiments covering all combinations of 1%
packet loss and rate adaptation (RA). Figure 17 shows that under
loss, even without rate adaptation (and sequence-number rewrit-
ing), we see many samples of low frame rates (i.e., short freezes).
This is consistent with prior observations and ITU recommenda-
tions [17, 22]. Scallop’s RA does not change the shape of the distri-
bution but moves the median frame rate, here, from 20 fps to 10 fps
as intended. In fact, the fraction of fps readings that fall out of a
10% margin of the target frame rate (shaded areas) is slightly lower
under RA (14% vs. 21%), showing that Scallop’s RA does not further
reduce QoE, even under loss.

SIGCOMM ’25, September 8–11, 2025, Coimbra, Portugal Oliver Michel, Satadal Sengupta, Hyojoon Kim, Ravi Netravali, and Jennifer Rexford

100

101

102

103

104

105

106

0 20 40 60 80 100
Participants per Meeting

M

ax
. M

ee
tin

gs
 (

lo
g.

) Scallop min/max Software min/max

Figure 18: Best-case and worst-case
Performance

0

100

200

300

400

0 20 40 60 80 100
Participants per Meeting

Im
pr

ov
em

en
t v

s.
 S

of
tw

ar
e

Figure 19: Scallop Scalability Gain over
Software

100

101

102

103

104

105

106

0 20 40 60 80 100
Participants per Meeting

M

ax
. M

ee
tin

gs
 (

lo
g.

) NRA

RA−R

RA−SR

S−LM

S−LR

Bandwidth

Software

Figure 20: Worst-case Perf. by Meeting
Config. & Impl. Choice vs. Software

8.4 Scalability
First, we perform a faithful simulation of Scallop’s data-plane com-
ponents and subject them to a wide range of meeting configurations
(described below) and loss rates. Second, we record MediaSoup’s
performance across experiments on varying workloads (similar to
§2.2) and extrapolate it to the same configurations on a 32-core
server. Finally, for each configuration, we compare the two systems.
Best-case vs. Worst-case Performance.We exhaustively simu-
late all possible combinations of loss rates (0 to 5% in 0.1% incre-
ments), number of participants (N) per meeting (1 to 100), number
of senders per meeting (1 to N), the RA status per sender-receiver
pair and its associated media quality level (low@1, medium@1.5,
and high@3 Mbps, determined from experiments), replication-tree
designs (NRA, RA-R, RA-SR), and the sequence-number rewriting
heuristic used (S-LM vs. S-LR). For each configuration, we com-
pute the min. and max. number of meetings supported by Scallop
and MediaSoup (Software), respectively. In Figure 18, we show the
range between Software/min and Software/max in orange, and
that between Scallop/min and Scallop/max in blue. For any given
N (x-axis), Scallop/min is always higher than Software/min and
Scallop/max is always higher than Software/max. This shows that
Scallop always supports many more meetings than software irre-
spective of the configuration. For N=2, Scallop/max is massive since
the PRE is not needed. Thereafter, the numbers are determined by
the complex interplay among the simulation configurations. For
example, with N=3, without RA, Scallop supports 3× more meet-
ings with just one sender vs. three senders, since the bandwidth
used is only 9 Mbps in the former case (3 streams × 3 Mbps) but
27 Mbps (9 streams × 3 Mbps) in the latter. However, if RA results
in low-quality media in the latter case, the bandwidth reduces to 9
Mbps. We observe that in most cases, the Scallop/min corresponds
to the memory bottleneck encountered when S-LR is used.
Scalability Improvement over Software. For each configuration,
we compute the ratio between the number of meetings supported
by Scallop and Mediasoup. Figure 19 shows the lowest and highest
such ratio per N with the intermediate range shaded. The range
shows that Scallop can support between 7-422× more meetings
than software. Toward the right of the plot, the highest ratio shows
a sawtooth pattern because the denominator is small yet discrete.
Software vs. Scallop Bottlenecks. The different Scallop designs
(NRA/RA-R/RA-SR and S-LM/S-LR) have varying trade-offs. Fig-
ure 20 shows Scallop’s performance assuming the respective design
was the bottleneck with all participants sending media. For exam-
ple, NRA supports more meetings than RA-R, but both are constant,

whereas RA-SR supports fewer meetings and decreases with N. The
overall performance corresponds to the minimum of all the designs.
We plot the performance of MediaSoup (orange) for comparison.

9 Discussion
9.1 Making WebRTC Hardware-Amenable
WebRTC is a widely adopted framework that enables browsers to
establish secure and efficient real-time multimedia sessions, even
across NATs and firewalls. Originally designed for peer-to-peer
communication between two endpoints, its limitations become ap-
parent in multi-party use cases where SFUs become required (§2).
These limitations are associated with the way WebRTC enables
secure communication and, secondly, with the design of its wire
protocols. We explain both aspects next before making recommen-
dations on how to modify WebRTC for hardware-friendliness.
Encryption andmessage authentication. InWebRTC, RTP head-
ers are HMAC-protected while payloads are also AES-encrypted
via SRTP-DTLS [44]. In Scallop, neither mechanism is currently
implemented. The main challenge is key distribution: WebRTC’s
split-proxy design uses a separate key for each P2P connection,
exchanged between SFU and client. This is incompatible with our
proxy redesign, where a single sender’s packets are replicated to
many receivers, necessitating one-to-many key distribution, for ex-
ample, via centrally distributed keys (as previously done inWebRTC
via SDES [7] and done today in Zoom [20]). Since the SFU does
not need to touch payloads, it would then operate on encrypted
packets. Unlike in WebRTC’s current encryption mechanism and
key-distribution scheme, doing so would also enable the use of end-
to-end encryption (E2EE). Prior work demonstrates that ciphers
(e.g., AES) and cryptographic hashes (e.g., SipHash) can be com-
puted on programmable data-plane devices [5, 46, 48, 49, 59, 61],
and modern SmartNICs provide even more capabilities [27, 29, 53].
Rewriting header fields requires recomputing HMACs over the
short RTP header, which is feasible in programmable hardware.
Hardware-amenable wire protocols. The WebRTC framework
and its protocols, which most video-conferencing applications fol-
low, are not hardware-friendly. This is because the protocol was
initially designed as a P2P protocol, where software with complex
algorithms is designed to run on the end hosts. Furthermore, codec
and protocol designers emphasize efficiency, making every bit count
and aiming to minimize the bandwidth usage between participants.
This is a noble goal, but it makes the protocol inherently challenging
to parse and process in hardware (e.g., network devices).

Scalable Video Conferencing Using SDN Principles SIGCOMM ’25, September 8–11, 2025, Coimbra, Portugal

WebRTC design considerations for scalability. Designing SFUs
as true proxies for WebRTC adds significant overheads (§3) while a
more efficient and hardware-friendly use as demonstrated in this
paper, comes with some limitations outlined above or requires some
added complexity inmanaging feedbackmessages (§5.3) or realizing
rate adaptation (§7). We find that none of these limitations are
fundamental to WebRTC and argue that WebRTC already provides
the necessary building blocks to support more hardware-amenable,
lightweight SFU designs. With minor modifications WebRTC can
support SFUs that are better suited for hardware offload:
• As outlined above, centralized key distribution would free the
SFU from having to decrypt and re-encrypt packets, while still
allowing for standard encryption and message authentication
mechanisms. If end-to-end encryption of payloads is desired, a
double encryption scheme with keys directly exchanged among
clients can be used [19, 57]. This approach would allow the SFU
to operate on encrypted payloads such that the SFU does not
need to be trusted with payloads, which can be desirable.

• If RTCP did not use packets that combine reports across multiple
streams, the SFU could process and forward RTCP packets in
hardwaremore easily without needing to parse deep into packets
or splitting packets in the data plane.

• If the SFU could indicate via the AV1 dependency descriptor
which decode target should currently be active for a given stream,
the receiver could ignore all packets (even in the presence of
sequence skips) not part of the current decode target. This would
eliminate the need for sequence rewriting.

• Compression and dynamic variable-length fields can be diffi-
cult to handle in hardware. Following the trend of hardware
offloading and co-designing software and hardware, it is worth
re-exploring the design and implementation of more hardware-
amenable protocols (e.g., for AV1 and RTCP), shifting the bal-
ance towards offloading computation and less on bandwidth
optimization. In fact, the community has seen ideas in the past,
for example using fixed-length header fields in BGP routing [28].

9.2 Scallop for Commercial Deployment
Extended VCA Use Cases. Video-conferencing applications of-
ten implement additional features that need direct media access;
these include live transcription and visual effects (e.g., virtual back-
grounds or “funny hats”) [8]. In most cases, including Zoom, such
functions are implemented at SFUs, and this requires decryption of
client’s media stream at the SFU. Because Scallop operates on en-
crypted and encoded media, these features cannot be implemented
in Scallop’s data plane. We argue, however, that these features
should be implemented at clients, not SFUs, to preserve end-to-end
encryption. WebRTC provides APIs for this [10, 57].
SFU cascading. SFU cascading is a technique of deploying SFUs
in a hierarchical manner to improve the scalability of VCA infras-
tructure by aggregation of media streams at higher-level SFUs. We
argue our system is not an alternative to or a competing solution
with SFU cascading. In fact, the approaches are independent and
could be combined to improve the scalability further. Our con-
trol/data plane split has the potential to simplify deploying many
SFU data planes under the management of a single controller. Our

current system is already designed in this way and would provide
the architectural framework to enable such SFU topologies.

10 Related Work
Studies on Video-Conferencing Applications. Baset and Schulz-
rinne’s analysis of Skype [1] provided first insights about RTC sys-
tems. In addition to earlier studies on VCAs [33, 43], recent papers
conducted extensive QoE-centric measurement studies of differ-
ent VCAs such as Zoom, Meet, Teams, and WebEx [4, 36]. In the
context of this work, these studies shed light on the infrastructure,
geographic location, latency, bit rate and network utilization, and
their impact on QoE. Choi et al. did a more longitudinal analysis of
Zoom [6] while Michel et al. did an in-depth study of Zoom in a
production network, demystifying Zoom’s packet format [41].
Handling Video-Conferencing Traffic in the Data Plane. Ed-
wards and Ciarleglio showcased a programmable data plane that
can perform “clean” video switching of uncompressed video flows
based on RTP timestamps [13]. This demo solely focuses on show-
ing the capability of parsing RTP headers and making forwarding
decisions based on RTP timestamp values, rather than offloading
any SFU functionality. Other work showed that programmable data
planes and eBPF/XDP programs running on servers can help with
the NAT traversal functionality in VCAs [26, 34]. Our work goes
way beyond this and enables the data plane to also perform packet
replication and selective forwarding of actual RTP media traffic.
The perhaps closest work [55] builds an SFU in software (bmv2)
using P4 but does not actually implement a functional VCA. It gen-
erates dummy packets with port numbers distinguishing media
layers and the design ignores all challenges related to feedback.

11 Conclusion
Taken together, our SDN-inspired SFU-switch design is driven by
the key insight that most SFU tasks are, in fact, replicating and
dropping media packets. Unlike traditional infrastructure where an
SFU server takes care of everything, our prototype comprises an
efficient programmable data plane that processes media packets at
line rate and a software control plane that handles infrequent tasks
such as signaling, quality monitoring, and rate adaptation. Our pro-
totype is built with a real programmable switch (Intel Tofino2 [21])
and delivers 7-422× improved scalability over a 32-core SFU server.

Acknowledgements
We thank our shepherd, Ilias Marinos, and the anonymous review-
ers for their insightful feedback. We are grateful to David Hay, John
Sonchack, and Sophia Yoo for their help with Scallop’s BlueField-3
implementation and the many engineers at NVIDIA and Juniper
Networks for the fruitful discussions on the suitability of Scallop
to their hardware platforms. We also thank Nate Foster for his ad-
vice regarding alternative packet-processing platforms for Scallop.
Finally, we thank Princeton University’s Office of Information Tech-
nology, Office of Institutional Research, and the Institutional Review
Board for enabling us to study campus traffic. This work is sup-
ported by DARPA grant HR0011-20-C-0107 and by the NSF under
CNS grants 2147909, 2151630, 2140552, 2153449, and 2152313.

SIGCOMM ’25, September 8–11, 2025, Coimbra, Portugal Oliver Michel, Satadal Sengupta, Hyojoon Kim, Ravi Netravali, and Jennifer Rexford

References
[1] Salman A. Baset and Henning G. Schulzrinne. 2006. An Analysis of the Skype

Peer-to-Peer Internet Telephony Protocol. In IEEE INFOCOM. IEEE, New York,
NY, USA, 1–11. doi:10.1109/INFOCOM.2006.312

[2] Francesco Bronzino, Paul Schmitt, Sara Ayoubi, Guilherme Martins, Renata Teix-
eira, and Nick Feamster. 2020. Inferring Streaming Video Quality from Encrypted
Traffic: Practical Models and Deployment Experience. SIGMETRICS Perform. Eval.
Rev. 48, 1 (2020), 27–28. doi:10.1145/3410048.3410064

[3] Gaetano Carlucci, Luca De Cicco, Stefan Holmer, and Saverio Mascolo. 2017.
Congestion Control for Web Real-Time Communication. IEEE/ACM Transactions
on Networking 25, 5 (2017), 2629–2642. doi:10.1109/TNET.2017.2703615

[4] Hyunseok Chang, Matteo Varvello, Fang Hao, and Sarit Mukherjee. 2021. Can
You See Me Now? A Measurement Study of Zoom, Webex, and Meet. In ACM
Internet Measurement Conference. ACM, New York, NY, USA, 216–228. https:
//doi.org/10.1145/3487552.3487847

[5] Xiaoqi Chen. 2020. Implementing AES encryption on programmable switches via
scrambled lookup tables. In ACM SIGCOMMWorkshop on Secure Programmable
Network Infrastructure. 8–14.

[6] Albert Choi, Mehdi Karamollahi, Carey Williamson, and Martin Arlitt. 2022.
Zoom Session Quality: A Network-Level View. In Passive and Active Network
Measurement. Springer, Berlin, Germany, 555–572.

[7] NTT Communications. 2015. A Study of WebRTC Security. Retrieved January
28, 2025, https://webrtc-security.github.io.

[8] The World Wide Web Consortium. 2023. W3C Editor’s Draft: WebRTC Extended
Use Cases. Retrieved July 24, 2025, from https://w3c.github.io/webrtc-nv-use-
cases.

[9] The World Wide Web Consortium. 2024. W3C Working Draft: Scalable
Video Coding (SVC) Extension for WebRTC. Retrieved July 24, 2025, from
https://www.w3.org/TR/webrtc-svc.

[10] The World Wide Web Consortium. 2025. W3C Editor’s Draft: WebRTC Encoded
Transform. Retrieved July 24, 2025, from https://w3c.github.io/webrtc-encoded-
transform.

[11] Luca De Cicco, Gaetano Carlucci, and Saverio Mascolo. 2017. Congestion Control
for WebRTC: Standardization Status and Open Issues. IEEE Communications
Standards Magazine 1, 2 (2017), 22–27. doi:10.1109/MCOMSTD.2017.1700014

[12] Peter de Rivaz and Jack Haughton. 2019. AV1 Bitstream and Decoding Process
Specification. Retrieved July 24, 2025, from https://aomediacodec.github.io/av1-
spec/av1-spec.pdf.

[13] Thomas G. Edwards and Nick Ciarleglio. 2017. Timestamp-Aware
RTP Video Switching Using Programmable Data Plane. ACM
SIGCOMM ’17 Industrial Demos, Retrieved April 12, 2023, from
https://conferences.sigcomm.org/sigcomm/2017/files/program-industrial-
demos/sigcomm17industrialdemos-paper2.pdf.

[14] Mathis Engelbart and Jörg Ott. 2021. Congestion Control for Real-Time Media
over QUIC. InWorkshop on Evolution, Performance and Interoperability of QUIC
(Virtual Event, Germany) (EPIQ ’21). Association for Computing Machinery, New
York, NY, USA, 1–7. doi:10.1145/3488660.3493801

[15] Anja Feldmann, Oliver Gasser, Franziska Lichtblau, Enric Pujol, Ingmar Poese,
Christoph Dietzel, Daniel Wagner, Matthias Wichtlhuber, Juan Tapiador, Narseo
Vallina-Rodriguez, Oliver Hohlfeld, and Georgios Smaragdakis. 2020. The Lock-
down Effect: Implications of the COVID-19 Pandemic on Internet Traffic. In ACM
Internet Measurement Conference (Virtual Event, USA). ACM, New York, NY, USA,
1–18. doi:10.1145/3419394.3423658

[16] Sadjad Fouladi, John Emmons, Emre Orbay, Catherine Wu, Riad S. Wahby, and
Keith Winstein. 2018. Salsify: Low-Latency Network Video through Tighter Inte-
gration between a Video Codec and a Transport Protocol. In USENIX Networked
Systems Design and Implementation (Renton, WA, USA). USENIX Association,
USA, 267–282.

[17] Boni García, Micael Gallego, Francisco Gortázar, and Antonia Bertolino. 2019.
Understanding and estimating quality of experience in WebRTC applications.
Computing 101, 11 (Nov. 2019), 1585–1607. doi:10.1007/s00607-018-0669-7

[18] Alex Gouaillard. 2018. Breaking Point: WebRTC SFU Load Testing. Retrieved
July 24, 2025, from https://webrtchacks.com/sfu-load-testing/.

[19] Philipp Hancke. 2020. True End-to-End Encryption with WebRTC Insertable
Streams. Retrieved July 22, 2025 from https://webrtchacks.com/true-end-to-end-
encryption-with-webrtc-insertable-streams.

[20] Todd Hoff. 2020. A Short On How Zoom Works. Retrieved July 24, 2025, from
http://highscalability.com/blog/2020/5/14/a-short-on-how-zoom-works.html.

[21] Intel Corp. 2022. Intel Tofino. Retrieved July 24, 2025,
from https://www.intel.com/content/www/us/en/products/network-
io/programmable-ethernet-switch/tofino-series.html.

[22] ITU-T. 2001. End-user multimedia QoS categories. Recommendation G.1010.
International Telecommunication Union, Geneva, Switzerland.

[23] ITU-T. 2003. One-way transmission time. Recommendation I.371. International
Telecommunication Union, Geneva, Switzerland.

[24] Mukund Iyengar. 2021. WebRTC Architecture Basics: P2P, SFU,
MCU, and Hybrid Approaches. Retrieved July 24, 2025, from

https://medium.com/securemeeting/webrtc-architecture-basics-p2p-sfu-
mcu-and-hybrid-approaches-6e7d77a46a66.

[25] Jitsi 2023. Jitsi Video Bridge - Open Source Video Conferencing for Developers.
Retrieved July 24 2025, from https://jitsi.org/jitsi-videobridge/.

[26] Elie F. Kfoury, Jorge Crichigno, and Elias Bou-Harb. 2020. Offloading Media
Traffic to Programmable Data Plane Switches. In IEEE International Conference
on Communications (ICC). 1–7. doi:10.1109/ICC40277.2020.9149159

[27] Duckwoo Kim, SeungEon Lee, and KyoungSoo Park. 2020. A case for SmartNIC-
accelerated private communication. In Asia-Pacific Workshop on Networking
(APNet). 30–35.

[28] Firat Kiyak, Brent Mochizuki, Eric Keller, and Matthew Caesar. 2009. Better by a
HAIR: Hardware-amenable internet routing. In IEEE International Conference on
Network Protocols. 83–92. doi:10.1109/ICNP.2009.5339694

[29] Shaguftha Zuveria Kottur, Krishna Kadiyala, Praveen Tammana, and Rinku Shah.
2022. Implementing ChaCha based crypto primitives on programmable Smart-
NICs. In ACM SIGCOMMWorkshop on Formal Foundations and Security of Pro-
grammable Network Infrastructures. 15–23.

[30] Xsight Labs. 2025. X-ISA: SIMPLE IPV4. Diving into the Nitty-Gritty: Im-
plementing a Basic Network Cross-Connect. Retrieved May 5, 2025, from
https://xsightlabs.com/wp-content/uploads/2025/04/XISA-Cross-Connect.pdf.

[31] Xsight Labs. 2025. X-ISA: SIMPLE IPV4. Diving into the Nitty-Gritty: Im-
plementing a Trivial IPv4 Switching Program. Retrieved May 5, 2025, from
https://xsightlabs.com/wp-content/uploads/2025/04/XISA_Simple_IPv4.pdf.

[32] Xsight Labs. 2025. X2 Programmable Ethernet Switch. Retrieved Jun 27, 2025,
from https://xsightlabs.com/products/.

[33] Insoo Lee, Jinsung Lee, Kyunghan Lee, Dirk Grunwald, and Sangtae Ha. 2021.
Demystifying Commercial Video Conferencing Applications. In ACM Inter-
national Conference on Multimedia. ACM, New York, NY, USA, 3583–3591.
https://doi.org/10.1145/3474085.3475523

[34] Tamás Lévai, Balázs Edvárd Kreith, and Gábor Rétvári. 2023. Supercharge
WebRTC: Accelerate TURN Services with EBPF/XDP. InWorkshop on EBPF and
Kernel Extensions (New York, NY, USA) (eBPF ’23). Association for Computing
Machinery, New York, NY, USA, 70–76. doi:10.1145/3609021.3609296

[35] Luis López, Miguel París, Santiago Carot, Boni García, Micael Gallego, Francisco
Gortázar, Raul Benítez, Jose A. Santos, David Fernández, Radu Tom Vlad, Iván
Gracia, and Francisco Javier López. 2016. Kurento: The WebRTC Modular Media
Server. In ACM International Conference on Multimedia (MM ’16). ACM, New
York, NY, USA, 1187–1191. doi:10.1145/2964284.2973798

[36] Kyle MacMillan, Tarun Mangla, James Saxon, and Nick Feamster. 2021. Measur-
ing the Performance and Network Utilization of Popular Video Conferencing
Applications. In ACM Internet Measurement Conference. ACM, New York, NY,
USA, 229–244. https://doi.org/10.1145/3487552.3487842

[37] Markets and Markets 2023. Video Conferencing Market Forecast & Statis-
tics. Retrieved July 24, 2025, from https://www.marketsandmarkets.com/Market-
Reports/video-conferencing-market-99384414.html.

[38] Philip Matthews, Jonathan Rosenberg, DanWing, and RohanMahy. 2008. Session
Traversal Utilities for NAT (STUN). RFC 5389. doi:10.17487/RFC5389

[39] Mediasoup 2025. MediaSoup - Cutting Edge WebRTC Video Conferencing. Re-
trieved July 24, 2025, from https://mediasoup.org.

[40] Rick Merritt. 2019. Broadcom Throws Programmable Switch. Retrieved June 27,
2025 from https://www.eetimes.com/broadcom-throws-programmable-switch.

[41] Oliver Michel, Satadal Sengupta, Hyojoon Kim, Ravi Netravali, and Jennifer
Rexford. 2022. Enabling Passive Measurement of Zoom Performance in Pro-
duction Networks. In ACM Internet Measurement Conference (Nice, France)
(IMC ’22). Association for Computing Machinery, New York, NY, USA, 244–260.
doi:10.1145/3517745.3561414

[42] Mozilla. 2025. WebRTC API: Signaling and video calling. Re-
trieved January 28, 2025, from https://developer.mozilla.org/en-
US/docs/Web/API/WebRTC_API/Signaling_and_video_calling.

[43] Antonio Nistico, DenaMarkudova, Martino Trevisan, MichelaMeo, and Giovanna
Carofiglio. 2020. A comparative study of RTC applications. In IEEE International
Symposium on Multimedia. IEEE, New York, NY, USA, 1–8.

[44] Karl Norrman, David McGrew, Mats Naslund, Elisabetta Carrara, and Mark
Baugher. 2004. The Secure Real-time Transport Protocol (SRTP). RFC 3711.
doi:10.17487/RFC3711

[45] NVIDIA. 2025. NVIDIA BlueField Networking Platform. Retrieved Jun 27, 2025,
from https://www.nvidia.com/en-us/networking/products/data-processing-unit.

[46] Isaac Oliveira, Emídio Neto, Roger Immich, Ramon Fontes, Augusto Neto, Fabrí-
cio Rodriguez, and Christian Esteve Rothenberg. 2021. Dh-aes-p4: on-premise
encryption and in-band key-exchange in P4 fully programmable data planes. In
IEEE Conference on Network Function Virtualization and Software Defined Networks
(NFV-SDN). IEEE, 148–153.

[47] Nilabja Roy, AbhishekDubey, andAniruddhaGokhale. 2011. Efficient Autoscaling
in the Cloud Using Predictive Models for Workload Forecasting. In IEEE Interna-
tional Conference on Cloud Computing. 500–507. doi:10.1109/CLOUD.2011.42

[48] Dominik Scholz, Andreas Oeldemann, Fabien Geyer, Sebastian Gallenmüller,
Henning Stubbe, Thomas Wild, Andreas Herkersdorf, and Georg Carle. 2019.
Cryptographic hashing in P4 data planes. In ACM/IEEE Symposium on Architec-
tures for Networking and Communications Systems (ANCS). IEEE, 1–6.

https://doi.org/10.1109/INFOCOM.2006.312
https://doi.org/10.1145/3410048.3410064
https://doi.org/10.1109/TNET.2017.2703615
https://doi.org/10.1145/3487552.3487847
https://doi.org/10.1145/3487552.3487847
https://doi.org/10.1109/MCOMSTD.2017.1700014
https://doi.org/10.1145/3488660.3493801
https://doi.org/10.1145/3419394.3423658
https://doi.org/10.1007/s00607-018-0669-7
https://doi.org/10.1109/ICC40277.2020.9149159
https://doi.org/10.1109/ICNP.2009.5339694
https://doi.org/10.1145/3474085.3475523
https://doi.org/10.1145/3609021.3609296
https://doi.org/10.1145/2964284.2973798
https://doi.org/10.1145/3487552.3487842
https://doi.org/10.17487/RFC5389
https://doi.org/10.1145/3517745.3561414
https://doi.org/10.17487/RFC3711
https://doi.org/10.1109/CLOUD.2011.42

Scalable Video Conferencing Using SDN Principles SIGCOMM ’25, September 8–11, 2025, Coimbra, Portugal

[49] Lars-Christian Schulz, Robin Wehner, and David Hausheer. 2023. Cryptographic
Path Validation for SCION in P4. In European P4 Workshop (EuroP4). 17–23.

[50] Henning Schulzrinne, Stephen L. Casner, Ron Frederick, and Van Jacobson. 2003.
RTP: A Transport Protocol for Real-Time Applications. RFC 3550. doi:10.17487/
RFC3550

[51] Henning Schulzrinne and Jonathan Rosenberg. 2002. An Offer/Answer Model
with Session Description Protocol (SDP). RFC 3264. doi:10.17487/RFC3264

[52] Heiko Schwarz, Detlev Marpe, and Thomas Wiegand. 2007. Overview of the
Scalable Video Coding Extension of the H.264/AVC Standard. IEEE Transactions
on Circuits and Systems for Video Technology 17, 9 (2007), 1103–1120. doi:10.1109/
TCSVT.2007.905532

[53] Konstantin Taranov, Benjamin Rothenberger, Adrian Perrig, and Torsten Hoefler.
2020. sRDMA–Efficient NIC-based Authentication and Encryption for Remote
Direct Memory Access. In USENIX Annual Technical Conference (ATC). 691–704.

[54] The Alliance for Open Media, AV1 Real-Time Communications Subgroup.
2023. RTP Payload Format For AV1. Retrieved October 5, 2023, from
https://aomediacodec.github.io/av1-rtp-spec/.

[55] Pavlos Tsikrikas and George Xylomenos. 2024. A Selective Forwarding Unit
Implementation in P4. In 2024 IEEE Conference on Standards for Communications
and Networking (CSCN). 181–186. doi:10.1109/CSCN63874.2024.10849740

[56] Abhishek Verma, Luis Pedrosa, Madhukar Korupolu, David Oppenheimer, Eric
Tune, and John Wilkes. 2015. Large-scale cluster management at Google with
Borg. In European Conference on Computer Systems (Bordeaux, France). Asso-
ciation for Computing Machinery, New York, NY, USA, Article 18, 17 pages.
doi:10.1145/2741948.2741964

[57] W3C. 2024. MediaStreamTrack Insertable Media Processing using Streams. Re-
trieved January 28, 2025, from https://w3c.github.io/mediacapture-transform.

[58] W3C. 2025. Identifiers for WebRTC’s Statistics API. Retrieved July 24, 2025, from
https://www.w3.org/TR/webrtc-stats.

[59] Liang Wang, Hyojoon Kim, Prateek Mittal, and Jennifer Rexford. 2023. Raven:
Stateless rapid IP address variation for enterprise networks. Privacy Enhancing
Technologies Symposium (PETS) (2023).

[60] Mingran Yang, Alex Baban, Valery Kugel, Jeff Libby, Scott Mackie, Swamy
Sadashivaiah Renu Kananda, Chang-Hong Wu, and Manya Ghobadi. 2022. Us-
ing Trio: Juniper networks’ programmable chipset-for emerging in-network
applications. In ACM SIGCOMM Conference. 633–648.

[61] Sophia Yoo and Xiaoqi Chen. 2021. Secure keyed hashing on programmable
switches. In ACM SIGCOMMWorkshop on Secure Programmable network INfras-
tructure. 16–22.

[62] Huanhuan Zhang, Anfu Zhou, Yuhan Hu, Chaoyue Li, Guangping Wang,
Xinyu Zhang, Huadong Ma, Leilei Wu, Aiyun Chen, and Changhui Wu. 2021.
Loki: Improving Long Tail Performance of Learning-Based Real-Time Video
Adaptation by Fusing Rule-Based Models. In ACM MobiCom (New Orleans,
Louisiana). Association for Computing Machinery, New York, NY, USA, 775–788.
doi:10.1145/3447993.3483259

[63] Xiaoqing Zhu, Rong Pan, Michael A. Ramalho, and Sergio Mena de la Cruz. 2020.
Network-Assisted Dynamic Adaptation (NADA): A Unified Congestion Control
Scheme for Real-Time Media. RFC 8698. doi:10.17487/RFC8698

[64] Zoom. 2025. Zoom Account API. Retrieved January 27, 2025, from
https://developers.zoom.us/docs/api/rest/reference/account/methods/.

https://doi.org/10.17487/RFC3550
https://doi.org/10.17487/RFC3550
https://doi.org/10.17487/RFC3264
https://doi.org/10.1109/TCSVT.2007.905532
https://doi.org/10.1109/TCSVT.2007.905532
https://doi.org/10.1109/CSCN63874.2024.10849740
https://doi.org/10.1145/2741948.2741964
https://doi.org/10.1145/3447993.3483259
https://doi.org/10.17487/RFC8698

SIGCOMM ’25, September 8–11, 2025, Coimbra, Portugal Oliver Michel, Satadal Sengupta, Hyojoon Kim, Ravi Netravali, and Jennifer Rexford

0

100

200

300

Oct 17 Oct 24 Oct 31
Time

M

ee
tin

gs

Figure 21: Number of concurrent Zoom meetings hosted by
our university’s Zoom account over time.

0

100

200

300

400

500

Oct 17 Oct 24 Oct 31
Date

P

ar
tic

ip
an

ts

Figure 22: Number of concurrent Zoom participants hosted
by our university’s Zoom account over time.

Appendices are supportingmaterial that has not been peer-reviewed.

A Zoom API Data Set
The Zoom API data set used in this study was collected from our
university campus. Zoom’s API [64] is made available to account
administrators to access information about meetings, participants,
and recordings. We cooperated with our campus IT department
to continuously collect this data which was then anonymized and
aggregated to protect user privacy (see §1). The data set contains
information about 19,704 meetings that took place between October
17 and October 30, 2022. The data only includes meetings that were
hosted by our university’s Zoom account and does not contain
any information about external meetings, for example those hosted
by other institutions or individual users. The data set includes
information about the number of participants in each meeting,
the duration of the meeting, and the duration and composition of
media streams that were active during the meeting. The number
of concurrent meetings and concurrent participants over time are
depicted in Figures 21 and 22, respectively.

B Zoom Packet-Capture Data Set
The packet-level trace we use to analyze the operation of Zoom’s
SFUs was collected at two border routers on our University campus
on May 5th, 2022 over the course of 12 hours. As opposed to the API
data set (see Appendix A, this data set includes packet-level data of
all Zoom calls that traverse our campus network regardless of who
hosted the meeting. The key statistics of the trace are summarized
in Table 3. In order to reduce the data rate to be analyzed in software,
we wrote a P4 program for an Intel Tofino switch that filters Zoom
packets. During the capture, our switch processed an average of
626,069 packets per second, with an average of 43,733 per second
being Zoom traffic and, subsequently, filtered out.

Capture duration 12h
Zoom packets 1,846 M (42,733/s)
Zoom flows 583,777
Zoom data 1,203 GB (222.9 Mbit/s)
RTP media streams 59,020

Table 3: Capture Summary

0

250

500

750

1,000

1,250

Feb 08 Feb 10 Feb 12
Date

T
hr

ou
gh

pu
t [

M
bi

t/s
]

Software−based SFU

Scallop Switch Agent

Figure 23: Bytes processed during 2nd week of Feb ’23

S
en

de
r

R
ec

ei
ve

r
12

R
ec

ei
ve

r
17

0 50 100 150 200 250

0

100

200

300

0

100

200

300

0

100

200

300

Time [s]

D
at

a
R

at
e

[k
bi

t/s
]

Figure 24: Forwarded bytes of a single video stream to two
separate participants in a Zoom meeting.

In Figure 23, the blue curve shows the byte rate a software-based
SFU would have to process if it were to handle all of our campus
traffic during a week (peaks around 1250 Mbit/s), and the red curve
shows the byte rate that the Scallop switch agent would have to
process in comparison (peaks around only 4.4 Mbit/s). Even for
a powerful 40 Gbit/s server, the peak byte rate from our campus
already consumes 3.1% of its total capacity if a software-based SFU
is used. For large providers like Zoom, many such servers would,
therefore, be required to serve the thousands of campuses and
enterprises that use their services. In contrast, with Scallop, only
0.01% of the server’s capacity would be used.

C Use of Media Scalability in Zoom Packet
Trace

Scalable Video Coding (SVC) enables efficient video transmission
by encoding a stream into multiple layers of increasing quality,
allowing selective adaptation based on network conditions. An SFU
can reduce the frame rate (or resolution) by dropping frames from

Scalable Video Conferencing Using SDN Principles SIGCOMM ’25, September 8–11, 2025, Coimbra, Portugal

Platform Category Support for Scallop’s Data-Plane Features
Deep and flexible parsing Scalable replication Sequence-Number rewriting

Intel Tofino2 [21] Switch Yes Yes Yes
Juniper Trio [60] Switch Yes Yes Yes
Xsight Labs X2 [32] Switch Yes Yes Yes
NVIDIA BlueField-3 [45] SmartNIC Yes Yes, but only via mirroring Yes, with workaround (see E)

Table 4: Comparison of packet-processing products by support for Scallop’s key data-plane features.

S
en

de
r

R
ec

ei
ve

r
17

150 175 200 225 250

0

50

100

150

0

50

100

150

Time [s]

D
at

a
ra

te
 [k

bi
t/s

]

Pkt. Type 0x50ffff 0x57ffff 0x5f0000 0x5f7777

Figure 25: Forwarded bytes per scalability layer of a single
video stream to a single participant in a Zoom meeting.

BABA

AA

A
A

A

30
fps

30
fps

30
fps

15
fps

BABA
BABA

Replication
Selective Forwarding

BA “B depends on A”

Figure 26: Media forwarding when using SVC.

the enhancement layers, effectively limiting playback to a lower
frame rate while maintaining smooth video delivery. Figure 26
shows an example where, by discarding every other frame, the SFU
decreases the temporal resolution, reducing bandwidth usage while
preventing playback freezes.

To give a concrete example of how Zoom adapts media streams
at their SFUs, we analyze a meeting that is part of our Zoom packet
trace introduced in Appendix B. Figure 24 shows an example of
a participant’s outgoing video stream and the corresponding in-
coming streams at two other participants. Time zero denotes the
start of the meeting at which the sending participant starts trans-
mitting a low-bitrate video stream which then increases in bitrate
at around 20 seconds into the meeting. Presumably in response to
constrained downlink capacity, the SFU then reduces the bitrate for-
warded to participant 12 (at around 110s) and the bitrate forwarded
to participant 17 (at around 200s), respectively.

Zoom uses the Real-time Transport Protocol (RTP) [50] encap-
sulated in custom, proprietary headers over UDP to transmit me-
dia [41]. The RTP header carries a sequence number and various
extension fields in each packet that is not being changed by Zoom’s
servers during forwarding. As a result, we can exactly specify which
packets are forwarded to a given participant by the SFU and which

are not. We further observed that Zoom’s RTP packets carry var-
ious RTP extension headers. One header extension field carries
a three-byte value that appears to be a bit mask. The packets in
the outgoing media streams typically carry between two and six
different values for this field across their packets which we for now
denote as the packet type. We observe that the SFU only forwards
either all or a strict subset of these packet types to a given receiver.

Figure 25 shows the bit rate of the same media stream as pre-
viously shown broken down by packet type. We can see that the
adaptation of the media stream received by participant 17 around
second 200 is achieved by changing the set of packet types for-
warded to this client. This is consistent with previous observations
that Zoom uses media scalability through Scalable Video Coding
(SVC) and Simulcast [9, 20, 41, 52] and leverages this field to in-
dicate to the SFU which layer of a scalable stream the respective
packet carries. It is common to encode the type of scalability layer
in the RTP header [52] which is transmitted in clear text; similar
header extensions exist, for example, for the AV1 codec [12, 54]
which we leverage in this work.

D Support for Scallop on Packet-Processing
Platforms

As discussed in Section 4, Scallop’s data plane requires three main
capabilities in the hardware: (1) deep parsing into RTP headers, (2)
scalable replication of packets, and (3) statefulmemory for sequence-
number rewriting. We investigated products from different vendors
to understand the support for these capabilities on various packet-
processing platforms. Among these products, were the Intel Tofino
line of switches [21], the Juniper Trio switch [60], the X2 switch
from Xsight Labs [32], and the NVIDIA BlueField-3 SmartNIC or
Data Processing Unit (DPU) [45]. Table 4 provides a matrix of these
hardware targets versus supported features of Scallop, to the best
of our understanding. We proceed to implement Scallop’s data
plane on the hardware pipeline of two of these platforms—a rep-
resentative switch (Intel Tofino2), and a representative SmartNIC
(NVIDIA BlueField-3). Finally, we note that many other hardware
platforms are programmable, even if their vendors do not expose
that programmability to third-party programmers. For example,
Broadcom chipsets can be programmed using the Network Pro-
gramming Language (NPL) [40]. Using the insights and designs in
our paper, vendors can create support for SFUs as a service of their
switch or NIC devices, even if researchers or third-party software
developers cannot.
Scallop on programmable hardware switch platforms. Scallop
works and is highly performant on the Intel Tofino2 switch, as
illustrated in Section 8. Our investigation of the alternative switch
platforms revealed the following. The Juniper Trio has a highly

SIGCOMM ’25, September 8–11, 2025, Coimbra, Portugal Oliver Michel, Satadal Sengupta, Hyojoon Kim, Ravi Netravali, and Jennifer Rexford

parallelized run-to-completion model (as opposed to the Tofino’s
pipeline-based approach)where each packet is processed—including
parsing and replication—using native microcode by an individual
thread. Each thread has access to a common pool of GBs of stateful
memory via a cross-bar. Using these features, the Trio should be
able to process thousands of video-conferencing packets simultane-
ously in hardware and can handle Tbps-scale traffic with tens to
hundreds of microseconds in packet-processing latency. These ca-
pabilities make it a suitable alternative hardware target for Scallop.
We have limited understanding of the X2 programmable switch at
the time this paper is written. However, based on our interactions
with the vendor’s engineers, and our review of their open-source
examples [30, 31], we believe it should provide features and per-
formance similar to the Tofino2, including support for 12.8 Tbps
traffic.
Scallop on SmartNICplatforms.As discussed in Section 4, production-
scale SFUs are currently deployed on servers (entirely in software)
in data centers. If such a server comes equipped with a SmartNIC,
Scallop can be leveraged to offload much of the server’s work to the
SmartNIC’s accelerated hardware pipeline, making the SmartNIC.
However, SmartNICs such as the NVIDIA BlueField-3 are limited
in many ways compared to the high-speed programmable switches
discussed above. First, the BlueField-3’s packet- processing capacity
is a few hundred Gbps, compared to the Tbps capacity of switches.
Second, the BlueField-3’s parser is considerably less flexible than
the Tofino’s, making it challenging to parse deep into the RTP
header extensions as required by Scallop. Third, unlike the Tofino’s
Packet Replication Engine (PRE), BlueField-3 does not provide hard-
ware support for generating multiple replicas of a packet scalably.
Fourth, the BlueField-3’s hardware pipeline does not allow access to
register arrays, making it difficult to implement stateful operations
directly in the hardware.
Scallop Hardware Prototype on BlueField-3. Nevertheless, the
BlueField-3 does have an assortment of strong features that allow us
to work around some of these limitations. First, the BlueField-3 spec-
ifies the DOCA Pipeline Language (DPL), which is NVIDIA’s target-
specific P4 language, to program their hardware switch pipeline.
This allows developers familiar with P4 to leverage its hardware
capabilities. Second, the BlueField-3 implements a FlexParser, which
is a flexible parser to allow programmability in the parsing logic.
The fixed parser parses until the transport layer, and then allows
the FlexParser to take over the rest of the parsing. However, the
FlexParser has several limitations that don’t allow us to parse RTP
packets to the required depth. Fortunately, the BlueField-3 has a
reparse feature that allows developers to retain the results of partial
parsing in one pass, and re-invoke parsing from that point on in a
new pass. This feature is is different from and more efficient than
recirculation—since the BlueField-3 follows a run-to-completion
model as opposed to the Tofino’s fixed pipeline model, it allows
the same functions (e.g., parsing) to process the packet multiple
times in a single ingress-to-egress pass. Using the FlexParser and
the reparse features, we were able to parse sufficiently deep into the
RTP header extensions. Third, the BlueField-3 has a mirror extern
that creates one replica of a packet at a time. Using this extern and
packet recirculations, we were able to implement SFU-scale repli-
cation, as discussed in Section 6. Finally, unlike the Tofino, it has

0.00

0.05

0.10

0.15

0.20

0.0 0.2 0.4 0.6 0.8 1.0
Loss Rate

E
rr

. R
T

X
 R

at
e

Figure 27: Retransmission Overhead with S-LR.

an add_entry extern that allows the data plane to insert records di-
rectly into a match-action table. Using a combination of this feature,
match-action tables populated from the control plane, and recircu-
lations, we were able to implement our sequence number-rewriting
logic directly in the hardware pipeline.

E Parsing RTP Extension Headers
Below, we describe our parsing logic for the Intel Tofino2 pro-
grammable switch. We implement a parsing tree with the same
functionality on the BlueField-3 SmartNIC using its FlexParser and
reparse features, as described in Appendix D.
Parsing Deep into RTP Headers on Tofino2. After parsing
the Ethernet, IP, and UDP headers, we use the destination IP and
port numbers to determine whether the packet is destined for the
SFU. If so, we lookahead into the first 4 bits of the UDP payload
to determine whether the packet resembles an RTP or an RTCP
packet. If the packet is an RTP media packet or an RTCP sender
report, we mark it for replication; otherwise, we forward it. Rate
adaptation in SVC works by dropping packets that correspond
to the higher quality layers of an AV1 media stream, as needed.
Determining what quality layer a packet belongs to requires parsing
into the RTP header extensions beyond the RTP header, identifying
the header extension corresponding to the AV1 protocol (if present),
and parsing the AV1 header2 to extract its dependency template ID,
which when combined with the control plane’s knowledge of the
mapping between dependency templates and quality layers, tells
us the quality layer of the packet itself. Parsing deep into the RTP
header extensions to find the AV1 header requires handling variable-
length and variable-position headers which is tricky because the P4
parser on Tofino relies on a largely static parse graph. We solve this
by (i) implementing a depth-aware parsing tree for the RTP header
extensions, where for every depth in the tree, we have a landing
state that determines—using the lookahead function—what type
of header element (one-byte header, two-byte header, or padding)
comes next, and (2) using the Tofino’s ParserCounter feature to
track whether there are header bytes left to parse.

F Sequence-Number Rewriting in Hardware
Data Planes

We implement Scallop’s sequence number-rewriting logic on both
the Tofino2 and the BlueField-3 platforms. In Appendix D, we de-
scribe the features we leverage to make our prototype work on the
BlueField-3. Below, we describe aspects of our Tofino2 prototype.

2We implement a Wireshark plugin to parse RTP header extensions to identify and
display AV1 headers which we open-source.

Scalable Video Conferencing Using SDN Principles SIGCOMM ’25, September 8–11, 2025, Coimbra, Portugal

Collision-free hash tables. Scallop stores per-stream state in a
Stream Tracker table. The control plane (switch agent) provides a
unique, collision-free hash-based index for each new stream via
match-action rules in a Stream Index table: this helps use the Stream
Tracker table’s memory maximally.
Per-stream state. The egress pipeline stores four hash tables for
the S-LM heuristic or eight hash tables for the S-LR heuristic on the
Tofino to enable sequence number rewriting The hash tables are
always accessed in order. Each active rate-adapted streammaintains
state across all the hash tables in each case. Since the indices are
managed by the control plane ensuring zero hash collisions and
immediate cleanup when a stream ends, all cells in these tables
can be used. Our experiments show that each stage of Tofino2
can support up to 143.5K such cells. Since the S-LM heuristic has

a smaller memory footprint, we can fit 16 stages of each of its
data structures inside the Tofino2, amounting to 2.3M concurrent
streams. In contrast, we can fit 3 stages of each data structure of
the S-LR heuristic, amounting to 430.5K concurrent streams.
Overhead due to Sequence Number Rewriting. In Figure 27,
we report the overhead of our sequence number rewriting heuristic
S-LR, which is designed for a high-loss environment (§7). This over-
head is in terms of the fraction of extra retransmissions triggered
by the receiver due to a mismatch between the rewritten sequence
number and the ideal rewritten sequence number an oracle may
have generated. We observe that the overhead is below 5% for up to
10% loss rate, and around 7.5% for a 20% loss rate. Even under really
high loss rates (where the meeting itself would start to become
unusable), the overhead does not exceed 20%.

	Abstract
	1 Introduction
	2 SFU Scaling Challenges
	2.1 Meeting Topologies and SFUs
	2.2 Consequences of Under-Provisioning

	3 SFUs as Packet Processors
	4 Introducing Scallop
	5 Control-Plane Prototype
	5.1 Session and Connectivity Management
	5.2 Bandwidth Estimation
	5.3 Preserving Feedback Semantics
	5.4 SVC Analysis and Layer Selection
	5.5 Handling other RTCP Messages

	6 Scalable Media Replication
	6.1 General, Memory-Efficient Replication
	6.2 Scalable replication on the Tofino2
	6.3 Scalable Replication on the Bluefield-3

	7 Transparent Rate Adaptation
	8 Evaluation
	8.1 Control Plane
	8.2 Data Plane
	8.3 Latency and Impact on Session Quality
	8.4 Scalability

	9 Discussion
	9.1 Making WebRTC Hardware-Amenable
	9.2 Scallop for Commercial Deployment

	10 Related Work
	11 Conclusion
	References
	A Zoom API Data Set
	B Zoom Packet-Capture Data Set
	C Use of Media Scalability in Zoom Packet Trace
	D Support for Scallop on Packet-Processing Platforms
	E Parsing RTP Extension Headers
	F Sequence-Number Rewriting in Hardware Data Planes

