
Draft Jan 31, 2011. Do not distribute.

A Service Access Layer, at Your Service
Michael J. Freedman, Matvey Arye, Prem Gopalan, Steven Y. Ko,

Erik Nordström, Jennifer Rexford, and David Shue − Princeton University

ABSTRACT
Historically, Internet services provided clients with access
to the resources of a particular host. However, today’s ser-
vices are no longer defined by a single host or confined to a
fixed location. Yet, the network architecture continues to im-
pose an unfortunate coupling between hosts and services by
binding connections to topology-dependent addresses, rather
than topology-independent service names—complicating ev-
erything from server replication, load balancing, and virtual-
machine migration, to client mobility and multi-homing.

In this paper, we propose a new service access layer
that redefines the interaction between the network and trans-
port layers. This layer provides the “thin waist” needed to
enable direct communication on service names, decouple
service connections from network identifiers, and enhance
the network’s awareness of service availability. We present
Serval—a complete architecture built around this new lay-
ering that handles server replication, network dynamics, and
diverse service-discovery techniques, while ensuring scala-
bility, security, and the efficient handling of churn. By run-
ning squarely above the network layer, Serval remains fully
backwards compatible with today’s IP networks. We present
the design, implementation, and evaluation of a Serval pro-
totype, focusing on datacenter replicated services, including
several real applications.

1. INTRODUCTION
The Internet is increasingly a platform for accessing

diverse services that run anywhere from racks of servers
in datacenters to computers in people’s homes, mobile
phones in pockets, and sensors in the field, and may
move at any time. Online services such as Web search,
social networks, and virtual worlds operate at massive
scales over distributed infrastructure, while localized
services like office printers, media servers, and sensors
have limited scope or constrained resources. However,
the Internet was designed at a time when networked
services were much less distributed or dynamic. This
has led to a mismatch between the traditional host-
centric model that binds connections to fixed hosts with
topology-dependent addresses and what services need
for server replication, virtual-machine migration, mo-
bility, multi-homing, or dynamic addressing.

Rather than solving the problems of service bind-
ing directly, today’s approaches manipulate the network
layer, leading to restrictive and somewhat clumsy so-
lutions. For example, in today’s online services, load

balancers repurpose IP addresses to refer to a group
of (possibly changing) service instances. Unfortunately,
this requires all client traffic (rather than just the ini-
tial connection request) to traverse the load balancers.
Techniques for handling mobility and migration are ei-
ther limited to a single layer-2 domain or introduce “tri-
angle routing”. Hosts typically cannot spread a con-
nection over multiple interfaces, and switching between
interfaces requires applications to initiate new connec-
tions. Such inefficient “work arounds” introduce un-
wanted complexity to service design and management.

One way to address these shortcomings is a “clean
slate” redesign of the Internet architecture. A complete
redesign may, in fact, be necessary to address core prob-
lems like poor network-layer security and limited sup-
port for multipath routing. However, we argue that the
problems faced by modern services can be resolved with-
out changing either today’s network layer or overall ar-
chitecture, but rather by redefining how the layers above
the network layer relate to the underlying network. We
argue that a new service access layer—between the net-
work and a modified transport layer—is the right place
to provide a minimal interface to unified functionality
for service resolution and connection management.

The service access layer is part of our larger Serval
architecture that allows applications to communicate
directly on service names. Serval resolves an appro-
priate service instance at its current location, main-
tains flow affinity to a service instance across network
and address changes, and improves service visibility in
the network. Serval introduces a refurbished network
stack, a new service-oriented BSD sockets API, and
scalable service-level anycast spanning multiple layer-3
domains. Yet, Serval is designed to minimize changes to
applications. We have implemented Serval and ported
ten different applications, including web browsers (Fire-
fox) and servers (Mongoose and the Apache runtime),
and evaluated our support for virtual-machine migra-
tion and service dynamism in a replicated web tier and
a distributed in-memory caching service.

Our design of Serval rests on four key principles:
Applications should bind to service names: A

service can correspond to a group of one or more (possi-
bly changing) processes offering the same named func-
tionality at one or more geographic locations. In con-
trast, today’s application APIs bind to the location (IP
address) of a specific service instance and to the proto-
col and port that offer the service. This binding com-

plicates the management of load-balancing and replica-
tion, as IP addresses and ports have an indirect and
transient relationship to actual services.

Connections should continue across network
dynamics: Today’s services are bound to topology-
dependent addresses, restricting the ability of services
to migrate, support device mobility, and exploit multi-
homing and multipath routing. One solution is to route
on flat names [3], but such routing does not scale as
well as IP routing. Instead, ongoing service connections
should have a dynamic relation to underlying network
addresses, (re)negotiating them as necessary.

Offered services should be registered explic-
itly and promptly: Churn in the location and avail-
ability of services or their instances should be reflected
promptly in registration systems. Today, applications
need to build and integrate registration themselves, even
though this need is common to all services. Beyond
improving responsiveness, explicit registration also pro-
vides better information to network administrators, sim-
plifies the management of anycast groups, and enables
easier enforcement of service security policies.

Service resolution should be late-binding: Ser-
vices can be offered by any host, at any place, and
within any timeframe. Thus, the resolution of who is of-
fering a service, and where and when it is being offered,
should be performed as close as possible to the time of
access. Late-binding moves the decision of service res-
olution to the part of the network with more detailed
knowledge of a service, allowing more diverse and effi-
cient load-balancing and service-selection schemes.

Serval takes a holistic approach to these principles,
while previous work has embraced them only a few at
a time, as we note below. To address the first prin-
ciple, Serval applications bind to fixed-length opaque
service names that also appear in data packets. This
shields applications from the underlying network ad-
dresses and allows precise in-network service identifica-
tion for resolution and processing at line-rates (e.g., by
in-network load balancers). Prior work advocates simi-
lar opaque names [12, 14, 25, 26] and location/identifier
splits [6, 17]. Serval distinguishes itself by emphasizing
a group abstraction for service endpoints (processes),
rather than a data or host abstraction.

For the second principle, Serval properly addresses
issues related to connection management by decoupling
flow identification from service naming, where today
they are conflated (§2.1). Prior work solves some of
these issues in isolation, such as multi-homing [17, 18],
multipath [8] and migration/mobility [17, 22, 23]. Ser-
val also accounts for security issues that arise from sig-
naling changes in addresses and preserves hierarchical
and topological addressing for scalability.

The third principle is realized with built-in event-
based service registration where services are explicitly,

and automatically, registered with the network (e.g., on
socket bind). This elevates registration to a first-class
primitive, alleviating the need for additional application-
level APIs [14], while enabling quick reaction to rare
events, e.g., hard failures. Of course, application-level
monitoring can still be used for more infrequent polling,
if desired, and tied into Serval’s registration framework.
With Serval, services may register securely with a va-
riety of lookup systems, such as DNS, trackers, or in-
network load balancers; we focus on one particular de-
sign using service routers, as we detail later.

Finally, for the fourth principle, Serval resolves ser-
vice locations at the last possible moment, based on
the service name in the first packet of a connection. By
successive refinement, the packet is gradually directed
towards the part of the network with more detailed
knowledge. Late binding efficiently hides churn in the
group of replicas offering a service, and enables diverse
load-balancing policies on the first packet while forward-
ing subsequent packets directly between the client and
server. Prior work [14] similarly resolves on-path, but
requires participation from tier 1 ISPs, while Serval dis-
tributes resolution throughout the Internet.

In the next section, §2, we expand on the goals, de-
sign, and interfaces of Serval’s end-host stack. Sec-
tion 3 presents the key elements of Serval: automatic
(un)registration of service names, resolution of names
to addresses, in-band signaling for ongoing connections,
and security. Section 4 presents our implementations of
the end-host stack and in-network support for service
resolution, which we evaluate in §5. We conclude by
discussing backwards compatibility with today’s Inter-
net in §6 and related work in §7.

2. THE SERVAL END-HOST STACK
The Serval end-host stack provides a new name space

for services, abstractions for demultiplexing and, in turn,
enables protocols for service registration, resolution and
adaptation to churn. We start by discussing how to-
day’s stack constrains how services can be composed,
accessed, and adapted to network dynamics. We then
present the key abstractions of service names and service-
level anycast. We end by explaining the new “division
of labor” in the end-host stack and how it supports the
Serval protocols discussed in Section §3.

2.1 Overcoming the Limitations of Today’s Net-
work Stack

Today’s services are too closely bound to spe-
cific interfaces and addresses. Most sockets are
associated with a single network interface through ei-
ther an explicit bind or by implicitly relying on the
interface’s IP address for demultiplexing. As such, an
interface address cannot change over time without dis-
rupting ongoing communication. In addition, applica-

2

tions sometimes cache addresses, instead of re-resolving
application-level names through DNS, leading to slow
failover and clumsy load balancing.

Today’s port numbers are semantically over-
loaded. TCP/UDP ports conflate three purposes: (i)
they are implicitly used to differentiate between service
endpoints (“www.example.com:80”), (ii) middleboxes use
ports to identify application-level protocols (“traffic to
destination port 80 uses HTTP”), and (iii) end-host net-
work stacks demultiplex incoming packets to an exist-
ing socket on the packet’s “5-tuple”, which includes port
numbers. This leads to unfortunate limitations for, e.g.,
virtual hosting (which today must demultiplex on appli-
cation layer domain names) and mobility. When an end-
point moves, and thus changes address, its peer needs a
unique and fixed identifier to associate the old connec-
tion with the new location. However, ports cannot fill
this role, since many connections may simultaneously
be bound to, e.g., port 80 on the server end. (For this
very reason, TCP Migrate [22] needs to exchange a to-
ken that remains fixed across the life of a connection.)

Serval decouples names to explicitly identify
services and untangle connections from network
interface addresses. Service names, flow demultiplex-
ing keys, and application-level protocols are all explic-
itly named with different identifiers and are indepen-
dent of host addresses. First, we name services using
service identifiers (or serviceIDs for short). Applica-
tions can bind on, connect to, and otherwise commu-
nicate with serviceIDs directly, without specifying an
address or port. A serviceID’s mapping to multiple in-
terfaces and addresses can change during the life of a
socket without constraints. Interfaces can obtain new
addresses when moving to new attachment points, and
each administrative domain can assign addresses from
its own blocks.

Second, we demultiplex flows to non-listening sock-
ets using a host-unique per-flow identifier (flowID). By
including flowIDs, incoming packets can be associated
with the appropriate flow contexts across a variety of
dynamic events: flows directed to alternate interfaces
and interfaces that change their network attachments
points (and hence addresses) on either side of the flow.
Finally, application protocols are optionally specified
in transport headers. This identifier particularly aids
third-party networks and service-oblivious middleboxes,
such as directing HTTP traffic to transparent web caches
unfamiliar with the serviceID, while avoiding on-path
deep-packet inspection. Application endpoints are free
to elide or misrepresent this identifier, however.

2.2 Service Names with a Group Abstraction
Serval’s fixed-length, machine-readable serviceIDs are

location-independent service names that each map to
a group of one or more functionally-equivalent service

endpoints (instances). Serval provides the abstraction
of service-level anycast, where all packets in the same
“connection” reach the same service instance. This any-
cast abstraction applies to reliable byte streams and un-
reliable datagrams, which are both connection-oriented
by default (although Serval supports unconnected data-
grams as well). Either way, after the first packet ar-
rives at a service instance, subsequent packets should
reach the same instance because a client often estab-
lishes transport and application-level state with the in-
stance to which it connects.

A serviceID could name a single SSH daemon, a clus-
ter of printers on a LAN, a set of peers distributing a
common file, a replicated partition in a back-end storage
system, or an entire distributed web service. Services
can optionally assign serviceIDs to individual instances
within a group that need to be referenced directly (e.g.,
a sensor in a particular location, or the leader of a Paxos
consensus group). Ultimately, system designers and op-
erators identify the functionality to name.

Like other architectures with semantically opaque names,
Serval does not dictate how serviceIDs are learned, but
envisions that they are typically sent or copied between
applications, much like URIs. We purposefully do not
specify how to map human-readable names to service-
IDs, which avoids the legal tussle over naming [4, 25].
Users may, based on their own trust relationships, turn
to directory services, search engines, or social networks
to resolve names to serviceIDs. We assume a 256-bit
serviceID namespace which is assigned to Service Sys-
tems (SSes) in blocks, overseen by a central issuing-
authority (e.g., IANA). This ensures that the authori-
tative SS of a service can be identified by a serviceID
prefix. This SS prefix is followed by a number of bits
that the SS can further subdivide and assign, in or-
der to build scalable service resolution hierarchies. The
serviceID ends with an optional 160-bit self-certifying
bitstring [15]. The self-certification makes it easy to
verify the authority of a host that provides a particular
service, as we discuss in §3.4.

2.3 Rewiring the End-Host Network Stack
Serval rethinks the “division of labor” in the end-host

stack, including the main identifiers at each layer:
Application layer. In Serval, applications bind to

serviceIDs and do not see network addresses, as illus-
trated in Figure 1 (showing the state for client c con-
nected to remote serviceID X). Hence our new division
of labor moves location awareness from the application
layer down the stack to the service access layer.1 Serval
eases adoption by fitting within the BSD sockets API.
A new protocol family (PF_SERVAL) and sockaddr type

1Java and WebSockets [27] also hide addresses (by acting on
hostnames or URLs); however, these simply perform DNS
resolutions before accessing regular BSD sockets.

3

TCP/IP Serval
s = socket(PF_INET) s = socket(PF_SERVAL)

// Datagram: // Unconnected datagram:
sendto(s,IP:port,data) sendto(s,srvID,data)

// Stream: // Connected flow:
connect(s,IP:port) connect(s,srvID)
send(s,data) send(s,data)

Table 1: Comparison of BSD socket protocol families:

TCP/IP uses both an IP address and port number,

while Serval simply uses a serviceID.

are introduced, replacing network addresses and ports
with serviceIDs, as summarized in Table 1.

Transport layer. In Serval, the transport layer no
longer establishes and manages end-to-end connections.
Instead, it deals strictly with data delivery (reliability,
congestion control, etc.) over transport-level flows of
packets (each with its own flowID). A single socket can
have one or more constituent flows, to allow sophis-
ticated transport protocols (like MPTCP [8]) to dis-
tribute a single application-level data stream over mul-
tiple paths. For example, in Figure 1, the transport
layer performs data delivery over opaque local flowIDs
fc1 and fc2, both owned by a single socket sc. Each
of these flows maps to a specific local and remote inter-
face address, and hence to a network path for transport-
level data delivery. Serval shields the transport proto-
col from network-level churn by keeping demultiplexing
identifiers (e.g., serviceIDs and flowIDs) fixed, and their
mappings to IP addresses hidden.

Service access layer. The service access layer per-
forms service resolution, i.e., mapping services to loca-
tions, previously handled in the application layer. Fur-
thermore, it performs end-to-end signaling to establish,
renegotiate, and terminate connections and their con-
stituent flows, functionality traditionally provided by
each transport protocol separately. The service access
layer negotiates flowIDs via a three-way handshake and
notifies the transport layer of success or failure via call-
backs; the transport layer can then instantiate whatever
per-flow state the protocol requires. Consider the ex-
ample shown in Figure 2, where two hosts, each multi-
homed with two interfaces, use Serval to establish two
flows between them. The first flow is identified by C
with flowID fc1 (resp. by S with fs1) and is established
between a local interface with address a1 and remote
interface a3. The figure also shows a second flow be-
tween a2 and a4. The service access layer maintains
per-socket state, including a list of available remote in-
terfaces (e.g., a3, a4) and a common sequence space
(seqc) reserved for control messages between the hosts.

When the client’s transport layer wants to send pack-
ets on the first path, it simply identifies it by fc1; the
service access layer worries about mapping fc1 to the

!"#$%&'
(%)#*+,&"*'

-"#./''
0"12()'

!3' 4356'437''

-"#./'
0"12('

-"#./'
28&%*4.#%'

9%:"&%'
28&%*4.#%'

435' .5' .;'
437' .7' .<'

!"#$%&'
(%)#*+,&"*'

9%:"&%'
!%*=+#%2(' 38&*/'!%>'?' -"#./'

0"12()'
9%:"&%'
+8&%*4.#%)'

!3' @')%>3' 4356'437' .;6'.<'

!"#$%&'"()

*+",-.+)/..+%%)

/&&0-.#1'$)
!"#$%&'

(%)#*+,&"*'
9%:"&%'
!%*=+#%2('

!3' @'

Figure 1: End-host state on client host C for a single

socket, with multiple interfaces and flowIDs.

!"# !$#
%$&#

%$'#%"'#

%"&#

!"#

!$#

!%#

()!*#"# ()!*#$#

!&#

Figure 2: Schematic showing relationship between

sockets, flowIDs, interfaces, addresses, and paths.

network addresses (a1, a3). The mapping of flowIDs to
network addresses may change over time, in response
to mobility, migration, or failures. Event notifications
(e.g., when the remote attachment point changes) al-
low the transport protocol to react to underlying events
(e.g., by reentering slow start).

Serval’s new layering model is reflected in its packet
headers, illustrated in Figure 3. Transport protocol
headers include their normal fields—related to check-
sums, reliability, ordering, congestion control, etc., and
omitted from the figure for simplicity—and include an
application-protocol identifier (much like IANA well-
known ports). Service access layer headers include a
mandatory base header with source and destination flow-
IDs for demultiplexing, the transport protocol, and a
flag field for signaling. Following the base header are a
number of optional Type-Length-Value-style extension
headers. The most common extension is the connec-
tion extension,2 which includes the serviceID and a se-
quence number for reliability and ordering, used during
connection establishment. Another common extension
includes service descriptions, used to signal the remote
endpoint of available interface addresses (see §3.3).

In the next section, we detail the Serval protocols and
their functionality, and how they build on the abstrac-
tions and interfaces given by our stack: triggers in API

2Much like IPv6 Hop-by-Hop extensions, the connection ex-
tension always immediately follows the base header, to en-
able fast processing in hardware.

4

!"#$%&'

()"*+,'

,&-.'

()"*+,'

/$01-'

2$".'

!"#$%&"'(&&"))'*"+,"#' -#+.)/0#1'

344'

2$".'
5'()06-'

!&7'

8#9'

!"#$%&"'(&&'231".)%0.'

!&$:;%&+,'

Figure 3: The service access header (with connection

extension) in front of the transport header.

calls for consistent and timely registration and rigorous
management of services (§3.1); service names that allow
service-level anycast for late-binding (§3.2); addresses
that can change for ongoing flows, hiding network-level
churn in instances (§3.3); and secure service authenti-
cation and endpoint signaling (§3.4).

3. SERVAL PROTOCOLS
In this section, we elaborate on how Serval gives the

network more visibility and control in directing client
requests, through explicit service registration and on-
path service resolution. Then, we describe how Serval
uses in-band signaling to maintain connectivity to ser-
vices across changes in the underlying network. We end
the section with describing how these protocols can be
secured against common attacks.

3.1 Explicit Service Registration
Today’s network applications have no consistent way

to make services known and control their access. Au-
thoritative DNS servers are updated manually or using
update protocols [24], with no common security mech-
anisms. Even when updates are automatically prop-
agated, DNS record caching delays client re-resolution.
Moreover, service operators must rely on custom-designed
mechanisms for detecting service failure and recovery,
often resorting to poll-based approaches that trade-off
overhead for responsiveness. In addition, “default on”
access to services is often overly permissive; many hosts
unknowingly run default services that can introduce un-
necessary security vulnerabilities.

In contrast, service registration is an explicit part
of the Serval architecture. Registration and unregis-
tration messages are directed to the network’s service
resolver : an entity that (i) maintains serviceID-to-IP-
address mappings, (ii) resolves requests for registered
services in its domain, and (iii) potentially exposes these
mappings to the wide area. While various service-resolver
designs are possible, we describe a particular solution
based on service routers. Because service routers only
handle service registration and resolving new flows, they
need not run at the same speed as IP routers.

Upon joining a network, an end-host bootstraps ser-
vice router configuration by broadcasting for “any lo-
cal service router” using a reserved serviceID.3 DHCP
3Hosts can offer services on a network segment without a
service router by answering similar broadcast solicitations.

!" #"
$" %" !" &"

!" '"
$" ("

Service Routers

Address b Address a

Address c Address d

!"

!"

SR
@e

SR
@f

SR
@g

IP Routers

#" $"

Figure 4: Service routers that resolve a serviceID to a

network address, shown with their resolution tables

(Z is not registered).

or manual service router configuration could be used
as well. After learning the address of a service router,
the host automatically registers any existing service in-
stances and registers new ones as they become available.
The host does this in response to BSD socket calls: after
all, the stack knows exactly when service endpoints are
instantiated (on bind, triggering an application-level
register message that specifies a serviceID/address map-
ping) and decommissioned (on close or process termi-
nation, triggering an unregister message).

Such service registration also follows interface changes.
When interfaces change their attachment or new inter-
faces are activated, the end-host registers services with
the new address and unregisters the old address, if pos-
sible. Similarly, if an interface is removed, the host can
use one of the remaining interfaces to send an unreg-
ister message for all services bound to the deactivated
interface, if connectivity and policy allow. To handle
host or network failures, the service router purges reg-
istered mappings through soft-state timeouts (requiring
a regular registration update). Service routers may op-
tionally poll the interfaces (as opposed to the individual
services) to proactively evict failed entries.

Figure 4 shows a network with three service routers,
each with a table mapping serviceIDs (e.g., X and Y)
to the network addresses of end-hosts (e.g., b through
d) or other service routers (e.g., e and f). When an
application on host b binds a socket to serviceID X,
the end-host registers X → b with local service router
f . This router, in turn, informs its upstream service
router g of the mapping X → f . However, when host c
registers its instance of X with router f , no upstream
registration is triggered; g only needs to know that f
has at least one instance of the service. Similarly, if
host b no longer provides service X (i.e., the application
closes the socket bound to X), the resulting unregister
message only causes f to remove the mapping. The
upstream unregistration for X only occurs when the
last instance is no longer available.

By tying registration into socket calls, registration
is made transparent, timely, and automatic to applica-

5

tions, while allowing diverse registration mechanisms:
the way the host interacts with a service resolver is pur-
posefully left unspecified. A service router can easily
enforce access control policy to reject invalid registra-
tions. Even if rejected, end-hosts can still run services
on a segment, but can only be accessed using broadcast
resolution or by using a-priori knowledge of its serv-
iceID and IP address.4 However, as services must be
accessed by their long serviceIDs, and not just an IP
address and port number, scanning for unknown open
services becomes impractical. Explicit service regis-
tration also simplifies the membership management of
replicated services, as we demonstrate in §5.

3.2 Late Binding Through On-Path Resolution
Existing resolution systems based on DNS suffer from

the early binding of service names to service endpoint
addresses. Since DNS resides in the application layer,
resolution must precede the actual service request. This
limits resolution accuracy for dynamic services that can
move, add, or remove instances, which is further ex-
acerbated by local resolver (and application) caching.
Instead, to track service dynamics, resolution should
occur as late as possible.

Moreover, highly-replicated services need effective ways
to balance load among service replicas. DNS-based load-
balancing is generally limited to the wide-area due to
caching. Within the datacenter, on-path load balancers
must operate on every packet of a connection. Instead,
service resolution should occur at each level of the net-
work hierarchy—over the wide-area, within a datacen-
ter, and on a local segment (e.g., rack), and only involve
the first packet of a connection.

Furthermore, different services may have diverse res-
olution requirements. Mobile services require highly dy-
namic registration and resolution, while replicated ser-
vices care more about load-balancing. Similarly, clients
in ad-hoc network settings may require a more fluid
broadcast or diffusion-based resolution, while structured
settings may need dedicated resolution infrastructure.
To support diversity, service resolution should allow for
a range of resolution mechanisms and policies.

Serval performs late binding on serviceIDs, by resolv-
ing service requests on-path. When a client applica-
tion calls connect (on a stream or datagram socket),
or sendto (on a datagram socket), the serviceID is not
yet bound to an endpoint address. At this point, Ser-
val sends the initial packet of the flow (SYN packet or
datagram) to a designated resolver address, which may
be a local (or remote) service router for in-network res-
olution, a broadcast address for local service discovery,
or, if needed, an application-supplied advisory address.4

The recipient(s) of the packet either respond directly, if

4Advisory addresses can point to a service router (for incre-
mental deployment) or service endpoint (for query-response

a service instance is running on the machine, or fur-
ther refine the resolution by recursively forwarding the
packet to another resolver.5 We next expand on Ser-
val’s flexible resolution mechanisms for a local network
segment, within a single administrative domain (e.g.,
an AS), and over the wide-area.

Local network segment: Initial resolution pack-
ets are either sent to a local service router for reso-
lution or broadcast (multicast if the network permits)
on the local segment. For broadcasts, all instances of
the service in the segment respond, and the stack is
at liberty to choose one for connection establishment
or to return all responses for an unconnected datagram
socket. Broadcast resolution can be used to access ser-
vices in the absence of resolution infrastructure, to find
“hidden” services (e.g., Z in Figure 4) which have not
or cannot register with the service router, or to enumer-
ate instances of common services like printers or shared
music libraries to help provide higher-level service dis-
covery systems (e.g., Bonjour).

Single administrative domain: In an administra-
tive domain with multiple layer-2 subnets, resolution re-
quires infrastructure support from service routers. While
Serval gives service providers the flexibility to deploy
any resolution infrastructure—as well as any access pol-
icy or load-balancing technique—they prefer, we advo-
cate deploying service routers according to the topo-
logical network hierarchy. Each local network segment
can have its own local service router, with larger intra-
domain segments having higher-tier service routers. Fig-
ure 4 shows a small two-tier deployment. Each tier can
be comprised of multiple service routers for scalabil-
ity (either identified uniquely or via anycasted IP ad-
dresses). Peer and parent discovery protocols between
service routers lie outside the purview of the Serval ar-
chitecture and can be implemented in a number of ways,
via centralized control, DHCP or static configuration,
intra-domain routing protocols, and so forth.

Service routers simultaneously route and resolve ser-
vice requests through the resolution overlay via succes-
sive refinement. Starting with the initial service router,
each service router forwards the service request either
to a “narrower” scope (an end-host instance or a service
router“down”the hierarchy), to a“broader” scope (“up”
the hierarchy), or responds with a newly defined ICMP
“service unresolvable” error. This recursive late-binding
allows the service routers closest to the endpoints to
refine the resolution based on local conditions.

We illustrate service resolution as part of connection
establishment in Figure 5. When client a attempts to

protocols via connectionless datagrams or third-party refer-
ences) that may be otherwise inaccessible via resolution.
5To comply with ingress filtering, the resolver uses its own
source IP address and stores the client’s address in an ex-
tension header for the destination endpoint to access.

6

!"

e X

a 1 SRC

DST
g X

a 1

#" $%&"

f X

a 1

'" $%&"

b X

a 1

(" $%&"

a 1

b 2 SRC

DST

)" $%&*+,-"
." +,-"

/"

/"
SR
@e

SR
@f

SR
@g

Address b
Address a

Address c Address d
%" 0"

Figure 5: Establishing a Serval connection by routing

and resolving the SYN on serviceID.

AS 1

AS 2

!"#"

!"#

$!"#

!"#

!"#

!"#

Internet

$"

AS 3

Net 4

Service System α

#"

$"

$"

"%&'()%*#+#"%(,-.%#+#
/#

0#

1#

2#

34!#

Figure 6: Wide-area Serval architecture showing hi-

erarchical registration, resolution, and ASR lookup.

connect to service X, the client’s end-host stack sends
the initial SYN packet to its local service router e (Step
1). Finding no local service instance, e defaults to for-
warding the packet up the resolution hierarchy to g
(Step 2). With a broader view of the service, g for-
wards the packet down to service router f (Step 3). f
selects a local instance b from its multiple entries, and
forwards the packet to the service endpoint (Step 4).
End-host b’s SYN-ACK response (Step 5), and a’s sub-
sequent ACK (Step 6), travel directly between the two
end-points, bypassing the service routers.

Wide-area: Managing and accessing services across
the wide area requires a globally accessible entry point
for resolution, and a mechanism for determining the
entry point(s) for a given service. In Serval, each ser-
vice employs authoritative service routers (ASR), which
form the root node of the service’s resolution hierar-
chy, to perform global resolution of a serviceID (or its
prefix), and to maintain the global view of service re-
solvability across all the network domains offering the
service. For registration, each network domain hosting
the service must update the ASR via its top-level service
router(s), as illustrated by Step 1 in Figure 6.

For resolution, when a service request, Step 2 in Fig-
ure 6, reaches the wide-area boundary of a client net-
work (Step 3), it must be forwarded to an ASR for the
requested serviceID Z. Serval does not dictate how the
sender identifies this authoritative resolver, and several
approaches are possible for ASR resolution:

!"# !$#
%$&#

%$'#%"'#

%"&#

!"#

!$#

!%#

()!*#"# ()!*#$#

!&#

Figure 7: When interface with address a3 fails, flow

〈fC1, fS1〉 migrates to interface a4.

Interdomain dissemination protocol: The mapping
from service prefix to ASR(s) could be distributed be-
tween ASes via a resolution update protocol (similar
to LISP-ALT [10]). For example, the SS α in Figure 6
could announce its serviceID prefix from the three ASes
it controls, which would ensure that unresolved packets
reach a nearby AS that can identify the (possibly dif-
ferent) AS providing the service.

Direct lookup: The most easily-deployable method
would be to use DNS to lookup the ASR. The client-
side service router can use a reverse DNS lookup on Z6,
which would return both a service prefix and ASR IP
address, and cache the result for future requests. Alter-
natively, suppose a client uses DNS to map a human-
readable name (e.g., example.com) to a serviceID (e.g.,
Z), and the local DNS server doubles as the client’s
service router. The authoritative DNS server could re-
turn both Z.example.com as a CNAME record and an A
record for Z’s ASR. The service router/resolver parses
the CNAME for Z, which it returns to the client, and
caches the ASR’s A record for subsequent resolution.

Once the service request reaches the ASR, the ASR
selects a suitable destination network’s (e.g., AS 2) top-
level service router, which then successively refines the
request to the final service endpoint (Step 4).

3.3 In-band Signaling Between Endpoints
Once a service endpoint has been resolved and bound,

the resulting flows should preserve service instance affin-
ity over the lifetime of the connection. This section elab-
orates on Serval’s in-band control protocols to maintain
connectivity across events such as device mobility, mi-
gration, and even service instance failure.

Establishing connections. During the initial three-
way handshake, each end-host exchanges initial flow
identifiers and optional service descriptions. These de-
scriptions detail the network interface addresses avail-
able for each party’s new socket, useful for establish-
ing additional flows. For instance, in Figure 7, when
C establishes a connection with S, it sends a SYN with
flowID fC1, as well as its interfaces (a1, a2) in an service
access extension header. S responds with a SYN-ACK
with flowIDs 〈fS1, fC1〉 and its own service description
(a3, a4), and C confirms the connection with an ACK.
6IANA could define a new in-service.arpa domain to pro-
vide reverse resolution from serviceID to domain names.

7

Establishing additional flows. Additional flows
between connected sockets—useful for exploiting mul-
tipath connectivity—also use a three-way handshake,
exchanging new flowIDs in the process. In Figure 7, if
the server S seeks to establish a second flow with C, it
generates an FSYN packet with a new flowID fS2, as
well as the existing fC1 to provide C with the appropri-
ate socket context. It then sends this control message
from interface a4 to a2. C replies with an FSYN-ACK
with 〈fC2, fS2〉, which the server acknowledges.

Changing network addresses. Device mobility or
VM migration may cause the addresses associated with
a network interface to change. To maintain its ongoing
connections, the mobile host notifies the remote end-
point of the new addresses. For example, in Figure 7,
the server’s interface a3 no longer has connectivity, so
it wishes to move the flow fS1 to a4. To do so, S sends
C an RSYN packet with flowIDs 〈fS1, fC1〉 and the new
address a4. The client returns a RSYN-ACK while wait-
ing for a final acknowledgment to confirm the change.

Handling simultaneous changing of addresses.
Simultaneous migration—where two communicating end-
points move at the same time—requires a local redirec-
tion cache near at least one of them. Such a cache (e.g.,
in a service router) keeps short-lived records of the new
locations of endpoints that have recently moved. When
moving, if possible, host C inserts its new address in the
redirection cache of its old network. The cache takes
over C’s old IP address for the lifetime of the cache en-
try (e.g., via ARP-flooding). If S simultaneously sends
C information about its own address change, the redi-
rection cache forwards S’s message to C’s new address.

Automatic failover. Serval’s in-band signaling op-
tionally supports automatic failover to a new service
instance. When sockets are closed upon application
crashes, the stack sends a Serval instance unavailable
message to all of the connected hosts. When such a
message is received—and the socket has been marked
as wanting failover—the receiving socket tries to auto-
matically reconnect to another service instance, and it
notifies the application of success or failure (e.g., by re-
turning a recv error code). Upon success, the applica-
tion resynchronizes application-level state with the new
instance, if necessary and possible, e.g., via a Range-
Request in HTTP. Otherwise, some protocols may have
to reissue their entire request. As instance unavailable
messages are not guaranteed on host failures, as op-
posed to process failures, applications must still fallback
on retries and timeouts for failure detection.

3.4 Security
We now consider how Serval alters the security threat

model of the network, and secures service registration
and resolution as well as in-band signaling for connec-
tion establishment, migration, and mobility.

Authenticated Services. Serval’s approach to ser-
vice naming lends itself to self-certification without a
global trusted authority or a chain of trust. The self-
certifying part of serviceIDs are cryptographic hashes of
a service’s public key. This allows a host to prove it is an
authorized instance of the service, by providing the ser-
vice’s public key and a signature that proves possession
of an authorized private key.7 A Serval host validates
a service’s public key by comparing its hash with the
value in the serviceID, and then uses this key to ver-
ify the signature. In addition to authenticating service
instances, hosts use this mechanism to prevent man-in-
the-middle attacks when establishing an encrypted con-
nection, and to stop malicious hosts from successfully
(un)registering services they do not control. Applica-
tions determine the level of security that the service
access layer should provide for a given connection, and
they are notified of any errors encountered.

Today’s approach to service authentication is based
typically on domain names and SSL. However, this so-
lution (i) relies on a chain of trust, requiring service
providers to buy SSL certificates, and (ii) operates at
the application layer, both of which hinder ubiquitous
deployment. In contrast, Serval transparently provides
its security features in the service access layer to all ap-
plications. These applications can make further use of
the self-certifying properties of serviceIDs, since they
are exposed to applications. Moreover, Serval avoids
the costs associated with building a chain of trust due
to its semantic-free serviceIDs. Serval does not ad-
dress the problem of securing the mapping from human-
readable names to serviceIDs, however. Much like other
systems using self-certifying identifiers (e.g., SFS [15]),
this turns the authentication problem into one of se-
curely obtaining serviceIDs. We believe that by remov-
ing many of the barriers to using authentication in the
network, Serval can allow the Internet to move towards
more ubiquitous security.

Secure Migration and Mobility. Not all appli-
cations may want to incur the performance penalty of
establishing a secure channel for the service layer’s con-
trol messages. Fortunately, channel authentication is
not necessary to thwart a number of off-path signaling
attacks, such as (i) attacks that try to hijack ongoing
connections by inserting control messages into the com-
munication stream, or (ii) attacks that try to disrupt
connections by sending fake migration messages.

These off-path attacks can be prevented by having
hosts exchange random 64-bit flow nonces for every
flowID they negotiate; using large nonces is preferable
to (say) putting large random flowIDs in every packet.
Any control messages about a specific flowID (e.g., for
migrating a flow) must include the corresponding nonce.

7An authorized private key is either the service’s private key
itself or one that was authorized through a certificate chain.

8

Off-path attackers would have to use brute-force to guess
these nonces, which is impractical. These non-cryptographic
solutions do not mitigate on-path attacks, but in this
regard are no less secure than existing protocols.

4. SERVAL IMPLEMENTATION
An architecture like Serval would be incomplete with-

out implementation insights. Through prototyping, we
can (i) learn valuable lessons about our design and eval-
uate performance and scalability, (ii) explore incremen-
tal deployment strategies, and (iii) port applications to
study how Serval abstractions benefit them.

In the spirit of (i), we have a second-generation proto-
type, incorporating lessons from the first. Our first gen-
eration has more features, and it supports both data-
gram and stream communication; our second gener-
ation stack, still under heavy development, currently
supports only datagrams. The new implementation im-
proves on the first, however, by adding more flexible
support for multiple interfaces (to better support migra-
tion and multipath); supporting decentralized service
discovery and management (for zero-configuration and
ad-hoc operation); improving multi-platform support
(Linux, Android, BSD); and moving from a C++/Click-
based framework to pure C (for better kernel compat-
ibility). The code size of the first-generation stack is
about 11400 lines of C++/C code, while the second
generation currently stands at about 10800 lines of C
(measurements exclude support libraries and daemons).
Both implementations can run in user-space as well as
in the kernel. User-space operation allows for faster
debugging and deployment on experimental testbeds
where kernel modifications are generally prohibited. On
the other hand, running in the kernel results in bet-
ter performance and allows the reuse of existing code
paths. In the rest of this section, focusing on our second-
generation stack, we describe the most notable imple-
mentation details of the service access layer, transport-
layer functionality, and service router infrastructure.

4.1 Service Access Layer
In the service access layer, we have implemented ser-

vice resolution, connection establishment, signaling, and
triggers for (un)registration (via a Linux Netlink socket).
The service access layer is coupled with a service dae-
mon (servd) which performs the actual (un)registration.
It also configures a service table used to resolve ser-
vices, e.g., through a service router, as shown in step
1 of Figure 8. A service router is actually found by
servd in a previous step, using broadcast resolution on
the zero-prefix “default” rule in the table. When ap-
plications connect on a serviceID (step 2), the service
access layer constructs a SYN packet with a base header
(flowIDs and flags) as well as the serviceID. The SYN
packet is resolved through the service table (step 3), and

!"#$%& '()*& +!&

!" #$" #%&'#()'&'&"

*" *" #%&'#()'#'&++,"#%&'#()'&'&++"

!"#$%&"'#()*"#' !"#$%&"'#()*"#'
#%&'#()'&'&" #%&'#()'#'&"

connect(A)!

!--./01234"
servd!

/456789!,"#%&'#()'&'&:"

#"
&"

!" ;"

<"

#%&'#()'&'&"!"

$"

Figure 8: A multi-homed host’s service table with

example interactions with local service routers.

then passed on to the IP layer, which forwards it to the
local service router(s) (step 4). The service router fur-
ther resolves the SYN packet, as described in §3. Once a
connection to a service instance is established, packets
flow directly to the network layer.

If instead applications want to provide a service, they
typically call bind(serviceID) to first register the ser-
vice with the network via servd. The registration al-
lows the service routers to locally resolve any incoming
service requests for the new service. The application
proceeds with calling listen and accept in the normal
way to start accepting incoming connections.

The stack can operate entirely in “ad-hoc mode,” by
multicasting or broadcasting SYN packets on the local
segment, e.g., according to the zero-prefix rule in the
figure. Listening sockets on the segment reply to such
requests in case they match their bound serviceID. Our
stack currently only acts on the first reply (SYN-ACK)
from responding services, discarding the rest.

4.2 Transport Layer
Serval currently includes our own transport imple-

mentations. The reason for this is twofold. First, as
mentioned earlier, we want to run in both user and ker-
nel space. Second, connection-oriented datagrams (for
service affinity) or new transport functionality (such as
migration or multipath) require either significant changes
to existing protocols or complete rewrites. By imple-
menting our own versions of TCP and UDP, we avoid
entangling ourselves with legacy kernel interfaces.

Our ongoing work with the second-generation stack
tries to delineate the Serval-transport interface and to
enable the reuse of existing code, such as the highly
optimized TCP stack in the Linux kernel. Our initial
modifications aim to decouple Serval from transport in
both mechanism (e.g., connection setup, flowIDs for de-
multiplexing, and flow and congestion control in TCP)
and header fields (e.g., SYN, FIN, and RST flags in the
Serval header, PSH and URG flags in the TCP header,
and the ACK flag in both), and specifying new semantics
(e.g., ports strictly become protocol identifiers). Our
layers clearly separate the main parts of the TCP state
machine, since much of TCP’s data delivery occurs in
the ESTABLISHED state.

9

4.3 Network Infrastructure
Our network infrastructure was built using Open-

Flow [16] and NOX [11]. OpenFlow provides an easy
way to enforce network-wide policy through central-
ized control, and a path to hardware implementation
and commercial deployment. Our service routers (for
service resolution) and network routers (for standard
IP forwarding) are both implemented using the Open-
VSwitch software router [19]. Our NOX-based con-
troller implements the network API for managing service-
related events, computes forwarding rules and resolu-
tion policies, and manages router rule installation. Our
controller consists of about 5000 lines of Python and
2000 lines of C++.

Service routers may have to perform service instance
selection using anycast. However, OpenFlow always
triggers the rule with the highest priority by default,
and therefore cannot discriminate between multiple rules
matching the same serviceID. Our modifications to Open-
VSwitch reinterpret the priority as a proportional weight
for rules matching on the same serviceID. This effec-
tively implements weighted proportional split for resolv-
ing packets according to a specified distribution. While
non-trivial, this new feature required only 400 lines of
code in OpenVSwitch.

5. EVALUATION
We aim to show that Serval’s design is both practi-

cal and functional in terms of: (i) portability—namely
that Serval support can be added to applications with
relative ease; (ii) performance—that our stack performs
reasonably and that there are no inherent limitations
to our design; and (iii) dynamism—that both planned
and unplanned dynamism (e.g., failures, migration, and
maintenance) can be handled gracefully and without
unnecessary disruption to services.

Our test environment models a simple datacenter,
consisting of a nine-node topology with five hosts, two
network routers, one service router, and a network con-
troller, as illustrated in Figure 9. While small in scale, it
still demonstrates the dynamics that services encounter
in real settings. Each node has two 2.3 GHz quad-core
CPUs and three GigE interfaces, running Ubuntu 9.04.
Experimental results are obtained using our 1st genera-
tion implementation, which relies on Click version 1.8.0.

We first review the effort to make applications run on
Serval. We then presents performance micro-benchmarks
for the Serval stack. Finally, we conclude with a case
study to show how Serval can improve and simplify the
design and implementation of distributed web services.

5.1 Application Portability
We have added Serval support to a range of network

applications to demonstrate the ease of adoption. Mod-
ifications typically involve adding support for a new

Controller

Service Router

Host 2

Host 1

Host 5

Host 3

Network
Router

Network
Router

Host 4

Figure 9: Experimental setup for evaluation.

Application Vers. Codebase Changes
Iperf 2.0.0 5,934 240

TFTP 5.0 3,452 90
PowerDNS 2.9.17 36,225 160

Wget 1.12 87,164 207
Elinks browser 0.11.7 115,224 234
Firefox browser 3.6.9 4,615,324 70

Mongoose webserver 2.10 8,831 425
Memcached server 1.4.5 8,329 159
Memcached client 0.40 12,503 184

Apache Bench / APR 1.4.2 55,609 244

Table 2: Applications currently ported to Serval.

sockaddr_sv socket address to be passed to BSD socket
calls. Most applications already have abstractions for
multiple address types (e.g., IPv4/v6), which makes
adding another one straightforward. Further modifica-
tions involve handling Serval specific errors from socket
calls, and dealing with data stream synchronization when
failovers/migrations happen across service instances.

Table 2 overviews the applications we have ported
and the number of lines of code changed. The user-space
version of our Serval stack must have socket calls redi-
rected to itself and therefore must rename API functions
to be able to intercept the calls (e.g., bind becomes
bind_sv). Therefore, the modifications are larger than
strictly necessary for kernel-only operation. In our ex-
perience, adding Serval support typically takes a few
hours to a day, depending on application complexity.

5.2 Host Stack and Router Performance
Table 3 shows the TCP performance of the Serval

stack, both kernel and user-space, in comparison to reg-
ular Linux TCP. The numbers reflect the average of
five 10 second TCP transfers using iperf, and show a
performance gap—although Serval is within two-thirds
of regular TCP for kernel mode. The gap arises be-
cause our TCP implemenatation has a fixed window
size of 64 KB, with the result that a single flow cannot
claim the full GigE link bandwidth. Our 2nd generation
implementation should add optimizations, and the gap
should narrow greatly.

When single flows cannot claim the full bandwidth
(which is especially true in user-space mode), effects of
flows adapting to each other due to bandwidth shar-

10

Mean Stdev
Stack Mbit/s Mbit/s
TCP/IP (kernel) 929.8 5.3
Serval (kernel) 596.6 17.0
Serval (user) 110.1 16.1
Serval (user with tracing) 82.3 8.8
Router Kpkts/s Kpkts/s
Service (Resolution) 12.99 0.17
Network (Data forwarding) 13.25 1.47

Table 3: A performance comparison of the TCP/IP

stack compared to the Serval stack’s reliable stream

protocol, running in both user and kernel space. The

table also shows processing rates for the service and

network routers for 64 byte packets.

ing become less apparent. As showing such effects are
an important aspect of our evaluation, we introduced
bandwidth shaping at hosts so that flows adapt to com-
petition rather than claiming surplus bandwidth.

Table 3 also shows the packet processing rate of our
service and network routers. The multiple-rule match-
ing in service routers has a slightly higher overhead than
the single-rule matching of IP network routers. These
measurements primarily reflect the performance of the
OpenVSwitch software router; hardware implementa-
tions would see orders-of-magnitude improvements.

5.3 Case Study: Large-Scale Web Services
We now evaluate the use of Serval in managing a

large-scale, multi-tier web service. A common design for
such a system places a customer-facing tier of webservers—
all of which offer identical functionality—in one or more
datacenters (although we restrict our evaluation to a
single site). Using Serval, clients would identify the en-
tire web service by single serviceID (instead of a single
IP per site, for example), which would allow more effi-
cient load balancing and server selection (both within
and across datacenters).

The front-end servers typically store durable customer
state in a back-end distributed storage system. For scal-
ability, the storage is commonly partitioned (or sharded),
with each partition handling only a subset of the data.
For better reliability and performance, each partition
might also be replicated across multiple servers. The
webservers typically find the appropriate storage server
using a static and manually configured mapping. Us-
ing Serval, this mapping could be made dynamic, and
partitions redistributed as storage servers are added, re-
moved, or fail, as we show experimentally.

While the above service example runs on dedicated
infrastructure, others run on infrastructure provided in
a “public cloud”, such as Amazon EC2 or Rackspace
Mosso. These Infrastructure-as-a-Service (IaaS) providers
usually offer computing and network resources through
virtual machine (VM) hosting. To efficiently respond to
changes in client demands, IaaS providers migrate VMs

 0
 1
 2
 3
 4
 5
 6
 7

 0 100 200 300 400 500 600

G
oo

dp
ut

 (M
bp

s)

Time (s)

One server fails

Client 1
Client 2

Figure 10: High availability with two clients and two

servers, showing how a client is transparently redi-

rected to another service instance as failures occur.

between physical hosts to distribute load. However,
VMs can only be migrated within a layer-2 broadcast
domain, since network connections are bound to IP ad-
dresses and migration relies on gratuitous ARP tricks.
Serval removes this inherent limitation as it supports
migration across layer-3 domains—without getting the
IaaS provider involved with serviceID naming. This is of
particular use in large datacenters that comprise many
different layer-2 subnets.

We now continue by demonstrating practical exam-
ples how Serval can improve services in each of the sce-
narios discussed above: (i) online replicated services,
(ii) back-end storage services, and (iii) VM management
by IaaS providers.

5.3.1 Serval for Front-End Web Services
The following experiments demonstrate how front-

end web services can achieve high availability, load bal-
ancing, and fast shedding with Serval.

High availability with failover. Web services may
face churn in its replicas, and a system’s response to
such churn determines the availability of the service. We
illustrate by experiment how Serval can seamlessly and
quickly handle instance failures within the local scope
of the datacenter. We induce failures by forcefully shut-
ting down server processes, causing failover to happen.
Figure 10 shows the TCP goodput of two wget clients
(hosts 1 and 2 in Figure 9), each downloading a 200
MB file from two identical instances of a Mongoose web-
server (hosts 3 and 4). Our bandwidth shaping limited
the maximum download rate to 5 Mbps.8 The clients
are initially directed to one instance each (due to the
load-balancing scheme), with client 2 starting around
70 seconds after client 1. At the 170 second mark, one
of the server process fails, causing the host’s stack to
respond with instance unavailable messages. This, in
turn, causes client 2’s stack to transparently re-resolve
the serviceID, connecting to the server instance that
serves client 1. The failover completes within a few
round trip times (i.e., the time needed to complete a
8The bandwidth shaper needs a few packets to learn the
correct shaping rate, causing the initial throughput spikes.

11

 0
 5

 10
 15
 20
 25
 30
 35

 0 10 20 30 40 50 60

Ac
tiv

e
R

eq
ue

st
s

Time (s)

Server 1
Server 2
Server 3

drain end

drain start
shed start

shed end

Figure 11: Replicated service support with 2 clients

and 3 servers showing load-balancing as additional

servers are added, request shedding for planned

maintenance, and the residual effects of lingering

requests with draining.

resynchronization handshake). Then, without having
to first reconnect the socket, wget on client 2 issues a
Range-Request to continue where it left off. Client 1
finishes its request at the 500 second mark, and client
2 can thereafter utilize the full network bandwidth.

Load balancing and shedding. To demonstrate
Serval’s ability to dynamically scale a distributed ser-
vice using anycast service resolution, we ran an exper-
iment representative of a typical front-end web clus-
ter. As client requests experience very small round trip
times in our setup, requests complete before new ones
come in, and requests never accumulate. We therefore
simulated a 100 ms network delay, which improves the
visualization by causing request accumulation.

Figure 11 shows the experimental results. From time
0 to 40 seconds, two wget clients issue three HTTP re-
quests per second for a 100KB file from a mongoose
server. As the request load increases on Server 1, we
add additional servers: Server 2 at the 5 second mark
and Server 3 at the 10 second mark. Serval automati-
cally balances requests across the new service instances
as the active request count of the three servers begins
to converge. At 20 seconds, Server 3 is gracefully shut
down for maintenance, causing an instance unavailable
message being sent on all of its active connections. This
allows Server 3 to quiesce quickly (80% of active con-
nections shed in <1 second). The active connections are
then re-resolved to the other server instances, as seen
by the increased request load at Servers 1 and 2. In con-
trast, the current practice of draining, which is shown
starting at the 30 second mark on Server 2, delays the
server shutdown time by the longest-lived connection,
which only finishes at the 51 second mark.

5.3.2 Serval for Back-End Distributed Storage
To illustrate Serval’s use in a partitioned back-end

storage system, we demonstate its application to a dy-
namic Memcached system. Memcached provides a sim-
ple key-value get/set caching service. Because values

 0

 5000

 10000

 15000

 20000

 0 5 10 15 20 25 30 35 40

R
eq

ue
st

s
/ s

ec
on

d

Time (s)

Server 1
Server 2

Figure 12: Memcached Server Throughput. Serval

transparently redistributes the data partitions over

the available servers.

are stored only in memory for caching purposes, durable
data storage is typically provided by a separate system,
e.g., a sharded SQL database. Each memcached server
is responsible for a“keyspace”partition, and clients map
keys to partitions using a static resolution algorithm
(e.g., consistent hashing). Clients then send the request
to a server according to a static list detailing partitions
and their associated server IP addresses. This client-
side resolution reduces lookup latency, but updating
lists on all clients limits scalability and freshness.

Serval can make server selection and keyspace par-
titioning easier to manage, by moving the resolution
functionality from the clients to the service router. We
assign a serviceID prefix to each partition, which is
hosted on one or more servers. When a client issues a
request for a particular keyspace serviceID, the service
router matches on the partition prefix and resolves the
request to a specific server. As new memcached servers
register with the network, the controller reassigns par-
tition(s) from existing servers to a new one (like Dy-
namo’s tokens [5]). When an instance unregisters (or
is overloaded), the controller reassigns all (or some) of
its partitions by simply changing resolution rules in the
service routers.

Figure 12 illustrates the behavior of memcached on
Serval with three clients and two servers. In the exper-
iment, three clients issue set requests (each with a data
object of 1024 bytes) with random keys at the total
rate of 14,000 requests per second (on average). Re-
quests are sent using Serval’s unconnected datagrams.
In the beginning, only one memcached server is operat-
ing. Around the 15 second mark, a second server comes
online, while the first server leaves the network after 30
seconds. The figure shows that, with the network re-
assigning partitions following server churn, the system
reacts quickly to dynamism and each server receives its
appropriate fraction of requests.

5.3.3 Serval for VM Management
IaaS providers can benefit from Serval’s layer-3 do-

main migration capabilities, which we put to the test

12

in a proof-of-concept experiment. VirtualBox was used
to migrate guest VMs across host machines on differ-
ent IP segments. VirtualBox, like most VMs, can only
do layer-2 migration using gratuitous ARPs. For the
experiment, we established a number of connections to
the VMs that were maintained across migration. The
transfer pause ranged from 0.5 to 2.5 seconds, which
was primarily due to the need to externally signal the
VM to request a new IP address after migration (via a
ssh connection). We aim to reduce this delay in the fu-
ture by forcing an “interface up” event after migration,
causing IP reassignment to happen.

6. INCREMENTAL DEPLOYMENT
This section discusses how Serval can be used by un-

modified client and server applications through the use
of IP-to-Serval (or Serval-to-IP) translators. While §3.2
discussed a backwards-compatible approach for author-
itative service router discovery using DNS to simplify
network infrastructure deployment, we now address eas-
ing client-side or server-side software deployments.

Supporting unmodified client applications. An
IP-to-Serval translator can translate legacy packets from
unmodified applications to Serval packets, without ter-
minating connections. To accomplish this, the trans-
lator needs to (i) know which service a client desires
to access, and (ii) intercept the packets of all associated
flows. We assume that the client uses domain names for
service naming, which allows the translator to transpar-
ently map the service name to a private IP address, as
a surrogate for the serviceID. Further, we assume the
translator can receive all traffic directed to the service
by either running directly on the client or interposing
on the local network path.

To address (i), the translator inserts itself as a recur-
sive DNS resolver in between the client and an upstream
resolver (by static configuration in /etc/resolv.conf
or by DHCP). Non-Serval related DNS requests are for-
warded as is, as are their responses. If a response holds
a Serval record, the serviceID and ASR IP are cached
in a table alongside a new private IP address, which
the translator allocates as a local traffic sink for (ii)
and returns to the client as an A record. To intercept
client packets, an on-client translator creates a virtual
interface for the private IP address space, while an in-
network translator responds to ARP requests for the
private address space.

Upon receiving the first data packet of a new flow, the
translator looks up the private destination IP address
in the cache and inserts a new service access header in
the packet with the corresponding serviceID and a new
flowID. It then copies fields from the transport header
and saves flow context. Subsequent client packets are
demultiplexed by their legacy 5-tuple and sent within
the allocated Serval flow. (For standard TCP, a single

flow should be used to minimize reordering; for legacy
UDP, Serval could even use multiple flows.)

A large service provider like Google or Yahoo!, span-
ning many datacenters, could deploy translators in their
Points-of-Presence (PoP) to speak Serval to unmodified
clients. This would place translators nearer to clients—
similar to the practice of deploying TCP normalization
and HTTP caching. The translator could either termi-
nate TCP connections (and extract service names from
application-layer headers) or use a distinct public IP
address for each of the provider’s services.

Supporting unmodified server applications. Ser-
val can also interoperate with unmodified server (or
p2p) applications. If the end-host installs a Serval stack,
the stack just needs a pre-configured table to translate
from ports (and optionally IP addresses) to serviceIDs
during bind events. This way, the server application
just sees an unmodified PF_INET socket API. If the end-
host itself cannot be modified, a Serval-to-IP transla-
tor can translate Serval packets into IP packets for the
server’s legacy stack, and a liveness monitor can poll
the server for service (un)registration events.

7. RELATED WORK
Serval’s mechanisms consider issues of naming, ad-

dress and service resolution, and migration and mobil-
ity. This section discusses related work, many of which
focus on some, but not all, of these issues.

Naming (separating location from identity):
Previous work proposed using flat, globally-unique iden-
tifiers to separate identity from location; LISP [6], HIP [17],
i3 [23], DOA [26], and HAIR [7] focus on naming hosts,
while SFR [25], LNA [2], DONA [14], and CCN [12]
address objects (data or services). None of these nam-
ing schemes, however, fully address application- and
transport-level issues (which may inhibit, e.g., mobil-
ity), as they either reside strictly below the transport
layer [6, 7, 17, 23, 26], or assume the continued use of
port numbers [2, 14, 25]. In contrast, Serval names both
the application-level service endpoint and the individ-
ual flows, and it rigorously defines the layering inter-
face. Similarly, other work [9] also addresses conflated
transport semantics, introducing two new layers, but
otherwise retains the traditional host-centric focus.

Resolving names to locations: Most prior work
on naming indirection either relies on DHTs for resolv-
ing an identifier’s location [6, 7, 23, 25, 26], or routes
directly on the flat identifier, such as the hierarchy of
DHT rings in ROFL [3] and SEATTLE [13], or the di-
rected diffusion over a hierarchical tree in CCN. Other
work has dealt with replicated services, but some in-
herit the same downsides of early binding as DNS, e.g.,
SFR and DOA use a lookup service for early objectID
resolution. Recent papers have explored ways to over-
come the limitations of using IP anycast for replicated

13

services (at least within a single domain [1]), but IP
anycast offers little control over serer selection and of-
ten results in poor load balancing. While DONA sup-
ports more flexible service-selection policies than tradi-
tional IP anycast, DONA’s resolution handlers still rely
heavily on shortest-path interdomain routing protocols
and require full ISP participation. Serval, on the other
hand, only requires that each SS provide authoritative
resolution for its own (or delegated) serviceID prefixes,
and deals with issues of migration and multi-homing
not addressed in DONA.

Migration/Mobility: Migration and mobility typ-
ically rely on either indirection or transport changes.
Mobile-IP [20], i3, and to an extent LISP support in-
direction, at the cost of extra latency induced by a
longer path. Transport changes allow communicating
hosts to adapt to changing locations, e.g., through con-
nection reestablishment in TCP Migrate [22], through
a secondary address in SCTP [18], through stateless
servers and fully-descriptive packets in Trickles [21], or
by breaking up the transport layer [9]. Serval uses a
combination of techniques: automatic registration to
update resolution state and in-band signaling to pre-
serve ongoing connections.

8. CONCLUSIONS
Accessing diverse services, such as large-scale, dis-

tributed, and replicated services, is a hallmark of to-
day’s Internet; yet, the underlying network does not
support these services well. As we have outlined in this
paper, the central challenges of “service-centric” net-
working are replication and dynamism that span the
classic problems in networking—naming, addressing, and
routing. Serval rethinks the relationship between end-
hosts and the network to support service-level anycast
on top of existing IP networks. We believe that Serval
is a promising approach that can make future services
easier to design, implement, and manage, as evidenced
by our prototype and Serval-enabled applications.

References
[1] H. Alzoubi, S. Lee, M. Rabinovich, O. Spatscheck, and

J. van der Merwe. Anycast CDNs revisited. In WWW,
April 2008.

[2] H. Balakrishnan, K. Lakshminarayanan, S. Ratnasamy,
S. Shenker, I. Stoica, and M. Walfish. A layered naming
architecture for the Internet. In SIGCOMM, August
2004.

[3] M. Caesar, T. Condie, J. Kannan, K. Lakshmi-
narayanan, I. Stoica, and S. Shenker. ROFL: Routing
on flat labels. In SIGCOMM, September 2006.

[4] D. Clark, J. Wroclawski, K. Sollins, and R. Braden.
Tussle in Cyberspace: Defining tomorrow’s Internet. In
SIGCOMM, August 2002.

[5] G. DeCandia, D. Hastorun, M. Jampani, G. Kakula-
pati, A. Lakshman, A. Pilchin, S. Sivasubramanian,

P. Vosshall, and W. Vogels. Dynamo: Amazon’s Highly
Available Key-Value Store. In SOSP, October 2007.

[6] D. Farinacci, V. Fuller, D. Meyer, and D. Lewis. Lo-
cator/id separation protocol (LISP). Internet Draft,
October 2010.

[7] A. Feldmann, L. Cittadini, W. Muhlbauer, R. Bush,
and O. Maennel. HAIR: Hierarchical architecture for
Internet routing. In ReArch, December 2009.

[8] A. Ford, C. Raiciu, M. Handley, S. Barre, and J. Iyen-
gar. Architectural Guidelines for Multipath TCP De-
velopment, 2011. draft-ietf-mptcp-architecture-04.

[9] B. Ford and J. Iyengar. Breaking up the transport log-
jam. In HotNets, 2008.

[10] V. Fuller, D. Farinacci, D. Meyer, and D. Lewis. LISP
alternative topology (LISP+ALT), draft-ietf-lisp-alt-
05.txt. Internet Draft, October 2010.

[11] N. Gude, T. Koponen, J. Petit, B. Pfaff, M. Casado,
N. McKeown, and S. Shenker. NOX: Toward an op-
erating system for networks. SIGCOMM CCR, July
2008.

[12] V. Jacobson, D. K. Smetters, J. D. Thornton, M. Plass,
N. Briggs, and R. L. Braynard. Networking named con-
tent. In CoNext, December 2009.

[13] C. Kim, M. Caesar, and J. Rexford. Floodless in SEAT-
TLE: A scalable ethernet architecture for large enter-
prises. In SIGCOMM, August 2008.

[14] T. Koponen, M. Chawla, B.-G. Chun, A. Ermolinskiy,
K. H. Kim, S. Shenker, and I. Stoica. A data-oriented
(and beyond) network architecture. In SIGCOMM, Au-
gust 2007.

[15] D. Mazières, M. Kaminsky, M. F. Kaashoek, and
E. Witchel. Separating key management from file sys-
tem security. In SOSP, December 1999.

[16] N. McKeown, T. Anderson, H. Balakrishnan,
G. Parulkar, L. Peterson, J. Rexford, S. Shenker,
and J. Turner. OpenFlow: Enabling innovation in
college networks. SIGCOMM CCR, April 2008.

[17] R. Moskovitz, P. Nikander, P. Jokela, and T. Hender-
son. Host Identity Protocol, April 2008. RFC 5201.

[18] P. Natarajan, F. Baker, P. D. Amer, and J. T. Leighton.
SCTP: What, why, and how. Internet Comp., 13(5):81–
85, 2009.

[19] OpenVSwitch. An Open Virtual Switch. http://http:
//openvswitch.org/, 2009.

[20] C. E. Perkins. RFC 3344: IP mobility support for IPv4,
August 2002.

[21] A. Shieh, A. Myers, and E. Sirer. Trickles: A stateless
network stack for improved scalability, resilience and
flexibility. In NSDI, May 2005.

[22] A. C. Snoeren and H. Balakrishnan. An end-to-end
approach to host mobility. In MOBICOM, August 2000.

[23] I. Stoica, D. Adkins, S. Zhuang, S. Shenker, and
S. Surana. Internet indirection infrastructure. Trans.
Networking, 12(2), April 2004.

[24] P. Vixie, S. Thomson, Y. Rekhter, and J. Bound. RFC
2136: Dynamic Updates in the Domain Name System,
April 1997.

[25] M. Walfish, H. Balakrishnan, and S. Shenker. Untan-
gling the Web from DNS. In NSDI, March 2004.

[26] M. Walfish, J. Stribling, M. Krohn, H. Balakrishnan,
R. Morris, and S. Shenker. Middleboxes no longer con-
sidered harmful. In OSDI, December 2004.

[27] WebSockets. http://dev.w3.org/html5/websockets/,
2010.

14

http://http://openvswitch.org/
http://http://openvswitch.org/
http://dev.w3.org/html5/websockets/

	Introduction
	The Serval End-host Stack
	Overcoming the Limitations of Today's Network Stack
	Service Names with a Group Abstraction
	Rewiring the End-Host Network Stack

	Serval Protocols
	Explicit Service Registration
	Late Binding Through On-Path Resolution
	In-band Signaling Between Endpoints
	Security

	Serval Implementation
	Service Access Layer
	Transport Layer
	Network Infrastructure

	Evaluation
	Application Portability
	Host Stack and Router Performance
	Case Study: Large-Scale Web Services
	Serval for Front-End Web Services
	Serval for Back-End Distributed Storage
	Serval for VM Management

	Incremental Deployment
	Related Work
	Conclusions

