Revisiting Ethernet:
Plug-and-play made scalable and efficient

(Invited Paper)

Changhoon Kim
Department of Computer Science
Princeton University
Princeton, NJ 08540-5233
Email: chkim@cs.princeton.edu

Abstract— Because Ethernet bridging does not scale, most
enterprise networks consist of small Ethernet-based subnets
interconnected by IP routers. Although Ethernet’s flat addressing
and transparent bridging allow each subnet to run with minimal
configuration, interconnecting subnets at the IP level introduces
significant management overhead that increases with the size
of the network. As an alternative, we propose a scalable and
efficient zero-configuration enterprise (SEIZE) networking ar-
chitecture. SEIZE provides plug-and-play capability via globally
unique flat addressing, while ensuring scalability and efficiency
through shortest-path routing and hash-based location resolution.
Switches perform location resolution on demand and can cache
the results to optimize routing paths and to reduce the number
of location-resolution requests. We present a design overview of
SEIZE and show that it attains the best of Ethernet and IP.

I. INTRODUCTION

Ethernet has many appealing features, especially for en-
terprise network administrators. The end-host devices already
have permanent, globally unique MAC-48 addresses, obviating
the need to configure the hosts. In addition, Ethernet switches
self-learn the locations of end hosts, keeping the configuration
of networking nodes to a minimum as well. Moreover, per-
manent flat addresses simplify the handling of host mobility,
network troubleshooting, and access-control policies. An “all
Ethernet” network architecture would be extremely attractive,
if it were not for the following serious scalability limitations:

o Flooding-based delivery: Ethernet bridging relies on
flooding to deliver frames to unknown destinations.
Flooding consumes excessive link bandwidth and leads
to large forwarding tables in the switches.

« Inefficient forwarding paths: In its original form, Eth-
ernet bridging cannot incorporate back-up paths because
forwarding loops can arise. Although the Spanning Tree
Protocol (STP) solves this problem, delivering packets
along a single tree leads to unnecessarily long paths and
inefficient use of network resources.

« Broadcasting for basic service: Ethernet relies on broad-
casting to support essential discovery services, such as
Address Resolution Protocol (ARP) and Dynamic Host
Configuration Protocol (DHCP). This consumes excessive
resources, and also introduces security vulnerabilities.

Jennifer Rexford
Department of Computer Science
Princeton University
Princeton, NJ 08540-5233
Email: jrex @cs.princeton.edu

To overcome these limitations, most enterprises employ a
hybrid architecture that interconnects small Ethernet subnets
via IP routers. IP routing allows shortest-path forwarding
over any topology, greatly improving efficiency and flexibility.
Moreover, IP does not rely on flooding for packet delivery
and employs a TTL (Time-To-Live) mechanism to discard
packets stuck in loops, allowing routers to tolerate transient
forwarding loops and change quickly to new paths after a
failure. However, these benefits come at a price:

« Configuration overhead: IP uses hierarchical addressing
and subnet-based routing. Although DHCP can auto-
mate end-host configuration, administrators must manage
the subnet-specific configuration of router interfaces and
routing protocols, and this configuration must be con-
sistent with DHCP configuration. Correctly configuring
multiple DHCP servers itself is difficult because there is
no protocol for coordination among DHCP servers.

¢ Addressing inefficiency: Subnetting inevitably puts bar-
riers between address blocks, resulting in inefficient ad-
dress allocation. When the number of hosts per subnet
varies widely (e.g., a wireless LAN), administrators must
allocate IP addresses based on worst-case demand, which
is often much worse than the average. In addition, hier-
archical addressing makes mobility hard to support.

Moreover, these problems grow more serious in the face of
change, such as deploying a new routing protocol, revising
networking policy, adding or removing routers, or adding a
new member to the network operations team unfamiliar with
the current network configuration.

In this paper, we propose an alternative solution that com-
bines Ethernet’s plug-and-play capability with IP’s scalability
and performance, while avoiding any changes to the protocols
and applications running on end-hosts. The outcome is a
scalable and efficient, zero-configuration enterprise (SEIZE)
architecture. To minimize configuration overhead, SEIZE em-
ploys flat addressing and automated host discovery at the
network edge. To reduce the overhead of disseminating host-
location information, switches reactively resolve a host’s lo-
cation using a robust hashing scheme. Switches can cache
host-location information to optimize forwarding paths and



prevent redundant resolution requests. For efficient resource
usage, switches deliver packets along shortest paths. Scoping
broadcast traffic in each broadcast domain is also possible via
per-domain multicast trees. Finally, broadcast-based service-
discovery protocols, such as ARP and DHCP, are handled via
unicast-based resolution.

SEIZE is an alternative design of IEEE 802.1 Ethernet
bridging—so called, Ethernet interconnection—protocols. Any
Ethernet-based networks (e.g., 802.3 Ethernet, 802.11 Wireless
LAN, 802.16 WiMAX) can incorporate SEIZE to interconnect
themselves and can improve control-plane scalability and data-
plane efficiency.

Our work is motivated by recent attempts to improve or
redesign Ethernet bridging [1]-[5]. Among these, the most
directly related proposals are Rbridges [1], [2] and Myers’
architecture [5]. Rbridges improves efficiency via shortest-path
forwarding and ensures robustness using a TTL mechanism;
however, it does not address the scalability limitations of
Ethernet bridging. In addition to advocating shortest-path
forwarding, Myers’ prohibits broadcasting and flooding to im-
prove both efficiency and scalability. Nevertheless, the control-
plane models proposed in Myers’ architecture do not scale to
a large network because of the overhead of disseminating each
host’s location information. SEIZE differs from Myers’ work
in that it provides concrete and practical mechanisms to solve
the problems. We present more detailed review of the previous
work in later sections.

II. OVERCOMING ETHERNET’S LIMITATIONS

In this section, we describe specific requirements that an
Ethernet extension or replacement should meet for scalability
and efficiency.

A. Avoiding flooding to unknown destinations

Upon receiving a frame from a source host to an unknown
destination, Ethernet switches flood the frame, hoping that
the actual destination eventually receives a copy. Meanwhile,
every switch learns the source host’s location, so that sub-
sequent frames to the source (e.g., replies from the destina-
tion) do not require flooding. The self-learning mechanism
makes Ethernet a “plug and play” technology. However, flood-
ing introduces significant overhead in networks with many
hosts and switches, such as campus-wide wireless LANS,
multi-site wide-area VPNs (Virtual Private Networks) [6], or
metropolitan-area Ethernet [7].

Network administrators typically manage this problem by
reducing the size of broadcast domains (i.e., Ethernet seg-
ments) and interconnecting them via IP routing. However,
this hybrid architecture introduces configuration overhead and
inefficient use of IP addresses, as discussed in the previous
section. Although VLAN (Virtual LAN) adds the flexibility to
logically define each broadcast domain, each broadcast domain
still corresponds to a separate IP subnet. Thus, the manage-
ment complexity of IP still remains, in addition to VLAN’s
own configuration challenges (e.g., configuring VLAN trunks,
and per-VLAN spanning trees). Moreover, use of VLANs does

not scale well for switches that have to participate in multiple
(or sometimes all) VLANSs.

Instead, we argue that switches should always deliver uni-
cast frames via unicasting. To accomplish this, we need a
separate control-plane function to discover and disseminate
host-location information.

B. Restraining broadcast for data-plane scalability

Both ARP and DHCP are integral bootstrapping protocols
that utilize broadcasting to deliver a frame to a certain host
(or a server) without knowing the host’s (server’s) layer-two
address. We view the use of broadcasting for such a basic (and,
hence, frequent) operation as a vestige of the shared-medium
Ethernet where broadcasting had the same overhead as unicas-
ting. Obviously, this design leads to unnecessary consumption
of networking resources in the switched Ethernet architectures
common today. Moreover, since ARP is required between each
source and destination pair, its broadcasting overhead increases
in proportion to the number of communicating host pairs.

We suggest that, in a large-scale Ethernet network, boot-
strapping should not rely on network-wide broadcasting. In-
stead, ingress switches can work as intermediaries that trans-
form bootstrap requests broadcasted by end-hosts into unicast
queries to a directory service.

In addition to ARP and DHCP, other networking protocols
and applications employ layer-two broadcasting and multicas-
ting. Common examples include networked printing, P2P file
sharing, and IP multicast. Thus, even when we employ the
enhanced ARP and DHCP schemes, this broadcast/multicast
traffic can impose significant load on the network. Again,
network administrators typically cope with this problem by
limiting broadcast domains physically or logically. Recently,
some researchers have taken a clean-slate approach to re-
design enterprise networks that preclude broadcasting under
any circumstances [5], [8]. However, this approach requires
application- or protocol-specific reverse engineering to design
a substitute for broadcast for each application.

Our position is that general applications (i.e., not
ARP/DHCP) should still be able to use broadcast-
ing/multicasting for backwards-compatibility. Instead, we ar-
gue Ethernet itself should change, to handle broadcast traffic
in a manner that is more scalable and easier to configure.

C. Keeping forwarding tables small

Each Ethernet switch maintains a forwarding table which is
populated by the self-learning mechanism. Whenever a switch
receives a frame with a new source address, the self-learning
mechanism creates a corresponding entry (i.e., a tuple of the
source address and an output port) for the new host. However,
when combined with flooding and broadcasting, the self-
learning mechanism creates forwarding-table entries in every
switch in the broadcast domain. This problem becomes more
serious as a network grows. Maintaining small forwarding
tables is a critical issue especially for light-weight switches,
like wireless access points, that do not have much memory.
Even core switches can experience memory exhaustion when



attacks, such as MAC flooding where the attacker sends many
frames with randomly-spoofed source addresses, substantially
increase the forwarding-table size.

Evicting inactive host entries reduces the table sizes, at
the expense of more frequent flooding. Reducing the size
of broadcast domains helps reduce table size, although the
switches spanning multiple broadcast domains would still have
very large tables.

Instead, we need a routing scheme that installs host entries
only when and where the entries are actually needed. Traffic
patterns in enterprise networks are well-suited to a reactive
approach because most hosts communicate primarily with a
small set of popular hosts, such as printers, department Web
servers, and a gateway router to the Internet.

D. Ensuring efficient forwarding paths

Ethernet is especially vulnerable to forwarding loops. Even
a transient loop, when combined with flooding and broadcast-
ing, can lead to a broadcast storm (i.e., endless multiplication
of frames). Also, forwarding loops make switches mis-learn
the locations of sending hosts. Ethernet bridging prevents these
problems by maintaining a loop-free topology (i.e., a tree)
using the Spanning Tree Protocol (STP). However, using a
spanning tree leads to longer forwarding paths, poor load
balancing, and limited flexibility.

Supporting multiple spanning trees would make more effi-
cient use of network resources. For example, MSTP (Multiple
Spanning Tree Protocol) enables switches to maintain sepa-
rate trees for different broadcast domains [9]. However, the
forwarding paths in each domain remain sub-optimal. Simul-
taneously and adaptively utilizing multiple spanning trees in a
single broadcast domain could offer futher improvements [4],
at the expense of centralized monitoring and computation.

Fundamentally, allowing switches to send traffic over short-
est paths, rather than a shared tree, would improve perfor-
mance and make more efficient use of network resources. To
accomplish this, the switches would need to run a routing (e.g.,
link-state or distance-vector) protocol. In this case, however,
there must be an alternative way to prevent broadcast storms.

III. SEIZE ARCHITECTURE

In this section, we describe the architectural components
of SEIZE. We first introduce SEIZE’s foundational structures:
flat addressing (of end-hosts) and link-state routing (among
switches). Then, we describe our mechanisms for managing
host-location information and delivering frames along shortest
paths. Next, we describe how to handle network changes, such
as topology changes and mobile hosts, efficiently. Finally, we
explain how to handle ARP, DHCP, and other broadcast traffic
in a scalable fashion.

A. Flat addressing and shortest-path forwarding

SEIZE uses only end-hosts’ flat MAC addresses for end-to-
end delivery. Frames between two hosts are delivered along
shortest paths, not along a spanning tree. To enable this,
switches run link-state routing.

1) Flat addressing of end-hosts: SEIZE uses MAC-48
(a.k.a. IEEE EUI-48) addresses as unique identifiers of
routable entities. Since Ethernet addresses are flat, unique, and
hard-coded, no configuration (whether manual or automated)
is required to use them. The use of Ethernet addressing also
guarantees backwards-compatibility for end-hosts.

IP addresses are given to end-hosts only for external reach-
ability and application-level compatibility, not for routing.
Inside an enterprise, frames are delivered based only on
their destination MAC-48 addresses. This practice liberates IP
addresses from location, turning them to site-local identifiers
assigned to end-hosts, not subnet-local ones assigned to net-
work attachment points. This obviates the need to configure
IP subnets or reconfigure hosts when they move. In addition,
our approach makes address allocation more efficient and
simplifies troubleshooting and access-control policies.

End hosts still use ARP to resolve the MAC address asso-
ciated with an IP address. Although a host can keep its own
IP address regardless of its location, network administrators
can still utilize DHCP to save address space by assigning IP
addresses to active hosts dynamically. Running DHCP this way
is simple because there is no need to maintain consistency with
subnet configuration, since IP subnets do not exist.

2) Link-state routing with no host information: To enable
shortest-path forwarding, SEIZE switches run a link-state
routing protocol and share a complete topology composed
only of the switches. The configuration of the link-state
routing, therefore, is similar to that of a typical backbone
network, where IP prefixes are not injected into the IGP
(Interior Gateway Protocol), rather than of a conventional
enterprise network. Running a link-state routing protocol this
way requires only minimal configuration. Using a simple peer-
discovery protocol, each switch can easily discover neighbor
switches and can advertise only switch-to-switch links as
unnumbered interfaces, as well as its unique identifier (e.g.,
the smallest MAC addresses it possesses) as a router LSA
(Link State Advertisement).

SEIZE switches utilize the topology information for two
purposes: to compute shortest paths for unicast traffic between
any two switches, and to construct a multicast tree for broad-
cast/multicast traffic in a given broadcast domain.

B. Scalable location management and optimal delivery

SEIZE employs a novel, hash-based location management
scheme to avoid flooding frames to unknown destinations.
Figure 1 illustrates the mechanisms introduced in this section;
each step is annotated with a subsection number in which the
step is described. Dashed lines denote control flows, and solid
lines denote data flows.

1) Host location detection by adjacent switches: Each end-
host’s location is managed by its adjacent switch. The switch
takes responsibility for detecting arrivals and departures of all
end-hosts directly connected to it, in addition to delivering
data to and from these hosts. A switch could detect a host’s
arrival and departure either explicitly or implicitly, depending
on the underlying link technology. An example of explicit



B.4) r, informs s of s,

B.2) sqregisters a with ry-=~" "

‘B.3) relayed delivery
through r,

B.3) b sends
a frame to a

B.4)

B.1) sa detect’s’q__ cut-through forwarding

Link-state Core

Fig. 1. Hash-based location resolution and delivery

detection is an active registration initiated by a host, as in
802.11 association and authentication; explicit disassociation
when a host leaves or moves (e.g., 802.11 hand-off) makes it
easy to detect a departure. An example of implicit detection is
the self-learning mechanism in Ethernet bridging. Since a host
usually generates either a DHCP discovery or an ARP request
as soon as it arrives at a network, the adjacent switch can
detect arrival events in a timely fashion. A host’s departure
would be detected by periodic polling or repeated losses of
link-layer acknowledgments.

2) Hash-based location registration: For each end-host
there is a special switch (called a relay) that maintains the
host’s current location (i.e., the identifier of the host’s adjacent
switch). The mapping between a host and its relay is deter-
mined by a hash function F' that all switches in a network
jointly use. Upon detecting the arrival of host a with MAC-48
address mac,, the adjacent switch s, computes a relay switch
rq = F(mac,), and informs switch r, of a’s location.

3) Location resolution and relayed delivery: Suppose that a
source host b connected to a different switch s; wants to send
a frame to a destination host a. Upon receiving the frame from
b, the switch s; needs to determine the location of a. Rather
than flooding the frame, s; sends the frame to the relay switch
T4, Which in turn transmits the frame to switch s,. Because
r, may be multiple hops away, s, encapsulates the original
frame in an outer frame destined to r,; then, r, decapsulates
the frame and re-encapsulates in a frame destined to s,. The
traffic traverses the shortest path from s; to r,, followed by
the shortest path from r, to s,.

4) Optimizing forwarding paths: To optimize the forward-
ing path, two approaches are possible: cut-through forwarding,
and closest-relay selection. Under cut-through forwarding,
when r, receives the frame from s;, r, can notify s; that
a’s current location is s,. This enables s; to send subsequent
frames directly to s, over a shortest path. Switch s; can
cache this location information and apply various cache-
eviction policies (e.g., inactive timeout or least-recently-used
eviction). To avoid cache poisoning attacks, however, these
cached information entries for ongoing flows must not evict
the information entries of the hosts that are directly con-
nected to s, or are registered with s, for relaying. On the
other hand, in the closest-relay selection scheme, each switch
computes multiple independent hashes and selects the closest
relay among the multiple candidates. Note that the link-state

database provides a network topology on which switches can
naturally compare distances, without employing a separate
measurement framework.

C. Coping with changes with minimal overhead

We have described how SEIZE works in a stationary period.
In this subsection, we introduce schemes to efficiently handle
network dynamics—topology changes and host mobility.

1) Responding to network topology changes: To handle
changes of network topology (e.g., arrival or departure of
a switch) efficiently, SEIZE utilizes a Consistent Hash [10]
for F'. When using Consistent Hash, each switch maintains a
sparse, ring-shaped hash space (e.g., a hash space of size 21?8
using MD5) on which every switch in the network is placed.
Each switch’s position on the ring is determined by the hash
value of the switch’s unique identifier. When a switch needs
to map a host to a switch, the switch first places the host
onto the ring according to the hash value of the host’s MAC-
48 address. Then it maps the host to the closest switch on
the ring. Thus, when a new switch appears, only some of the
hosts who were previously assigned to the nearest switch of
the arriving switch need to be remapped to the new switch.
Similarly, when an existing switch disappears, only some of
those hosts who were previously assigned to the departing
switch should be remapped. Note that path changes alone do
not trigger host remapping.

Switches handle this remapping process in a distributed
fashion. That is, each switch individually responds to a
network change by remapping some of the hosts that are
directly connected to itself, and then by re-registering those
remapped hosts with a new switch. Note that, since SEIZE
utilizes a link-state protocol, any change in the core topology
is quickly and reliably disseminated to every switch, allowing
rapid remapping.

When a relay switch fails, or link failure partitions a relay
from the rest of the network, an ingress switch might not be
able to resolve a newly arriving flow’s destination. To enhance
availability, a SEIZE network can keep a host’s information
at more than one relay switch. For example, a host’s location
can be registered not only with the closest switch on a hash
ring, but also with the second-closest switch.

2) Responding to changes in host location: When a host
a moves from one location to another, the host’s new adja-
cent switch s[°" detects the arrival, hashes a’s address, and
registers the new location with a’s relay switch r,. Relay
switch 7, notifies the old location s2¢ of the new location
sp¢" before overwriting a’s location information. However,
since other ingress switches may have cached the s2'¢ loca-
tion, switch s%'¢ may continue to receive frames destined to
a. A cache-refresh mechanism (e.g., inactive timeout-based
eviction) running at those ingress switches would ensure that
the stale cache entries are eventually discarded or updated;
alternatively, upon receiving a frame destined to a, the switch
504 could explicitly notify the ingress switch that the location
has changed. Note that, since switches use encapsulation, gold

a
can determine the identifier of the ingress switch. In the



old

¢ could forward

meantime, for service continuity, switch s
these mis-delivered frames to 7, or s .

D. Scalable broadcasting and isolation via hashing

The hash-based on-demand resolution improves control-
plane scalability, but not necessarily data-plane scalability
because of broadcast and multicast traffic. To attain data-plane
scalability, SEIZE handles ARP and DHCP, two prominent
sources of broadcast traffic, via unicast-based resolution. For
backwards-compatibility, SEIZE also supports regular broad-
cast/multicast with a VLAN-like scoping option.

1) Proxy resolution for reducing broadcast: SEIZE re-
places ARP with a hash-based resolution scheme. To do
this, switches run the same host registration and mapping
mechanisms using the hash function F' with IP addresses.
When host a’s IP address ip, is first discovered (usually when
a arrives at a network), its adjacent switch s, registers both a’s
MAC and IP addresses with a corresponding resolver switch
F(ip,). Later, when another host b issues an ARP request to
determine the MAC address associated with ip,, its adjacent
switch s, directs the request to switch F(ip,), instead of
broadcasting the ARP request. We call this mode of ARP
operation proxy resolution. Proxy resolution is different from
proxy ARP in that an ARP reply contains the target’s address
(e.g., mac,), not the proxy’s one (e.g., macs,).

Similarly, SEIZE also avoids broadcasting DHCP messages
over the entire network by having ingress switches relay
DHCP messages. Upon receiving a broadcast DHCP message
from an end-host, the ingress switch encapsulates the message
with a DHCP server’s MAC address, and delivers it to the
server along the shortest path. Network administrators can
easily implement this mechanism using the DHCP relay agent
standard [11]. A DHCP relay agent allows an end-host to
communicate with a DHCP server located in a different
broadcast domain by converting a broadcast DHCP message
to a unicast IP packet destined to the DHCP server. In
SEIZE, instead of using IP encapsulation, switches can utilize
Ethernet encapsulation. To ensure minimal configuration, we
can maintain a broadcast group that is, by default, composed of
all switches and DHCP servers; a broadcast group is similar to
a VLAN, as discussed in more detail in the next subsection.
Using a simple broadcast discovery protocol in this special
broadcast group, switches can find the nearest DHCP server
without explicit configuration.

2) Group-based broadcasting for backwards-compatibility:
To support regular (non-ARP, non-DHCP) broadcast traffic
efficiently, SEIZE also allows network administrators to reduce
broadcast domains by introducing the notion of group. A
group is similar to a VLAN in Ethernet bridging in that
broadcast traffic is confined within a group, but it is more
flexible than VLAN in the following respects. First, a group
does not correspond to an IP subnet; each host in a group
uses its own site-local IP address regardless of its group
membership. Second, a host can belong to multiple groups.
Third, unlike VLAN, direct reachability (via unicast) between
hosts in two different groups may or may not be permitted

depending on the access-control policy between the two groups
(or even hosts). In this subsection, we describe a group-
based broadcasting mechanism; an inter-group access control
mechanism is introduced in the next subsection.

Broadcasting in SEIZE works as follows. All broadcast
frames within a group are delivered through a multicast tree
sourced at a dedicated switch, namely a broadcast server, of
the group. The mapping between a group and its broadcast
server is again determined by the same hash function F' using a
group’s identifier as an input. When a switch, for the first time,
detects an end host that is a member of group g', the switch
issues a join message that is carried up to the nearest graft
point on the tree toward the root (i.e., g’s broadcast server).
Note that, by virtue of F, all the switches along the new
branch taken by the join message can consistently map group
g to its broadcast server. When a host departs, its adjacent
switch also prunes a branch if necessary. As a result, each
switch in a network maintains local knowledge about which
of its interfaces belongs to which groups. Finally, when an
end-host in g sends a broadcast frame, its adjacent switch
encapsulates and forwards it to g’s broadcast server. The frame
is then decapsulated by the broadcast server and delivered
along g’s multicast tree. Note that, since multicasting with RPF
(Reverse Path Forward) check ensures loop-free forwarding,
our broadcasting mechanism prevents broadcast storms.

3) Hash-based inter-group access control: Network admin-
istrators can control inter-group reachability as follows. First,
each end-host’s group membership is determined by the host’s
adjacent switch and registered with corresponding switches
along with other information (e.g., location or IP address).
Enforcing access-control policy then takes place during the
process of address/location resolution. The key idea is to
permit resolution only when the access policy between a
resolving host’s group and a resolved host’s group permits
access. Thus, depending on access policy, one host in a group
may not resolve the MAC address of another host in a different
group. Moreover, even when the first host somehow obtains the
second host’s MAC address, delivering frames from the first
to the second one may remain impossible because the relay
switch for the second host can refuse it as per a corresponding
access policy. When access is permitted, however, the path
between two hosts in different groups remains optimal as if
the hosts were in the same group.

IV. SCALABILITY AND EFFICIENCY BENEFITS OF SEIZE

When delivering every frame through a relay, SEIZE has a
scalable control plane and light-weight support for host mobil-
ity. Moreover, SEIZE retains these properties even when cut-
through forwarding is used to improve data-plane efficiency.

A. Ensuring a scalable control-plane via relaying

Delivering all frames through relay switches increases
stretch (i.e., average path length), in exchange for reducing

IThe way administrators associate hosts with corresponding groups and
policies is beyond the scope of this paper. For Ethernet, a policy management
framework that can automate this task (e.g., mapping an end-host or flow to
a VLAN) is already available, so SEIZE can employ the same model.



both forwarding-table size and the number of control mes-
sages. Moreover, this practice enables SEIZE to support host
mobility with minimal overhead.

1) Minimal overhead for disseminating host-location infor-
mation: Each host’s location information is advertised only
to a small, constant number of switches—usually two (its
adjacent switch and its relay); no other control messages are
required. The amount of control overhead a switch has to
handle depends on the number of hosts directly connected
to it and the hash function F’s distribution, both of which
are predictable and tunable. Since link-state routing is used
only to compute the paths between switches, a single routing
protocol instance can serve an entire network.

2) Small forwarding tables: In SEIZE, each switch needs
to keep only the following three types of location information:
the hosts that are directly connected to the switch, the hosts
for which the switch is a relay, and the other SEIZE switches.
Assuming that the number of switches (S) is much smaller
than the number of end-hosts (H), the first two terms remain
as the major components of each forwarding table. Fortunately,
in SEIZE, summing up the first two terms across all switches
always results in a value that is linearly proportional to H,
regardless of the physical connectivity and routing topology.
This observation confirms the intuition that, in SEIZE, the
number of host-information entries stored in a network is
O(H), which is much smaller than O(SH) in other schemes.

3) Simple and robust mobility: Flat addressing and relay-
based delivery simplify mobility management. Flat addressing
liberates names from location, obviating the need to rename
a host as it moves. Under relay-based delivery, switches do
not need to purge stale host-location information from their
caches; only the relay node and the host’s adjacent switch
need to know the host’s location. Since updating the relay is
essentially an atomic operation, SEIZE also does not suffer
from transient forwarding loops resulting from host mobility.

B. Achieving data-plane efficiency with minimal cost

Path optimization via cut-through forwarding minimizes
stretch because frames follow shortest paths from ingress to
egress. Cut-through forwarding introduces the following costs:
i) additional control messages for on-demand resolution (i.e.,
ingress switches receiving notifications from relays), ii) larger
forwarding tables at ingress switches to cache the additional
host information for ongoing flows, and iii) control overhead
for updating cached location information when a host moves.

We do not expect these overheads to be significant in
practice. Most end-hosts communicate with a small number
of popular hosts, such as e-mail/file/Web servers, printers,
a gateway router, and perhaps a few hosts for VoIP (Voice
over IP) calls. Recent studies on end-host communication
patterns confirm that most hosts have a small, nearly-static
“community of interest” (COI) [12]. The COI for a mobile host
is usually even smaller. Viewing a host’s COI as analogous to
the “working set” in a conventional caching system, we see
that reactive host-location resolution and caching can ensure
both scalability and efficiency.

V. SIMPLE AND FLEXIBLE NETWORK MANAGEMENT

For management purposes, administrators can accurately
control the way SEIZE operates. Additionally, SEIZE offers a
number of unique benefits, including optimal load balancing
and simple and robust access control.

A. Controlling SEIZE for management purposes

The use of hashing and caching in SEIZE offers wide
opportunities to engineer a network for various operational
needs.

For example, more powerful switches, with more memory
and bandwidth, can serve as relay nodes for a disproportionate
number of hosts. This can be achieved by introducing a
supplementary pre-hash that creates a set of identifiers (IDs)
for a switch. The size of a switch’s ID set determines for how
many hosts the switch provides relay service. Each switch
learns all the other switches’ ID sets (i.e., sets of pre-hash
values) via link-state routing and then applies hash function
F' to the IDs. By choosing a pre-hash function with a large
hash space (e.g., 128 bits hash values), we can minimize the
probability of ID collision. Even when an ID collision occurs,
however, switches can easily detect it and create a new ID
because IDs are disseminated via link-state routing.

The trade-offs between relaying and cut-through forwarding
can be made adaptively, based on observations of network
conditions. For example, switches could disallow cut-through
forwarding for inherently short flows (e.g., DNS), or traffic
traveling to highly mobile hosts. An ingress switch could
forward packets through a relay until a minimum number of
packets have been sent or the receiving host remains in the
same location for some minimum period of time.

Forwarding-table sizes are also predictable and controllable.
As mentioned, pre-hashing can be used to adjust the number of
hosts for which a switch provides relay service. The number of
end-hosts which will be directly covered by a switch is also
usually known ahead of time. Thus, network administrators
can furnish a switch with the appropriate amount of resources.

B. Optimal load balancing

Delivering frames via relay switches serves as a form of load
balancing, since flows between the same ingress and egress
switches follow different paths. Recent work has shown that
delivering traffic through multiple, uniformly-selected indirect
paths, rather than direct shortest paths, can guarantee 100%
throughput for any valid traffic matrix [13]. The study also
proved that this model requires minimal capacity between each
node and makes performance predictable. SEIZE’s relayed
delivery mode naturally corresponds to this optimal load
balancing model. Moreover, indirect forwarding is especially
well-suited to enterprise networks, where the extra latency
from indirect delivery is typically small.

C. Simple and robust access control

Correctly enforcing access-control policies is very chal-
lenging in conventional networks because routing and ac-
cess control are managed separately. When using the relayed



delivery mode, the relay switches serve as consistent and
deterministic rendezvous points (RPs) between routing and
access control. Since every communication between hosts have
to be relayed through a RP, implementing ACLs (Access
Control Lists) at the RPs enables access control based only
on identifiers. That is, unlike conventional networks, access
controls do not need to be updated as routing changes or host
locations change. Note, however, that access-control policies,
not the implementations (i.e., ACLs) of the policies, can still
be managed at a centralized platform. The centralized platform
can automatically convert the policies into ACLs and then
dispatch them to appropriate RPs using the hash function F'.

By modifying the default behavior for an illegitimate re-
lay/resolution attempts, SEIZE can implement more interest-
ing approaches for handling unauthorized (often, malicious)
traffic. For example, instead of discarding a non-relayable
frame, a relay switch can redirect the frame to a middle-
box, such as an IDS (Intrusion Detection System), that can
detect or sanitize suspicious traffic. Note, however, that SEIZE
itself offers stronger protection against resource exhaustion
attacks (e.g., a large number of ARP requests for non-existing
addresses, or high volume of data traffic to non-existing hosts)
because it avoids flooding and broadcasting.

VI. RELATED WORK

The Rbridges [1] architecture is an Ethernet extension that
improves path efficiency via shortest-path forwarding, and ro-
bustness against loops via TTL-based frame discard. Rbridges
ensures optimal stretch by injecting each end-host’s address
into a link-state protocol, at the expense of poor control-plane
scalability. In contrast to Rbridges, SEIZE enables end-to-
end layer-two connectivity in an enterprise through scalable
control- and data-plane mechanisms.

Myers’ architecture [5] replaces flooding with unicast for-
warding, and broadcasting with a separate control mechanism.
To achieve optimal stretch, host information is injected into
a link-state routing protocol, resulting in poor control-plane
scalability. The paper also does not describe how the model
can support existing broadcast/multicast applications using
only unicast forwarding.

There have recently been a number of architectural propos-
als about networking on flat names. ROFL is one such effort
that utilizes a DHT (Distributed Hash Table) to avoid excessive
control overhead resulting from flat names [14]. SEIZE is mo-
tivated by ROFL but differs from it in the following respects.
Most of all, SEIZE allows each switch to maintain a complete
network map via link-state routing, whereas each router in
ROFL possesses only partial knowledge about the network.
Therefore, SEIZE employs shortest-path tunnels between the
switches, as opposed to ROFL’s source routing. This design
removes the overhead to store source routes at each switch and
in each packet. Moreover, maintaining a complete topology at
each switch enables SEIZE to have smaller stretch because,
even without caching of host-location information, paths in
SEIZE are at most only two virtual-hops long (i.e., from an
ingress to a relay, and then to an egress). In contrast, paths

in ROFL are four to nine virtual-hops long when caching is
not employed. To reduce path lengths, ROFL also employs
caching. However, the cache size at each router increases
exponentially as stretch improves.

In a parallel effort, Ray et al. also propose the use of hash-
based location resolution for Ethernet networks [15]. This ar-
chitecture, however, uses a conventional STP to establish paths
between switches, and a proprietary identifier dissemination
protocol. In contrast, SEIZE employs a link-state protocol,
leading to shortest-path forwarding between switches.

VII. CONCLUSION

SEIZE is a plug-and-playable architecture that ensures scal-
ability and efficiency through hash-based location manage-
ment, reactive location resolution and caching, and shortest-
path forwarding. Locality in traffic patterns ensures data-plane
efficiency without sacrificing control-plane scalability.

A prototype implementation of SEIZE is running on Em-
ulab. In our ongoing work, we are modeling and evaluating
the strengths of the architecture with measurement traffic from
enterprise networks.

ACKNOWLEDGMENTS

We would like to thank Matthew Caesar, Sharon Goldberg,
Rui Zhang-Shen, Yi Wang, KyoungSoo Park, Eugene Ng, and
Kobus van der Merwe for their valuable comments.

REFERENCES

[1] R. Perlman, “Rbridges: Transparent routing,” in Proc. IEEE INFOCOM,
March 2004.

[2] “IETF TRILL working group,” www.ietf.org/html.charters/trill-charter.
html.

[3] T. Rodeheffer, C. Thekkath, and D. Anderson, “Smartbridge: A scalable
bridge architecture,” in Proc. ACM SIGCOMM, August 2000.

[4] S. Sharma, K. Gopalan, S. Nanda, and T. Chiueh, “Viking: A multi-
spanning-tree Ethernet architecture for metropolitan area and cluster
networks,” in Proc. IEEE INFOCOM, March 2004.

[5] A. Myers, E. Ng, and H. Zhang, “Rethinking the service model: Scaling
Ethernet to a million nodes,” in Proc. HotNets, November 2004.

[6] L. Andersson and E. Rosen, “Framework for Layer 2 Virtual Private
Networks (L2VPNs),” Request for Comments 4664, September 2006.

[7] R. Santitoro, “Metro ethernet services - a technical overview,” 2003,
www.metroethernetforum.org/metro-ethernet-services.pdf.

[8] M. Casado, T. Garfinkel, A. Akella, M. Freedman, D. Boneh, N. McK-
eown, and S. Shenker, “Sane: A protection architecture for enterprise
networks,” in Proc. Usenix Security, August 2006.

[91 “IEEE Std 802.1Q - 2005, IEEE Standard for Local and Metropolitan
Area Network, Virtual Bridged Local Area Networks,” 2005, standards.
ieee.org/getieee802/download/802.1Q-2005.pdf.

[10] D. Karger, E. Lehman, T. Leighton, R. Panigrahy, M. Levine, and
D. Lewin, “Consistent hashing and random trees: Distributed caching
protocols for relieving hot spots on the world wide web,” in Proc. of
ACM Symposium on Theory of Computing, 1997.

[11] R. Droms, “Dynamic Host Configuration Protocol,” Request for Com-
ments 2131, March 1997.

[12] W. Aiello, C. Kalmanek, P. McDaniel, S. Sen, O. Spatscheck, and
J. van der Merwe, “Analysis of communities of interest in data net-
works,” in Proc. Passive and Active Measurement, March 2005.

[13] R. Zhang-Shen and N. McKeown, “Designing a predictable Internet
backbone network,” in Proc. HotNets, November 2004.

[14] M. Caesar, T. Condie, J. Kannan, K. Lakshminarayanan, and I. Stoica,
“ROFL: Routing on Flat Labels,” in Proc. ACM SIGCOMM, September
2006.

[15] S. Ray, R. A. Guerin, and R. Sofia, “A distributed hash table based
address resolution scheme for large-scale ethernet networks,” in Proc.
International Conference on Communications, 2007, to appear.



