
Measuring TCP Round-Trip Time in the Data Plane
Anonymous Author(s)

ABSTRACT
We present a data-plane algorithm that passively measures
TCP Round-Trip Time by matching data packets with their
associated acknowledgments. This enables monitoring of the
RTT of all outgoing traffic in real time without installing
software on the end hosts. To satisfy the stringent memory
size and access constraints of programmable switches, our
algorithm uses a multi-stage hash table to efficiently maintain
records for in-flight packets. To overcome the fact that many
packets never receive any corresponding acknowledgement,
we lazily expire their records upon hash collisions. We imple-
ment our algorithm on a commodity programmable switch,
and are in the process of deploying it into a campus network.
Evaluation using a real-world traffic trace from a 10 Gbps
campus network link has demonstrated that our algorithm can
accurately capture 99% of available RTT samples, using only
4 MB of data plane memory, less than 50% of total available.

1 INTRODUCTION
The Round-Trip Time (RTT) of network traffic directly af-
fects a user’s Quality of Experience, as it relates closely to the
response time of user requests. Varying or increasing RTTs
signal potential congestion or failure in the network. Although
RTT statistics are often readily available at end hosts, an In-
ternet Service Provider (ISP), such as a consumer broadband
provider or enterprise network operator, does not have direct
visibility into the RTT experienced by its customers. Even in
a data center, continuously monitoring RTTs at all hosts may
incur costly overhead. Yet, the ISP needs to measure the RTT
of customer traffic for a variety of purposes:

• Service-Level Agreement (SLA): The ISP may have a
SLA with its customers regarding the RTT between cus-
tomers and remote hosts. For example, Verizon provides a
SLA of 45 ms and 30 ms, for maximum RTT of intra-North-
America and intra-Europe traffic, respectively [21, 22].
Monitoring RTT in real time allows the ISP to verify it
is honoring the RTT, or be notified about upcoming breach
of SLA.

• Quality of Experience (QoE): The ISP may want to mea-
sure the QoE for customers using a variety of applications.
Some applications like video live-streaming are sensitive
to high latency and jitter [4], which can be captured in RTT
measurements. A periodic increase in RTT may reflect per-
sistent congestion and queuing on peering links [8], and
ISPs may upgrade their equipment specifically for those
links to better accommodate the customer demand.

Local Customer

Remote Host

Handshake RTT Per-packet RTT

SYN

ACK

SY
N/
AC

K SEQ AC
K SEQ AC
K ……AC
K

Per-packet RTTs

SEQ

Figure 1: Match data and ACK packets to measure RTT.

• Interdomain Routing Security: Unexpected changes in
the RTT to a remote host may signal a reroute, due to equip-
ment failure or a BGP routing attack [3, 14]. Continuous
RTT monitoring can help the ISP discover reroutes, even if
the re-routing happens further downstream.

Currently, to measure RTTs, ISPs often rely on active mea-
surement tools running on client machines (such as NDT [9]
and perfSonar [17]), sometimes after the client reports a degra-
dation in service quality. Meanwhile, passive performance
measurement tools (such as Ruru [7]) often report RTT sam-
ples based only on the three-way TCP connection handshake.
Such tools cannot capture the change of RTT during a long-
running TCP connection, and may be biased when SYN/SYN-
ACK packets are processed differently than regular TCP pack-
ets, e.g., going through a middlebox that increases RTT.

In this paper, we present an algorithm to continuously
measure RTT for all outgoing TCP packets, running on a
programmable switch at an ISP vantage point, passively, by
matching an outgoing TCP packet using its sequence number
with an incoming packet that has the corresponding acknowl-
edgment number. As illustrated in Figure 1, our algorithm
captures many RTT samples beyond the three-way handshake.
The algorithm enables a network operator to better understand
the RTT distribution experienced by all hosts connecting to
different destinations, as well as discover and respond in a
timely way to RTT anomalies.

Running in the data plane of commodity programmable
switches gives us the opportunity to measure per-packet RTT
in real time, at a higher line rate, and enables potential future
work on real-time re-routing after detecting RTT anomalies.
However, to achieve high throughput and constant-time pro-
cessing, the programmable switch also imposes strict con-
straints, including limited memory size and memory access
pattern. We need to succinctly record information for outgo-
ing TCP packets, and later match them with incoming ACKs
efficiently. Furthermore, not all outgoing packets will receive



SOSR’20, March 2020, San Jose, CA Anon.

incoming ACKs, and we need to find ways to “garbage col-
lect” their stale records within the data plane; we cannot do
housekeeping from the control plane, as it cannot keep up
with new records being created for every outgoing packet.

Our solution is to use a multi-stage hash table data struc-
ture, which fits the pipeline architecture and memory access
constraints of programmable switches. For each outgoing
packet, we record a fingerprint (a hash of 5-tuple flow ID
and expected ACK number) and a timestamp in the hash ta-
ble. The records matching with incoming packets are deleted,
while those never matched with incoming packets are lazily
expired based on their timestamps when hash collisions occur.

We have implemented our algorithm on a commodity pro-
grammable switch using the P4 language [16], and are in the
process of deploying it in our local campus network. Our
deployment will provide researchers with valuable measure-
ment data about RTTs “in the wild,” while also giving the
local network operators a useful tool for diagnosing end-user
performance problems in real time.

The remainder of this paper is structured as follows. In
Section 2, we briefly review some related work on RTT moni-
toring. Section 3 introduces our RTT measurement algorithm
based on multi-stage hash tables in more detail, as well as
some considerations in measuring real-world TCP flows. In
Section 4, we evaluate our algorithm for its accuracy and re-
source requirements, and we conclude the paper in Section 5.

2 RELATED WORK
Active/host-based measurements. Several works have ex-
plored measuring RTT on end-hosts for network performance
monitoring. PingMesh [11] and NetBouncer [15] are end-host
based system measuring the health of data center networks,
including RTT, by using end hosts (or VM hypervisors) as
vantage points to send and receive probe packets. However,
unlike data-center networks operators, other ISPs do not con-
trol end hosts directly and cannot measure RTTs easily using
agents running at end hosts. Furthermore, these active mea-
surement tools add extra probing traffic into the network,
while our passive measurement algorithm does not.

RTT measurement at ISP vantage point. An ISP can
measure the RTT of traffic when it sees both the outgoing and
incoming direction of the traffic. Aikat et al. [1] measured
the RTT experienced by campus network users by captur-
ing traffic at a border link, and later analyzed the traffic to
match outgoing TCP packet with incoming acknowledge-
ments. We also focus on studying RTTs at a border link of
campus network, but our data-plane algorithm produces RTT
samples in real time and enables immediate mitigation of
RTT anomalies. Ruru [7] is a system to passively measure
RTT of TCP handshakes at ISP vantage points. Ruru does not
measure RTTs for subsequent packets in long-running TCP

connections, while applications such as video streaming may
suffer from changing RTT in the middle of a connection. Veal
et al. [20] proposed a method to measure RTT beyond hand-
shakes at an intermediate vantage point. It calculates one leg
of RTT (from the vantage point to one host) using SYN/ACK
matching, and obtains the other leg of RTT using the TCP
timestamp option. It requires modifying the TCP packet to
add a timestamp option and depends on the recipient host to
echo the timestamp.

Measuring RTT on a programmable switch. Dapper [10]
is a TCP monitoring tool that tracks various metrics, including
RTT, in the data plane. Dapper produces accurate measure-
ments for the tracked flows, but it can track at most one out-
going packet per flow for RTT measurement, and must wait
until that packet’s acknowledgment arrives before recording
another outgoing packet for the flow. In our case, we do not
limit the number of outgoing packet records stored for each
flow, and a single flow can produce as many RTT samples as
possible, as long as memory space permits.

Hash table data structure. Our multi-stage hash table
data structure is motivated by prior works on data-plane algo-
rithms for programmable switches. Count-Min Sketch [6] is a
commonly-used data structure in the data plane for estimating
flow sizes and detecting heavy hitters, and is made of sev-
eral hash-indexed counter arrays. Gated Sketch [19] explored
the idea of using multi-stage hash tables for detecting heavy
hitters, including using different table sizes for each stage.
HashPipe [13] and PRECISION [2] designed more sophisti-
cated multi-stage hash tables for heavy-hitter detection, with
each record storing a hashed flow ID and a counter. Our data
structure stores a timestamp instead of a counter, for calculat-
ing RTT and expiring records. To the best of our knowledge,
we are the first to implement a multi-stage hash table data
structure for computing RTT in the data plane.

3 RTT IN A MULTI-STAGE HASH TABLE
In this section, we present our data-plane RTT monitoring
technique using a multi-stage hash table data structure.

3.1 Overview of Measuring TCP RTT
A TCP connection carries bi-directional data streams between
two end hosts, and in our application scenario, one end host
resides in our local network and the other is a remote host,
similar to [1]. Since our vantage point can see both direc-
tions of the data stream, it is possible to measure the RTT of
TCP traffic by observing the packet’s sequence (SEQ) and ac-
knowledgement (ACK) numbers. In particular, each outgoing
TCP packet with non-zero payload will be acknowledged by
a future ACK number sent from the remote host. We can then
infer the round-trip time from the vantage point to the remote
host using the time difference between the two packets. Note



Measuring TCP RTT in the Data Plane SOSR’20, March 2020, San Jose, CA

that we only consider the internet leg of the RTT and ignore
the local leg from our vantage point to the local host, which
we consider negligible for a local ISP.

Thus, at our vantage point, we do the following:

(1) For each outgoing TCP packet with unique expected ACK
number (eACK), we record its flow ID (IP address pair
and port pair), eACK (calculated using the SEQ number
plus the payload size), and a timestamp. Non-handshake
packets that have no payload are not recorded.

(2) For each incoming TCP packet, we look up our records
using its flow ID and ACK number. If we find a match,
we subtract the current time with the recorded outgoing
timestamp to recover an RTT sample from this packet.

The main challenges for this approach are managing the
records unmatched with incoming ACKs and efficiently stor-
ing and looking up records.

3.2 Lazily Expiring Records
As much as half of outgoing data packets will never receive a
corresponding ACK, as sometimes the remote host will only
send one ACK for every two consecutive data packets (due to
the TCP “delayed ACK” mechanism). A strawman solution
that removes records only when they are matched will soon
find its memory filled up by stale records.

To handle these unmatched records, we set an expiration
threshold for all records: a record that was not matched after
a predetermined interval T_Expire will be considered stale
and eventually removed. Fortunately, as the record includes
a timestamp already, we do not need any extra memory to
implement the expiration mechanism. We set this threshold
to be larger than reasonable RTT samples observed to avoid
prematurely removing records. For example, in Section 4 we
set it to 500 ms as it corresponds to the 99th-percentile of the
RTT samples.

When we set T_Expire too small, an outgoing packet’s
record may be quickly overwritten before the incoming packet
can match it, thus the algorithm cannot produce any samples.
When T_Expire is too large, the algorithm’s memory fills up
with useless records, and only a small fraction of outgoing
packets can be recorded (upon the expiration of some very
old records); in this case, the algorithm can still produce RTT
samples, for a small random fraction of outgoing packets.
When T_Expire is set appropriately, the algorithm uses its
memory efficiently to store records and is not under memory
pressure.

We also note that it is expensive to track all the records
and actively remove a record from the data structure once it
expires. However, we can lazily expire it: the record is consid-
ered expired when its timestamp becomes too old, and will
be overwritten by a future attempted insertion into the same
memory location, making our data structure self-cleaning. An

(fid, eACK) Timestamp
(A->B, 1001) T=101
(A->B, 1004) T=105

(A->C, 1050) T=122

(D->E, 1020) T=107

Outgoing Packet
A->B, SEQ=1001, Len=3

(eACK=1004)

Incoming Packet
C->A, ACK=1050

Insert record

Match & erase

T=105

T=125

Figure 2: We store a record for outgoing packets in a hash
table. An incoming packet can find its matching record,
calculate its RTT, and remove the record from the table.

effect of this mechanism is that an occasional packet with
a true RTT higher than T_Expire may still produce an RTT
sample.

3.3 Multi-stage Hash Table
Programmable switches are constrained in how they access
their data-plane memory, as surveyed in prior works [2, 13].
In particular, the amount of memory available in a hardware
pipeline stage is limited, and an algorithm can only perform a
limited number of memory accesses per stage.

We use hash tables to store the records of outgoing packets.
Prior works like Sonata [12] had implemented similar hash
table-based data structure in the data plane, and our imple-
mentation is primarily different in that we use the tables to
perform a “join” of outgoing and incoming packet streams,
and expired entries are lazily cleaned.

In our use case, a strawman solution can use a simple one-
stage hash table to store packets, as illustrated in Figure 2:
(1) For outgoing packets, we compute a memory address

using the hash function. If the location is empty or the
existing record has expired, we write the record tuple
(f id, eACK , timestamp); otherwise, we record nothing.

(2) For incoming ACKs, we calculate the same hash-based
address to retrieve the recorded tuple, check if the flow ID
and eACK matched, and finally compute the RTT based
on the recorded timestamp. If the ACK does not match
the recorded tuple, we do not compute an RTT sample.

In the example shown in Figure 2, an outgoing packet with
flow ID A->B, sequence number 1001 and length 3 arrives
at time T = 105. We first compute its expected acknowl-
edgement number eACK = 1001 + 3 = 1004, then use a hash
function to find its location in the table h(f lowID, eACK) = 2,
and insert a record into the 2nd row of the table. Later, an
incoming packet with flow ID B->A and ACK number 1004
may arrive, to match with (and erase) this record.

For an incoming packet with flow ID C->A and ACK
number 1050, arriving at T = 125, we first reverse its flow
ID into A->C, and find a location using the hash function



SOSR’20, March 2020, San Jose, CA Anon.

Stage 1 Stage 2 Stage 3 Stage 4
Occupied Occupied
Expired Expired Occupied
Occupied Occupied
Occupied Expired Occupied

Occupied Occupied Inserted
Occupied

Outgoing
Packet

Insert record

h2(fid, eACK)
h3(fid, eACK)

h4(fid, eACK)
h1(fid, eACK)

Figure 3: In the multi-stage hash table, each stage uses a
different hash function to calculate the location.

h(f lowID,ACK) = 4. Then, we verify that the record stored
in the 4th row indeed matched the incoming packet, and read
the stored timestamp 122. We now report an RTT sample 3
for flow A->C, and erase this record from the table.

However, the strawman solution suffers from the maximum
memory size limit of a single pipeline stage. Furthermore, due
to memory access constraints in the data plane, each packet
has only one chance to be inserted into the table, and cannot
be saved upon a hash collision with another entry.

Therefore, we use multiple memory arrays spread across
different pipeline stages to implement a multi-stage hash
table; as before, each table stores record tuples of (f id , eACK ,
timestamp). Note that we use different independent hash
functions for addressing in each table, which further reduces
the impact of hash collisions. We optimize the algorithm’s
memory space demand by using a fingerprint hash function
H to produce and store a 32-bit fingerprint H (f id, eACK)
in the hash tables, instead of the 128-bit original form. For
incoming packets, we reverse the flow ID to produce the same
fingerprint H (f id,ACK) as their matching outgoing packets.

In Figure 3, we illustrate the process of inserting a record
for an outgoing packet into a S=4-stage hash table. We note
that evaluation in Section 4.3 showed that S = 3 or S = 4
yield the most performance improvements given the same
total memory space, while having more stages provides di-
minishing returns. Given the packet’s flow ID and expected
ACK number, different hash functions h1,h2,h3 and h4 selects
four locations in each stage independently. The algorithm
first attempts to insert a record into the first stage, at address
h1(f id, eACK) = 4; since it is currently occupied and the
current entry has not expired yet, the insertion fails. It sub-
sequently tries inserting into the 2nd and 3th stage, before
successfully inserting the record into an empty location at 4th
stage. If all four locations are occupied and unexpired, the
outgoing packet will not be recorded.

Likewise, for incoming packets, the algorithm checks all
four locations to see if they hold a matching record. Any
matched record will be cleared, and the RTT is computed. If
no matching record was found across all 4 stages, no RTT
sample is produced for this incoming packet.

In Section 4, we evaluate the effect of changing the number
of tables and their sizes on the algorithm’s success rate.

3.4 Discussion
Analyzing and reporting RTT samples. Once we obtain an
RTT sample, we can report it alongside the packet’s flow ID
to an outside collector or to the switch control plane. However,
since there are many samples, we could filter out those sam-
ples with small RTTs and only report the samples that exceed
a certain threshold, to reduce the number of generated reports.
We can also group the RTT samples into larger groups (e.g.,
per geographic region), and analyze their statistics directly in
the data plane, to check if a SLA for RTT is being violated.
In this case, the control plane can poll periodically to learn
the latest RTT statistics for every traffic group.

Outgoing traffic. Each RTT sample requires a unique out-
going SEQ number and the corresponding incoming ACK
number, thus the outgoing packets cannot have zero payload
length—continuous zero-payload TCP packets share the same
SEQ number (except during the initial handshake). Therefore,
we need some amount of data sent in the outgoing direction; a
purely incoming TCP flow from remote host to local user, e.g.,
downloading a large file via FTP/HTTP, does not produce
RTT samples beyond the initial handshake.

However, we should note that many modern user applica-
tions like web apps, video streaming, etc., includes two-way
traffic for tracking or control purpose. In particular, web-
based video playback (such as Netflix) are often chunk-based,
with the browser requesting 5-second or 15-second chunks
periodically, thus we can expect outgoing data (and hence
RTT samples) every 5 or 15 seconds. Also, services hosted
on the local network will produce many outgoing traffic.

Delayed ACK. Delayed ACK is an optimization used by
some TCP implementations to combine an acknowledgment
packet with response traffic. By not immediately sending back
an ACK packet for incoming data, the host has an opportunity
to piggyback future response data with this acknowledgment.
When there is no response to send, a delayed ACK timer will
timeout, usually after 50 ms, and an ACK packet with no
piggybacked data will be sent. The hosts also immediately
send out the ACK after receiving two consecutive full-sized
packets. In our use case, a packet receiving delayed ACK pro-
duces an artificially higher RTT sample since it includes the
delay timeout. To avoid producing biased RTT samples, we
need to filter packets that experience a delayed ACK. Rather
than track the TCP state machine for each flow, we use a very
simple heuristic: the full-sized packets typically do not suffer
from delayed ACKs, as end hosts are not allowed to delay
ACKs when receiving two consecutive full-sized packets. To
further ease implementation, we avoid tracking Maximum
Transmission Unit (MTU) or TCP’s negotiated Maximum



Measuring TCP RTT in the Data Plane SOSR’20, March 2020, San Jose, CA

Segment Size (MSS) for each flow, but rather assume a packet
is full-sized if its length is one of several commonly used
MTUs (e.g. 1440, 1500, etc.); the user can choose to only
report the samples produced by outgoing packets with these
sizes.

Selective ACK and retransmissions. When a packet is
dropped, TCP will re-transmit the packet after seeing dupli-
cated ACKs; we may observe two identical outgoing packets
in this case. If there are packets with larger SEQ numbers
already delivered, the acknowledgment for the re-transmitted
packet will directly jump to a much later ACK number than
its eACK , so our algorithm will not produce an incorrect RTT
sample for this re-transmitted packet. TCP implementations
may also send Selective ACK (SACK) upon packet drops
to acknowledge subsequent packets; the SACK packet will
share the same ACK number as an earlier normal ACK packet,
which would have erased the matching record. Thus, our al-
gorithm will not produce an incorrect RTT sample for these
SACK packets.

Sampling under memory pressure. In Section 4, we show
that our prototype tracks >99% of RTT samples using a mod-
erate amount of data-plane resources. However, if the mon-
itored link rate grows faster and average RTT grows higher,
our algorithm needs more memory to save in-flight records
and achieve adequate accuracy. Also, data-plane memory may
be shared among other measurement applications running in
the data plane, further limiting the memory available for RTT
measurement. When memory is insufficient, records for new
outgoing packets cannot be inserted into the data structure,
which is filled up by unmatched and unexpired records. How-
ever, since records are naturally expiring and the location for
insertion is pseudo-random (determined by hash functions),
some records will be inserted successfully when their ran-
domly chosen location aligns with a just-expired record. In
effect, a random fraction of outgoing packets are automati-
cally sampled, and the algorithm produces a sampled set of
RTT measurements.

QUIC. Recently, Google proposed QUIC [5], a UDP-based
transport alternative to TCP. QUIC encrypts its packet header
fields, which prevents the ISP from performing RTT measure-
ment based on SEQ/ACK matching. Therefore, the QUIC
standardization body is planning to add a “spin bit” [18]
specifically for RTT measurement at ISP vantage points.

4 EVALUATION
We implement our RTT measurement algorithm and multi-
stage hash table data structure using a Python-based simulator,
which supports different table sizes and number of tables as
input parameters. The simulator uses different variants of the
CRC16 function (with different polynomials) to calculate in-
dices in hash tables, and use the CRC32 function to calculate

1ms 10ms 100ms 1s
RTT

100

101

102

103

Fr
eq

ue
nc

y

0.00

0.25

0.50

0.75

1.00

CD
F

Figure 4: The histogram and Cumulative Distribution
Function (CDF) of the RTTs observed in our experiment
trace, collected from a university network’s border.

packet fingerprints. We also implement our algorithm on a
commodity programmable switch using about 600 lines of
P416 [16] code, achieving identical functionality. Since each
record consists of a 32-bit nanosecond-precision timestamp
and a 32-bit fingerprint hash, a S=8 tables, 64k records-per-
table configuration uses S + 1=9 hash function computations
and 8 × 2 × 32bit × 64k=4096KB of data-plane memory, both
less than 50% of total capacity. To verify our algorithm can
report RTT samples under a realistic workload, we collected
a bi-directional traffic trace from a vantage point in a univer-
sity campus network, which is also a future deployment site
of the algorithm. We subsequently use the trace to evaluate
the effectiveness of our RTT monitoring algorithm using the
simulator, under various table sizes and number of stages.

4.1 Dataset and method
We captured a bi-directional traffic trace from a 10 Gbps
peering link between a border router of a university campus
network and a local ISP. The traffic trace has been anonymized
and sanitized to obfuscate personal data before being used
by researchers, and our research has been approved by the
university’s institutional review board.

The trace contains 1 million TCP packets across 11 thou-
sand flows, with a mean and median IP packet size of 1100
and 1500 bytes, respectively; about 58% of packets are likely
MTU-sized (longer than 1450 bytes).

After tagging packets as incoming or outgoing based on IP
prefix, we calculated the ground truth RTT samples by match-
ing TCP sequence and acknowledgment numbers. The trace
contains 0.6 million outgoing packets, 0.4 million incoming
packets, and 71K pairs of RTT samples. The median RTT
for all samples is 44 ms. We plot the RTT distribution we
observed in the trace in Figure 4.



SOSR’20, March 2020, San Jose, CA Anon.

4096 8192 16384 32768 65536
Size per hash table

0%

25%

50%

75%

100%

Re
ad

 S
uc

ce
ss

 R
at

e 8 tables
6 tables
4 tables
2 tables
1 table

Figure 5: As we allocate more memory to each hash ta-
ble, the algorithm achieves higher read success rate, de-
fined as the number of RTT samples correctly produced
divided by total possible RTT samples.

In the following experiments, we use 500 ms as the stale
threshold (corresponding to 99th percentile of all RTT sam-
ples), and investigated the success rate of our algorithm under
various table size configurations. The success rate is deter-
mined by how many incoming packets are matched with a
record (out of those having ground truth RTTs, i.e., theo-
retically could have matched with a record of an outgoing
packet).

4.2 Table size
We first investigate the relationship between the size of multi-
stage hash table, which directly relates to our algorithm’s
memory footprint, to the percentage of successful matches.
We now vary the size of each hash table, and check how it
affects the algorithm’s success rate for reporting all RTT sam-
ples. We define Read Success Rate as the number of incom-
ing packets successfully matched with a recorded timestamp
stored in the data structure, divided by the total number of
RTT samples available in the ground truth.

As can be seen from Figure 5, when our hash table grows
larger, the likelihood of a hash collision between non-expired
records decreases, therefore more outgoing packets can be
recorded and more incoming packets can successfully match
with a record. We can reach over 99% percent of successful
matches when using 8 tables with 65,536 entries, which cor-
responds to 4,096 KB of data plane memory, less than half of
the total available in our switches.

4.3 Optimal number of hash tables
We now investigate the optimal number of hash tables to use
given a fixed total memory size, to quantify the benefit of
using additional hash tables. In this experiment, we fix the
total memory size and divide them by varying the number of

1 3 5 7
Number of tables

5%

10%

15%

Re
ad

 S
uc

ce
ss

 R
at

e

64k
48k
32k
16k

Figure 6: When splitting the same total memory across
multiple tables, using S =3 or 4 tables yield the most sig-
nificant improvement over using a single table, with di-
minishing return afterwards.

stages; for example, splitting 64k records into S = 2 stages
means having 32k records per table, while a configuration
using S = 7 stages will have 9.1k records in each table.

Figure 6 shows that the read success rate saturates at S =3
to 4 for a multi-stage hash table, under a fixed total memory
size constraint. Having more than four tables yields dimin-
ishing returns, as the memory in later stages is underutilized.
Therefore, for practical implementation, we should choose
S = 3 or S = 4 stages. We note that the configurations in
Figure 6 use a smaller total memory size than most points ap-
pearing in Figure 5, therefore they exhibit lower read success
rate. Turkovic et al. [19] explored the idea of using different
table sizes per stage to achieve higher memory utilization; we
leave this as future work.

5 CONCLUSION
We present an algorithm to track the per-packet Round-Trip
Time of TCP traffic in the data plane of commodity pro-
grammable switches using a multi-stage hash table data struc-
ture. Our algorithm can successfully report over 99% of all
RTT samples, in a traffic trace collected from a 10 Gbps peer-
ing link of a campus network. Our evaluation also shows that
using 3 to 4 stages in the multi-stage hash table structure
achieves the best performance for RTT monitoring, given the
same amount of total memory.

We are in the process of deploying our algorithm on our
campus network to provide continuous RTT monitoring for
network operators. In the future, we will explore implement-
ing more sophisticated measurement primitives based on the
real-time RTT samples, including alerts for sudden change in
RTT distributions and notifications for SLA violations.



Measuring TCP RTT in the Data Plane SOSR’20, March 2020, San Jose, CA

REFERENCES
[1] Jay Aikat, Jasleen Kaur, F Donelson Smith, and Kevin Jeffay. 2003.

Variability in TCP round-trip times. In ACM SIGCOMM Internet Mea-
surement Conference. ACM, 279–284.

[2] Ran Ben-Basat, Xiaoqi Chen, Gil Einziger, and Ori Rottenstreich. 2018.
Efficient Measurement on Programmable Switches Using Probabilistic
Recirculation. In IEEE ICNP. 313–323.

[3] Henry Birge-Lee, Liang Wang, Jennifer Rexford, and Prateek Mit-
tal. 2019. SICO: Surgical Interception Attacks by Manipulating BGP
Communities. In ACM SIGSAC Conference on Computer and Commu-
nications Security. ACM.

[4] Francesco Bronzino, Paul Schmitt, Sara Ayoubi, Nick Feamster, Renata
Teixeira, Sarah Wasserman, and Srikanth Sundaresan. 2019. Light-
weight, General Inference of Streaming Video Quality from Encrypted
Traffic. arXiv preprint arXiv:1901.05800 (2019).

[5] Gaetano Carlucci, Luca De Cicco, and Saverio Mascolo. 2015. HTTP
over UDP: an Experimental Investigation of QUIC. In ACM Symposium
on Applied Computing. ACM, 609–614.

[6] Graham Cormode and S. Muthukrishnan. 2005. An improved data
stream summary: The Count-Min Sketch and its applications. Journal
of Algorithms 55, 1 (2005), 58–75.

[7] Richard Cziva, Christopher Lorier, and Dimitrios P Pezaros. 2017.
Ruru: High-speed, Flow-level Latency Measurement and Visualization
of Live Internet Traffic. In ACM SIGCOMM Posters and Demos. ACM,
46–47.

[8] Amogh Dhamdhere, David D Clark, Alexander Gamero-Garrido,
Matthew Luckie, Ricky KP Mok, Gautam Akiwate, Kabir Gogia, Vaib-
hav Bajpai, Alex C Snoeren, and Kc Claffy. 2018. Inferring persistent
interdomain congestion. In ACM SIGCOMM. ACM, 1–15.

[9] Constantine Dovrolis, Krishna Gummadi, Aleksandar Kuzmanovic,
and Sascha D Meinrath. 2010. Measurement lab: Overview and an
invitation to the research community. ACM SIGCOMM Computer
Communication Review 40, 3 (2010), 53–56.

[10] Mojgan Ghasemi, Theophilus Benson, and Jennifer Rexford. 2017.
Dapper: Data plane performance diagnosis of TCP. In Symposium on
SDN Research. ACM, 61–74.

[11] Chuanxiong Guo, Lihua Yuan, Dong Xiang, Yingnong Dang, Ray
Huang, Dave Maltz, Zhaoyi Liu, Vin Wang, Bin Pang, Hua Chen, et al.
2015. Pingmesh: A large-scale system for data center network latency
measurement and analysis. In ACM SIGCOMM, Vol. 45. ACM, 139–
152.

[12] Arpit Gupta, Rob Harrison, Marco Canini, Nick Feamster, Jennifer
Rexford, and Walter Willinger. 2018. Sonata: Query-driven streaming
network telemetry. In ACM SIGCOMM. ACM, 357–371.

[13] Vibhaalakshmi Sivaraman, Srinivas Narayana, Ori Rottenstreich, S.
Muthukrishnan, and Jennifer Rexford. 2017. Heavy-Hitter Detection
Entirely in the Data Plane. In ACM SIGCOMM Symposium on SDN
Research. 164–176.

[14] Yixin Sun, Anne Edmundson, Laurent Vanbever, Oscar Li, Jennifer
Rexford, Mung Chiang, and Prateek Mittal. 2015. RAPTOR: Routing
Attacks on Privacy in Tor. In USENIX Security Symposium. 271–286.

[15] Cheng Tan, Ze Jin, Chuanxiong Guo, Tianrong Zhang, Haitao Wu,
Karl Deng, Dongming Bi, and Dong Xiang. 2019. NetBouncer: Active
Device and Link Failure Localization in Data Center Networks. In
NSDI. 599–614.

[16] The P4 Language Consortium. 2018. P416 Language Specification.
https://p4.org/p4-spec/docs/P4-16-v1.1.0-spec.html. (Nov. 2018).

[17] Brian Tierney, Joe Metzger, Jeff Boote, Eric Boyd, Aaron Brown, Rich
Carlson, Matt Zekauskas, Jason Zurawski, Martin Swany, and Maxim
Grigoriev. 2009. perfSonar: Instantiating a global network measurement
framework. SOSP Wksp. Real Overlays and Distrib. Sys (2009).

[18] Brian Trammell, Piet Vaere, Roni Even, Giuseppe Fioccola, Thomas
Fossati, Marcus Ihlar, Al Morton, and Stephan Emile. 2018. Adding Ex-
plicit Passive Measurability of Two-Way Latency to the QUIC Transport
Protocol. Technical Report. IETF.

[19] Belma Turkovic, Jorik Oostenbrink, and Fernando Kuipers. 2019.
Detecting Heavy Hitters in the Data-plane. arXiv preprint
arXiv:1902.06993 (2019).

[20] Bryan Veal, Kang Li, and David Lowenthal. 2005. New methods for
passive estimation of TCP round-trip times. In International Workshop
on Passive and Active Network Measurement. Springer, 121–134.

[21] Verizon. 2019. IP Latency Statistics. (2019). https://enterprise.verizon.
com/terms/latency/ Accessed: 2019-11-03.

[22] Verizon. 2019. Service Level Agreements. (2019).
http://www.verizonenterprise.com/solutions/public_sector/state_
local/contracts/calnet3/sla/ Accessed: 2019-11-03.

https://p4.org/p4-spec/docs/P4-16-v1.1.0-spec.html
https://enterprise.verizon.com/terms/latency/
https://enterprise.verizon.com/terms/latency/
http://www.verizonenterprise.com/solutions/public_sector/state_local/contracts/calnet3/sla/
http://www.verizonenterprise.com/solutions/public_sector/state_local/contracts/calnet3/sla/

	Abstract
	1 Introduction
	2 Related Work
	3 RTT in a Multi-Stage Hash Table
	3.1 Overview of Measuring TCP RTT
	3.2 Lazily Expiring Records
	3.3 Multi-stage Hash Table
	3.4 Discussion

	4 Evaluation
	4.1 Dataset and method
	4.2 Table size
	4.3 Optimal number of hash tables

	5 Conclusion
	References

