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ABSTRACT
Internet users run the risk of having their internet traffic
surveilled potentially leading to leaked sensitive information
or the loss of anonymity. Adversaries can manipulate the
trust of the Border Gateway Protocol–the protocol which
controls the routing decisions of the internet–to enable such
surveillance by diverting victim traffic to their own servers.
Existing methods of detecting such attacks are inefficient,
too slow, or susceptible to being tricked by a clever adversary.
We present here a novel method of detection based on the
changes in latency of internet traffic. Efficient and fast meth-
ods for round trip time calculation in the data plane exist
and because latency is bounded by topological distance it is
difficult to spoof. We consider three latency-based detection
algorithms for efficient online monitoring of traffic which
can help real-timemitigation of ongoing attacks.We evaluate
the algorithms’ performance in detecting real (ethically exe-
cuted) interception attacks and also assess its performance
in avoiding false positives in real anonymized Princeton
University internet traffic.
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1 INTRODUCTION
By using the internet, users open themselves up to a wide
array of attacks. One general form of attack is to eavesdrop on
someone’s communication with another internet endpoint.
If the victims have neglected to encrypt their traffic, the
eavesdropping adversary cna gain access to sensitive data
such as passwords or private conversations. However, even
if packet contents are encrypted, an eavesdropper can still
extract sensitive information just by checking packet headers
and seeing who is communicating with whom. Further, even
users browsing on the Tor network–a software designed to
provide anonymous internet use–or other similar services
are still vulnerable to deanonymizing traffic analysis which
can be accomplished if the adversary gains a large enough
foothold into the network[1–4].

Such attacks can be made possible by the primary routing
protocol for the Internet’s backbone, The Border Gateway
Protocol (BGP). This protocol does not have any means of se-
cure authentication of Autonomous System (AS) identity nor

the honesty of announced routes which allows a malicious
AS to lie and broadcast a route it should not. Clever BGP
misuse can allow for effective eavesdropping without the
need to break into the victim’s machine and does not require
tapping into a router on the normal path of the victim’s traf-
fic. All an adversary needs to do is reroute the victim’s traffic
through its own servers via a bogus BGP announcement
[5]. Such an adversary might simply monitor the traffic and
drop it, but such a hijack attack would quickly be noticed by
the victim as they no longer receive any communication. In
a more subtle attack, known as an interception attack, the
adversary diverts the traffic so it can be monitored but then
forwards the traffic to the intended recipient [6]. In doing so,
it makes it difficult for the user to realize anything is amiss
(Figure 1). This makes interception attacks difficult to detect,
especially in real-time.

This attack might have appeal to many nation-state actors
for a variety of reasons. For example, a nation might be in-
terested in tracking a political activist. While one could, for
example, force a local dissident to have their traffic routed
though government servers for close monitoring, we do not
focus on that type of local case. Rather, we prioritize cases in
which a nation state wants to intercept traffic overseas. For
example, if this political activist has fled the country, or if the
target is an official of an enemy state. Indeed, there are exam-
ples which suggest that this type of behavior might already
be deployed. In 2011, government owned China Telecom
hijacked 50,000 global prefixes diverting them to the China
Telecom servers before most were forwarded back to their
intended destination. Victims during this incident included
US government agencies [7]. States alternatively might be
interested in gaining access to foreign sensitive data as was
one in in a 2017 Russian interception of US credit card traffic
[8]. Another interesting use case places the US government
in the role of adversary, circumventing a protection of citi-
zens’ internet communications from unwarranted search by
diverting domestic traffic overseas where it no longer has
these protections. Following major whistle blowing from Ed-
ward Snowden of the NSA, one could imagine this tool being
used to try and monitor and suppress suspected political
dissidents [9, 10].
Methods for detecting these BGP interception attacks do

exist, but none are totally satisfactory. Some approaches
leverage active probes such as traceroute [11]. However,
such active methods are resource inefficient and make real
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(a) Before interception attack
. (b) After interception attack

Figure 1: Diagram of interception attack on a victim communicating with a friend. Green arrows represent BGP
routing to the Victim. Blue arrows represent traffic between Friend and Victim. Grey arrows help show network
topology (i.e. do not carry traffic between Friend and Victim but might carry other traffic). (a) The Victim and
Friend are communicating with traffic traversing multiple ASes from source to destination. The victim has pre-
viously announced either a /23 or /24. The adversary, far away, announces a /24, equally specific or more specific
than the victim’s announcement, which propagates. (b) The announcement has converted AS2 and AS3 to for-
ward traffic intended for the victim not to the best route to the victim, but to the adversary, who analyzes it before
forwarding onward to the victim via AS4 which did not hear the bogus announcement.

deployment unfeasible. Other approaches focus on parsing
propagated BGP announcements and checking for incon-
sistencies (such as conflicting origin ASes) [12] which can
be inefficient. Additionally, it has been demonstrated that
interceptions can be successfully executed without the BGP
announcement ever reaching either of the effected endpoints
making this type of approach difficult [13]. A complete re-
view of related work can be found in Section 6.

One unexplored approach which resolves many of these
issues is to use latency information to detect attacks. Round
Trip Time (RTT) measurements involve recording the time a
packet is sent and matching it with a reply acknowledgment
(ACK) to calculate the latency. In this paper, we refer to a
single latency calculation as a "sample." Abnormal round trip
time, and in particular sustained increases in latency, could
correlate with long range interception attacks as the traffic
must traverse a greater topological distance. This approach
has a number of beneficial qualities. Unlike other methods,
this approach can be measured close to the source to avoid
corrupting maneuvers from the adversary. That is, an over-
seas adversary cannot keep latency lowwhile carrying out an
interception attack since there is a lower bound set by topo-
logical distance. An RTT-based detection algorithm could in
theory be used for online monitoring and respond in real-
time to flagged behavior for instance by rerouting packets,
making a more specific BGP announcement so that traffic
is no longer diverted, adding in random delay (to prevent
traffic analysis), or stopping traffic altogether depending on
the sensitivity of the information.

The ability to quickly and efficiently monitor for inter-
ception attacks can be realized by an emerging but substan-
tial technology in programmable switches. Programmable
switches are highly controllable network devices which sit in
the data plane and can passively measure RTT on long last-
ing TCP connections. While these switches offer speed and
efficiency, they come with challenges such as low capacity
memory and limited memory access abilities [14] requiring
that any detection algorithm implemented on one of these
switches be constrained to simple operations. We see incor-
poration into a programmable switch as a feasible direction
towards deployment. Indeed, in order to be robust to all traf-
fic analysis attacks, which can be completed with as few as
100 packets [3], the type of speed and efficiency offered may
be necessary.
On top of these constraints, multiple other factors make

developing a suitable algorithm for this task difficult. First,
arbitrary factors relating to the hardware and use of the net-
work lead to varying amounts of slowdown and noise which
require differentiation from malicious attacks. For example,
we used traces recorded on Princeton University’s campus
to evaluate the efficacy of the RTT-based approach and it-
erate on the design. While doing so we discovered traffic
patterns which made this differentiation difficult, the cause
of some we could easily explain and others we could not.
Being effective in the face of the many diverse traffic pat-
terns featured regularly in traffic in the wild all the while
having the constraints of a programmable switch forces us
to act as efficiently as possible. Second, the lack of available
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datasets containing known interception attacks with its as-
sociated RTT data, in addition to ethical issues with running
an interception attack on the open internet, makes testing
and revising the algorithm challenging. Luckily the PEER-
ING test bed [15], a series of prefixes and servers around the
world for research use, allowed for the creation of real RTT
data to help with the development.
In this paper, we implemented an RTT-based detection

model in software and analyzed it in an ethical environment
demonstrating high effectiveness at flagging true intercep-
tion attacks and achieving fairly low rates of false positives.
Ongoing work will transition to implementing it into a pro-
grammable switch, reducing the rate of false positives, and
solidifying concrete mitigation steps.

The rest of the paper is structured as follows:
• Section 2 presents a detailed problem formulation.
• Section 3 introduces the algorithms considered for
RTT-based detection.

• Section 4 describes the threat model we consider and
explains the various interception attacks we used to
test our detection approach.

• Section 5 evaluates the success of these algorithms
in correctly detecting the interception attacks. Addi-
tionally, it analyzes parameter choices for the various
algorithms by evaluating them on the Princeton traces.

• Sections 6 discusses current state of the field and why
our approach better fits certain use cases than existing
alternatives.

2 PROBLEM FORMULATION
In this sectionwe further explain inwhat scenario RTT-based
detection would be valuable.

2.1 A Motivating Example
Consider the motivating use case of n privacy-concerned
user of the Tor network. Tor is a software which allows users
to remain anonymous while browsing the web, making use
of three intermediate servers between the communicating
endpoints so that it is difficult to associate received traffic on
one end with traffic being send on the others. Tor is widely
used – it has over 7000 relays and about 4 million active users,
and played a critical role in the Edward Snowden whistle
blowing as well as the Arab Spring [16].

Not surprisingly, many entities have an interest in breach-
ing the security Tor provides. Meanwhile, Tor, in order to
avoid impractically high latency, makes concessions which
open itself up to potential traffic-analysis attacks were an
adversary to gain a sufficient foothold into the network. This
could be achieved with a clever interception attack. Con-
sider a Tor client using the web via the Tor network, passing
through a number of ASes. An adversary may launch an

interception attack in order to get on path of this traffic and
run traffic analysis to deanonymize the victim and correlate
its traffic with its destination! For the purposes of this paper,
we assume that the adversary is sufficiently far off path to
make a large enough increase (Figure 1).

2.2 Defense
Our novel insight is that the Tor entry or node can defend
from these attacks by monitoring the latency of the traffic
in real-time. RTT measurement is done by matching an out-
bound packet with its received acknowledgement (ACK) [17].
We can use these latency measurements as a form of proxy
for topological distance in the Internet. Propagation delay
is the amount of time it takes for a packet to reach its desti-
nation from a source. We consider round trip propagation
which is the sum of the propagation delays of the packet
and acknowledgment. In other words, the amount of time
spent in transit to the exclusion of processing time at the far
endpoint. This value sets a lower bound for the calculated la-
tency as it does not include that processing time whereas the
observed latency does. As the path the traffic takes changes
increases, the propagation delay should increase accordingly
and if processing time at the end is unchanged, we can expect
observed latency to increase as well. Therefore, if we assume
that the stable route BGP determines between two endpoints
is close to optimal, an adversary far enough off-path who
diverts this traffic will elongate the route and increase the
latency. We can analyze the stream of latency data and flag
any significant increases as this likely signifies a malicious
routing change. Once there is a suspected attack, there can
be a mitigation step or a suite of mitigation efforts that are
taken to fight this attack. These mitigation efforts are beyond
the scope of the paper but are touched on in brief in Section
A.1.

2.3 Constraints
The problem we are solving is much more constrained than
a regular change-point analysis problem. First, these attacks
can be as quick. In 2018 [3] achieved 62% success at traffic
analysis with only 100 packets, advances in the field since
will surely bring this number down. In order to be a robust
defense against such fast attacks, we must be able to respond
that quickly. Therefore, this solution must be not only in
real-time, taking a single pass through the data stream, but
also decide quickly whether or not this pattern matches an at-
tack. Second, because we see the most effective path towards
deployment as integrating with programmable switches, we
are constrained in the types of operations that we can per-
form on the switch. While programmable switches are a
quickly developing field, we restrict ourselves to simple com-
parison and basic arithmetic operations. Additionally, due
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to the speed constraints and the memory limitations of the
switches, we only take a single pass through the latency data.
Third, the solution must be widely generalizable. That is, if
this is going to be deployed in a switch, at some endpoint or
in a Tor relay, we cannot tailor sensitivity settings to each
particular communication. Rather, we would like to come up
with a solution which works well across any arbitrary two
endpoints in communication. Fourth, this must be efficient
in two senses: (1) it must be resource efficient in order to
avoid large performance hits to latency and throughput of
the network. Tor intentionally makes security sacrifices to
prioritize a better performing browser experience. To offer
a solution which simply reverses that intentional trade-off
is effectively not offering a solution. (2) it must be accurate.
While prefect accuracy is desired, we think it is impossible
and therefore we need to consider the tension between hav-
ing the detection be sensitive enough to flag true instances
of an attack while not being overly sensitive to noise.

Amid all of those constraints, the problem still boils down
to: given a stream of RTT samples for each client, can we
detect large RTT changes within in fewer than 100 samples
(and ideally under 50 samples) while avoiding high false-
positives.

3 DETECTION ALGORITHMS
In this section we elaborate on three of the algorithms used
for analysis. Additionally, we point out where some of them
fell short, characterizing the type of communication which
poses difficulty for accurate detection. In Section 5 we com-
pare the performance of these algorithms and consider pa-
rameters which should be chosen for optimal detection.

3.1 Algorithm Background
If we consider a route between a source and destination to
be relatively stable (i.e. all of the traffic is sent on the same
route) we can think of the round trip time as the the combi-
nation of two components. One of these components is the
round trip propagation delay. This number is theoretically
a constant representing the amount of time that is required
to travel from one endpoint to the other and back. The sec-
ond component is variable and constantly changing even
on a stable route. It is comprised of processing time at the
destination as well as small delays caused by things such as
buffering, queuing, reordering and resending packets during
transit.
For stable connections, we expect this to be roughly the

case and so round trip times hover above some theoreti-
cal stable line which is this round trip propagation delay.
When a route experiences a change for benign or malicious
reasons, the same principles will apply for the new route
and there will be some new baseline lowest theoretical RTT.

Figure 2: RTT versus Sample plot of an interception at-
tack of communication between an AWS instance in
Ireland and servers at Northeastern University near
Boston, MA. Traffic is diverted to an adversary in Am-
sterdam. Each x represents a single RTT sample. Sam-
ples are in chronological order but evenly spaces and
not plotted with time.

For example Figure 2 shows traffic stable around 90ms and
then after the routing change it readjusts to be stable (albeit
with more noise) above 115ms. In a straw-man case of zero
noise any change would be detectable as the data is other-
wise consistent (and there are indeed connections which
exhibit roughly this behavior). Comparing adjacent packets
for a large enough change reveals a routing change. Taking a
slightly more realistic case with noise such as we have in this
same figure, despite some noise, a large scale interception
attack would be detectable with the same method so long as
we only check for sufficiently large jumps.

Yet, individual samples might have lengthy RTTs due to
something such as a delayed ACK. For instance, in Figure
3, delayed ACKs occur not infrequently at times around
100x of the primary signal. Less extreme events of this same
phenomenon occur regularly – in an arbitrary chosen set
of 100 consecutive flows (as arranged in the dataset) from a
dataset of flows with more than 144 samples, 58 of the 100
had a delayed ACK where that is defined as singleton outlier
at least 200ms greater than the regular RTT. Most of this 58
has outliers with latency thousands of miliseconds above
the others. Accordingly, there is a need to view samples in
aggregate and to characterize what the signal is from amidst
the noisy data.
Specifically for this detection method, the signal is the

RTT associated with topological distance. Because we have
this lower bound from round trip propagation delay, the
lower the round trip time, the closer it serves as a proxy
for distance. Therefore, we focus on the lowest RTT values
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Figure 3: Example of delayed ACK at around sample
750. The RTT for that sample is close to 16 seconds
which is about 100 times the bulk of the other samples.

in the calculation of whether to flag an attack or not. We
present a simple algorithm which leverages the power of the
minimum to approximate distance while not being tripped
up by outliers.

3.2 Two Window Min Filtering Algorithm
This algorithm breaks up the data into window sizes w and
finds the minimum of each. Adjacent minimums are com-
pared to see if there is a sufficient increase in round trip time,
more than a threshold𝑇 , such that it is likely an adversary is
intercepting traffic. Through min-filtering over a window of
data, we both reduce susceptibility to noise and also only use
the samples which best approximate topological distance.
This algorithm also has the additional property of being easy
to implement into code generally which makes it promising
for implementation in the data plane. (See Section A.5).

3.3 Three Window Algorithm
The two-window algorithm works well in particular when
traffic matches our initial expectations for what traffic might
look like. However, it fails on noisier traffic and consistently
on one pattern in particular: buffer bloat (Figure 5). Buffer
bloat is the phenomenon of having overly large buffers in
routers upstream of a lower bandwidth connection causing
a steady increase in latency until the server sending traffic is
informed to reduce the amount of traffic it sends, temporar-
ily relieving the issue [18]. The resultant latency hike can
be as large as a few hundred milliseconds. It has an identifi-
able shape as seen in Figure 5. Meanwhile, the two-window
algorithm collapses a window of data into one data point
for comparison. In buffer bloat, since we are using relatively
small window sizes, each window captures part of the bloat,
and when compared it appears that there is a jump. However,

Figure 4: Two plots of the same connection. Top:
Round trip time plotted versus the sample number
with orange circles showing the minimums. This is
how the algorithm ’sees’ the data. Bottom: Round trip
time plotted versus real-time (seconds since epoch).

Figure 5: Top Buffer bloat image as seen from the per-
spective of a min-filtering detection algorithm. Blue
’x’mark data points, orange dots theminimumof each
window, and green stars the points flagged by the two-
windowminfiltering algorithmBottomThe same con-
nection plotted versus time.

we really wish to be looking for a new sustained minimum
RTT, not just a momentary increase.
To respond to buffer bloat, we extended the algorithm to

three-windows which allows to look for sustained increase
in latency to the exclusion of more temporary or volatile
ones. To do so we define a third variable 𝑠 for instability
tolerance. Consider three windows𝑤1,𝑤2,𝑤3. In addition to
a sufficiently large increase between the first two windows, it
is also required that 𝑎𝑏𝑠 (𝑚𝑖𝑛(𝑤3) −𝑚𝑖𝑛(𝑤2)) ≤ 𝑠 in order to
flag this. With this addition, if the increase in latency is not
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sustained (allowing for minimal deviance), it is presumed to
be buffer bloat or noise of some kind. We considered values
for 𝑠 all below 10ms.

3.4 A Third Algorithm: Kth-min Filtering
A last algorithm was explored in response to a phenomenon
among the campus traces in which there would be a stream
of data, relatively steady around some latency and then a
single low outlier. The way the algorithm this is very likely
to trigger a flag in either of the other two algorithms. It is
unclear what the cause of this issue is–likely it has to do
with with peculiarities of the measurement as opposed to an
actual short drastic decrease in latency. In order to explore
this, we tried using a k-th min filtering scheme. Instead of
the regular 0-th min filtering, we set k=1 in order to see if
that could maintain the benefits of the standard min-filtering
over a window, but slightly improve it by excluding these
outliers.

4 EXPERIMENTAL SETUP
In order to test the efficacy of the detection algorithms, we
executed interception attacks ethically in the wild using the
PEERING test bed. PEERING runs geographically dispersed
ASes which allow for researches to make real BGP announce-
mentswhile not affecting other entities [15]. For the purposes
of describing these attacks, we refer to three players. Prior
to the attack, a friend and the victim are in communication
over the internet. During the attack, an adversary diverts
traffic intended for the victim (originating at the friend) to
its own servers before forwarding it along to the victim.

4.1 Communities and Interception Attacks
In order for the interception attack to be considered suc-
cessful, the adversary must divert traffic intended for the
victim and then forward it onward to the victim. In a simple
naive setup, this forwarding step is impossible. The traffic
was diverted to the adversary because ASes along the way
thought that this was the best route to reach the victim, if
the adversary simply tries sending the traffic to the victim
– the intended recipient– the intermediate ASes along the
path will send it along the best route which is right back to
the adversary. The traffic will never reach the victim and
it will be obvious that something has happened effectively
announcing the attack to the victim.

In order for the forwarding to actually succeed, it is crucial
for there to remain enough ASes which actually believe that
sending the traffic to the victim not via the adversary is the
best route.
Communities are such a tool, which, although not in-

tended for this purpose, can be utilized to achieve this end.
Communities are attributes which can be attached to BGP

announcements which provide for somewhat specific addi-
tional instructions allowing for more control over routing
policy. Communities might be used to relay extra informa-
tion about the announcement or to tell an upstream provider
to do a certain action. Communities can also be used to tell
providers to NOT propagate an announcement or to demote
a local preference for a particular hop making the route,
although propagated, not likely to be chosen. These latter
two forms of community attributes can be used to make the
bogus announcement from the adversary either entirely un-
known to portions of the internet or known but unappealing
to that portion (and effectively ignored). The main challenge
of the adversary is then to keep the announcement unknown
to part of the internet while still having the announcement
propagate far enough to reach the victim and friend.

Using communities to enable an interception attack would
still fail if there is only one provider to the adversary. Either
that one provider thinks the best route is via the adversary
in which case it will keep sending any received traffic back
to the adversary, or it does not in which case it would not
pass it to the adversary to begin with. Therefore, this attack
requires the adversary AS to have two providers so that it
can announce the victim’s prefix to one of them and then
forward it out of the one it does not announce to.
We assume that the adversary has access to at least two

providers and can make announcements using communities
so that it can run a successful interception attack. Using
just BGP announcements, we consider three versions of an
interception attack that an adversary could deploy: (1) an
equally specific attack where the adversary gives an equally
specific announcement as the victim, (2) a sub-prefix inter-
ception where the adversary gives a more specific prefix to
increase attack reach, and (3) a stealthy sub-prefix attack
where path poisoning is used to prevent the announcement
from reaching both endpoints.

4.2 The Three Attacks
PEERING provides access to an mux in Amsterdam with
two providers which is designated as the adversary for this
reason–we can use one provider to announce the bogus
announcement and the other to redirect traffic onward to the
victim. We conducted three experiments using a variety of
other locations. A PEERING mux in Northeastern University,
in Cambridge, Massachusetts serves as the victim. In order
to minimize added latency, these muxes are controlled using
co-located AWS instances.

4.2.1 Equally Specific Interception Attack. Using an AWS
instance in Northern Virginia, we controlled a PEERING
mux at Northeastern University (NEU) near Boston, Mas-
sachusetts. We announced the PEERING-provided /24 prefix
(e.g., 1.1.1.1/24) and ran a server there posing as an ip in
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Figure 6: RTT versus Sample plot during an attack in
which anAS inAmsterdam intercepts communication
between Princeton and Northeastern Universities. At-
tack begins at around sample 600. Blue x represents
single RTT sample, orange dots with dashed line is
how the plot looks after min filtering and the star is
where the detection algorithm things there is an at-
tack beginning. All combinations of parameters tested
with jump threshold less than 125 successfully located
a singular attack in this flow.

that network. From an AWS instance in Ireland we set up
a TCP connection with that ip-port pair and continuously
sent packets to NEU which echoed back the same message.
After 20 seconds of benign behavior, we launched the attack
whereby the adversary in Amsterdam announces 1.1.1.1/24
with a number of community attributes and we then update
Amsterdam’s packet filtering rules to no longer respond to
the prefix (as the owner) and instead forward the traffic via
one of its providers to the victim. After another 30 seconds,
we stopped recording. Packets and ACKs were recorded us-
ing tcpdump and tcptrace used in order to compile latency
data.(exact commands can be found in the Appendix A.6).

4.2.2 Sub-prefix Attack. From NEU we announced the
PEERING-provided /23 prefix (e.g., 1.1.1.1/23) and ran a server
posing as an ip in that network and bound it to a particular
port. From a machine in Princeton’s network, we set up a
TCP connection with an ip in the announced prefix space.
After 20 seconds of benign behavior, we launched the attack
whereby the adversary in Amsterdam announces 1.1.1.1/24
with a number of community attributes, updates its packet
filtering rules to longer respond as the owner of that prefix
and forwards the traffic via one of its providers to the victim.
After another 30 seconds, we stopped recording. Packets and
ACKs were recorded using tcpdump and tcptrace used in
order to compile latency data.

This attack has a number of advantages and disadvantages
compared to the equally specific interception attack. BGP
paths are prioritized using a number of tiers. At the top
tier, a more specific matching prefix always wins over a
less specific one. After that there are a number of business-
interest related considerations as a customer might not want
its path to be known to a peer. Lastly, if routes are equal
in the other areas, a shorter path length is preferred. Now,
in order for an interception attack to work, it often means
using many communities to avoid both of the adversary’s
providers from hearing the bogus announcement. Doing so
often make the route from friend to adversary longer. As the
path grows, it is less likely that an intermediate AS is going
to pass along the bogus route, as it is increasingly likely that
a different route is preferred due to being shorter. Therefore,
there is a firmer limit on how far an equally specific attack is
going to propagate. It is possible that everything will work
out, however, this is very labor intensive to pull off with good
reach. For instance, in an equally specific attack, adding in all
of the communities required to make an interception attack
work–that is, for one provider to announce the bogus path
and it not be heard by the second– leads to the announcement
not being heard at all at NEU or Princeton. Accordingly, the
attack was run from Ireland. A sub-prefix attack, because
prefix specificity is the primary metric for route acceptance,
means if an AS does hear of the bogus announcement, it
will be the preferred one and propagated on. This is why
the attack was able to intercept traffic sent from Princeton
even though Princeton is close to Northeastern and far from
Amsterdam.

However, [6] already makes the suggestion of only an-
nouncing /24 in order to avoid the ease of a sub-prefix attack.
An equally specific attack is then less preventable and per-
haps therefore more likely to be deployed in the wild by a
real adversary. We demonstrate its success and that it can be
detected by the three algorithms.

4.2.3 Stealthy sub-prefix attack. From Seattle, we announced
the PEERING provided /23 prefix and ran a server from there
posing as an ip in that network and bound it to a particular
port. From a PEERING mux in Wisconsin controlled by an
AWS instance in Ohio we opened up TCP connection with a
PEERING mux in Seattle controlled by an AWS instance in
Oregon. After 20 seconds of benign behavior, we launched
the attack from Amsterdam. This attack features, in addition
to the added communities, a path-poisoning of the last hop
before the Friend (the mux in Wisconsin). We updated Ams-
terdam’s packet filtering rules to no longer respond to the
prefix (as the owner) and forward the traffic via one of its
providers to the victim. After another 30 seconds, we stopped
recording. Packets and ACKs were recorded using tcpdump
and tcptrace is used in order to compile latency data.
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This attack is very similar to other subprefix attack. How-
ever, the BGP announcement does not propagate to the vic-
tim nor the friend. Therefore, any passive detection scheme
relying on seeing BGP announcements at the victim or friend
is not going to be successful. However, for an RTT-based
approach, we can nonetheless detect this attack.

5 EVALUATION
In this sectionwe evaluate the efficacy of the three algorithms
and do parameter tuning to determine at which settings
are the algorithms best. The high-level goal of this section
is motivated by the desire for the detection schemes to be
deployable. To be successful in a real setting, a detection
algorithmmust be tuned to be sensitive enough so that it flags
attacks when they do appear while at the same time not being
too sensitive such that short-lived perturbations are not often
mistaken for an attack and flagged.We consider both of these
metrics by both running them against actual interception
attacks and also by running it on benign (presumed not-
intercepted) traffic. In both settings we consider the three
algorithms with the following settings: window size of 8, 16,
24, 32, 48; jump threshold of 5, 10, 20, 30, 40, 50, 75, 100, 125,
200ms; and instability tolerance of 2 and 9ms.

5.1 High-Level Parameter Discussion
The approach we took for recommendation of parameters
was to use the high quantity of campus data and see which
parameters would be unlikely to falsely raise a flag while still
being sensitive the real attacks. That is, we want to have as
few false negatives as possible while keeping false positives
low. Here we briefly explain some of the considerations.

5.1.1 window size. The size of the window affects the
granularity with which the detection looks for changes. Since
for each window we have just one data point, too large a
window size leads to potentially missing quick attacks. For
instance, if the window size is 64 samples, this means that
it requires 128 samples to extract two windows in order
to detect a change and 192 for three. An efficient attacker
could do traffic analysis within that amount of time and
withdraw the BGP announcement, causing the attack to be
missed by the detection–a false negative. At the same time,
too small a window size leads to over sensitivity to what is
just very noisy data. A small window size would lead to false
positives when what appears to be an attack is just a passing
phenomenon. We therefore need a window size which is not
too small as to mistake fleeting noise with an attack and is
not too big that it is too slow to be useful or mistakes a real
attack for fleeting noise.

5.1.2 jump threshold. This parameter𝑇 represents a thresh-
old value. If an 𝑖 + 1-th window is more than 𝑇 greater than

the 𝑖-th the two-window algorithm will flag it as an attack
(and the three-window will if it sustains this heightened
latency through the next window). When selecting an ap-
propriate value for 𝑇 there are two primary considerations
to make. The first is that the larger 𝑇 the further off-route
the adversary must be in order for the attack to be captured.
For instance, in the NEU-Ireland-Amsterdam attack, a jump
value of 30ms is already too great to detect this attack which
increases RTT by about 25ms (Figure 2). The second is that
if 𝑇 is too small noise will more frequently be mistaken for
an attack (e.g., Figure 9). In order for the detection scheme
to remain fairly simple so that it can be deployed in a pro-
grammable switch, we think we must select a single parame-
ter for detection and so the value chosen becomes a trade off
between sensitivity to noise and accuracy in selecting only
true positives. We make a recommendation, however ulti-
mately different scenarios will call for different weightings
of costs and benefits–a government owned switch monitor-
ing top secret information would likely be more tolerant of
false-positives than a general purpose switch run by an ISP
or a Tor node.

5.1.3 instability tolerance. This parameter, 𝑠 is only rele-
vant in the three-window algorithms. In those, we wish to
see that the change is a sustained one. If the 𝑖 + 1-th window
deviates from the 𝑖-th window by more than 𝑠 in any direc-
tion, then we suspect that the spike was due to noise and not
an attack and do not flag it. As 𝑠 increases, more jumps in
RTT will remain with that limit and be flagged as an attack.
𝑠 must be low enough to avoid over flagging noise but high
enough to allow for the possibility of an attack to take place
with some instability.

Two methods were used to determine the efficacy. We
considered: window sizes of 8, 16, 24, 32 and 48; jump values
of 5, 10, 20, 30, 40, 50, 75, 100, 125, and 200ms; and instability
tolerances of 2 and 9ms. The goal is to find a set or ranges of
parameters which we determine to have a balance between
false positives and false negatives. That is, being sensitive
enough to detect attacks from close range and quickly while
also limiting the amount of noise which mistakenly flags
attacks. The PEERING experiments are used in order to see
whether or not chosen parameters are able to detect the
attacks when they do occur–avoiding false negatives. Mean-
while, we make use of a dataset of 35 million connections
from a day of Princeton University campus internet traffic,
in which we assume there are no interception attacks, to see
how the parameters do at avoiding false positives.

5.2 PEERING Results
In total 26 attacks were run. Generally, all of the algorithms
performedwell at detecting the attacks. Compared to some of
the other traces studied, the PEERING experiments involving
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NEU had relatively little noise (Figure 6). In the absence of
noise, as expected, all three of the algorithms performed
well. Two of the attacks were unsuccessful to begin with and
therefore none successfully flagged it.

As expected, the 200ms threshold did not catch any of the
attacks correctly. The size of RTT increase in the sub-prefix
attack on NEU-Princeton traffic often had a latency increase
of around 80-100ms so the 125 and most of the time 100ms
attack were unable to make detection. The Seattle-Wisconsin
interception had more variable increases in latency, at times
well above 100ms at times slightly below. But in order to be
able to detect all of the successful attacks, a jump threshold of
20ms would be required as the equally specific interception
only diverts that much (Figure 2). That being said, in one
instance, due towhat seems to be slow to converge to the new
route, a jump threshold of 10ms would have been required
(Figure 15).

There were no instances, when, with the same window
size and jump threshold, that the three-window algorithms
with an instability tolerance of 9ms were unable to detect
the attack but the two-window algorithm was able to. The
instances when there was noise were more informative for
differentiating the different algorithms. The two window
algorithm did not fair well in the presence of noise. To take
one example, in Figure 7 which the performance of the two-
and three-window algorithms, the two-window algorithm,
because it only compares adjacent windows, mistakes a steep
incline in latency due to noise for an attack.

Similarly, the window sizes also were differentiated in the
presence of noise. Figure 8 compares two parameter settings,
all the same but in one the window size is 8 and in the other
16. As can be seen there, while both of them have register
the noise in their minimum. Because window size of one is
larger, there is only one minimum that is elevated and the
detection algorithm distinguishes that as noise while with
a smaller window size, that is considered to be a sustained
change. Setting the window size to 32 or greater entirely
smooths out the curve, ignoring all of noise around sample
550.
Instability tolerance was in most instances, not a decid-

ing factor between flagging the attack or not. However, in 3
of the attacks the difference between 9ms and 2ms instabil-
ity tolerance made the difference between flagging and not
flagging.

Similarly, the window sizes also were differentiated in the
presence of noise. Figure 8 compares two parameter settings,
all the same but in one the window size is 8 and in the other
16. As can be seen there, while both of them have register the
noise in their minimum. Because window size of one is larger,
there is only one minimum that is elevated and the three
window algorithm differentiates that as noise while with a
smaller window size, that is considered to be a sustained

(a) Two-window algorithm assessing an interception attack. It
locates three attackswhen there should be one.𝑤 = 16𝑇 = 75𝑚𝑠

(b) Three-window algorithm assessing an interception attack.
It locates just one attack as it should be.𝑤 = 16𝑇 = 75𝑚𝑠, 𝑠 = 9𝑚𝑠

Figure 7: Plots of performance of the two and three
window algorithm on an attack diverting traffic be-
tween Princeton and Northeastern Universities to an
adversary in Amsterdam. Blue x is a single RTT sam-
ple, the orange dots and dashed lined represent the
min-filtered data and the purple stars are locations of
suspected attacks.

change. Setting the window size to 32 or greater entirely
smooths out the curve, ignore all of noise around sample
1350.

Instability tolerance was in most instances, not a decid-
ing factor between flagging the attack or not. However, in 3
of the attacks the difference between 9ms and 2ms instabil-
ity tolerance made the difference between flagging and not
flagging.

There are five takeaways from the PEERING experiments:
(1) affirms that these attacks are each able to be carried out
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(a) Three window algorithm set with𝑤 = 8,𝑇 = 20, 𝑠 = 2. Shows
two suspected attacks.

(b) Three window algorithm set with 𝑤 = 16, 𝑇 = 20, 𝑠 = 2.
Shows one suspected attack which is when the attack did oc-
cur.

Figure 8: RTT versus Sample plot for an interception
attack diverting communication between PEERING
mux in Seattle andWisconsin to a Amsterdam. (a) has
a window size of 8. (b) has a window size of 16. Traffic
may be being routed along two paths during the attack
leading to this noise. Blue x is a single RTT sample,
the orange dots and dashed lined represent the min-
filtered data and the purple stars are locations of sus-
pected attacks.

on the internet today, (2) that this RTT-based detection ap-
proach, in particular either of the three-window algorithms,
can be used to successfully detect these attacks, (3) some at-
tacks require being very sensitive and setting jump threshold
as low as 20ms or even 10ms, (4) Having a larger tolerance
for instability can make the difference between detection
and not even in relatively low noise flows, and (5) smaller
window sizes do lead to fewer false positives but at least from

here do not make it more effective at locating the attacks
themselves.

5.3 Campus Data Results
Weanalyzed traces taken from a day of Internet traffic recorded
at Princeton University and anonymized in accordance with
IRB standards for approval. The original dataset contained
35,000,000 flows of which we created two subsets. We as-
sumed that there were no actual interception attacks in the
dataset. The goal is to select parameters which are impervi-
ous to much of the noise in all of these connections while
not being so conservative as to not raise any flags.

5.3.1 Methodological Considerations . In working with
this campus data set, a number of methodology decisions
were made. First, from the large dataset, two smaller ones
were created. One contained all flows with more than 96
packets (244,541 flows) and one all flows containing more
than 144 packets (165,522 flows). These were used for the
two and three-window algorithm analysis respectively. This
was because we wanted to test the algorithms on the same
flows across window sizes. Since we consider a window size
of 48 we only used data which could accommodate that large
a window size. It should be noted that were the other option
taken – and datasets on which large window sizes could not
be run were used – it would make the larger window sizes
look comparatively better than they do as it would add in a
number of flows they would certainly not flag.

We also considered what metric to use in order to compare
the different parameter tunings. One option is to see how
many flows from the dataset are flagged. On the one hand,
this approach does not give undo weight to some select
very noisy flow which has what appears to contain many
attacks. On the other hand, it also does not factor in that
some flows are much longer than others–a single flagged
instance in a flow of 100 samples is different than one in a
flow of 100,000 samples. Another approach is to look at flags
per windows in a flow. This normalizes for opportunities to
flag across different window sizes. This approach ignores
the fact that the larger-window sizes do simply have fewer
opportunities to raise flags. A last approach was to look at
the rate of flagging per sample. The main issue of too many
false positives is that there will be some effort involved in
mitigating this suspected attack which should not be wasted.
The metric which best relates how often those inefficiencies
will impact performance is done by considering suspected
attacks per sample. We made use of all three although felt
that suspected attacks per sample was the most relevant.
This opens up another question: what should the target

rate of suspected attacks per sample be at which we are sat-
isfied with the algorithms performance. Because the actual
mitigation steps are their associated costs are not known,
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it is hard to come up with a number with any real level of
confidence. It could be that having even 50 false positives
in a day is a decent performance hit. However, it could also
be the case that mitigation is a light process and thousands
of false positives would not go noticed by the user. This
does indeed leave a large range of acceptable values. We ulti-
mately decided on the target of one false positive per 100,000
samples. While the original dataset had 35,000,000 flows, the
overwhelming majority had fewer than 5 samples (with 0
having by far the most). That is, while this number can be
extrapolated to the thousands of false positives per day at
Princeton’s campus, if efficient mitigation steps can be put
in place, this number would hopefully not come with a sig-
nificant performance hit. A discussion of ideas on potential
mitigation steps can be found in Section A.1.

5.3.2 Two-Window Results. Looking to Figure 9, the re-
sults for jump thresholds up to 200ms are plotted. As can
be seen from the graph, as the threshold increases, there
are fewer suspected attacks. This makes sense as the events
which get a flag at a high threshold are a subset of what gets a
flag at a lower one. Additionally, in line with expectations, as
window size increases there are fewer flagged events. How-
ever, looking to part b of the same figure, it seems that this
might be attributed to simply having fewer instances to flag
and not a qualitative difference in the algorithms.

To achieve the 1 in 100,000 goal would require a threshold
of no less than 75ms and to keep the algorithm quick (fewer
than 50 samples required) would need closer to 175ms. Re-
turning to the PEERING data, a jump threshold would not
be reliable for most interception attacks. The two-window
approach in its current state would not be economical to
deploy.

5.3.3 ThreeWindowResults. The three-window algorithm
outperformed the two-window algorithm quite conclusively.
Comparing Figures 9a and 10a it can be seen that for a fixed
window size and jump value, the three-window algorithm
has a lower rate of flagging connections and windows by
about an order of magnitude. It could have been the case
that because the two-window algorithm is faster (in that it
only takes two-windows to detect an attack and not three)
that there might be scenarios when it would be preferred
due to speed. However, because the three-window algorithm
seems to be so much less likely to flag an interval, it would
be preferred to choose a smaller window size with the three-
window algorithm such that it is as fast as the two-window
algorithm, rather than use the two-window with a larger
window size.

If we stick to the 1 flag per 100,000 samples goal, we can
achieve that with thresholds as low as 20ms (with window of
48 and instability tolerance of 2ms). If we wish to keep detec-
tion under 50 samples, we can select, for example, window

(a) Percentage of samples flagged versus jump threshold.
Shown for various window sizes. Window size and jump
threshold are both inversely proportional with the number of
suspected attacks.

.

(b) Percentage of windows flagged versus jump threshold and
plotted for various window sizes. Analysis was still run using
dataset of only flows with more than 96 samples.

Figure 9: Two-Window Parameter Evaluation.

size of 16, threshold of 40 and instability tolerance of 2ms.
While this is not sensitive enough to detect the neu-ireland-
amsterdam attack, with a jump threshold of 40ms, it can
detect many attacks–certainly more than the two-window
algorithm. Alternatively, tolerating some more false posi-
tives (1 in 40,000) we could indeed pick a threshold of 20ms
and catch even that attack. Finally, these numbers to some
extent work for the worst case–an adversary who can accom-
plish their goal extremely quickly. Allowing for 100 samples
which the overwhelming majority of attacks still cannot use
effectively, we can use window size of 32 and either be able
to detect the Ireland attack with a †threshold of 20ms or cut
false positives manifold with a threshold of 50ms.
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Figure 10b shows a plot of the three-window algorithm
with various window sizes and with two values for the in-
stability constant, 2 and 9. In this plot, we normalize over
window size so that we can see less of an impact from win-
dow size. Of note, compared to Figure 9b which shows a
similar plot but for the two window algorithm, the differ-
ent window sizes differentiate themselves more with the
three window algorithm. Additionally, we see the effect of a
great instability tolerance as that those with a value of 9ms
basically are all flagging more flows than any of the 2ms
versions.

5.3.4 Kth-min Results. This last algorithm fared very sim-
ilarly to the regular three-window algorithm. As can be seen
in Figure 11, there is no noticeable difference between the
regular three window algorithm (k=0) and the k-th min algo-
rithm with k=1. In fact, looking closely, it seems that the k=1
algorithm is more likely to flag these non-intercepted flows.

5.4 Evaluation Summary
The regular three-window algorithm seems to be the most
effective algorithm. It performs much better than the two-
window algorithm, making (presumed) false positives at
about 1

10 the rate as the two window algorithm. It is very
comparable to the k-th min algorithm when k = 1. Because
the k-th min algorithm requires slightly more memory and
offers no clear benefits, we recommend implementing the
regular three-window algorithm. For parameters, the main
trade off appears to be the window size and the jump thresh-
old. A larger window size comes with fewer false positives,
but means that the detection happens less quickly. That be-
ing said, a larger window size allows for selection of a lower
jump threshold which allows for the detection to be usable on
a wider range of attacks. Targeting a rate of 1 flag per 100,000
samples, if we wish to keep the window size small we can
use a window size of 16 with a threshold of 40. This, as we
saw will not be able to detect the attack on NEU-Amsterdam
communications. Another possibility is to select window size
of 32 with a threshold of 20ms. This allows for the detection
of many more attacks, but comes at the risk of an increased
delay to detection, putting it very close to the 100 packet
amount that [3] needed to deanonymize with 62% accuracy.
There are likely even faster attacks in development to this
day. If fast detection is not a large concern (as the majority
of traffic analysis requires more time [3]) then it could even
be considered to use a threshold of 40ms with a window size
of 32 to achieve a false positive rate closer to 1 in 500,000.

6 RELATEDWORK
There are two distinct aspects to related work in this project.
The first relates to the goal of detecting BGP network attacks,
andmore specifically interception attacks. The second relates

to the method of detection and in particular to the field
of changepoint analysis–finding when meaningful changes
occur within a noisy signal.

6.1 Previous Work Detecting BGP Attacks
Here we give a short review of some of the approaches others
have taken in tackling this problem and explain why an RTT-
based detection is still worth detecting.

6.1.1 Active Probing. One approach to checking for BGP
interception attacks is to actively probe the internet and
check for some kind of peculiarity which is correlated with
an attack. In [11] the AS being monitored uses persistent
traceroute monitoring of 3000+ ASes to detect for prefix hi-
jacking. Their method of detecting, based on noting when
pings do not return, only works to signify an attack if the
traffic is dropped but not an interception attack. Addition-
ally, this method does a complete trace of the ASes roughly
every half-hour which leaves much room for an undetected
quick attack–Tor traffic analysis has been demonstrated to
effective in just one minute [2]. [19] is another example of
an active probing approach. [20] also uses active probing but
does so from many monitoring points in order to look for
path disagreements which are indicative of an attack. The
distributed nature of this procedure requires having access
to many dispersed monitoring points across the internet,
making it not easily deployable. Additionally, the method
checks for interception attacks to a particular prefix roughly
every 12 minutes. In contrast, our detection scheme provides
actual real-time monitoring so that there are no holes in
monitoring.

6.1.2 Detection in the Control Plane. Another approach
taken is to look for signs of an attack in the control plane.
[12] for instance uses real-timemonitoring of BGP announce-
ments to quickly spot attacks. Similarly, [21–24] also utilize
available BGP information for their analysis. However, as is
demonstrated by the stealthy sub-prefix attack (Section 4.2.3)
information from BGP announcements can not be relied on
necessarily.

6.1.3 Proactive Measures. A complimentary approach to
the monitoring taking place in the data and control planes is
to try and find suspicious ASes before they have launched
an attack to begin with. [25] used a set of known serial
hijackers and machine learning to try and distill behavior
that is indicative of serial hijackers in order to classify others
ASes as such. This is an interesting approach although could
does not actually do real-time monitoring so it does not help
detect an attack if the adversary is not part of a blocked AS.

6.1.4 Changes to BGP. Perhaps the most effective of any
solution is to tackle interception attacks at their roots: the
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(a) Percentage of samples flagged by the three-window al-
gorithm versus jump threshold. Plotted for various window
sizes and an instability tolerance of 2ms.

.

(b) Plot of windows flagged as a percentage of total windows
versus jump size. Plotted for multiple window sizes and two
instability tolerances.

Figure 10: Three-Window Parameter Evaluation.

Figure 11: Plot of three-window algorithmusing a kth-
min compared to that of regular three-window (𝑘 =

0). As can be seen there is negligible if any difference
between the two algorithms. Looking to the data point
of window size 8, jump threshold 40, and window size
16, jump threshold 30, it can be seen that the regular
algorithm slightly outperforms the other.

vulnerabilities of BGP. Updating the insecure protocol to
allow for secure authentication would prevent attacks from
being able to happen in the first place. It gets rid of the need
for a detection algorithm at all. The most famous of such
proposals is s-BGP, a secure version of BGP which makes use
of public key infrastructure and digital signatures to enable
secure authentication [26]. Similar approaches such as [27]
and [28] trade some security for other benefits. All of these

offer important fundamental solutions to the vulnerabilities
of BGP. However, these papers are 15 to 20+ years old and an
overhaul of BGP has not occurred. In the meantime, it will
be necessary to have effective and robust attack detection
such as the one offered by our detection scheme.

6.2 Change-Point Analysis
The attack detection falls under the broad category of change-
point analysis – we wish to detect when there is a significant
change in the signal amidst noise. In this particular case it is
a change in the rtt signal. This is an area of on going study.
For example, the Ruptures [29] provides a usable Python
library for determining when these change-points occur. It
is intentionally easy to use and is able to detect multiple
change-points within a signal. However, ruptures fails to be
usable for our task as it does offline analysis. [30] runs an on-
line changepoint detection algorithm but it (along with [29]
seems to assume that there are changes to detect, whereas
in our use case, we do likely have no changes to detect. [31]
implemented a Bayesian approach to changepoint detection
in a microprocessor, but this approach would likely not be
easily feasible on a programmable switch yet. In sum there
are a lot of changepoint analysis techniques, all of which are
more sophisticated than what we made use of here, however
none of them currently can well serve our needs of being fast,
online, and simple to implement. Future efforts especially
with more advanced switches might be able to utilize these
complex approaches.
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7 CONCLUSION
Adversaries on the internet pose serious threats to user pri-
vacy and anonymity. Vulnerabilities in the Border Gateway
Protocol and advances in research and technology nowmake
it possible to deanonymize users in under 100 packets [3]
which necessitates a fast online algorithm to help detect and
respond to these attacks before they can complete their ma-
licious tasks. We have demonstrated the potential for RTT
measurements to form the basis of such a detection scheme,
demonstrating its efficacy on ethical interception attacks and
on regular web traffic. While the concept has been demon-
strated, future work will need to implement this scheme into
a programmable switch and likely some effort will be made
or trade-off taken to get the false positive rate even lower.
This paper serves as a good first step toward a practical and
sufficiently effective defense against these attacks.
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A APPENDIX
A.1 Potential Mitigation Steps
A large under explored question from this project is what
the effort to actually mitigate an interception attack look like
once one is suspected of being underway.

A.1.1 Stop sending intercepted traffic. This is perhaps
the most drastic response we might take. In order to avoid
revealing very sensitive information traffic is simply stopped.
Perhaps after a some number of seconds packets are sent
out to see if the latency has gone back down, signifying the
attack is over or it was only a passing flourish of noise

A.1.2 Actively probe this route. Upon suspecting that traf-
fic is being diverted to an adversary, it can then make sense
to try and investigate the matter further. For example tracer-
oute could be used here to see if the route being taken is
surprising (e.g., two endpoints in the continental US have
their traffic routed through Europe). It is true that there are
methods the adversary can use to trick traceroute into not

knowing that it is on path. In particular, traceroute works
by sending out a series of packets with the Time To Live
(TTL) set beginning at zero and incremented with each sub-
sequent probe sent out. The TTL expires when it reaches
the next hop and a message to that effect is sent back to the
sender which is used to know what AS is at each step. When
a clever adversary received a probe which should expire, it
can simply increment the TTL and pass it along so it avoids
detection However, for these purposes, it might be sufficient
to note that the route is going well out of its way even if we
are not confident that we are getting the full picture. This
step can done as a way of figuring out if it is safe to begin
sending traffic again, or, traffic could simply be slowed until
discovering the results of the active probe.

A.1.3 Announce a more specific prefix. Some of the other
methods suggested such as stopping traffic or probing the
route for more information are potentially important steps
but do not actively work to dislodge the attack. As discussed
in Section 4.2.2, BGP routing decisions are made most de-
cisively by considering the specificity of a prefix. A more
specific prefix will be chosen over a less specific one whether
or not one is longer than the other. Therefore, in theory to
respond to an adversary’s attack, the victim could make a
more specific announcement so that routers will prefer this
route over the adversary’s.

A.1.4 Timing Variations. If the main concern of the attack
is traffic analysis, one approach to mitigate that attack is to
make it more difficult to correlate the traffic. This can be
achieved by adding random delays to sending traffic through
the network and relaying it to the next node. While Tor
specifically does not do this for the sake of efficiency, perhaps
if there is a suspected attack, it might make more economical
sense to add that mechanism in.

A.1.5 Use different Tor relays. The onion routing system
which Tor utilizes, uses three different relays in between the
source and destination. Traffic analysis often works by gain-
ing access to traffic of particular nodes which give needed
coverage of the communication. But Tor generally does not
need to use any particular set of relays. Therefore, for mitiga-
tion in the Tor network, selecting a new Tor relay, or perhaps
changing all three might be sufficient to avoid the intercep-
tion attack. While this line of thinking would be interesting
to explore, one of the risks associated with the approach is
that the detection would not be able to detect if this new
route is already in the midst of an attack. The detection as-
sumes at some point the route was not intercepted and then
looks for an increase in latency. If the adversary is staging a
large scale attack on Tor and the new relays are also affected,
it will not be noticed by the detection.
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A.2 Reducing the false positivity rate
One way to reduce the false positives is to improve the de-
tection algorithm. Perhaps via a more clever design or using
of more complex operations. A different way to effectively
reduce the false positives is to be able to ignore some of them.
One idea which follows this line of thinking is to keep track
of which flows have recently been labeled by the algorithm
as being intercepted. If, within a particular time frame there
are enough suspected attacks involving the same location,
it is much more likely that there is an attack on that prefix
than if there is just one. Potentially different responses could
be taken based off of the confidence that this is an attack and
not noise. This type of approach allows for a higher tolerance
of false positives as little is necessarily done each time a the-
oretical attack is flagged. This same mechanism could also be
used to help assess whether or not the switch is at the victim
end or the friend end. If there is just a single communication
then there is no differentiation–both see heightened RTTs.
However, if the switch is seeing many different flows then
it would expect to see many if not all of those experience
heightened RTTs. If it is just the friend, seeing only one flow
experience higher latency is to be expected. This might have
implications for the form that mitigation takes. For example,
announcing a more specific prefix only has the hope of work-
ing if it is your prefix which has been hijacked. Announcing
your own prefix when you are the friend will not stop the
adversary in any form. What you might want to do is alert
the actual victim (potentially using a different medium of
communication).

A.3 Characterizing Some Traffic Patterns
While looking through many plots of the Princeton Uni-
versity data, there were a few observations made which,
although not entirely relevant to the paper, are worth docu-
menting and are done so here.

A.3.1 Delayed ACK. Delayed ACKs occur in the dataset
with great regularity, with more than half of an arbitrary 100
flows having a delayed ACK. While usually there are just
a sample or two with extremely high latency, occasionally
there are many (Figure 12).

Figure 12: Plot of flow from campus data. This flow
has 1796 packets and as can be seen a significant num-
ber of them are large outliers relative to themain bulk
of samples at the bottom of the plot

A.3.2 Cellular Connection. One pattern which consis-
tently gives very volatile RTT data are cellular data con-
nections. These post challenges for the detection algorithms
and at the most conservative tunings of the three-window
algorithms, a high percentage of the false positives are in
traffic which looks Figure 13 (and often is verified to be com-
ing from an ip associated with a cellular company). The plot
shown is a small fraction of the roughly 800,000 sample con-
nection lasting about forty minutes. The external ip here is
71.168.128.73 which is attributed to MCI Communications an
acquired telecommunications company. This is the first 2000
packets indicative of the whole which, if plotted, is hard to
make much of due to the density. While often cell data looks
like this, we do not assert that a cellular connection is the
only cause of such patterns.

Figure 13: Partial plot of campus trace in connection
with presumed cellular device.
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A.3.3 Potentially Bifurcated Routes. There were some
plots which were hard to make sense of. A rather significant
number of flows exhibited the behavior seen in Figure 14
which makes it seem as though there are two distinct paths
from source to destination and some packets take some and
some take others. In fact on an observation of 100 arbitrary
flowswithmore than 96 packets, 41 out of 100 had, to varying
degrees of clarity, this behavior of two distinct lines being
visible.

Figure 14: Plot of potentially dual-path plot.

A.4 Extra PEERING plots
A.4.1 Slow convergence. In this instance, the route did

not immediately switch, but instead change in two small
jumps of about 10ms each. n

Figure 15: Plot of RTT versus Sample for an inter-
ception of NEU-Ireland communication where traffic
was diverted via Amsterdam. A blue x is an RTT sam-
ple. The route was slow to converge and so only jump
thresholds of 10 and 5 were able to detect it.

A.5 Algorithm Code
A.5.1 Two Window. Psuedo-code for implementing two-

window algorithm in streaming fashion for online monitor-
ing.

def twoWindows(stream, windowSize, jumpThreshold):
oldMin = POSITIVE_INFINITY
while True:

newMin = POSITIVE_INFINITY
for i in range(windowSize):

sample = stream.ReadInt();
if sample < newMin:

newMin = sample
if newMin - oldMin > jumpThreshold:

raiseFlag()
oldMin = newMin

Listing 1: Pseudocode for implementation of two-
window algorithm.

A.5.2 Three Window algorithm pseudocode. .

def threeWindows(stream, windowSize, jumpThreshold,
instabilityTolerance):
firstMin = POSITIVE_INFINITY
secondMin = POSITIVE_INFINITY
thirdMin = POSITIVE_INFINITY
while True:

newMin = POSITIVE_INFINITY
for i in range(windowSize):

sample = stream.ReadInt();
if sample < newMin:

newMin = sample
thirdMin = newMin
if secondMin - firstMin > jumpThreshold and

abs(thirdMin - secondMin) <
instabilityTolerance:
raiseFlag()

firstMin = secondMin
secondMin = thirdMin

Listing 2: Pseudocode for implementation of three-
window algorithm

A.5.3 kth-min. This is how to implement the kth-min
algorithm. The design avoids sorting.

def threeWindowsKthMin(stream, windowSize,
jumpThreshold, instabilityTolerance, k):
mins = []
for i < k:

mins[i] = POSITIVE_INFINITY
while True:

newKthMin = POSITIVE_INFINITY
kthMinIndex = k-1
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for i in range(windowSize):
sample = stream.ReadInt();
if sample < newKthMin:

mins[kthMinIndex] = sample
newKthMin = -1;
for j = 0; j < k; j++:

if mins[j] > newKthMin:
newKthMin = mins[j]
kthMinIndex = j

thirdMin = newKthMin
if secondMin - firstMin > jumpThreshold and

abs(thirdMin - secondMin) <
instabilityTolerance:
raiseFlag()

firstMin = secondMin
secondMin = thirdMin

Listing 3: Pseudocode for implementation of kth-min
algorithm

A.6 PEERING attack commands
Once PEERING account is made and you have a mux up
and running (see their documentation) you can easily run
an attack. Announce your prefix from the victim (should
be a peering mux e.g., NEU). Then pick an ip and from pro-
vided prefix and from the mux run a simple TCP server script
posing as that ip and listening for connections. From a dif-
ferent computer/server be the TCP client and continuously
send messages back and forth. You can use the following for
monitoring traffic at the friend.

python2 client.py &
sudo tcpdump 'dst 1.1.1.x and port yyyy and tcp' or

'src 1.1.1.4 and tcp and port yyyy' -w
tcpdumpoutput.pcap &

# wait
sleep(20)
echo "run the attack!"
sleep(30)
sudo pkill tcpdump
sudo pkill python
tcptrace -nZ --output_dir="tcptraceOutputs"

tcpdumpoutput.pcap > summary.txt

Listing 4: Commands for monitoring experiment
from the friend. Should have server running at the
victim before running these commands.

Once that is running have the victim be the server, listen-
ing for a connection and the other endpoint the client.

A.6.1 Launching equally specific or sub-prefix attack on
NEU. From the PEERING mux in Amsterdam run these com-
mands when ready for the attack. These communities work
for communication between the PEERING NEU mux and
an AWS instance in Ireland for a equally specific attack (i.e.,
NEU announces a /24) or can be with NEU the victim and
a much wide range of locations for the friend (e.g., Prince-
ton) if this is a sub prefix attack (i.g., NEU announces a /23).
Replace 1.1.1.0 with the PEERING provided prefix.

./peering prefix announce -m amsterdam01 -c
47065,1061 -c 47065,1060 -c 0,12859 -c
65520,2203 -l 8283,4,12859 -l 8283,4,34307 -l
8283,4,286 -l 8283,4,15703 -l 8283,302,0 -l
8283,4,2914 1.1.1.0/24

ip addr del 1.1.1.1/24 dev lo
ip route add 1.1.1.0/24 via 100.69.0.61

Listing 5: Commands for running attack on NEU from
Amsterdam

A.6.2 Launching the stealthy sub-prefix attack. If the at-
tack is being launched against Seattle, here is the stealthy
sub=prefix attack [13]. AS 3128 is the poisoned AS.

Listing 6: Commands for running a stealthy attack on
Seattle from Amsterdam
./peering prefix announce -m amsterdam01 -c

47065,52 -l 8283,301,0 -l 8283,303,0 -l
8283,4,15703 -l 8283,4,38930 -l 8283,4,57866 -l
8283,4,6777 -l 8283,4,34307 -c 8455,5510 -c
8455,5519 -c 8455,5523 -c 8455,5000 -c
1299,2009 -c 1299,5009 -c 1299,7009 -p 3128
1.1.1.0/24

ip addr del 1.1.1.1/24 dev lo
ip route add 1.1.1.0/24 via 100.69.0.61
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