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ABSTRACT

Many network-management problems in large backbone nksvor
need the answer to a seemingly simple question: where does

given IP packet, entering the network at a particular placktene,
leave the network to continue on its path to the destinatién?
swering this question at scale and in real time is challendon
several reasons: (i) a destination IP address could matarade
IP prefixes, (ii) the longest-matching prefix may change ¢ivee,
(iii) the number of IP prefixes and routing protocol messagesry
large, and (iv) network-management applications oftemirecan-
swers to this question for a large number of destination thestes
in real time. In this paper, we present an efficient algoritiem
tracking prefix-match changes for ranges of IP addressegh&ve
present the design, implementation, and evaluation of theteR
Oracle tool that answers queries about routing changes lalfbe

of network management applications. Our design of Routel®ra

includes several performance optimizations, such as freepsing
of BGP update messages, and parallelization of query psoaes

Experiments with BGP measurement data from a large ISP back-

bone demonstrate that our system answers queries in reahtich
at scale.

1. INTRODUCTION

Today, the Internet is the de facto platform for most of ouneo
munication needs. Managing and operating networks comgris
the Internet is a daunting task especially since the oridiniarnet
and protocols underpinning it were not designed with mamesg
and operational challenges in mind. Thus, sometimes ev@men
ing a basic question like what paths traffic took at a giveretisna
challenging task. However, knowing the answer to this sagiyi
simple question is crucial for performing a wide range ofaek
management tasks. In this paper, we focus on answeringubs q
tion from a given network’s point of view: when traffic to a giv
destination enters the network at some router, what routélt use
to exit the network and, beyond that, what downstream patflit
take to reach the destination. This paper describes a systied
Route Oraclego answer this question at scale and in real time.

The Internet is divided into thousands of networks called au
tonomous systems (ASes), each of which has network elements

such as routers and switches, administrated by a singlaiaega

tion. The Border Gateway Protocol (BGP) allows ASes to ex-

change information about how to reach external destingtioh
BGP route contains many attributes including these key:oties
egress router (i.e., the last router before packets leaga®a AS)
and the AS path (i.e., the list of ASes on the downstream pettiret
destination. Thus, knowing the egress router and AS pathrfan-

dividual IP address, both current and at a given time in trs, pa

is crucial for several management tasks such as troubléagoo
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reachability problems in response to customer complamthile
knowing the egress router and AS path already provides wital
formation, joining this data with other information coulorin the

abasis for even more powerful applications. For exampl@ejijgj the

routing data from the intra-domain routing protocol coutdyde
the path traversed by traffic from ingress to egress routean AS.
Similarly, joining with the performance measurements forap-
plication would allow network operators to correlate perfance
impairments with route changes in the network.

Realizing a system to track BGP route changes is challeriging
two reasons:

e In BGP, routing updates are advertised in terms of prefixes,

and prefixes can be nested. Thus a single IP address could
be covered by multiple prefixes. The packet forwarding in
such cases is governed by the longest matching prefix, which
can change over time as routes are advertised and withdrawn.
Thus, in order to know the route for a particular IP address,
we need to track the changes to its longest matching prefix,
and this needs to be done at the rate of BGP updates, espe-
cially for applications that need to know routes in real time

Some applications need to know routes to hundreds of thou-
sands of IP addresses at a given time. An example is a CDN
serving a large number of clients that wants to take into ac-
count the current route in deciding which replica to seree th
content from. For such applications, our system needs to an-
swer a large number of queries, again in real time.

The Route Oracle system, which outputs route changes fiétsall
addresses, overcomes these challenges in the followingenan

e To handle nested prefixes, we introduce the notion cddn

dress range An address range is a group of IP addresses
that have the same set of matching prefixes. The algorithm
to efficiently determine changes to address ranges as well as
their matching prefixes and associated routes as BGP updates
arrive. The resulting data structure facilitates rapicedei-
nation of route changes for an IP address — we just need to
look for the appropriate address ranges instead of prefixes.
We also archive the address range data which allows us to
determine routes both in present and any time in the past.

To answer queries for a large number of IP addresses, we im-
plement two optimizations to Route Oracle: (i) the reading
of address range records is done once for multiple queries to
amortize the I/O cost. (ii) take advantage of multi-core-pro
cessors prevalent today by distributing the workload acros
individual cores.



We have deployed Route Oracle in a large Tier-1 ISP where it regions. Route changes for these IP addresses should yab@nl

is being used to troubleshoot performance impairments o v
ous services. In fact, the optimizations described above \ine-
plemented after the initial trial which revealed that thersswere
interested in using the system for hundreds of thousandB afit
dresses in real time.

processed at scale, but also in real time, in order to getatiestl
status of the event. Based on these results, aggregatéticsat
like the percent of routable IP addresses could indicatevkeall
impact on reachability. Aggregating the routes by the disiams
of egress router and nexthop AS could tell how the traffictetif

The rest of the paper is organized as follows. In Section 2, we inside the network. Joint analysis with the traffic and perfance

further motivate Route Oracle by describing three appbcat of
the tool. Next, we present the algorithm to efficiently trackfix
and route changes for address ranges in Section 3, folloywéueb
overall design and implementation of Route Oracle in Sactio

data could help monitor the performance along each rerqad#d

2.3 Service-Level Performance Management
With the deployment of many network applications, ISPs are

In Section 5, we evaluate the performance of Route Oracle. We facing the challenge dfervice quality managemenPerformance

present related work in Section 6, and conclude the papeedn S
tion 7.

2. MOTIVATING APPLICATIONS

In this section, we present three possible applicationsaft®
Oracle. We show that determining the egress router and Al$ pat
to external destinations is an important building block foany
network management tasks. For each application, we présent
challenges of the application, and how Route Oracle codktef
tively handle it. We also explain why each application netxds
track routing changes at scale and in real time.

2.1 Historical Traceroute

Traceroute is a popular active measurement tool, whicé tliet
hops along the path to the destination. It is extensivelyd use
the network operators to troubleshoot reachability orgrenance
problems. Traceroute is implemented by sending IP packetsi
time. Therefore, if traceroute was not used or the result neas
collected in the past, it would be impossible to roll back tinze
in the past to see the path at that time.

However, having a “historical traceroute” that provideghga
from any vantage point to a given destination at any time & th
past would be valuable. The straightforward approach tdémp
ment such historical traceroute is to collect and archieetthcer-
oute results. However, collecting traceroute data fromymaeam-
tage points to all the destination IP addresses is too ekgedae
to large probing and storage requirements. Instead, weopeofo
leverage the passively collected routing updates: fronB@BE up-
dates, we could determine the egress router and AS pathctketpa
traverse; and from the routing messages of the intra-doroating
protocol like OSPF, we could determine the hop-by-hop patm(
the vantage point to the egress router) inside the ISP. OuteRo
Oracle tool provides the former capability.

2.2 Analyzing External Routing Disruptions

One of the most important tasks of network operations isdotre
quickly to large network disruptions. Disruptions like ebl&acut
could result in loss of reachability or serious congestioa large
portion of a geographical region. Characterization of ¢hegents
could help network operators understand the impact on tietir
works: what percent of the IP addresses in the affected gpbgr
ical region became unreachable? How was the traffic rercuoted
reach the destination, and did it cause any traffic shiftelanthe
network? Did the packets actually reach the destinatiod veare
there any performance degradations? Knowing the answtrege
questions would help the network operators make decisioh®w
to respond to the event, including redirecting the traffiotigh a
better route, or performing traffic engineering to direaffic away
from congested links.

Answering these questions requires determining the rootes
route changes of all the IP addresses in the affected geugedp

monitoring at the application layer alone is not enough tw-tr
bleshoot performance degradation of network servicestedas
network operators need to correlate the performance prableth
network-layer changes (such as routing changes, or netemrk
gestion) for rootcause analysis.

As an example, consider an ISP hosting a Content Distributio
Network (CDN). Such an ISP would be interested in monitothey
performance of its CDN, by measuring the round-trip time TRT
to the clients. A simple approach is to monitor the perforogaof
content download for each client. However, the RTT of indiil
clients is likely to vary significantly. Instead, if we coudggregate
the RTTs over clients using the same paths (e.qg., clientgigéhe
network at the same egress router), then large changes avéine
age RTT would show the performance changes caused by mgouti
or congestion inside the network. In this case, the capyldide-
termine the routes for all the clients’ IP addresses at smadkin
real time is required to get the paths from the server to teats.
Furthermore, this real-time performance information ddé used
to guide the selection of the replica that should serve elehtc

3. TRACKING PREFIXMATCH CHANGES

In this section, we present a novel algorithm to determinge®
(more specifically egress router and AS path) to destingtiiven
IP addresses, vantage point, and time. We use the BGP rooies f
the specified vantage point and time period as inputs for ltfee a
rithm. Since an IP address could be covered by multiple mefix
the key problem is to track the longest prefix match and the-ass
ciated routes for the IP addresses of interest as BGP updetes
received.

We begin by describing the phenomena of prefix nesting, which
causes an IP address to be covered by multiple prefixes. Then w
introduce the notion of aaddress rangevhich is a group of IP ad-
dresses that have the same set of matching prefixes, to tratthg
changes efficiently. Last, we present the algorithm to traelfix
match changes as BGP updates arrive.

3.1 Prefix Nesting

In the routing table, an IP address could be covered by ntelltip
prefixes. For example, IP address 128.112.0.0 could be edver
by both 128.112.0.0/16 and 128.112.0.0/24. When the IPgtack
destined to 128.112.0.0 are forwarded, routers perfornhotigest
prefix match (LPM), and use the route of prefix 128.112.0.@¢24
deliver the packets to the destination. In a previous stddiywe
analyzed a BGP routing table collected from a router in aelarg
ISP on February 1, 2009. The result showed that 24.2% of the IP
addresses were covered by multiple prefixes.

Nesting of prefixes is quite common for a variety of reasows. F
example, regional Internet registries allocate large esilblocks
to Internet Service Providers (ISPs), who in turn allocateler
blocks to their customers. Customers that connect to tleeriat at
multiple locations may further sub-divide these addressKd to



[12.0.1.0-12.0.255.255]

[12.0.0.0-12.0.0.255] [12.1.0.0-12.255.255.255]
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Routing Table

prefix BGP route
12.0.0.0/8
12.0.0.0/16

12.0.0.0/24

Figure 1. Storing address ranges and prefix sets for prefixes
12/8, 12/16, and 12/24

exert fine-grained control over load balancing and backupeso
ISPs may also announce multiple blocks to protect themséloen
route hijacking—for example, AT&T announces prefixes 12 @9
and 12.128.0.0/9, in addition to the 12.0.0.0/8 superogtrévent
other ASes from accidentally hijacking traffic intendeddestina-
tions in 12.0.0.0/8.

solution that simply stores address ranges in arrays wquadate

in an average time a(n). Each node in the binary tree contains
the left-most address in the address range, and each nogg &ee
pointer to the size of the address range and the associatfxi get.
Each element of the prefix set includes a pointer to the BGRrou
for that prefix; to save memory, we store a single copy of edeR B
route. As illustrated in Figure 1, both address ranges [QD0
12.0.0.255] and [12.0.1.0, 12.0.255.255] have prefix 020016 in
their prefix sets, and their prefix sets store the pointerbgadute
entry for 12.0.0.0/16. Note that in the figure, we only shoe th
pointers from the most-specific prefixes to the routing tdbiel-
lustration.

3.3 Tracking Changes to Address Ranges

Next, we present an algorithm that reads BGP table dumps or
update messages as input, and tracks the changes to thesaddre
ranges and their associated prefix sets. The algorithm fitstrd
mines the address range(s) covered by the prefix, perhagsngre
new address ranges or subdividing existing ones. Thenafdr ef
the associated address ranges, the algorithm modifiesefir pet
as needed.

Updating address ranges:A BGP announcement for a new pre-
fix may require creating new address ranges or subdividiigt-ex
ing ones. For example, suppose 18.0.0.0/16 is announcetefor

As a router receives more and more BGP updates, the longestfirst time, and no earlier announcements covered any patteof t
prefix match for an IP address may change over time. In [1], we 18.0.0.0/16 address space, then, our algorithm inserts address
used BGP update messages collected for the month of Februaryrange [18.0.0.0,18.0.255.255], with a prefix se{ 16}, into the

2009 from the router in the tier-1 ISP backbone, and detexchin
the frequency of BGP updates that affected the longesthimatc
prefix for IP addresses. Our analysis revealed that 13% @@&ie
updates caused some IP addresses to change their longektnga
prefix. Because of frequent changes in longest prefix matatk-t
ing the prefix match changes efficiently is necessary.

3.2 Data Structure for Address Ranges

In this section, we present a method to track prefix matchgdmsn
for a group of IP addresses. Because of the nesting of prefires
IP address could match several prefixes with different masiths.
In order to track prefix-match changes over time, we needoi@ st
information about changes to all prefixes covering the |PFeskl
We refer to the collection of all matching prefixes for a giuén
address as itgrefix sef packet forwarding is driven by the longest-
matching prefix in the set at any time. For example, supposeR B
routing table contains prefixes 12.0.0.0/8 and 12.0.0.0rhén, IP
address 12.0.0.0 has the prefix $68, /16}. IP address 12.0.0.1
also matches the same prefixes. However, the prefix set fbi0LP.
is {/8}.

Rather than tracking the prefix set for each individual IP ad-
dress, we group contiguous addresses that have the same prefi

set into anaddress range For example, prefixes 12.0.0.0/8 and
12.0.0.0/16 divide the IP address space into two addregesan
[12.0.0.0, 12.0.255.255] with prefix s¢t8, /16} and [12.1.0.0,
12.255.255.255] with prefix s€f8}. Note that address ranges dif-
fer from prefixes in that the boundaries of an address rargaar
necessarily powers of two. For instance, no single prefikxtmp-
resent all IP addresses in the range [12.1.0.0, 12.25225p.

As we process BGP update messages, address ranges may be cr

ated, subdivided or updated. For ease of searching for teeted
address range(s), we store information about addressgange
binary tree, as shown in Figure 1. A binary tree efficientlgsuorts
all the operations we need (including inserting a new addiasge,
lookup an address range) in an average tim@@bg n), wheren

is the number of address ranges. In comparison, the brute-fo

binary tree. As another example, suppose we have previsasly
route announcements only for 12.0.0.0/8 and 12.0.0.0/k8y, tthe
binary tree would contain [12.0.0.0,12.0.255.255] witlefpr set
{/8,/16}, and [12.1.0.0,12.255.255.255] with prefix $¢8}. On
processing an announcement for 12.0.0.0/24, our algonitboid
subdivide [12.0.0.0,12.0.255.255] into two address rargene with
prefix set{/8, /16, /24} and another wit{ /8, /16}, as shown in
Figure 1. Currently, our algorithm does not delete or merde a
dress ranges after withdrawal messages. We take this |lpzgagh
towards deleting and merging address ranges because awithdr
prefixes are often announced again later, and because wséave
empirically that the number of address ranges increasgsimuly
over time.

Updating prefix set for address ranges:Continuing with the
example in Figure 1, suppose the route for 12.0.0.0/16 ik-wit
drawn. Then, the algorithm would determine that both [12®.
12.0.0.255] and [12.0.1.0,12.0.255.255] ha\i& removed from
the prefix set. For addresses in [12.0.1.0-12.0.255.2B6]with-
drawal would change the longest matching prefix to the lessifip
12.0.0.0/8.

4. DESIGN AND IMPLEMENTATION

Using the algorithm of Section 3 as a basis, we present the ove
all design and implementation of Route Oracle in this sectite
begin with the overview of the design, and follow it with a de-
tailed description of the two main parts of the design: the-pr
processing module that converts BGP updates to updatesliefszd
range records, and the query module that identifies thegdoitéP
addresses based on these records.

qa Design Overview

The input to Route Oracle consists of a list of IP addresses, a
vantage-point router, and the time period over which rohenges
are desired. The output is routes for each IP address atdhe st
time, and then changes to them during the specified time gherio
The route includes the longest matching prefix, egress Ir@ure



BGP routing table snapshot
BGP updates

Route Oracle
Precomputatio

snapshot of routes for address ranges
incremental route updates for address range

. [uery Processing

route and changes for each query
(including prefix match, egress router, AS patt
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Figure 2: Route Oracle System Design

deployed in the tier-1 ISP generates periodic snapshotuwésdor
all prefixes. Using the snapshot of prefixes and their routes,
module determines and stores a snapshot of all the addiregssra
and routes associated with them. It then records changekltess
ranges and routes as subsequent BGP updates are received.

We should note that the time interval between snapshot$ad-al
dress range records has a direct bearing on query procdssiag
since, given a query, we have to process address rangeasgstart
from the latest snapshot before the query time period. T$tos;
ing snapshots more frequently will reduce query time. Hawev
this will increase the storage space, and hence there isleoffa
between how often snapshots are stored versus query pragess
time. At present, we store one snapshot per day to coincitte wi
the BGP routing tables which are generated at the beginriieg-o
ery day.

We store all the address range records for a given day uneer th
same directory, with the file names indicating the IP addoésise

the AS path. The basic way to handle such a query is to processvantage point. Directories are named hierarchically atiogrto

the BGP updates from the specified vantage point and timegeri
using the algorithm we presented in the last section, angliotite
result. For example, for the query of route changes for |Resid
128.112.0.0 from t1 to t2 at vantage point v, the algorithithvéive

to process BGP updates from vantage point v from t1 to t2. The
output could be: at time t1, the longest prefix match is /24hwi
associated route r1; at time t3 (which is before t2), the liRsge
to a less-specific prefix match /16, with route r2; and finally n
route changes for the address till 2. However, this bagicagrh
does not scale well with the number of IP addresses due tmgest
of prefixes. The nesting of prefixes means that for each IPeaddr
every update containing a matching prefix needs to be preddes
see if the longest prefix match, and hence the route, chaogéukf
address or not.

To overcome this, we convert prefix-based BGP updates te rout
ing changes for address ranges by using the algorithm sge@ifi
Section 3. Since address ranges do not overlap, answerargegu
for route changes scales much better for a large number of ad-
dresses in the input. In fact, once we convert BGP updates int
address ranges, we save the resulting records for futureaunse
answer all queries using these records, thereby amortikngost
of conversion across all subsequent queries.

To summarize, our design of Route Oracle consists of two mod-
ules as shown in Figure 2: A pre-processing module thatfivems
the BGP update stream into a stream of address ranges and ass
ciated route changes; and a query module that determinés rou
changes for desired IP addresses using the address raogdstec
In the following subsections, we provide detailed deswip of
these two modules.

4.2 Precomputing Route Updates for Address
Ranges
The pre-processing part uses the algorithm presented joréne
vious section to track the longest prefix match and route gésn
for all the IP addresses. The inputs to the pre-processirigapa
BGP routing table snapshots and BGP updates. The outpustons

year, month and day. This facilitates easy searching of filesa
given time period. The address range updates are storedytipleu
files with each file spanning a fixed interval (currently 15 nté@s)

of the day. The files are compressed to reduce the storage.spac
All the records are written in network byte-order for platfocom-
patibility.

4.3 Query Processing

The query module uses the address range records (snapshots +
updates) to answer queries regarding routes for IP addre3be
input to the query module is a list of IP addresses, the varamt
and the time interval over which routes are desired. Theubugp
routes at the beginning of the time interval for each addrasge
and changes to them over the interval. The input IP addresses
be specified as address ranges or prefixes.

When a query is received, the module first determines the lat-
est address range snapshot prior to the start time of thevahte
It then applies updates of address range records to deteitimn
state at the start time, and then continues processing sxichege
records till the end time to determine route changes. Fdr ede
dress range, the module checks if the range overlaps witimplg
IP address list, and if so, the record is used to update the fou
the affected IP addresses. Note that since the address fikrgge
are stored hierarchically based on their time stamps, théutao

@an quickly locate files for a specific time interval. For arste, let

us assume that the query is for route changes of a single Hessld
128.112.0.0 from October 24, 2009 9:00 a.m. to 5:00 p.m.hik t
case, the query module will read the address range snapsiet a
beginning of the day on October 24, 2009, and then addrege ran
updates till 9:00 a.m. to get the latest route for 128.102j@st at
the start time of the query time period. Then, the module ne#id
the address range updates from 9:00 a.m. to 5:00 p.m., apdtout
all route changes for the IP address in question.

We have implemented two optimizations to further reduce the
query response time. First, if the user inputs a list of IPrasks
in a query, we amortize the cost of reading address ranged®co

of address ranges and route changes to them. Each record conacross all the IP addresses. This is because the reading atlth

tains the following attributes: the address range, timenefroute
change, the longest prefix match, the egress router, andSipaik.

In addition, we also include information on how the longestfix
match was changed compared with the previous route (eangeh

to a more-specific or less-specific prefix), and whether thessg
router and AS path were changed compared to the previous. rout

Since BGP is an incremental protocol where updates are only

sent by a router when its route to a prefix changes, the BGPtaroni

dress range files dominates the overall query processirg ths
we read address ranges sequentially, we compare each reitiord
all the IP address ranges and prefixes in the list. This way, th
reading of the result record files is amortized over all IPragses.
Second, we parallelize the processing of the address rdege fi
given the prevalence of multi-core machines. Since addessse
updates for fixed time intervals are stored in separate filegar-
allelize the reading and processing of these files by suimgithul-



tiple processes each processing one file at a time. The roatges
determined by all these processes are gathered at the ershraed
in chronological order before generating the output.

5. PERFORMANCE EVALUATION

This section presents performance evaluation of the Rotde O
cle tool. For the pre-processing module, our aim is to vettifyt
it can keep up as BGP updates arrive. For the query module, we
evaluate its performance — both response time and resosage &+
as a function of the size of the input. We also evaluate thecetif
optimizations — parallelization in particular — on the penfiance
of the query module.

Our experiments were run on an standard off-the-shelf SMREe
with two quad-core Xeon X5460 Processors. Each CPU is 3.16
GHz and has 6 MB of cache. The server contains 16 GB of total
RAM. We apply our tool to BGP routing table and update message
collected for the month of August 2009 from a top-level rowge
flector in a tier-1 ISP backbone. The queried IP addresses wer
randomly selected from the routing table.

We first evaluate the pre-computation module of the toolu$ec
ing on the time to process BGP updates. Next, we evaluate @w t
query processing time varies as the query time period growesn,
we evaluate the scalability of the query processing, as tineber
of queried IP addresses grow, and show the memory resounee co
sumption. Finally, we demonstrate the benefit of parabgian in
query processing.

5.1 Pre-processing Time

In this subsection, we evaluate how long it takes to conv@®PB
updates into address range records. To do this, we consi@eér B
updates received over fixed time-intervals of 5, 10 and 2Qtes)
and compute the time spent by the pre-processing moduleatn ea
batch of updates. We present results for updates receivadgumst
01, 2009; similar results were observed for other days.

Figure 3 shows the pre-processing time for BGP updates re-
ceived over various fixed time-intervals as a CCDF (compleme
tary cumulative distribution function). As can be seen, lbtte
BGP updates received and processed in 5 minutes intervéd, 99
could be processed within 2 seconds, and the maximum time to
process the BGP updates received in 20 minutes intervabist &b
seconds. This clearly demonstrates that the pre-processidule
is able to handle BGP updates in real time as they arrive.

In order to better understand what factor mainly determthes
pre-computation time, we counted the number of BGP updates r
ceived over fixed time intervals. For each point in Figurehg t
number on the x-axis stands for the number of BGP updates re-
ceived over the fixed time-interval, while the number on the y
axis presents the time spent on processing the updates. gtine fi
clearly illustrates the linear relationship between thee @gmputation
time and the number of BGP updates received over the interval
The start point of each curve shows that it takes approxisnate
1.5 seconds to finish the fixed steps of the pre-computation pa
which includes bootstrapping the data structures used dypitb-
processing module, and writing the address range recorfile$o
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Figure 3: CCDF of the time spent by the pre-processing module
to convert BGP updates received over fixed time-interval inb
address range records.
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Figure 4: Pre-processing time varies according to the numire
of BGP updates received over the fixed time-interval.

processing time.

We start by measuring the query processing time for a sifigjle |
address, where a single process is used to handle the query. W
vary the start and end times of the query time period on August
01, 2009. We first choose a random start time on that day, then
choose a random end time between the start time and the end of
the day. Figure 5 shows the result, where each point standsé&
experiment with a randomly chosen IP address to query, mando
start time and random end time. The x-axis denotes the quety e
time from the beginning of the day.

Figure 5 illustrates that the query processing time gromesdily
with the end time of the query. This is because irrespectiae
start time, the query module has to process all the addrege ra

at the end. As the number of BGP updates increases, the pre-records from the last snapshot (which happens to be theiagin

processing time increases linearly.

5.2 Query Processing Time

The query processing time is a function of many parameters, i
cluding the length of the query time period, the number ofdP a
dresses queried, and the number of processes run in parhilel
this subsection, we evaluate the query processing timeydlwse
three dimensions, and understand how these factors dfteqtiery

of the day) till the end time since the address range recoods the
snapshot till the start time are used to determine the raiged at

the start time. This explains why the query processing tiepedds

on the length from the beginning of day to the query end time.
In addition, note that the time spent on answering the quaryaf
single IP address for a one-day period is no more than 3.5wdseco

We should also emphasize that the query time can reduced by

storing more frequent snapshots at the cost of more stopapes
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Figure 5: Query processing time versus end time.

Based on the worst-case time of 3.5 seconds, we believettieigs
one snapshot per day provides us with a pretty good perfarenan
at a reasonable storage cost (few MBytes per snapshot).

5.3 Scalability of Query Processing

Next, we evaluate the scalability of query processing byeas-
ing the number of queried IP addresses. We also show how the
amortization of file processing over the IP addresses redtiee
query processing time. In addition, we evaluate the memorny c
sumption as the number of queried IP addresses grows. For thi
experiment, we use the query time period of one hour. We &sere
the number of number of IP addresses from 1, 2, 4, 8, ... tiliab
130,000. The IP addresses used for the queries are all réypdom
chosen. As in the previous section, we use a single process to
swer all the queries.

Figure 6 shows the query processing time in seconds, as the nu
ber of queried IP addresses increases. The figure shows tiledts
about half an hour to process 130,000 IP addresses for atime i
terval of one hour. The query processing time grows lineady
the number of queried IP addresses increases. Howevelptiee s
is lower at the beginning of the curve, but increases at sanie p
(in fact two points) as the number of IP addresses increagés.
believe this is because when number of IP addresses are iheer
time to read the address range records, which is amortizedadv
|P addresses, dominates. In contrast, when the number a-IP a
dresses becomes large, the time spent on processing thesaddr
range records starts dominating, resulting in a higheresfopthe
curve.

Figure 7 shows the peak virtual memory utilization during th
same experiment. As illustrated by the figure, the memotizati
tion grows as the number of queried IP addresses increases, a
the peak virtual memory used for processing about 130,0G@l4P
dresses for an hour is about 480 MB. The increase in memory con
sumption as the number of queried IP addresses increases is b
cause we store all the matching address range records in tpemo
before outputting them at the end. Another factor affectiregpeak
virtual memory utilization is the query time period, sinbe guery
time period determines the number of address range recoadls t
must be stored in memory.

5.4 Parallelization of Query Processing

Last, we evaluate the benefits of parallelization achievedolti-
core machines. For this experiment, we extend the querypigne
riod to 10 days from August 01 to August 10, 2009. We vary the
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Figure 6: Query processing time versus number of IP addresse
queried.
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Figure 7: Peak virtual memory utilization versus number of IP
addresses queried.

number of IP addresses queried by randomly choosing 1, 10, 10
1000, and 10000 IP addresses. Recall that the server on which
experiments were run had two quad-core CPilgs, 8 processing
cores each running at 3.16 GHz.

We start by measuring the query processing time by using only
one process with no parallelization. These numbers serve as a
benchmark against which we compare the processing time with
multiple parallel processes. Table 1 shows these numbevsifp-
ing number of IP addresses over the query time period of 16.day

Next, for the same set of IP addresses queried, we vary the num
ber of concurrent processes submitted in parallel from 2ito/te
measure the query processing time, and divide it by the qouery
cessing time without parallelization given by Table 1. Feg8
shows the result of this experiment, where the y-axis is trenal-
ized processing time. As illustrated by the figure, the benefi
parallelization increase, as the number of queried IP addeein-
creases, since more IP addresses mean more time to proeesk th
dress range records. For example, the query of 10,000 |Rsskl
takes about 5 minutes to process without parallelizatidmis fium-
ber is reduced to 53%, 30%, 23% and 19% of its value when we
increase the parallelization to 2, 4, 6 and 8 processesgctgply.

No further gain is achieved in processing time by submittimgye
than eight processes in parallel.



#IPs Queried | Query Processing Time (Secs
1 26.1
10 26.1
100 27.7
1000 54.5
10000 279.7

Table 1: Query processing time (without parallelization) \ersus
number of IP addresses queried.
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Figure 8: normalized query processing time versus number of
concurrent processes

Since the performance levels out when number of procesaek re
the number of cores, we suspect that the CPU is the perfoenanc
bottleneck. We confirmed this by tracking the CPU utilizatat
one minute intervals during the course of the experimentnwhe
eight parallel processes were running. As expected, thiezatibn
stayed at 100% during much of the processing, confirmingrtbat
further gain is possible beyond eight processes on thiscpéat
eight core server.

6. RELATED WORK

Understanding route changes is fundamental to network trou
bleshooting. Packet Design [2] provides Route Explorerap-c
ture the complete stream of routing updates received. licpéar,
Route Explorer has an animated historical playback feattnieh
lets the operators diagnose problems by quickly rewindingast
routing activities at a specific time. In our work, Route Qedakes
one step further to handle the prefix-match changes, anditsutp
route changes for IP addresses of interest.

RouteViews [3] and RIPE-NCC [4] provide publicly available
passive measurements of BGP route updates. In these prafeet
BGP monitors are fed with BGP announcements and withdrawal
messages received via an external BGP session with one ioute
the participating AS. Proposals have been made to pin-pghant
location and cause of routing changes using these measuiréme
frastructures [5, 6, 7]. In comparison, Route Oracle all@ns
to understand how route changes actually affect routesHad-
dresses.

Our work also relates to earlier studies that used BGP measur
ment data to analyze the relationship between IP prefixe9,[8,
10, 11, 4]. For example, the work on BGP policy atoms [8, 9]
showed that groups of related prefixes often have matching AS

paths, even when viewed from multiple vantage points; 8lhic

a more-specific prefix had different AS paths than its cowadp

ing less-specific prefix [8]. Other researchers analyzed BiBR
dumps to understand the reasons why each prefix appears in the
inter-domain routing system, and the reasons include d#é@ygof
address space to customers, multihoming, and load batafitin

11]. In contrast, our system focuses on trackingdhangesn the
longest-matching prefix rather than a static analysis of & Bable
dump.

7. CONCLUSION

In this paper, we presented Route Oracle, a scalable systaen t
termine the BGP routes (and thus AS Path and egress routst) us
by one or more IP addresses from a given router in a network. We
believe that the system should form a basis for several nktarmd
service management applications. The key component ofeRout
Oracle is an algorithm to track changes to the longest praéiich
for IP addresses as BGP route updates arrive. Our system uses
this algorithm to convert BGP updates which are prefix-basted
route updates to non-overlapping IP address ranges. TpSat
cilitates queries about route changes for a large numbeP aidt
dresses. We also described other optimizations that furéuieice
the query response time. Our systematic evaluation denadedt
Route Oracle’s ability to handle queries at scale and in tigsd.

We have deployed Route Oracle in a large Tier-1 ISP where it is
being used to troubleshoot performance impairments faowar
services. The system optimizations described in the papee w
implemented based on feedback from this user community.
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