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ABSTRACT
Many network-management problems in large backbone networks
need the answer to a seemingly simple question: where does a
given IP packet, entering the network at a particular place and time,
leave the network to continue on its path to the destination?An-
swering this question at scale and in real time is challenging for
several reasons: (i) a destination IP address could match several
IP prefixes, (ii) the longest-matching prefix may change overtime,
(iii) the number of IP prefixes and routing protocol messagesis very
large, and (iv) network-management applications often require an-
swers to this question for a large number of destination IP addresses
in real time. In this paper, we present an efficient algorithmfor
tracking prefix-match changes for ranges of IP addresses. Wethen
present the design, implementation, and evaluation of the Route
Oracle tool that answers queries about routing changes on behalf
of network management applications. Our design of Route Oracle
includes several performance optimizations, such as pre-processing
of BGP update messages, and parallelization of query processing.
Experiments with BGP measurement data from a large ISP back-
bone demonstrate that our system answers queries in real time and
at scale.

1. INTRODUCTION
Today, the Internet is the de facto platform for most of our com-

munication needs. Managing and operating networks comprising
the Internet is a daunting task especially since the original Internet
and protocols underpinning it were not designed with management
and operational challenges in mind. Thus, sometimes even answer-
ing a basic question like what paths traffic took at a given time is a
challenging task. However, knowing the answer to this seemingly
simple question is crucial for performing a wide range of network
management tasks. In this paper, we focus on answering this ques-
tion from a given network’s point of view: when traffic to a given
destination enters the network at some router, what router it will use
to exit the network and, beyond that, what downstream path itwill
take to reach the destination. This paper describes a systemcalled
Route Oracleto answer this question at scale and in real time.

The Internet is divided into thousands of networks called au-
tonomous systems (ASes), each of which has network elements,
such as routers and switches, administrated by a single organiza-
tion. The Border Gateway Protocol (BGP) allows ASes to ex-
change information about how to reach external destinations. A
BGP route contains many attributes including these key ones: the
egress router (i.e., the last router before packets leaves agiven AS)
and the AS path (i.e., the list of ASes on the downstream path to the
destination. Thus, knowing the egress router and AS path foran in-
dividual IP address, both current and at a given time in the past,
is crucial for several management tasks such as troubleshooting

reachability problems in response to customer complaints.While
knowing the egress router and AS path already provides vitalin-
formation, joining this data with other information could form the
basis for even more powerful applications. For example, joining the
routing data from the intra-domain routing protocol could provide
the path traversed by traffic from ingress to egress routers in an AS.
Similarly, joining with the performance measurements for an ap-
plication would allow network operators to correlate performance
impairments with route changes in the network.

Realizing a system to track BGP route changes is challengingfor
two reasons:

• In BGP, routing updates are advertised in terms of prefixes,
and prefixes can be nested. Thus a single IP address could
be covered by multiple prefixes. The packet forwarding in
such cases is governed by the longest matching prefix, which
can change over time as routes are advertised and withdrawn.
Thus, in order to know the route for a particular IP address,
we need to track the changes to its longest matching prefix,
and this needs to be done at the rate of BGP updates, espe-
cially for applications that need to know routes in real time.

• Some applications need to know routes to hundreds of thou-
sands of IP addresses at a given time. An example is a CDN
serving a large number of clients that wants to take into ac-
count the current route in deciding which replica to serve the
content from. For such applications, our system needs to an-
swer a large number of queries, again in real time.

The Route Oracle system, which outputs route changes for allIPs
addresses, overcomes these challenges in the following manner:

• To handle nested prefixes, we introduce the notion of anad-
dress range. An address range is a group of IP addresses
that have the same set of matching prefixes. The algorithm
to efficiently determine changes to address ranges as well as
their matching prefixes and associated routes as BGP updates
arrive. The resulting data structure facilitates rapid determi-
nation of route changes for an IP address – we just need to
look for the appropriate address ranges instead of prefixes.
We also archive the address range data which allows us to
determine routes both in present and any time in the past.

• To answer queries for a large number of IP addresses, we im-
plement two optimizations to Route Oracle: (i) the reading
of address range records is done once for multiple queries to
amortize the I/O cost. (ii) take advantage of multi-core pro-
cessors prevalent today by distributing the workload across
individual cores.



We have deployed Route Oracle in a large Tier-1 ISP where it
is being used to troubleshoot performance impairments for vari-
ous services. In fact, the optimizations described above were im-
plemented after the initial trial which revealed that the users were
interested in using the system for hundreds of thousands of IP ad-
dresses in real time.

The rest of the paper is organized as follows. In Section 2, we
further motivate Route Oracle by describing three applications of
the tool. Next, we present the algorithm to efficiently trackprefix
and route changes for address ranges in Section 3, followed by the
overall design and implementation of Route Oracle in Section 4.
In Section 5, we evaluate the performance of Route Oracle. We
present related work in Section 6, and conclude the paper in Sec-
tion 7.

2. MOTIVATING APPLICATIONS
In this section, we present three possible applications of Route

Oracle. We show that determining the egress router and AS path
to external destinations is an important building block formany
network management tasks. For each application, we presentthe
challenges of the application, and how Route Oracle could effec-
tively handle it. We also explain why each application needsto
track routing changes at scale and in real time.

2.1 Historical Traceroute
Traceroute is a popular active measurement tool, which lists the

hops along the path to the destination. It is extensively used by
the network operators to troubleshoot reachability or performance
problems. Traceroute is implemented by sending IP packets in real
time. Therefore, if traceroute was not used or the result wasnot
collected in the past, it would be impossible to roll back to atime
in the past to see the path at that time.

However, having a “historical traceroute” that provides paths
from any vantage point to a given destination at any time in the
past would be valuable. The straightforward approach to imple-
ment such historical traceroute is to collect and archive the tracer-
oute results. However, collecting traceroute data from many van-
tage points to all the destination IP addresses is too expensive due
to large probing and storage requirements. Instead, we propose to
leverage the passively collected routing updates: from theBGP up-
dates, we could determine the egress router and AS path the packets
traverse; and from the routing messages of the intra-domainrouting
protocol like OSPF, we could determine the hop-by-hop path (from
the vantage point to the egress router) inside the ISP. Our Route
Oracle tool provides the former capability.

2.2 Analyzing External Routing Disruptions
One of the most important tasks of network operations is to react

quickly to large network disruptions. Disruptions like a cable cut
could result in loss of reachability or serious congestion in a large
portion of a geographical region. Characterization of these events
could help network operators understand the impact on theirnet-
works: what percent of the IP addresses in the affected geograph-
ical region became unreachable? How was the traffic reroutedto
reach the destination, and did it cause any traffic shifts inside the
network? Did the packets actually reach the destination, and were
there any performance degradations? Knowing the answers tothese
questions would help the network operators make decisions on how
to respond to the event, including redirecting the traffic through a
better route, or performing traffic engineering to direct traffic away
from congested links.

Answering these questions requires determining the routesor
route changes of all the IP addresses in the affected geographical

regions. Route changes for these IP addresses should not only be
processed at scale, but also in real time, in order to get the latest
status of the event. Based on these results, aggregated statistics
like the percent of routable IP addresses could indicate theoverall
impact on reachability. Aggregating the routes by the dimensions
of egress router and nexthop AS could tell how the traffic shifted
inside the network. Joint analysis with the traffic and performance
data could help monitor the performance along each reroutedpath.

2.3 Service-Level Performance Management
With the deployment of many network applications, ISPs are

facing the challenge ofservice quality management. Performance
monitoring at the application layer alone is not enough to trou-
bleshoot performance degradation of network services. Instead,
network operators need to correlate the performance problems with
network-layer changes (such as routing changes, or networkcon-
gestion) for rootcause analysis.

As an example, consider an ISP hosting a Content Distribution
Network (CDN). Such an ISP would be interested in monitoringthe
performance of its CDN, by measuring the round-trip time (RTT)
to the clients. A simple approach is to monitor the performance of
content download for each client. However, the RTT of individual
clients is likely to vary significantly. Instead, if we couldaggregate
the RTTs over clients using the same paths (e.g., clients leaving the
network at the same egress router), then large changes in theaver-
age RTT would show the performance changes caused by rerouting
or congestion inside the network. In this case, the capability to de-
termine the routes for all the clients’ IP addresses at scaleand in
real time is required to get the paths from the server to the clients.
Furthermore, this real-time performance information could be used
to guide the selection of the replica that should serve each client.

3. TRACKING PREFIX MATCH CHANGES
In this section, we present a novel algorithm to determine routes

(more specifically egress router and AS path) to destinations given
IP addresses, vantage point, and time. We use the BGP routes from
the specified vantage point and time period as inputs for the algo-
rithm. Since an IP address could be covered by multiple prefixes,
the key problem is to track the longest prefix match and the asso-
ciated routes for the IP addresses of interest as BGP updatesare
received.

We begin by describing the phenomena of prefix nesting, which
causes an IP address to be covered by multiple prefixes. Then we
introduce the notion of anaddress rangewhich is a group of IP ad-
dresses that have the same set of matching prefixes, to track routing
changes efficiently. Last, we present the algorithm to trackprefix
match changes as BGP updates arrive.

3.1 Prefix Nesting
In the routing table, an IP address could be covered by multiple

prefixes. For example, IP address 128.112.0.0 could be covered
by both 128.112.0.0/16 and 128.112.0.0/24. When the IP packets
destined to 128.112.0.0 are forwarded, routers perform thelongest
prefix match (LPM), and use the route of prefix 128.112.0.0/24to
deliver the packets to the destination. In a previous study [1], we
analyzed a BGP routing table collected from a router in a large
ISP on February 1, 2009. The result showed that 24.2% of the IP
addresses were covered by multiple prefixes.

Nesting of prefixes is quite common for a variety of reasons. For
example, regional Internet registries allocate large address blocks
to Internet Service Providers (ISPs), who in turn allocate smaller
blocks to their customers. Customers that connect to the Internet at
multiple locations may further sub-divide these address blocks to
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Figure 1: Storing address ranges and prefix sets for prefixes
12/8, 12/16, and 12/24

exert fine-grained control over load balancing and backup routes.
ISPs may also announce multiple blocks to protect themselves from
route hijacking—for example, AT&T announces prefixes 12.0.0.0/9
and 12.128.0.0/9, in addition to the 12.0.0.0/8 supernet, to prevent
other ASes from accidentally hijacking traffic intended fordestina-
tions in 12.0.0.0/8.

As a router receives more and more BGP updates, the longest
prefix match for an IP address may change over time. In [1], we
used BGP update messages collected for the month of February
2009 from the router in the tier-1 ISP backbone, and determined
the frequency of BGP updates that affected the longest-matching
prefix for IP addresses. Our analysis revealed that 13% of theBGP
updates caused some IP addresses to change their longest-matching
prefix. Because of frequent changes in longest prefix match, track-
ing the prefix match changes efficiently is necessary.

3.2 Data Structure for Address Ranges
In this section, we present a method to track prefix match changes

for a group of IP addresses. Because of the nesting of prefixes, an
IP address could match several prefixes with different mask lengths.
In order to track prefix-match changes over time, we need to store
information about changes to all prefixes covering the IP address.
We refer to the collection of all matching prefixes for a givenIP
address as itsprefix set; packet forwarding is driven by the longest-
matching prefix in the set at any time. For example, suppose a BGP
routing table contains prefixes 12.0.0.0/8 and 12.0.0.0/16. Then, IP
address 12.0.0.0 has the prefix set{/8, /16}. IP address 12.0.0.1
also matches the same prefixes. However, the prefix set for 12.1.0.1
is {/8}.

Rather than tracking the prefix set for each individual IP ad-
dress, we group contiguous addresses that have the same prefix
set into anaddress range. For example, prefixes 12.0.0.0/8 and
12.0.0.0/16 divide the IP address space into two address ranges—
[12.0.0.0, 12.0.255.255] with prefix set{/8, /16} and [12.1.0.0,
12.255.255.255] with prefix set{/8}. Note that address ranges dif-
fer from prefixes in that the boundaries of an address range are not
necessarily powers of two. For instance, no single prefix could rep-
resent all IP addresses in the range [12.1.0.0, 12.255.255.255].

As we process BGP update messages, address ranges may be cre-
ated, subdivided or updated. For ease of searching for the affected
address range(s), we store information about address ranges in a
binary tree, as shown in Figure 1. A binary tree efficiently supports
all the operations we need (including inserting a new address range,
lookup an address range) in an average time ofO(log n), wheren
is the number of address ranges. In comparison, the brute-force

solution that simply stores address ranges in arrays would operate
in an average time ofO(n). Each node in the binary tree contains
the left-most address in the address range, and each node keeps a
pointer to the size of the address range and the associated prefix set.
Each element of the prefix set includes a pointer to the BGP route
for that prefix; to save memory, we store a single copy of each BGP
route. As illustrated in Figure 1, both address ranges [12.0.0.0,
12.0.0.255] and [12.0.1.0, 12.0.255.255] have prefix 12.0.0.0/16 in
their prefix sets, and their prefix sets store the pointers to the route
entry for 12.0.0.0/16. Note that in the figure, we only show the
pointers from the most-specific prefixes to the routing tablefor il-
lustration.

3.3 Tracking Changes to Address Ranges
Next, we present an algorithm that reads BGP table dumps or

update messages as input, and tracks the changes to the address
ranges and their associated prefix sets. The algorithm first deter-
mines the address range(s) covered by the prefix, perhaps creating
new address ranges or subdividing existing ones. Then, for each of
the associated address ranges, the algorithm modifies the prefix set
as needed.

Updating address ranges:A BGP announcement for a new pre-
fix may require creating new address ranges or subdividing exist-
ing ones. For example, suppose 18.0.0.0/16 is announced forthe
first time, and no earlier announcements covered any part of the
18.0.0.0/16 address space; then, our algorithm inserts a new address
range [18.0.0.0,18.0.255.255], with a prefix set of{/16}, into the
binary tree. As another example, suppose we have previouslyseen
route announcements only for 12.0.0.0/8 and 12.0.0.0/16; then, the
binary tree would contain [12.0.0.0,12.0.255.255] with prefix set
{/8, /16}, and [12.1.0.0,12.255.255.255] with prefix set{/8}. On
processing an announcement for 12.0.0.0/24, our algorithmwould
subdivide [12.0.0.0,12.0.255.255] into two address ranges—one with
prefix set{/8, /16, /24} and another with{/8, /16}, as shown in
Figure 1. Currently, our algorithm does not delete or merge ad-
dress ranges after withdrawal messages. We take this lazy approach
towards deleting and merging address ranges because withdrawn
prefixes are often announced again later, and because we haveseen
empirically that the number of address ranges increases very slowly
over time.

Updating prefix set for address ranges:Continuing with the
example in Figure 1, suppose the route for 12.0.0.0/16 is with-
drawn. Then, the algorithm would determine that both [12.0.0.0-
12.0.0.255] and [12.0.1.0,12.0.255.255] have/16 removed from
the prefix set. For addresses in [12.0.1.0-12.0.255.255], the with-
drawal would change the longest matching prefix to the less specific
12.0.0.0/8.

4. DESIGN AND IMPLEMENTATION
Using the algorithm of Section 3 as a basis, we present the over-

all design and implementation of Route Oracle in this section. We
begin with the overview of the design, and follow it with a de-
tailed description of the two main parts of the design: the pre-
processing module that converts BGP updates to updates of address
range records, and the query module that identifies the routes for IP
addresses based on these records.

4.1 Design Overview
The input to Route Oracle consists of a list of IP addresses, a

vantage-point router, and the time period over which route changes
are desired. The output is routes for each IP address at the start
time, and then changes to them during the specified time period.
The route includes the longest matching prefix, egress router and
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Figure 2: Route Oracle System Design

the AS path. The basic way to handle such a query is to process
the BGP updates from the specified vantage point and time period
using the algorithm we presented in the last section, and output the
result. For example, for the query of route changes for IP address
128.112.0.0 from t1 to t2 at vantage point v, the algorithm will have
to process BGP updates from vantage point v from t1 to t2. The
output could be: at time t1, the longest prefix match is /24, with
associated route r1; at time t3 (which is before t2), the IPs change
to a less-specific prefix match /16, with route r2; and finally no
route changes for the address till t2. However, this basic approach
does not scale well with the number of IP addresses due to nesting
of prefixes. The nesting of prefixes means that for each IP address,
every update containing a matching prefix needs to be processed to
see if the longest prefix match, and hence the route, changed for the
address or not.

To overcome this, we convert prefix-based BGP updates to rout-
ing changes for address ranges by using the algorithm specified in
Section 3. Since address ranges do not overlap, answering queries
for route changes scales much better for a large number of ad-
dresses in the input. In fact, once we convert BGP updates into
address ranges, we save the resulting records for future use, and
answer all queries using these records, thereby amortizingthe cost
of conversion across all subsequent queries.

To summarize, our design of Route Oracle consists of two mod-
ules as shown in Figure 2: A pre-processing module that transforms
the BGP update stream into a stream of address ranges and asso-
ciated route changes; and a query module that determines route
changes for desired IP addresses using the address range records.
In the following subsections, we provide detailed descriptions of
these two modules.

4.2 Precomputing Route Updates for Address
Ranges

The pre-processing part uses the algorithm presented in thepre-
vious section to track the longest prefix match and route changes
for all the IP addresses. The inputs to the pre-processing part are
BGP routing table snapshots and BGP updates. The output consists
of address ranges and route changes to them. Each record con-
tains the following attributes: the address range, time of the route
change, the longest prefix match, the egress router, and the AS path.
In addition, we also include information on how the longest prefix
match was changed compared with the previous route (e.g., change
to a more-specific or less-specific prefix), and whether the egress
router and AS path were changed compared to the previous route.

Since BGP is an incremental protocol where updates are only
sent by a router when its route to a prefix changes, the BGP monitor

deployed in the tier-1 ISP generates periodic snapshot of routes for
all prefixes. Using the snapshot of prefixes and their routes,the
module determines and stores a snapshot of all the address ranges
and routes associated with them. It then records changes to address
ranges and routes as subsequent BGP updates are received.

We should note that the time interval between snapshots of all ad-
dress range records has a direct bearing on query processingtime
since, given a query, we have to process address ranges starting
from the latest snapshot before the query time period. Thus,stor-
ing snapshots more frequently will reduce query time. However,
this will increase the storage space, and hence there is a tradeoff
between how often snapshots are stored versus query processing
time. At present, we store one snapshot per day to coincide with
the BGP routing tables which are generated at the beginning of ev-
ery day.

We store all the address range records for a given day under the
same directory, with the file names indicating the IP addressof the
vantage point. Directories are named hierarchically according to
year, month and day. This facilitates easy searching of filesfor a
given time period. The address range updates are stored in multiple
files with each file spanning a fixed interval (currently 15 minutes)
of the day. The files are compressed to reduce the storage space.
All the records are written in network byte-order for platform com-
patibility.

4.3 Query Processing
The query module uses the address range records (snapshots +

updates) to answer queries regarding routes for IP addresses. The
input to the query module is a list of IP addresses, the vantage point
and the time interval over which routes are desired. The output is
routes at the beginning of the time interval for each addressrange
and changes to them over the interval. The input IP addressescan
be specified as address ranges or prefixes.

When a query is received, the module first determines the lat-
est address range snapshot prior to the start time of the interval.
It then applies updates of address range records to determine the
state at the start time, and then continues processing address range
records till the end time to determine route changes. For each ad-
dress range, the module checks if the range overlaps with theinput
IP address list, and if so, the record is used to update the route for
the affected IP addresses. Note that since the address rangefiles
are stored hierarchically based on their time stamps, the module
can quickly locate files for a specific time interval. For instance, let
us assume that the query is for route changes of a single IP address
128.112.0.0 from October 24, 2009 9:00 a.m. to 5:00 p.m.. In this
case, the query module will read the address range snapshot at the
beginning of the day on October 24, 2009, and then address range
updates till 9:00 a.m. to get the latest route for 128.112.0.0 just at
the start time of the query time period. Then, the module willread
the address range updates from 9:00 a.m. to 5:00 p.m., and output
all route changes for the IP address in question.

We have implemented two optimizations to further reduce the
query response time. First, if the user inputs a list of IP addresses
in a query, we amortize the cost of reading address range records
across all the IP addresses. This is because the reading of the ad-
dress range files dominates the overall query processing time. As
we read address ranges sequentially, we compare each recordwith
all the IP address ranges and prefixes in the list. This way, the
reading of the result record files is amortized over all IP addresses.

Second, we parallelize the processing of the address range files
given the prevalence of multi-core machines. Since addressrange
updates for fixed time intervals are stored in separate files,we par-
allelize the reading and processing of these files by submitting mul-



tiple processes each processing one file at a time. The route changes
determined by all these processes are gathered at the end, and sorted
in chronological order before generating the output.

5. PERFORMANCE EVALUATION
This section presents performance evaluation of the Route Ora-

cle tool. For the pre-processing module, our aim is to verifythat
it can keep up as BGP updates arrive. For the query module, we
evaluate its performance – both response time and resource usage –
as a function of the size of the input. We also evaluate the effect of
optimizations – parallelization in particular – on the performance
of the query module.

Our experiments were run on an standard off-the-shelf SMP server,
with two quad-core Xeon X5460 Processors. Each CPU is 3.16
GHz and has 6 MB of cache. The server contains 16 GB of total
RAM. We apply our tool to BGP routing table and update messages
collected for the month of August 2009 from a top-level routere-
flector in a tier-1 ISP backbone. The queried IP addresses were
randomly selected from the routing table.

We first evaluate the pre-computation module of the tool, focus-
ing on the time to process BGP updates. Next, we evaluate how the
query processing time varies as the query time period grows.Then,
we evaluate the scalability of the query processing, as the number
of queried IP addresses grow, and show the memory resource con-
sumption. Finally, we demonstrate the benefit of parallelization in
query processing.

5.1 Pre-processing Time
In this subsection, we evaluate how long it takes to convert BGP

updates into address range records. To do this, we consider BGP
updates received over fixed time-intervals of 5, 10 and 20 minutes,
and compute the time spent by the pre-processing module on each
batch of updates. We present results for updates received onAugust
01, 2009; similar results were observed for other days.

Figure 3 shows the pre-processing time for BGP updates re-
ceived over various fixed time-intervals as a CCDF (complemen-
tary cumulative distribution function). As can be seen, of all the
BGP updates received and processed in 5 minutes interval, 99%
could be processed within 2 seconds, and the maximum time to
process the BGP updates received in 20 minutes interval is about 5
seconds. This clearly demonstrates that the pre-processing module
is able to handle BGP updates in real time as they arrive.

In order to better understand what factor mainly determinesthe
pre-computation time, we counted the number of BGP updates re-
ceived over fixed time intervals. For each point in Figure 4, the
number on the x-axis stands for the number of BGP updates re-
ceived over the fixed time-interval, while the number on the y-
axis presents the time spent on processing the updates. The figure
clearly illustrates the linear relationship between the pre-computation
time and the number of BGP updates received over the interval.
The start point of each curve shows that it takes approximately
1.5 seconds to finish the fixed steps of the pre-computation part
which includes bootstrapping the data structures used by the pre-
processing module, and writing the address range records tofiles
at the end. As the number of BGP updates increases, the pre-
processing time increases linearly.

5.2 Query Processing Time
The query processing time is a function of many parameters, in-

cluding the length of the query time period, the number of IP ad-
dresses queried, and the number of processes run in parallel. In
this subsection, we evaluate the query processing time along these
three dimensions, and understand how these factors affect the query
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processing time.
We start by measuring the query processing time for a single IP

address, where a single process is used to handle the query. We
vary the start and end times of the query time period on August
01, 2009. We first choose a random start time on that day, then
choose a random end time between the start time and the end of
the day. Figure 5 shows the result, where each point stands for one
experiment with a randomly chosen IP address to query, random
start time and random end time. The x-axis denotes the query end
time from the beginning of the day.

Figure 5 illustrates that the query processing time grows linearly
with the end time of the query. This is because irrespective of the
start time, the query module has to process all the address range
records from the last snapshot (which happens to be the beginning
of the day) till the end time since the address range records from the
snapshot till the start time are used to determine the routesused at
the start time. This explains why the query processing time depends
on the length from the beginning of day to the query end time.
In addition, note that the time spent on answering the query for a
single IP address for a one-day period is no more than 3.5 seconds.

We should also emphasize that the query time can reduced by
storing more frequent snapshots at the cost of more storage space.
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Based on the worst-case time of 3.5 seconds, we believe that storing
one snapshot per day provides us with a pretty good performance
at a reasonable storage cost (few MBytes per snapshot).

5.3 Scalability of Query Processing
Next, we evaluate the scalability of query processing by increas-

ing the number of queried IP addresses. We also show how the
amortization of file processing over the IP addresses reduces the
query processing time. In addition, we evaluate the memory con-
sumption as the number of queried IP addresses grows. For this
experiment, we use the query time period of one hour. We increase
the number of number of IP addresses from 1, 2, 4, 8, ... till about
130,000. The IP addresses used for the queries are all randomly
chosen. As in the previous section, we use a single process toan-
swer all the queries.

Figure 6 shows the query processing time in seconds, as the num-
ber of queried IP addresses increases. The figure shows that it takes
about half an hour to process 130,000 IP addresses for a time in-
terval of one hour. The query processing time grows linearlyas
the number of queried IP addresses increases. However, the slope
is lower at the beginning of the curve, but increases at some point
(in fact two points) as the number of IP addresses increases.We
believe this is because when number of IP addresses are lower, the
time to read the address range records, which is amortized over all
IP addresses, dominates. In contrast, when the number of IP ad-
dresses becomes large, the time spent on processing the address
range records starts dominating, resulting in a higher slope for the
curve.

Figure 7 shows the peak virtual memory utilization during the
same experiment. As illustrated by the figure, the memory utiliza-
tion grows as the number of queried IP addresses increases, and
the peak virtual memory used for processing about 130,000 IPad-
dresses for an hour is about 480 MB. The increase in memory con-
sumption as the number of queried IP addresses increases is be-
cause we store all the matching address range records in memory
before outputting them at the end. Another factor affectingthe peak
virtual memory utilization is the query time period, since the query
time period determines the number of address range records that
must be stored in memory.

5.4 Parallelization of Query Processing
Last, we evaluate the benefits of parallelization achieved on multi-

core machines. For this experiment, we extend the query timepe-
riod to 10 days from August 01 to August 10, 2009. We vary the
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Figure 6: Query processing time versus number of IP addresses
queried.
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Figure 7: Peak virtual memory utilization versus number of IP
addresses queried.

number of IP addresses queried by randomly choosing 1, 10, 100,
1000, and 10000 IP addresses. Recall that the server on which
experiments were run had two quad-core CPUs,i.e., 8 processing
cores each running at 3.16 GHz.

We start by measuring the query processing time by using only
one process with no parallelization. These numbers serve as a
benchmark against which we compare the processing time with
multiple parallel processes. Table 1 shows these numbers for vary-
ing number of IP addresses over the query time period of 10 days.

Next, for the same set of IP addresses queried, we vary the num-
ber of concurrent processes submitted in parallel from 2 to 14. We
measure the query processing time, and divide it by the querypro-
cessing time without parallelization given by Table 1. Figure 8
shows the result of this experiment, where the y-axis is the normal-
ized processing time. As illustrated by the figure, the benefits of
parallelization increase, as the number of queried IP addresses in-
creases, since more IP addresses mean more time to process the ad-
dress range records. For example, the query of 10,000 IP addresses
takes about 5 minutes to process without parallelization. This num-
ber is reduced to 53%, 30%, 23% and 19% of its value when we
increase the parallelization to 2, 4, 6 and 8 processes, respectively.
No further gain is achieved in processing time by submittingmore
than eight processes in parallel.



#IPs Queried Query Processing Time (Secs)
1 26.1
10 26.1
100 27.7
1000 54.5
10000 279.7

Table 1: Query processing time (without parallelization) versus
number of IP addresses queried.
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Figure 8: normalized query processing time versus number of
concurrent processes

Since the performance levels out when number of processes reach
the number of cores, we suspect that the CPU is the performance
bottleneck. We confirmed this by tracking the CPU utilization at
one minute intervals during the course of the experiment when
eight parallel processes were running. As expected, the utilization
stayed at 100% during much of the processing, confirming thatno
further gain is possible beyond eight processes on this particular
eight core server.

6. RELATED WORK
Understanding route changes is fundamental to network trou-

bleshooting. Packet Design [2] provides Route Explorer to cap-
ture the complete stream of routing updates received. In particular,
Route Explorer has an animated historical playback featurewhich
lets the operators diagnose problems by quickly rewinding to past
routing activities at a specific time. In our work, Route Oracle takes
one step further to handle the prefix-match changes, and outputs
route changes for IP addresses of interest.

RouteViews [3] and RIPE-NCC [4] provide publicly available
passive measurements of BGP route updates. In these projects, the
BGP monitors are fed with BGP announcements and withdrawal
messages received via an external BGP session with one router in
the participating AS. Proposals have been made to pin-pointthe
location and cause of routing changes using these measurement in-
frastructures [5, 6, 7]. In comparison, Route Oracle allowsone
to understand how route changes actually affect routes for IP ad-
dresses.

Our work also relates to earlier studies that used BGP measure-
ment data to analyze the relationship between IP prefixes [8,9,
10, 11, 4]. For example, the work on BGP policy atoms [8, 9]
showed that groups of related prefixes often have matching AS

paths, even when viewed from multiple vantage points; typically,
a more-specific prefix had different AS paths than its correspond-
ing less-specific prefix [8]. Other researchers analyzed BGPtable
dumps to understand the reasons why each prefix appears in the
inter-domain routing system, and the reasons include delegation of
address space to customers, multihoming, and load balancing [10,
11]. In contrast, our system focuses on tracking thechangesin the
longest-matching prefix rather than a static analysis of a BGP table
dump.

7. CONCLUSION
In this paper, we presented Route Oracle, a scalable system to de-

termine the BGP routes (and thus AS Path and egress router) used
by one or more IP addresses from a given router in a network. We
believe that the system should form a basis for several network and
service management applications. The key component of Route
Oracle is an algorithm to track changes to the longest prefix-match
for IP addresses as BGP route updates arrive. Our system uses
this algorithm to convert BGP updates which are prefix-basedinto
route updates to non-overlapping IP address ranges. This step fa-
cilitates queries about route changes for a large number of IP ad-
dresses. We also described other optimizations that further reduce
the query response time. Our systematic evaluation demonstrated
Route Oracle’s ability to handle queries at scale and in realtime.
We have deployed Route Oracle in a large Tier-1 ISP where it is
being used to troubleshoot performance impairments for various
services. The system optimizations described in the paper were
implemented based on feedback from this user community.
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