Trellis: A Platform for Building Flexible, Fast Virtual
Networks on Commodity Hardware

Sapan Bhatia*, Murtaza Motiwalaf, Wolfgang Muhlbauer?, Yogesh Mundada,
Vytautas Valanciusf, Andy Bavier*, Nick Feamsterf, Larry Peterson*, and Jennifer Rexford*

* Princeton University

ABSTRACT

We describe Trellis, a platform for hosting virtual netwsrk
on shared commodity hardware. Trellis allows each vir-
tual network to define its own topology, control protocols,
and forwarding tables, while amortizing costs by sharirgy th
physical infrastructure. Trellis synthesizes two corgain

based virtualization technologies, VServer and NetNS, as
well as a new tunneling mechanism, EGRE, into a coher-
ent platform that enables high-speed virtual networks. We (e.9,

describe the design and implementation of Trellis and evalu
ate its packet-forwarding rates relative to other virtzetion
technologies and native kernel forwarding performance.

1. Introduction

Network researchers need a platform for testing new net-

 Georgia Tech

f T-Labs/TU Berlin

Trellis is similar to the enhanced Emulab testbed features
for virtualizing nodes; we are collaborating with the Emu-
lab developers to integrate Trellis with the Emulab testbed
Emulab has focused mostly on resource allocation [9]; in
contrast, we focus on the mechanisms for implementing the
virtual network components.

To implementvirtual nodes two options are virtual ma-
chines €.g, Xen) and “container-based” operating systems
VServer, OpenVZ). Container-based operating sys-
tems provide isolation of filesystem and the network stack
without having to run an additional (potentially heavy-
weight) instance of a virtual machine for each experi-
ment. Trellis’s container-based OS approach provides ex-
perimenterdglexibility by allowing them to customize some
aspects of the IP network stack.g, congestion control)
by giving each virtual network its own network namespace.

work architectures, protocols, and services. Although ex- |3 the current implementation, processing “custom” non-IP

isting infrastructures like PL-VINI [4] can run multiple ke
working experiments in parallel, forwarding packets inruse
space significantly limits scalability. In addition to a kea
istic, controlled experimental setting, network researsh
need a testbed that provides the following properties:

e Speed.The platform should forward packets at high
rates. For example, if the platform forwards packets in

packets requires sending packets to user space, as in PL-

VINIL. In this paper, we evaluate thepeedof this approach;

in future work, we plan to study isolation, as others have

recently done for full virtualization technologies [7].
Tunneling is a natural mechanism for implementing

tual links unfortunately, existing tunneling mechanisms do

not provide the appearance of a direct layer-two link, which

software, the packet forwarding rates should approach some experiments might need. To solve this problem, we

that of “native” kernel packet forwarding rates.

e Flexibility. The platform should allow experimenters
to modify routing protocols, congestion control param-
eters, forwarding tables and algorithms, and, if possi-
ble, the format of the packets themselves.

e Isolation. The platform should allow multiple ex-
periments to run simultaneously over a single physi-
cal infrastructure without interfering with each other’s
namespaces or resource allocations.

implement arEthernet GREEGRE) tunneling mechanism
that gives a virtual interface the appearance of a direct Eth
ernet link to other virtual nodes in the topology, even ifttha
virtual link is built on top of an IP path.

Finally, Trellis must connect virtual nodes to virtual lgk
existing mechanisms, such as the bridge in the Linux ker-
nel, allows virtual interfaces within each virtual node ® b
connected to the appropriate tunnels. To improve forward-
ing performance, we propose an optimization calibdrt-
bridge which improves forwarding performance over the

This paper presents the design, implementation, and evalustandard Linux bridge by avoiding unnecessary look-ups on

ation of Trellis, a platform that aims to find a “sweet spot”
for achieving these three design goals, given that it is dif-
ficult to achieve all three simultaneoudlyThe main ques-

MAC addresses and copying of frame headers.
The rest of the paper is organized as follows. Sections 2
and 3 describe the Trellis design and implementation, re-

tion we address in our evaluation is the extent to which we spectively. Section 4 compares Trellis’s forwarding perfo

can provide experimenters both flexibility and speed, with-
out compromising forwarding performance. Many existing
“building blocks” can provide functionality for implement
ing the two key components of a virtual networle(virtual
nodes and virtual links). Our main challengesysthesizing
existing mechanisms for implementing virtual nodes and vir

mance relative to other approachegy(, virtual machines),
as well as to in-kernel packet forwarding performance. Sec-
tion 5 concludes and describes our ongoing work.

2. Trellis Requirements and Design

tual links in a manner that achieves the design goals above. A virtual network comprises two componentstirtual

I More details are in the corresponding technical report [5].

hosts which run software and forward packets; andual

commodity PC commodity PC

virtual host

application

kernel FIB

i | virtual
: |interface

virtual
interface

virtual
interface

virtual | i
interface| i

tunnel
interface

i | tunnel
i |interface

tunnel | :
interface| :

virtual link

Figure 1: Overview of Trellis design.

links, which transport packets between virtual hosts. We de-
scribe the requirements for Trellis, as well as its highelev
design. We then describe mechanisms for creating virtual
hosts and links.

We identify four high-level design requirements for Trel-
lis. First, it mustconnect virtual hosts with virtual linke
construct a virtual network. Second, it must runommmod-
ity hardware(i.e., server-class PCs) in order to keep deploy-
ment, expansion, and upgrade costs low. Third, it must run
a general-purpose operating systénside the virtual hosts
that can support existing routing software (e.g., XORP [8]
and Quagga [3]) as well as provide a convenient and famil-
iar platform for developing new services. Finally, Trellis
should supporpacket forwarding inside the kernef the

e Per-virtual host virtual interfaces and tunnel€ach
virtual host is a node in a larger virtual network topol-
ogy; thus, Trellis must be able to define interfaces and
associated tunnels specific to that virtual network.

In-kernel, per-virtual-host forwarding tables.Each
virtual host must be able to define how traffic is for-
warded by writing its own forwarding-table entries. A
virtual host's forwarding table must be independent of
other forwarding tables, and processes running on one
virtual host must not be able to affect or control for-
warding table entries on a different virtual host.

Separating virtual interfaces from tunnel interfaces.
Separating the virtual interface from the tunnel end-
point enables the creation of point-to-multipoint links
(i.e., the emulation of a broadcast medium). In addi-
tion, this separation allows the substrate to enforce a
rate limit on each virtual link, to ensure resource isola-
tion between the virtual networks.

The challenge in building Trellis was to identify and com-
bine individual virtual host and virtual link technologigsat
satisfied our design requirements, or implement new com-
ponents in cases where existing ones did not meet the de-
sign requirements. The next section describes these design
choices in the context of the Trellis implementation.

3. Trellis Implementation

Trellis synthesizes host and link virtualization techrolo
gies into a single, coherent system. In this section, we ex-
plain the implementation decisions we made when building
Trellis to achieve our goals of speed, flexibility, and, wéer
applicable, isolation.

3.1 Host Virtualization

Flexibility Virtual hostsmust allow experimenters to imple-
ment both custom control-plane and data-plane functions,
without compromising speedé€., forwarding performance).

general-purpose OS to reduce system overhead and suppoitlost types of host virtualization support control-plans-cu

higher packet-forwarding rates. An application running in
user space inside a virtual host can interact with deviges re
resenting the end-points of virtual links, and can write for
warding table entries (FTESs) to an in-kernel forwarding ta-
ble (forwarding information base, or FIB) to control how the
kernel forwards packets between the virtual links.

Figure 1 illustrates a virtual network hosted on Trellis.
The function of the virtual network is spread across three
layers: user space inside the virtual host; in the kernaéns
the virtual host; and outside the virtual host in a substrate
layer that is shared by all virtual networks residing on a sin

tomization; a thornier issue is custom data plane opersition
such as forwarding non-IP packets, which requires modifi-
cations to the network stack in the operating system. In full
virtualization, this customization requires modificasoto
the guest OS. Container-based virtualization does not pro-
vide this flexibility because all virtual hosts share the sam
data structures in the kernel, but providing in-kernel data
plane customizability might ultimately be possible by par-
titioning kernel memory and data structures analogously to
how similar systems have done this in hardware [10, 16].

In addition to providing fast forwarding and flexibility,

gle host. The elements inside a virtual host can be accessedrellis shouldscale it should support a large number of net-

and controlled by an application running on that virtualthos
Elements in the substrate cannot be directly manipulated, b

works running simultaneously. Previous work, as well as
our experiments in Section 4, show that container-based vir

are configured by the Trellis management software on behalftualization scales better than other alternatives: spadifi

of an individual virtual network. Multiple virtual hosts Ba

run on the same physical hardware (not shown in the figure).

given a fixed amount of physical resources, it can support
more concurrent virtual hosts than full virtualization. iTh

Physical network interfaces are also not shown because theybetter scalability makes sense because in container-based
are hidden behind the tunnel abstraction. We note severalvirtualization only a subset of the operating system resesir

salient features of this design:

and functions are virtualized.

Criteria _ Full Virtualization | COS operations must be efficient. Trellis’'s EGRE-based tunnel-
Speed D'?;f_ﬁ%tJﬁQ’?gg;ggons mg zgz ing approach is much faster than approaches that perform a
CPU-bound operations Yes Yes lookup on the source, destination address pair. Other user-
[solation Rate limiting Yes Yes space tunneling technologies likg un [17] impose con-
illt;irggszgﬁtﬁncy contro Un':\lnswn YNeoS siderable performance penalty compared to tunnels imple-
Flexibility Custom data pgllane Guest OS change| No mented as kernel modules.
Custom control plane Yes Yes Isolation Trellis’s virtual links must be isolated from links
in other virtual networksi(e., traffic on one virtual network
Table 1: Container-based virtualization vs. full virtuali zation. Previous cannot interfere with that on another), and they must be flex-
studies on container-based virtualization and full virtuaization explain ible (i.e., users must be able to specify many policies). To
these results in more detail [13, 15]. satisfy these goals, Trellis terminates virtual links ia thot

. . . . ~context, rather than in the virtual host contexts.
Decision 1 Create virtual hosts using Container-based Vir-
tualization (not full virtualization). Decision 3 Terminate tunnels in the “root context”, outside

We combined two container-based approaches, Linux ©f virtual host containers.

VServer [15] and NetNS [2], to serve as the virtual hosting Terminating the tunnel in the root context, rather than in-
environment of Trellis. Since the PlanetLab OS is also basedgjge the container. allows the infrastructure administred

on VServer, this allows us to leverage PlanetLab’s man- jmpose authoritative bandwidth restrictions on users. Ap-
agement software to run a Trellis-based platform. NetNS pjications running on a virtual host have full control over
virtualizes the entire Linux network stack, rather than-sim he environment in a container, including access to network

ply providing each container with its own forwarding table. pangwidth. To enforce isolation, Trellis must enforce @apa
This enables Trellis to support experiments that want te con ity and scheduling policiesutside the containefrellis ter-
figure, for example, TCP congestion-control parameters or minates tunnels in the root context; an intermediate queei
IP packet manipulations; in addition, NetNS has recently geyice between the tunnel interface and a virtual host's vir
been added to mainline Linux, making the use of NetNS es- 5| interface resides in the root context and shapes traffic
pecially appgallng_. Apother possible choice for contaln_er usingt ¢, the Linux traffic control module [11]. The vir-
based host virtualization would have been OpenVZ, which 5] device inside the virtual host's context is bridgedhwit
has essentially the same functionality as our combination ihe tunnel endpoint. This arrangement allows them to ap-
of VServer and NetNS; we evaluate both our approach and |y traffic shaping policies and packet-filtering rules, and
OpenVZ in Section 4. ultimately to implement packet scheduling algorithms that
3.2 Link Virtualization provide service guarantees for each_wrtual _|nterfa<_:e_.r$Jse
though can still apply their own traffic shaping policies on

Virtual links must be flexible: they must allow multiple e virtual network interfaces inside their respectivetaom
virtual hosts on the same network to use overlapping ad- o, for their traffic.

dress space, and they must provide support for transporting - Terminating the tunnel endpoints outside the network con-
non-IP packets. We tackled these problems by implement-ainer also provides flexibility for configuring topologies
ing a new tunneling module for Linux, ethernet-over-GRE ' gphecifically, this choice allows users to create point-to-
(EGRE). Trellis uses GRE [6] for tunneling because it has jiipoint topologies, as discussed in more detail in Sec-
a small, fixed encapsulation overhead and also uses a fouryjon 3.3, |t also allows containers to be connected directly
byte key to demultiplex packets to the right tunnel integfac |\ hen they are on the same host, instead of being forced to

- . . , use EGRE tunnels.
Decision 2 Implement virtual links by sending ethernet

frames over GRE tunnels (EGRE). 3.3 Bridging

EGRE tunnels allow each virtual network to use overlap- Terminating tunnels in the root context rather than in the
ping IP address space, since hosts can multiplex packet ost container creates the ne_ed to transport ethernetsﬁrar_ne
based on an ethernet frame’s destination MAC address. ThisPetween the tunnelinterface (in the root context) and the vi
also allows Trellis to forward non-IP packets, which allows tua! interface (on a virtual host). We explore two options fo
virtual networks to use alternate addressing schemesyin tu Pridging EGRE tunnels to virtual interfaces: (1) the stan-
providing support for existing routing protocols that da no dard L_muxbrldge module [1_]; and (2)sh_ortbr|dge acus-
run over IP €.g, IS-IS sometimes runs directly using layer tom, high-performance device that we implemented specif-

2 addresses). Forwarding non-IP packets would require run-ically for bridging a single virtual interface directly tesi
ning custom algorithms in user space, as in PL-VINI [4], or correspor]dlng tun_nel interface. Each option O_ff.e_fs _dqffer
complex modifications to the kernel. ent benefits: the bridge module offers additioffetibility in

defining the network topology, while the shortbridges offer
Speedvirtual links must be fast. First, the overhead of trans- betterspeed(i.e., higher packet-forwarding rates). We use
porting a packet across a virtual link must be minimal when the standard Linux bridge for point-to-multipoint links)ch
compared to that of transporting a packet across a “native” shortbridgego maximize performance for interfaces that are
network link. Therefore, encapsulation and multiplexing connected to point-to-point links.

NetNS tainer that the shortbridge can connect directly to theelnn
container interface without requiring a corresponding interfacehia t
root context. Thezt un interface is instantiated as a sin-
gle interface inside a host container and connects diréztly
the shortbridge. Figure 2 shows a configuration using the
shortbridge device; a single shortbridge device connews o
virtual interface i.e., zt un device) to one tunnel interface
(i.e., egr e device).

Shortbridge achieves a performance speedup by avoid-
ing a bridge table lookup: traffic can simply be forwarded

NetNS
container

NetNS
container

Ethernet Tunnel

gigure 2: Higz speed forwa;]ding “3"‘9 Sh?“b”déleS: '(Ij'hehshubridge from the singleegr e device to the singlet un device, and
evice is used to connect thetun device located inside the container . .

with the EGRE tunnel interface. Shortbridge avoids any lookups as vice vgrsa. Thetun d.eVICe al\,Nay,S connects tP a tunn_el
performed by the bridge and hence improves forwarding speed endpoint; thus, shortbridge maintains a pre-defined device

naming scheme which allows eazhun/et un pair to have

Decision 4 For point-to-multipoint virtual links, connect @ Static mapping, avoiding potentially slow lookups. Addi-

tunnel interfaces with virtual interfaces using a bridge. tionally, shortbridge avoids an extra header copy opematio
by reusing the packet data structure for the two devices that

. . . are connected to the shortbridge.
Flexibility Some networks require bus-like, transparent

multipoint topologies,.where a set of interfaces can have 4. Performance Evaluation

the appearance of being on the same local area network or) i) o
broadcast medium. In these cases, Trellis connects an EGRE Ultimately, we aim to evaluate whether Trellis satisfies
tunnel to its corresponding virtual interface using€t)un, our design goals ofpeedand isolation In this paper,

a pair of devices that transports packets from a host con-We focus on speed, and specifically on Trellis’s packet-
tainer to the root context; and (2) the Linux bridge module, forwarding performance compared to other environments,
which emulates the behavior of a standard Layer 2 bridge including Xen, OpenVZ, and forwarding in user space. Our
in software and connects interfaces together inside thie roo €xperiments show that Trellis can provide packet-forwagdi
context. Oneet un device is located inside a user container Performance that is abo/3 of kernel-level packet for-
(et un0) and the otheret unl is located in the root con- ward_mg rates, which is _ngarly a tenfold improvement over
text; this configuration is necessary because the bridge lie Previous systems for building virtual networks [4].

outside of the container, yet it must have an abstrat:tior_n ofa 4.1 Experimental Setup

interface to connect to for the corresponding device inside
the container. The Linux bridge module connects the end

) ; ; _ Test NodesWe evaluated the performance of Trellis and
of the virtual interface that resides in the root contextie t

. | endpoi other approaches using the Emulab [18] facility. The Em-
appropriate tunnel endpoint. ulab nodes are connected through a switched network with

Unfortunately, as our experiments in Section 4 show, using gyapje 1 Ghps rates and negligible delays. The Emulab nodes
the bridge module slows packet forwarding due to additional were Dell Poweredge 2850 servers with 3.0 GHz 64-bit In-

operations: copying the frame header, learning the MAC ad- (| 'xoon processor with 1MB L2 cache, 800 MHz FSB,
dresses, and performing the MAC address table lookup |tseh‘ZGB 400MHz DDR2 RAM and two Gigabit ethernet inter-

(i.e, to determine which outgoing interface corresponds 10 yeq We used a customized 2.6.20 Linux kernel patched
the destination ethernet address). When network links areith Linux VServer and NetNS support and our custom ker-

point-to-point, this lookup is unnecessary and can be short || haiches t id t for EGRE and shortbrid
circuited; this insight is the basis for the “shortbridggtie nel patches to provide supporttor and shorindge.

mization described below. Traffic Generation Tools such asperf or netperfare not
sufficient for our needs, because these tools generatetsacke
Decision 5 For point-to-point virtual links, connect tunnel ~ from user space which can hardly exceed more than 80,000
interfaces with virtual interfaces using a “shortbridge”. packets per second (pps). Instead, we generated traffig usin
pktgen14], a kernel module that generates packets at a very
high rate. We gradually varied load from high to low and

SpeedForwarding packets between the virtual network in- noted the peak throughput.

terface and the tunnel interface must be fast, which im-
plies that the bridge should determine as quickly as passibl 4.2 Forwarding Performance
which outgoing interface should carry the traffic. A poten- We evaluate the forwarding performance for various virtu-

tial bottleneck for transporting traffic is thus the lookup a i : .

. . ; L alization technologies. We performed packet-forwardig e
ﬂlﬁ b”d%? e, n;applng :he_destlnft;mon MAC address of the periments for all of the environments shown in Figure 3 (in-
ethernet frame to an outgoing pory). cluding Xen, OpenVZ, and NetNS in the case of Figure 3(d)

For point-to-point links, we have implemented an opti- : - :
mized version of the bridge module callsdortbridge We %r:ﬂqg%';nep z;?ﬁeeﬁggvce)fLtrneusxektgrgs baseline forwarding per

have also implemented a new devie¢,un which, unlike
theet un device, is asinglevirtual interface inside the con-

(Node-Under-Test)

Xen DomU/
OpenVZ Context/
NetNS Context

Sink

(a) Bridged Physical Interfaces

Node-Under-Test

Source

(Node-Under-Test)

etun1 etun3
(etun }—{(etun3)

Source

(b) Bridged Tunnels

(c) Direct Tunnel Termination (d) Shortbridged Tunnels

Figure 3: Experiment Setup. Each setup has a source, a sink dra
node-under-test. The traffic from the source arrives on the pysical
interfaces in setup (a), while in setups (b), (c) and (d) theairce traffic

goes through the tunnel interfaces.

2
£ 900 . — ; : . . ’
o 800 b Other ("000 PPS) /= 787 |
§ 700 | Trellis 000 PPS) |
g 600 + 596 578 i
% 500 |
€ 400 | 1
=300 245 312 |
._g 200 i
] 100 r 70 77 i
£ 0 1 [
= +, % Y Y Y, G

v Ty, T, My P, e

Figure 4: Peak forwarding performance (in pps) with 64-bytepackets.

4.2.1 Comparison of virtualization approaches

User-Space Click To evaluate the baseline performance

2e+06 - T
Theoretical 1Gbps—+—
1.8e+06 Raw Kernel 1
Shortbridged -
. l6e+06; Bridged -]
O 1.4e+06f Click 1
S 12e+06)]
L
2 1e+06 1
;‘3 800000 ¢ 1
a |]
600000)
400000 1
200000 ﬁ.,,_ﬂ_f__l
0 : :
100 1000

Packet Size (Bytes)

Figure 5: Peak forwarding rate (in pps) for different packet sizes.

mance because it used a large set of Click elements with
complex interactions between them.

Full Virtualization: Xen We measured the forwarding per-
formance of Xen 3.0.2. We bridged the virtual interfaces
in DomU (the user domain) to the physical interfaces in the
privileged domain, DomO, using the Linux bridge module
as shown in Figure 3(c). Unfortunately, Xen was unstable
under packet rates of more than 70,000 packets per second,
which is consistent with other studies [12, #3Recent ac-
tivity in the Xen community suggests that newer versions
might have a more stable network stack [12].

Container-Based Virtualization: OpenVZ and Trellis

We evaluated OpenVZ to compare Trellis’s performance
with another container-based virtualization system. Mzen
does not provide EGRE or shortbridge features; thus, we
connected the nodes directly, without tunnels and used-a reg
ular bridge module to connect the physical interfaces to the
virtual interfaces. Figure 3(c) shows our configuration for
the OpenVZ setup and for a Trellis setup with no EGRE tun-
nels and a regular bridge moduiee(, NetNS+VServer); this
setup is analogous to our setup for the forwarding experi-
ment with Xen.

Figure 4 shows that the performance of OpenVZ is com-
parable to that of Trellis when plain ethernet interfaces
and bridging are used; with this configuration, both sys-
tems achieve peak packet-forwarding rates of approximatel
300,000 pps. This result is not surprising, because both
OpenVZ and Trellis have similar implementations for the
network stack containers. This result suggests that Trel-
lis could be implemented with OpenVZ, as opposed to
VServers+NetNS, and achieve similar forwarding rates.

of forwarding packets in user space, we forwarded traf- 4.2.2 Optimizing container-based virtualization

fic through a Click user-space process, as in the original
PL-VINI environment [4], as shown in the Figure 3(b).

We used a simple, lightweight Clickocket () element

to forward UDP packets.
packet-forwarding rate for 64-byte packets was approxi-

We evaluate the effects of various design decisions within
the context of container-based virtualization: In additio

Figure 4 shows that the peak 2 After about 15 seconds of such load, the DomU virtual interfastopped

responding. Increasing the traffic load further, to morent6@0,000 pps,
caused the hypervisor to crash. We repeated the experimignthe same

mately 80,000 pps. PL-VINI sustained even worse perfor- setup and similar hardware on our own nodes and found sitvedaavior.

the five environments above, we evaluated various optimiza-5. Conclusion
tions and implementation alternatives within the contéxt 0 Thjs paper has presented Trellis, a platform that allows

Trellis. Specifically, we examined the effects of (1) where gach virtual network to define its own topology, routing pro-
the tunnel terminates and (2) using bridge vs. shortbrisge 0 5¢ols; and forwarding tables, thus lowering the barrier fo

both packet-forwarding performance and isolation. enterprises and service providers to define custom networks

Overhead of terminating tunnels outside of containeDi- that are tailored to specific applications or users. Tréths
rectly terminating EGRE tunnelssidethe container con- tegrates h_ost and network stack virtualization with tuimgel
text provides the infrastructure administrator litle goh ~ téchnologies and our own components, EGRE tunnels and
over the network resources that the container uses it shortbridge, to create a coherent framework for buildirsg, fa

is more challenging to schedule or rate-limit traffic on the flexible virtual networks.

virtual links). This approach also prevents the experirment

from directly changing parameters of the EGRE tunnel (e.g., REFERENCES

the tunnel endpoints). However, terminating the tunnel in- [1] Linux BRIDGE-STP-HOWTOht t p: / / waw. f ags. or g/

side the container could offers better performance by savin docs/ Li nux- HOMQ' BRI DGE- STP- HOMTO. ht i .

a bridge table lookup. To quantify the overhead of termi- 2 ';'83:ch][‘t(?r'”egsn_eqe/“gg;kmgfnlzeszamt p:/ /1 xe.

nating tunnels outside of containers, we perform a packet 3] Quagga som?va're routent t p: ,,'M'quagga. net / , 2006.

forwarding experiment with the configuration shown in Fig- (4] A. Bavier, N. Feamster, M. Huang, L. Peterson, and J. 8ekfin

ure 3(e). VINI Veritas: Realistic and controlled network experimatitn. In
Figure 4 shows that directly terminating the tunnels within 5 gﬂécr-] P;GMMSIAGAi_OM:\/lP\i;a’,V:t?]I?E AUQU\S/t \2/0|06- A

the container (Figure 3(e)) achieves a packet-forwardin - Bhatia, M. Motiwala, Vv. Muhlbauer, V. Valancius, A.waer,

rate of 580,00(0 %ps (7(30)/3) of native forr)warding perfor-g N. Feamster, L. Peterson, and J. Rexford. Hosting Virtuahieks

g] on Commodity Hardware. Technical Report GT-CS-07-10,
mance). This performance gap directly reflects the overhead Department of Computer Science, Georgia Tech, 2008.

of network-stack containers and EGRE tunneling. [6] D. Farinacci, T.Li, S. Hanks, D. Meyer, and P. Trai@eneric
))] Routing Encapsulation (GREnternet Engineering Task Force,
Bridge vs. Shortbridge To evaluate the performance im- March 2000. RFC 2784.

provement of the shortbridge configuration over the stathdar [7] A. Greenhalgh, M. Handley, L. Mathy, N. Egi, M. Hoerdt,can
Linux bridge module, we evaluate packet-forwarding perfor g'l gg‘gMﬁ'L”SESS?g“@Z :ESSh%ﬁS"ézrtig"W:' ;ﬂ‘g‘;’jﬁ?"
man(?e with two _setups. First, Flgure 3(d) shows t_he setup [8] M. Handley, O. Hudson, and E. Kohle}. XdRP: An open platidor
of brldged eXperlment for Trellis. A similar Setup is used network research. IRroc. SIGCOMM Workshop on Hot Topics in
for evaluating forwarding performance in Xen and OpenVZ Networking pages 53-57, October 2002.

where a bridge is used. In Xen and OpenVZ, the bridge [9] M. Hibler, R. Ricci, L. Stoller, J. Duerig, S. Guruprasad Stack,
joins the virtual environment with the physical interfaces E'evt\xl%?g ’Tae';‘:b‘]e' d"?gs)i“'ULSE"E%';CB%';X:]”‘SXZ?L';Z 'gotggjﬁb
the node, but in Trellis the bridge connects the virtual envi] E. Keller and E. Green. Virtualizing the Data Plane thgh Source
ronment to EGRE tunnels. Second, we replaced the Linux Code Merging. IPACM SIGCOMM PRESTO Workshdpeattle,
bridge module with our custom high-performance forward- WA, aug 2008.

ing moduleshortbridgeto connect virtual devices with their [11] Linux Advanced Routing and Traffic Contrdit t p:/ /1 art c.
corresponding physical devices, as shown in Figure 3(f). We . 79/

. . . . [12] A. Menon, A. L. Cox, and W. Zwaenepoel. Optimizing netwo
perform this experiment to determine the performance im- virtualization in Xen. InProc. USENIX Annual Technical

provement over the regular bridging setup. Conferencgpages 1528, 2006.
The shortbridge configuration achieves a forwarding rate [13] P. Padala, X. Zhu, Z. Wang, S. Singhal, and K. Shin. Rerémce
of 525.000 pps (about 67% of native forwarding perfor- evaluation of virtualization technologies for server aaigation.

. . . Technical Report HPL-2007-59, HP Labs, April 2007.
mance). The performance gain over the bridge configura [14] pktgen: Linux packet generator tobit t p: / /| i nux- net .

tion results from avoiding both copying the ethernet frame osdl . or g/ i ndex. php/ Pkt gen.
an extra time, as well as performing bridge table lookup for [15] s. Soltesz, H. Pstzl, M. E. Fiuczynski, A. Bavier, andReterson.
each ethernet frame. The bridged setup can forward packets Container-based operating system virtualization: A dala

high-performance alternative to hypervisorsPimc. EuroSyspages
at around 250,000 pps. 27@15_287’ 007 yp yspag
4.2.3 Effects of packet size on forwarding rate [16] J. Turner et al. Supercharging PlanetLab: A high penéance,
multi-application, overlay network platform. Froc. ACM
Figure 5 shows how the packet-forwarding rate varies with SIGCOMM pages 85-96, Kyoto, Japan, August 2007.
packet size, for the bridge and shortbridge configurations, [17] VTun - Virtual Tunnels.
with respect to the theoretical capacity of the link and the http://vtun. sourceforge. net.
raw kernel forwarding performance. 'For larger packets, [& WIte 3, Lepreat, - Sler R fea s cunpses,
the rate is limited by the 1 Gbps link. Trellis’s packet- experimental environment for distributed systems and ogksv In
forwarding performance with shortbridge approaches the Proc. Symposium on Operating Systems Design and Impletioenta
performance of native forwarding for 256-byte packets; for pages 255-270, December 2002.

512-byte and larger packets, both the bridge and shortbridg
configurations saturate the outgoing 1 Ghps link.

http://www.faqs.org/docs/Linux-HOWTO/BRIDGE-STP-HOWTO.html
http://www.faqs.org/docs/Linux-HOWTO/BRIDGE-STP-HOWTO.html
http://lxc.sourceforge.net/network.php
http://lxc.sourceforge.net/network.php
http://www.quagga.net/
http://lartc.org/
http://lartc.org/
http://linux-net.osdl.org/index.php/Pktgen
http://linux-net.osdl.org/index.php/Pktgen
http://vtun.sourceforge.net

	1 Introduction
	2 Trellis Requirements and Design
	3 Trellis Implementation
	3.1 Host Virtualization
	3.2 Link Virtualization
	3.3 Bridging

	4 Performance Evaluation
	4.1 Experimental Setup
	4.2 Forwarding Performance
	4.2.1 Comparison of virtualization approaches
	4.2.2 Optimizing container-based virtualization
	4.2.3 Effects of packet size on forwarding rate

	5 Conclusion

