
Trellis: A Platform for Building Flexible, Fast Virtual
Networks on Commodity Hardware

Sapan Bhatia∗, Murtaza Motiwala†, Wolfgang Mühlbauer‡, Yogesh Mundada†,
Vytautas Valancius†, Andy Bavier∗, Nick Feamster†, Larry Peterson∗, and Jennifer Rexford∗

∗ Princeton University † Georgia Tech ‡ T-Labs/TU Berlin

ABSTRACT
We describe Trellis, a platform for hosting virtual networks
on shared commodity hardware. Trellis allows each vir-
tual network to define its own topology, control protocols,
and forwarding tables, while amortizing costs by sharing the
physical infrastructure. Trellis synthesizes two container-
based virtualization technologies, VServer and NetNS, as
well as a new tunneling mechanism, EGRE, into a coher-
ent platform that enables high-speed virtual networks. We
describe the design and implementation of Trellis and evalu-
ate its packet-forwarding rates relative to other virtualization
technologies and native kernel forwarding performance.

1. Introduction
Network researchers need a platform for testing new net-

work architectures, protocols, and services. Although ex-
isting infrastructures like PL-VINI [4] can run multiple net-
working experiments in parallel, forwarding packets in user
space significantly limits scalability. In addition to a real-
istic, controlled experimental setting, network researchers
need a testbed that provides the following properties:

• Speed.The platform should forward packets at high
rates. For example, if the platform forwards packets in
software, the packet forwarding rates should approach
that of “native” kernel packet forwarding rates.

• Flexibility. The platform should allow experimenters
to modify routing protocols, congestion control param-
eters, forwarding tables and algorithms, and, if possi-
ble, the format of the packets themselves.

• Isolation. The platform should allow multiple ex-
periments to run simultaneously over a single physi-
cal infrastructure without interfering with each other’s
namespaces or resource allocations.

This paper presents the design, implementation, and evalu-
ation ofTrellis, a platform that aims to find a “sweet spot”
for achieving these three design goals, given that it is dif-
ficult to achieve all three simultaneously.1 The main ques-
tion we address in our evaluation is the extent to which we
can provide experimenters both flexibility and speed, with-
out compromising forwarding performance. Many existing
“building blocks” can provide functionality for implement-
ing the two key components of a virtual network (i.e., virtual
nodes and virtual links). Our main challenge issynthesizing
existing mechanisms for implementing virtual nodes and vir-
tual links in a manner that achieves the design goals above.
1More details are in the corresponding technical report [5].

Trellis is similar to the enhanced Emulab testbed features
for virtualizing nodes; we are collaborating with the Emu-
lab developers to integrate Trellis with the Emulab testbed.
Emulab has focused mostly on resource allocation [9]; in
contrast, we focus on the mechanisms for implementing the
virtual network components.

To implementvirtual nodes, two options are virtual ma-
chines (e.g., Xen) and “container-based” operating systems
(e.g., VServer, OpenVZ). Container-based operating sys-
tems provide isolation of filesystem and the network stack
without having to run an additional (potentially heavy-
weight) instance of a virtual machine for each experi-
ment. Trellis’s container-based OS approach provides ex-
perimentersflexibility by allowing them to customize some
aspects of the IP network stack (e.g., congestion control)
by giving each virtual network its own network namespace.
In the current implementation, processing “custom” non-IP
packets requires sending packets to user space, as in PL-
VINI. In this paper, we evaluate thespeedof this approach;
in future work, we plan to study isolation, as others have
recently done for full virtualization technologies [7].

Tunneling is a natural mechanism for implementingvir-
tual links; unfortunately, existing tunneling mechanisms do
not provide the appearance of a direct layer-two link, which
some experiments might need. To solve this problem, we
implement anEthernet GRE(EGRE) tunneling mechanism
that gives a virtual interface the appearance of a direct Eth-
ernet link to other virtual nodes in the topology, even if that
virtual link is built on top of an IP path.

Finally, Trellis must connect virtual nodes to virtual links;
existing mechanisms, such as the bridge in the Linux ker-
nel, allows virtual interfaces within each virtual node to be
connected to the appropriate tunnels. To improve forward-
ing performance, we propose an optimization calledshort-
bridge, which improves forwarding performance over the
standard Linux bridge by avoiding unnecessary look-ups on
MAC addresses and copying of frame headers.

The rest of the paper is organized as follows. Sections 2
and 3 describe the Trellis design and implementation, re-
spectively. Section 4 compares Trellis’s forwarding perfor-
mance relative to other approaches (e.g., virtual machines),
as well as to in-kernel packet forwarding performance. Sec-
tion 5 concludes and describes our ongoing work.

2. Trellis Requirements and Design
A virtual network comprises two components:virtual

hosts, which run software and forward packets; andvirtual

Figure 1: Overview of Trellis design.

links, which transport packets between virtual hosts. We de-
scribe the requirements for Trellis, as well as its high-level
design. We then describe mechanisms for creating virtual
hosts and links.

We identify four high-level design requirements for Trel-
lis. First, it mustconnect virtual hosts with virtual linksto
construct a virtual network. Second, it must run oncommod-
ity hardware(i.e., server-class PCs) in order to keep deploy-
ment, expansion, and upgrade costs low. Third, it must run
a general-purpose operating systeminside the virtual hosts
that can support existing routing software (e.g., XORP [8]
and Quagga [3]) as well as provide a convenient and famil-
iar platform for developing new services. Finally, Trellis
should supportpacket forwarding inside the kernelof the
general-purpose OS to reduce system overhead and support
higher packet-forwarding rates. An application running in
user space inside a virtual host can interact with devices rep-
resenting the end-points of virtual links, and can write for-
warding table entries (FTEs) to an in-kernel forwarding ta-
ble (forwarding information base, or FIB) to control how the
kernel forwards packets between the virtual links.

Figure 1 illustrates a virtual network hosted on Trellis.
The function of the virtual network is spread across three
layers: user space inside the virtual host; in the kernel inside
the virtual host; and outside the virtual host in a substrate
layer that is shared by all virtual networks residing on a sin-
gle host. The elements inside a virtual host can be accessed
and controlled by an application running on that virtual host.
Elements in the substrate cannot be directly manipulated, but
are configured by the Trellis management software on behalf
of an individual virtual network. Multiple virtual hosts can
run on the same physical hardware (not shown in the figure).
Physical network interfaces are also not shown because they
are hidden behind the tunnel abstraction. We note several
salient features of this design:

• Per-virtual host virtual interfaces and tunnels.Each
virtual host is a node in a larger virtual network topol-
ogy; thus, Trellis must be able to define interfaces and
associated tunnels specific to that virtual network.

• In-kernel, per-virtual-host forwarding tables.Each
virtual host must be able to define how traffic is for-
warded by writing its own forwarding-table entries. A
virtual host’s forwarding table must be independent of
other forwarding tables, and processes running on one
virtual host must not be able to affect or control for-
warding table entries on a different virtual host.

• Separating virtual interfaces from tunnel interfaces.
Separating the virtual interface from the tunnel end-
point enables the creation of point-to-multipoint links
(i.e., the emulation of a broadcast medium). In addi-
tion, this separation allows the substrate to enforce a
rate limit on each virtual link, to ensure resource isola-
tion between the virtual networks.

The challenge in building Trellis was to identify and com-
bine individual virtual host and virtual link technologiesthat
satisfied our design requirements, or implement new com-
ponents in cases where existing ones did not meet the de-
sign requirements. The next section describes these design
choices in the context of the Trellis implementation.

3. Trellis Implementation
Trellis synthesizes host and link virtualization technolo-

gies into a single, coherent system. In this section, we ex-
plain the implementation decisions we made when building
Trellis to achieve our goals of speed, flexibility, and, where
applicable, isolation.

3.1 Host Virtualization

Flexibility Virtual hostsmust allow experimenters to imple-
ment both custom control-plane and data-plane functions,
without compromising speed (i.e., forwarding performance).
Most types of host virtualization support control-plane cus-
tomization; a thornier issue is custom data plane operations,
such as forwarding non-IP packets, which requires modifi-
cations to the network stack in the operating system. In full
virtualization, this customization requires modifications to
the guest OS. Container-based virtualization does not pro-
vide this flexibility because all virtual hosts share the same
data structures in the kernel, but providing in-kernel data-
plane customizability might ultimately be possible by par-
titioning kernel memory and data structures analogously to
how similar systems have done this in hardware [10,16].

In addition to providing fast forwarding and flexibility,
Trellis shouldscale: it should support a large number of net-
works running simultaneously. Previous work, as well as
our experiments in Section 4, show that container-based vir-
tualization scales better than other alternatives: specifically,
given a fixed amount of physical resources, it can support
more concurrent virtual hosts than full virtualization. This
better scalability makes sense because in container-based
virtualization only a subset of the operating system resources
and functions are virtualized.

2

Criteria Full Virtualization COS
Speed Packet forwarding No Yes

Disk-bound operations No Yes
CPU-bound operations Yes Yes

Isolation Rate limiting Yes Yes
Jitter/loss/latency control Unknown Yes
Link scheduling No No

Flexibility Custom data plane Guest OS change No
Custom control plane Yes Yes

Table 1: Container-based virtualization vs. full virtuali zation. Previous
studies on container-based virtualization and full virtualization explain
these results in more detail [13, 15].

Decision 1 Create virtual hosts using Container-based Vir-
tualization (not full virtualization).

We combined two container-based approaches, Linux
VServer [15] and NetNS [2], to serve as the virtual hosting
environment of Trellis. Since the PlanetLab OS is also based
on VServer, this allows us to leverage PlanetLab’s man-
agement software to run a Trellis-based platform. NetNS
virtualizes the entire Linux network stack, rather than sim-
ply providing each container with its own forwarding table.
This enables Trellis to support experiments that want to con-
figure, for example, TCP congestion-control parameters or
IP packet manipulations; in addition, NetNS has recently
been added to mainline Linux, making the use of NetNS es-
pecially appealing. Another possible choice for container-
based host virtualization would have been OpenVZ, which
has essentially the same functionality as our combination
of VServer and NetNS; we evaluate both our approach and
OpenVZ in Section 4.

3.2 Link Virtualization
Virtual links must be flexible: they must allow multiple

virtual hosts on the same network to use overlapping ad-
dress space, and they must provide support for transporting
non-IP packets. We tackled these problems by implement-
ing a new tunneling module for Linux, ethernet-over-GRE
(EGRE). Trellis uses GRE [6] for tunneling because it has
a small, fixed encapsulation overhead and also uses a four-
byte key to demultiplex packets to the right tunnel interface.

Decision 2 Implement virtual links by sending ethernet
frames over GRE tunnels (EGRE).

EGRE tunnels allow each virtual network to use overlap-
ping IP address space, since hosts can multiplex packets
based on an ethernet frame’s destination MAC address. This
also allows Trellis to forward non-IP packets, which allows
virtual networks to use alternate addressing schemes, in turn
providing support for existing routing protocols that do not
run over IP (e.g., IS-IS sometimes runs directly using layer
2 addresses). Forwarding non-IP packets would require run-
ning custom algorithms in user space, as in PL-VINI [4], or
complex modifications to the kernel.

SpeedVirtual links must be fast. First, the overhead of trans-
porting a packet across a virtual link must be minimal when
compared to that of transporting a packet across a “native”
network link. Therefore, encapsulation and multiplexing

operations must be efficient. Trellis’s EGRE-based tunnel-
ing approach is much faster than approaches that perform a
lookup on the source, destination address pair. Other user-
space tunneling technologies likevtun [17] impose con-
siderable performance penalty compared to tunnels imple-
mented as kernel modules.

Isolation Trellis’s virtual links must be isolated from links
in other virtual networks (i.e., traffic on one virtual network
cannot interfere with that on another), and they must be flex-
ible (i.e., users must be able to specify many policies). To
satisfy these goals, Trellis terminates virtual links in the root
context, rather than in the virtual host contexts.

Decision 3 Terminate tunnels in the “root context”, outside
of virtual host containers.

Terminating the tunnel in the root context, rather than in-
side the container, allows the infrastructure administrator to
impose authoritative bandwidth restrictions on users. Ap-
plications running on a virtual host have full control over
the environment in a container, including access to network
bandwidth. To enforce isolation, Trellis must enforce capac-
ity and scheduling policiesoutside the container. Trellis ter-
minates tunnels in the root context; an intermediate queueing
device between the tunnel interface and a virtual host’s vir-
tual interface resides in the root context and shapes traffic
usingtc, the Linux traffic control module [11]. The vir-
tual device inside the virtual host’s context is bridged with
the tunnel endpoint. This arrangement allows them to ap-
ply traffic shaping policies and packet-filtering rules, and,
ultimately to implement packet scheduling algorithms that
provide service guarantees for each virtual interface. Users
though can still apply their own traffic shaping policies on
the virtual network interfaces inside their respective contain-
ers for their traffic.

Terminating the tunnel endpoints outside the network con-
tainer also provides flexibility for configuring topologies.
Specifically, this choice allows users to create point-to-
multipoint topologies, as discussed in more detail in Sec-
tion 3.3. It also allows containers to be connected directly
when they are on the same host, instead of being forced to
use EGRE tunnels.

3.3 Bridging
Terminating tunnels in the root context rather than in the

host container creates the need to transport ethernet frames
between the tunnel interface (in the root context) and the vir-
tual interface (on a virtual host). We explore two options for
bridging EGRE tunnels to virtual interfaces: (1) the stan-
dard Linuxbridge module [1]; and (2)shortbridge, a cus-
tom, high-performance device that we implemented specif-
ically for bridging a single virtual interface directly to its
corresponding tunnel interface. Each option offers differ-
ent benefits: the bridge module offers additionalflexibility in
defining the network topology, while the shortbridges offers
betterspeed(i.e., higher packet-forwarding rates). We use
the standard Linux bridge for point-to-multipoint links; and
shortbridgesto maximize performance for interfaces that are
connected to point-to-point links.

3

Figure 2: High speed forwarding using shortbridges: The shortbridge
device is used to connect theztun device located inside the container
with the EGRE tunnel interface. Shortbridge avoids any lookups as
performed by the bridge and hence improves forwarding speed.

Decision 4 For point-to-multipoint virtual links, connect
tunnel interfaces with virtual interfaces using a bridge.

Flexibility Some networks require bus-like, transparent
multipoint topologies, where a set of interfaces can have
the appearance of being on the same local area network or
broadcast medium. In these cases, Trellis connects an EGRE
tunnel to its corresponding virtual interface using (1)etun,
a pair of devices that transports packets from a host con-
tainer to the root context; and (2) the Linux bridge module,
which emulates the behavior of a standard Layer 2 bridge
in software and connects interfaces together inside the root
context. Oneetun device is located inside a user container
(etun0) and the other,etun1 is located in the root con-
text; this configuration is necessary because the bridge lies
outside of the container, yet it must have an abstraction of an
interface to connect to for the corresponding device inside
the container. The Linux bridge module connects the end
of the virtual interface that resides in the root context to the
appropriate tunnel endpoint.

Unfortunately, as our experiments in Section 4 show, using
the bridge module slows packet forwarding due to additional
operations: copying the frame header, learning the MAC ad-
dresses, and performing the MAC address table lookup itself
(i.e., to determine which outgoing interface corresponds to
the destination ethernet address). When network links are
point-to-point, this lookup is unnecessary and can be short-
circuited; this insight is the basis for the “shortbridge” opti-
mization described below.

Decision 5 For point-to-point virtual links, connect tunnel
interfaces with virtual interfaces using a “shortbridge”.

SpeedForwarding packets between the virtual network in-
terface and the tunnel interface must be fast, which im-
plies that the bridge should determine as quickly as possible
which outgoing interface should carry the traffic. A poten-
tial bottleneck for transporting traffic is thus the lookup at
the bridge (i.e., mapping the destination MAC address of the
ethernet frame to an outgoing port).

For point-to-point links, we have implemented an opti-
mized version of the bridge module calledshortbridge. We
have also implemented a new device,ztun which, unlike
theetun device, is asinglevirtual interface inside the con-

tainer that the shortbridge can connect directly to the tunnel
interface without requiring a corresponding interface in the
root context. Theztun interface is instantiated as a sin-
gle interface inside a host container and connects directlyto
the shortbridge. Figure 2 shows a configuration using the
shortbridge device; a single shortbridge device connects one
virtual interface (i.e., ztun device) to one tunnel interface
(i.e., egre device).

Shortbridge achieves a performance speedup by avoid-
ing a bridge table lookup: traffic can simply be forwarded
from the singleegre device to the singleztun device, and
vice versa. Theztun device always connects to a tunnel
endpoint; thus, shortbridge maintains a pre-defined device-
naming scheme which allows eachztun/etun pair to have
a static mapping, avoiding potentially slow lookups. Addi-
tionally, shortbridge avoids an extra header copy operation
by reusing the packet data structure for the two devices that
are connected to the shortbridge.

4. Performance Evaluation
Ultimately, we aim to evaluate whether Trellis satisfies

our design goals ofspeedand isolation. In this paper,
we focus on speed, and specifically on Trellis’s packet-
forwarding performance compared to other environments,
including Xen, OpenVZ, and forwarding in user space. Our
experiments show that Trellis can provide packet-forwarding
performance that is about2/3 of kernel-level packet for-
warding rates, which is nearly a tenfold improvement over
previous systems for building virtual networks [4].

4.1 Experimental Setup

Test NodesWe evaluated the performance of Trellis and
other approaches using the Emulab [18] facility. The Em-
ulab nodes are connected through a switched network with
stable 1 Gbps rates and negligible delays. The Emulab nodes
were Dell Poweredge 2850 servers with 3.0 GHz 64-bit In-
tel Xeon processor with 1MB L2 cache, 800 MHz FSB,
2GB 400MHz DDR2 RAM and two Gigabit ethernet inter-
faces. We used a customized 2.6.20 Linux kernel patched
with Linux VServer and NetNS support and our custom ker-
nel patches to provide support for EGRE and shortbridge.

Traffic Generation Tools such asiperf or netperfare not
sufficient for our needs, because these tools generate packets
from user space which can hardly exceed more than 80,000
packets per second (pps). Instead, we generated traffic using
pktgen[14], a kernel module that generates packets at a very
high rate. We gradually varied load from high to low and
noted the peak throughput.

4.2 Forwarding Performance
We evaluate the forwarding performance for various virtu-

alization technologies. We performed packet-forwarding ex-
periments for all of the environments shown in Figure 3 (in-
cluding Xen, OpenVZ, and NetNS in the case of Figure 3(d)
and compared each of these to the baseline forwarding per-
formance of the native Linux kernel.

4

Node-Under-Test

eth0 eth1

veth0 veth1

Xen DomU/

OpenVZ Context/

NetNS Context

eth0 eth1

Bridge Bridge

Source Sink

Node-Under-Test

egre0 egre1

etun0 etun2

NetNS Context

etun1 etun3

Bridge Bridge

Source Sink

(a) Bridged Physical Interfaces (b) Bridged Tunnels

Node-Under-Test

NetNS Context

egre0 egre1

Source Sink

Node-Under-Test

egre0 egre1

NetNS Context

ztun0 ztun1

Source Sink

(c) Direct Tunnel Termination (d) Shortbridged Tunnels

Figure 3: Experiment Setup. Each setup has a source, a sink and a
node-under-test. The traffic from the source arrives on the physical
interfaces in setup (a), while in setups (b), (c) and (d) the source traffic
goes through the tunnel interfaces.

Figure 4: Peak forwarding performance (in pps) with 64-bytepackets.

4.2.1 Comparison of virtualization approaches

User-Space Click To evaluate the baseline performance
of forwarding packets in user space, we forwarded traf-
fic through a Click user-space process, as in the original
PL-VINI environment [4], as shown in the Figure 3(b).
We used a simple, lightweight ClickSocket() element
to forward UDP packets. Figure 4 shows that the peak
packet-forwarding rate for 64-byte packets was approxi-
mately 80,000 pps. PL-VINI sustained even worse perfor-

 0

 200000

 400000

 600000

 800000

 1e+06

 1.2e+06

 1.4e+06

 1.6e+06

 1.8e+06

 2e+06

 100 1000

P
ea

k
R

at
e

(P
P

S
)

Packet Size (Bytes)

Theoretical 1Gbps
Raw Kernel

Shortbridged
Bridged

Click

Figure 5: Peak forwarding rate (in pps) for different packet sizes.

mance because it used a large set of Click elements with
complex interactions between them.

Full Virtualization: Xen We measured the forwarding per-
formance of Xen 3.0.2. We bridged the virtual interfaces
in DomU (the user domain) to the physical interfaces in the
privileged domain, Dom0, using the Linux bridge module
as shown in Figure 3(c). Unfortunately, Xen was unstable
under packet rates of more than 70,000 packets per second,
which is consistent with other studies [12, 13].2 Recent ac-
tivity in the Xen community suggests that newer versions
might have a more stable network stack [12].

Container-Based Virtualization: OpenVZ and Trellis
We evaluated OpenVZ to compare Trellis’s performance
with another container-based virtualization system. OpenVZ
does not provide EGRE or shortbridge features; thus, we
connected the nodes directly, without tunnels and used a reg-
ular bridge module to connect the physical interfaces to the
virtual interfaces. Figure 3(c) shows our configuration for
the OpenVZ setup and for a Trellis setup with no EGRE tun-
nels and a regular bridge module (i.e., NetNS+VServer); this
setup is analogous to our setup for the forwarding experi-
ment with Xen.

Figure 4 shows that the performance of OpenVZ is com-
parable to that of Trellis when plain ethernet interfaces
and bridging are used; with this configuration, both sys-
tems achieve peak packet-forwarding rates of approximately
300,000 pps. This result is not surprising, because both
OpenVZ and Trellis have similar implementations for the
network stack containers. This result suggests that Trel-
lis could be implemented with OpenVZ, as opposed to
VServers+NetNS, and achieve similar forwarding rates.

4.2.2 Optimizing container-based virtualization
We evaluate the effects of various design decisions within

the context of container-based virtualization: In addition to

2After about 15 seconds of such load, the DomU virtual interfaces stopped
responding. Increasing the traffic load further, to more than 500,000 pps,
caused the hypervisor to crash. We repeated the experiment with the same
setup and similar hardware on our own nodes and found similarbehavior.

5

the five environments above, we evaluated various optimiza-
tions and implementation alternatives within the context of
Trellis. Specifically, we examined the effects of (1) where
the tunnel terminates and (2) using bridge vs. shortbridge on
both packet-forwarding performance and isolation.

Overhead of terminating tunnels outside of containerDi-
rectly terminating EGRE tunnelsinside the container con-
text provides the infrastructure administrator little control
over the network resources that the container uses (i.e., it
is more challenging to schedule or rate-limit traffic on the
virtual links). This approach also prevents the experimenter
from directly changing parameters of the EGRE tunnel (e.g.,
the tunnel endpoints). However, terminating the tunnel in-
side the container could offers better performance by saving
a bridge table lookup. To quantify the overhead of termi-
nating tunnels outside of containers, we perform a packet
forwarding experiment with the configuration shown in Fig-
ure 3(e).

Figure 4 shows that directly terminating the tunnels within
the container (Figure 3(e)) achieves a packet-forwarding
rate of 580,000 pps (73% of native forwarding perfor-
mance). This performance gap directly reflects the overhead
of network-stack containers and EGRE tunneling.

Bridge vs. Shortbridge To evaluate the performance im-
provement of the shortbridge configuration over the standard
Linux bridge module, we evaluate packet-forwarding perfor-
mance with two setups. First, Figure 3(d) shows the setup
of bridged experiment for Trellis. A similar setup is used
for evaluating forwarding performance in Xen and OpenVZ
where a bridge is used. In Xen and OpenVZ, the bridge
joins the virtual environment with the physical interfaceson
the node, but in Trellis the bridge connects the virtual envi-
ronment to EGRE tunnels. Second, we replaced the Linux
bridge module with our custom high-performance forward-
ing moduleshortbridgeto connect virtual devices with their
corresponding physical devices, as shown in Figure 3(f). We
perform this experiment to determine the performance im-
provement over the regular bridging setup.

The shortbridge configuration achieves a forwarding rate
of 525,000 pps (about 67% of native forwarding perfor-
mance). The performance gain over the bridge configura-
tion results from avoiding both copying the ethernet frame
an extra time, as well as performing bridge table lookup for
each ethernet frame. The bridged setup can forward packets
at around 250,000 pps.

4.2.3 Effects of packet size on forwarding rate
Figure 5 shows how the packet-forwarding rate varies with

packet size, for the bridge and shortbridge configurations,
with respect to the theoretical capacity of the link and the
raw kernel forwarding performance. For larger packets,
the rate is limited by the 1 Gbps link. Trellis’s packet-
forwarding performance with shortbridge approaches the
performance of native forwarding for 256-byte packets; for
512-byte and larger packets, both the bridge and shortbridge
configurations saturate the outgoing 1 Gbps link.

5. Conclusion
This paper has presented Trellis, a platform that allows

each virtual network to define its own topology, routing pro-
tocols, and forwarding tables, thus lowering the barrier for
enterprises and service providers to define custom networks
that are tailored to specific applications or users. Trellisin-
tegrates host and network stack virtualization with tunneling
technologies and our own components, EGRE tunnels and
shortbridge, to create a coherent framework for building fast,
flexible virtual networks.

REFERENCES
[1] Linux BRIDGE-STP-HOWTO.http://www.faqs.org/

docs/Linux-HOWTO/BRIDGE-STP-HOWTO.html.
[2] Linux containers—network namespace.http://lxc.

sourceforge.net/network.php.
[3] Quagga software router.http://www.quagga.net/, 2006.
[4] A. Bavier, N. Feamster, M. Huang, L. Peterson, and J. Rexford. In

VINI Veritas: Realistic and controlled network experimentation. In
Proc. ACM SIGCOMM, Pisa, Italy, August 2006.

[5] S. Bhatia, M. Motiwala, W. Muhlbauer, V. Valancius, A. Bavier,
N. Feamster, L. Peterson, and J. Rexford. Hosting Virtual Networks
on Commodity Hardware. Technical Report GT–CS–07–10,
Department of Computer Science, Georgia Tech, 2008.

[6] D. Farinacci, T. Li, S. Hanks, D. Meyer, and P. Traina.Generic
Routing Encapsulation (GRE). Internet Engineering Task Force,
March 2000. RFC 2784.

[7] A. Greenhalgh, M. Handley, L. Mathy, N. Egi, M. Hoerdt, and
F. Huici. Fairness issues in software virtual routers. InACM
SIGCOMM PRESTO Workshop, Seattle, WA, aug 2008.

[8] M. Handley, O. Hudson, and E. Kohler. XORP: An open platform for
network research. InProc. SIGCOMM Workshop on Hot Topics in
Networking, pages 53–57, October 2002.

[9] M. Hibler, R. Ricci, L. Stoller, J. Duerig, S. Guruprasad, T. Stack,
K. Webb, and J. Lepreau. Large-scale Virtualization in the Emulab
Network Testbed. InProc. USENIX, Boston, MA, June 2008.

[10] E. Keller and E. Green. Virtualizing the Data Plane through Source
Code Merging. InACM SIGCOMM PRESTO Workshop, Seattle,
WA, aug 2008.

[11] Linux Advanced Routing and Traffic Control.http://lartc.
org/.

[12] A. Menon, A. L. Cox, and W. Zwaenepoel. Optimizing network
virtualization in Xen. InProc. USENIX Annual Technical
Conference, pages 15–28, 2006.

[13] P. Padala, X. Zhu, Z. Wang, S. Singhal, and K. Shin. Performance
evaluation of virtualization technologies for server consolidation.
Technical Report HPL-2007-59, HP Labs, April 2007.

[14] pktgen: Linux packet generator tool.http://linux-net.
osdl.org/index.php/Pktgen.

[15] S. Soltesz, H. Pötzl, M. E. Fiuczynski, A. Bavier, and L. Peterson.
Container-based operating system virtualization: A scalable,
high-performance alternative to hypervisors. InProc. EuroSys, pages
275–287, 2007.

[16] J. Turner et al. Supercharging PlanetLab: A high performance,
multi-application, overlay network platform. InProc. ACM
SIGCOMM, pages 85–96, Kyoto, Japan, August 2007.

[17] VTun - Virtual Tunnels.
http://vtun.sourceforge.net.

[18] B. White, J. Lepreau, L. Stoller, R. Ricci, S. Guruprasad,
M. Newbold, M. Hibler, C. Barb, and A. Joglekar. An integrated
experimental environment for distributed systems and networks. In
Proc. Symposium on Operating Systems Design and Implementation,
pages 255–270, December 2002.

6

http://www.faqs.org/docs/Linux-HOWTO/BRIDGE-STP-HOWTO.html
http://www.faqs.org/docs/Linux-HOWTO/BRIDGE-STP-HOWTO.html
http://lxc.sourceforge.net/network.php
http://lxc.sourceforge.net/network.php
http://www.quagga.net/
http://lartc.org/
http://lartc.org/
http://linux-net.osdl.org/index.php/Pktgen
http://linux-net.osdl.org/index.php/Pktgen
http://vtun.sourceforge.net

	1 Introduction
	2 Trellis Requirements and Design
	3 Trellis Implementation
	3.1 Host Virtualization
	3.2 Link Virtualization
	3.3 Bridging

	4 Performance Evaluation
	4.1 Experimental Setup
	4.2 Forwarding Performance
	4.2.1 Comparison of virtualization approaches
	4.2.2 Optimizing container-based virtualization
	4.2.3 Effects of packet size on forwarding rate

	5 Conclusion

