
REDACT: Refraction Networking from the Data Center
Arjun Devraj

Princeton University
adevraj@alumni.princeton.edu

Liang Wang
Princeton University
lw19@princeton.edu

Jennifer Rexford
Princeton University
jrex@cs.princeton.edu

ABSTRACT
Refraction networking is a promising censorship circumvention
technique in which a participating router along the path to an
innocuous destination deflects traffic to a covert site that is other-
wise blocked by the censor. However, refraction networking faces
major practical challenges due to performance issues and various
attacks (e.g., routing-around-the-decoy and fingerprinting). Given
that many sites are now hosted in the cloud, data centers offer an
advantageous setting to implement refraction networking due to
the physical proximity and similarity of hosted sites. We propose
REDACT, a novel class of refraction networking solutions where
the decoy router is a border router of a multi-tenant data center
and the decoy and covert sites are tenants within the same data
center. We highlight one specific example REDACT protocol, which
leverages TLS session resumption to address the performance and
implementation challenges in prior refraction networking proto-
cols. REDACT also offers scope for other designs with different
realistic use cases and assumptions.

CCS CONCEPTS
• Networks → Network privacy and anonymity; • Security
and privacy → Privacy-preserving protocols; • Social and
professional topics → Censorship;

KEYWORDS
Refraction networking, Decoy routing, Censorship circumvention

1 INTRODUCTION
With the growth of the Internet, online censorship has become a
serious impediment to the freedom of speech and access to informa-
tion [23]. Censors employ firewalls and other censorship tools to
prevent users from accessing restricted websites [23]. Fortunately,
researchers have developed many technologies, such as proxy
servers, the Tor network [5], and virtual private networks (VPNs),
that make use of “relay servers,” which covertly redirect traffic, in or-
der to help individuals evade Internet censorship [14, 18]. Nonethe-
less, powerful adversaries increasingly block censorship circumven-
tion services by detecting relay servers with active probing attacks
or traffic analysis, and subsequently blocking them [7, 26].

In order to prevent censors from simply blocking relay servers,
researchers developed a more sophisticated approach to censorship
circumvention: refraction networking, also known as decoy routing.
In refraction networking, the functionality of the relay server is
implemented by a router, referred to as the decoy router. The decoy
router redirects seemingly innocuous traffic, which appears to be
destined to a decoy site (a site that is permitted by the censor), to
a covert site (the blocked site that the client would like to access)
instead [14]. Optimal placement of the decoy router forces the
censor to face significant collateral damage from filtering the router

to prevent use of the refraction networking service because filtering
a well-placed router would not only hinder access to the covert site,
but also disrupt traffic destined to any permissible sites reached via
the decoy router [14].
Existing refraction networking protocols. Researchers have
developed several generations of refraction networking protocols.
First-generation systems, such as Decoy Routing [14], Telex [28],
and Cirripede [13], established fundamental principles for refrac-
tion networking and often opted for steganographic tagging schemes
for clients to register for the service. Later generations addressed
various problems with earlier systems. TapDance [27] eliminates
the need for inline blocking, a problem that hindered deployment by
ISPs. Rebound [6] and Slitheen [2] offer greater protection against
connection probing attacks and some fingerprinting attacks by
maintaining the client’s connection with the decoy site but require
a complex decoy router. Multiflow [15] and SiegeBreaker [22] are
more recent systems that solve existing challenges (focused on
supporting multiple connections and authenticating clients in Mul-
tiflow and overcoming implementation and deployment concerns
in SiegeBreaker) but rely on fundamentally different frameworks,
whether that involves asynchronous content downloads in Multi-
flow or the SDN architecture in SiegeBreaker.

Unfortunately, all of these systems are vulnerable to routing-
around-the-decoy attacks [21]: as long as the censor is able to direct
traffic along an alternative path that does not include the decoy
router, evading censorship becomes an impossible exercise for the
client. While Waterfall [17] uses a mechanism called downstream-
only decoy routing to mitigate routing around the decoy router, it
faces similar real-world deployment challenges as Rebound and
Slitheen. Conjure [10] uses phantom IPv6 addresses in the partici-
pating ISP’s unused address space to avoid any dependence on real
decoy sites and hence mitigates routing-around-the-decoy attacks
since the ISP-controlled decoy router would intercept all traffic
destined to any such decoy “sites” (phantom IP addresses). How-
ever, the implementation of Conjure [10] with mask sites involves
a complex decoy router and requires the client to use tunneling
to protect their privacy, as the decoy router must maintain TLS
session state and routinely decrypt and re-encrypt packets between
separate TLS sessions. Furthermore, sophisticated fingerprinting
attacks may be able to detect the use of a refraction networking
service due to clear differences (in operating systems, locations,
delays, etc.) between the decoy site and covert site and increased
latency resulting from high computational overhead imposed on
the decoy router (i.e., complex cryptographic operations).
New design choices and opportunities.With the proliferation
of cloud computing, data centers offer a novel paradigm for thinking
about refraction networking. Critically, multi-tenant data centers
host many different sites in a single physical location. As a result,
all traffic directed to and from any tenant in the data center must

ACM SIGCOMM Computer Communication Review Volume 51 Issue 4, October 2021



traverse a border router of the data center. By selecting a decoy
site and covert site in the same data center and using that data
center’s border router(s) as the decoy router(s), we can eliminate
the routing-around-the-decoy attack. Moreover, as tenants in the
same data center, the decoy site and covert site likely run on similar
hardware and could even run on similar operating systems by using
a common VM image extended by the cloud provider [16], so some
fingerprinting attacks may become less effective. Additionally, the
physical proximity of the decoy site and covert site ensures simi-
lar packet round-trip times (RTTs) to the client, further reducing
the risk of detection from latency-based analysis attacks. As the
trends of colocating multiple sites in the same data center [12]
and decoupling IP addresses from physical servers [8] continue to
grow, we strongly believe that a refraction networking system that
utilizes the many advantages conferred by the multi-tenant data
center context will be more robust to the most critical attacks that
compromise existing protocols.

Previously-proposed refraction networking protocols usually as-
sume that the decoy sites are third-party sites that do not participate
in the protocol. Conjure [10] relaxes this assumption and assumes
that decoy sites could be set up by the refraction network provider.
Moreover, we posit that the decoy site does not necessarily need to
be controlled by the refraction network provider—it can be set up
by the covert site or volunteers. Such scenarios are realistic: Signal
has asked users to set up proxy servers for it because its traffic
has been blocked by Iran [1]. In fact, even using a website that is
willing to offer limited help as the decoy site, as demonstrated in
Section 3, can greatly simplify the design and improve the perfor-
mance of a refraction networking system, by offloading expensive
computations from the decoy router to the decoy site.
Our solution: REDACT. Inspired by these observations, we pro-
pose REDACT (Refraction Networking from the Data Center), an
efficient and secure refraction networking system that leverages
a cooperative data center and decoy site. Compared to existing
refraction networking systems, REDACT is able to

(1) Allow an end-to-end native TLS connection between the
client and covert site without using any tunneling.

(2) Offload expensive computations to the control plane and
other participants, so the decoy router data plane can be as
simple as a NAT (thereby improving privacy for the client,
as the decoy router cannot decrypt client communications).

(3) Maximize the system similarity andminimize the geographic
distance between the decoy site and covert site to reduce the
risk of latency analysis and fingerprinting attacks.

We will present the details of an example protocol in Section 3.
One key enabler of our example REDACT protocol is TLS ses-

sion resumption. In our example protocol, a client uses TLS session
resumption in order to “migrate” the TLS session endpoint from
the decoy site to the covert site. Traditional refraction networking
protocols usually only maintain one TCP connection and one TLS
session between the client and decoy router, so the TLS session
would appear uninterrupted and normal to the censor when the
client switches from overt to covert communication. Under this
constraint, refraction networking protocols commonly use the de-
coy router as a TLS MITM proxy, and the client must use another
encrypted protocol inside the TLS session to carry the real data (i.e.,

Figure 1: The client, located in a censored network, aims to
communicate with the covert site, which is blocked by the
censor and is located in a multi-tenant data center.

tunneling) to prevent the decoy router from intercepting its covert
communications. However, the one-connection (session) design
is not the only way to make the client’s behavior appear normal.
In TLS session resumption, a session resumption request in close
temporal proximity to the original TLS handshake would appear
ordinary to the censor, as session resumption could be used for
repeated connections to high-traffic sites, which are often hosted in
large data centers. It also offers several additional advantages, e.g.,
improving performance by reducing the handshake overhead and
enhancing privacy by preventing the need for an accurate server
name indication (SNI) and any server certificate for authentica-
tion. Leveraging client-side TLS session resumption, we not only
simplify the refraction networking protocol, but also reduce the
performance overheads in various parts of the protocol. Particularly,
the client no longer needs to use any tunneling techniques during
communication with the covert site, unlike domain fronting [9]
and other refraction networking protocols. Although TLS session
resumption has been used in prior censorship circumvention tech-
niques [15, 20], the sharing of session credentials between two
hosts in the same data center to bootstrap the TLS state and enable
direct, in-connection covert communication is novel.

In this paper, we first discuss the motivating censorship threat
model, including the properties of and assumptions about each of
the participants, and the REDACT design space aiming to solve this
challenge. Next, we delineate the design of an example REDACT
protocol, from registering for the service to communicating sur-
reptitiously with the covert site. We also mention a basic proof-of-
concept prototype of REDACT in Mininet [11]. Finally, we conduct
a security analysis of REDACT and discuss the limitations of the
system and areas for future work.

2 PROBLEM STATEMENT
In this section, we first describe the censorship threat model and
participants (and their capabilities) in the REDACT class of pro-
tocols, and then summarize the key characteristics and areas of
variation in the REDACT design space.

2.1 Censorship Threat Model
In our threat model, a client in a censored network would like
to communicate with a server, the covert site, hosted in a multi-
tenant data center operated by the cloud provider. However, the

ACM SIGCOMM Computer Communication Review Volume 51 Issue 4, October 2021



censor actively monitors all traffic in its network and blocks any
attempts to access the covert site via either passive (e.g., traffic
analysis) or active (e.g., probing and replay) attacks. Our protocol
makes use of the decoy site, also hosted within the same data
center but permitted by the censor, to help obfuscate the client’s
communication with the covert site.

Our assumptions about the censor are similar to those in Con-
jure [10]. The censor cannot observe any traffic outside of the
censored network, particularly traffic exchanged within the data
center. The censor may control hosts located behind the same NAT
as the client or be able to spoof the client’s IP address. The censor
can falsely imitate a legitimate client and hence register for and
ultimately use REDACT. We assume that the censor can block and
permanently blacklist specific IP addresses with unlimited capacity,
but that blocking certain IP addresses may induce some collateral
damage. Most importantly, we assume that the censor would face
substantial collateral damage by blocking IP prefixes for entire
multi-tenant data centers and hence is unlikely to do so.

The covert site, decoy site, and cloud provider all participate in
REDACT and are honest (i.e., they will correctly follow the proto-
col); no parties will collude with the censor. Nonetheless, the cloud
provider is honest-but-curious and may attempt to snoop on client
communications. The cloud provider deploys the decoy router at
the border of the data center to facilitate REDACT. The decoy site
can be an independent tenant in the data center, a server controlled
by the same entity as the covert site, or even a site deployed by the
cloud provider. While we implicitly focus on a decoy site that is
controlled by the covert site in the example REDACT protocol out-
lined in this paper, it would not be unreasonable to consider decoy
sites that temporarily volunteer to participate, a scenario similar to
uProxy [25], or a privacy extension to HTTPS that enables decoy
site participation without impacting performance or significantly
modifying the server. We also assume that there are many possible
decoy sites to choose from in the data center.

2.2 Design Space
REDACT is a broad design space that allows for the development
of a wide range of specific protocols and systems. These protocols
vary along two main axes: (1) the degree to which the decoy site
participates in the protocol, and (2) the trade-off between overall
protocol simplicity and the level of client involvement.

Many of these choices can also be reduced to a question of
incentives, a problem that REDACT addresses directly. The design
of Conjure [10] and the success of Tor [5] inspire us to consider
protocol designs that also involve a decoy site that cooperates
with the client to circumvent censorship. Additionally, although
there are legitimate concerns about whether major cloud providers
would be willing to implement decoy routers given their historical
opposition to domain fronting [19], the REDACT design space also
involves scenarios in which, for example, a data-center tenant might
establish multiple servers and use its load-balancer as the decoy
router, without explicit support from the cloud provider.

Some protocols may favor an involved decoy router that could
man-in-the-middle connections, bootstrap the covert site, and be
privy to cryptographic parameters for the client’s connections with

the decoy and covert sites. Other protocols may favor an endpoint-
heavy design, with a decoy site that would need to be an active and
willing participant in REDACT and “migrate” its secure session with
the client to the covert site. Similarly, some protocols may allow
for an unmodified client but require a system that is more complex
overall—say, by altering the TLS stack—while other protocols may
require a modified client but enable greater simplicity by working
with existing modular components of TLS.

In this paper, we select a particular system within the design
space that focuses on extensive decoy site participation and opts for
overall protocol simplicity, by leaving TLS untouched, but thereby
requires the client to be modified. It is important to keep in mind
that the proposed system is just one of many possibilities within
the REDACT design space.

3 EXAMPLE REDACT SYSTEM
REDACT enables the client to secretly and efficiently communicate
with the covert site by obfuscating any traffic between the client
and covert site as being between the client and decoy site. This
protocol introduces a new component, the storage server, which
is located within the data center and stores the session credentials
from the client’s TLS session with the decoy site. The unique de-
tails of this example REDACT system—based on the the underlying
assumptions of the data center setting—are (1) the use of the decoy
site (a willing participant) for registration, (2) the typically ran-
domized TCP initial sequence number (ISN) for identification of a
legitimate client, and (3) TLS session resumption (enabled by the
shared session state in the storage server) to bootstrap the client’s
communication with the covert site. The steps of this protocol are

(1) The client establishes a secure connection with the decoy
site using TLS.

(2) The client registers for REDACT using the decoy site.
(3) The decoy site deposits the session credentials in the storage

server, which the covert site reads from to update its local
TLS session cache.

(4) The decoy router updates its routing table after receiving a
notification from the decoy site.

(5) The client establishes a secure connection with the covert
site using TLS session resumption.

A proof-of-concept prototype of this example system (with relaxed
registration assumptions and decoy router capabilities) was imple-
mented in Mininet [11] and confirmed that the client can success-
fully communicate with the covert site by resuming the original
session with the decoy site (with a local transfer of session creden-
tials from the decoy site to the covert site).

3.1 Initiating a TLS Session with Decoy Site
The client first performs a normal three-way TCP handshake with
the decoy site in order to establish the underlying TCP connection,
and then completes a normal TLS handshake with the decoy site
in order to establish the encrypted TLS session. The decoy site is
permitted by the censor, so the IP address and any other information
that may reveal the identity of the decoy site, such as DNS traffic
or the SNI in the ClientHello of the TLS handshake, do not have
to be obfuscated at all. During this phase of the protocol, the decoy
router simply forwards packets back and forth.

ACM SIGCOMM Computer Communication Review Volume 51 Issue 4, October 2021



3.2 Registering for REDACT with Decoy Site
Now that the secure TLS session has been established with the
decoy site, the client signals its intent to register for REDACT by
sending a HTTPS GET request with registration information: the
domain name of the covert site and a set of TCP ISNs, separated by
commas, that it plans to use for later connections with the covert
site. (These ISNs will be used to authenticate the client as a valid
REDACT registration.) Upon receiving such a request, the decoy
site responds by sending a HTTPS response with a 200 “OK” status
code and some random data in the response body. This response is
necessary to reduce the risk of traffic-analysis attacks that might
identify client communications that do not receive any response
from the server, or that receive a minimal response, as suspicious.

After receiving this HTTPS response from the decoy site, the
client can ignore the random data, confirm that it has registered
for REDACT with those specific ISNs, and then terminate its TCP
connection with the decoy site. Since registration occurs within the
established TLS session between the client and decoy site, all of the
communication during registration is encrypted; the censor cannot
determine that the client even signaled its intent to use REDACT,
let alone discover the domain name of the covert site or the ISNs
used for later connections.

3.3 Transferring the TLS Session Credentials
Immediately after receiving the HTTPS registration request from
the client, the decoy site needs to transfer the TLS session data to
the covert site. One solution is to use a storage server set up by the
covert site. The decoy site stores the TLS session data in a session-
id-indexed table hosted in the storage server in <session_id,
master_secret> format. The storage server is only accessible from
within the data center in order to protect the confidentiality of ses-
sion information. Once the session information has been deposited
by the decoy site, the storage server informs the covert site, which
then reads the table entry and stores it in its own local TLS session
cache. At this point, the covert site would be prepared to serve
any session resumption requests initiated by the client in the near
future. Note that this step occurs concurrently with the sending of
the registration response and the subsequent connection termina-
tion (Section 3.2) and the updating of the routing table (Section 3.4)
in order to ensure read/write synchronization without significant
performance overheads.

3.4 Updating the Decoy Router’s Routing Table
After responding to the client’s registration request with a HTTPS
response, the decoy site notifies the decoy router of the registered
client’s IP address and the client registration information (the do-
main name of the covert site that the client would like to access
and the set of ISNs the client will use for subsequent connections
with the covert site). The decoy router updates its routing table to
store the mapping between the client’s IP address, the set of ISNs,
the decoy site’s IP address and port, and the covert site’s IP address.
Later, the client will pick one ISN to initiate a covert site connection
that appears to be destined to the same decoy site IP address/port.

For subsequent TCP SYN packets sent by the client and destined
to the decoy site, the decoy router will use the ISN to determine
whether to forward the packet to the decoy site or the covert site.

Figure 2: An example of the ISN verification and flow redi-
rection process when the client is located behind a NAT. The
arrows denote the SYN packet of a new TCP connection.

If the ISN of a SYN packet matches an ISN dictated during registra-
tion (as well as the client’s source IP address and the decoy site’s
destination IP address/port), the decoy router will forward this SYN
packet and subsequent packets associated with the TCP connection
to the covert site (and return traffic will be adjusted accordingly as
well); otherwise, the decoy router will forward all packets associ-
ated with the TCP connection to the decoy site as usual. Once the
decoy router has verified the client based on the ISN, it will install
a new packet forwarding rule for the client-to-covert-site TCP con-
nection and simply NAT traffic back and forth between the client
and covert site (hence avoiding the need to decrypt any secure com-
munication). A similar ISN-based client authentication approach
has been used in Waterfall [17]. In the case that the REDACT client
is behind a NAT, the use of the ISN reduces the risk of affecting
non-REDACT traffic from other users behind the same NAT who
may simply want to communicate with the decoy site normally,
since the client’s IP address will not be specific enough for accurate
identification and the client’s port number is ultimately controlled
by the NAT box and could differ across connections. This process
is shown in Figure 2. We assume the client’s IP address will not be
changed by the NAT for a certain time period.

3.5 Resuming the TLS Session with Covert Site
The client initiates its connection with the covert site using TLS
session resumption after the first TCP connection (between the
client and decoy site) has been terminated. The client begins by
establishing a TCP connection with packets destined to the decoy
site’s IP address; however, as mentioned earlier, the SYN packet
must use the ISN specified during registration so that the decoy
router knows to establish the TCP connection (by appropriately
forwarding handshake packets) with the covert site instead.

Next, the client uses TLS session resumption, with the session_id
and master_secret from the registration session, to establish a
TLS session over the TCP connection. The decoy router will forward
all packets in this TCP connection to the covert site. The covert site
extracts the session_id from the ClientHello and locates the cor-
responding master secret in its local TLS session cache. The covert
site proceeds as in normal TLS session resumption but instead by
using the master_secret found in its session cache (as originally
obtained from the storage server) for generating session keys in
the TLS session. After the handshake, the client and covert site

ACM SIGCOMM Computer Communication Review Volume 51 Issue 4, October 2021



(a) Typical Refraction Networking Systems

(b) REDACT

Figure 3: While existing systems only require one TCP con-
nection from the client to the decoy router, REDACT re-
quires two end-to-end TCP connections, one from the client
to the decoy site and another from the client to the covert
site. However, existing systems usually require the use of
tunneling to prevent the decoy router from intercepting
covert communications, while REDACT only requires one
end-to-end TLS session, with a simplified decoy router that
cannot decrypt client communications.

communicate seamlessly, with the decoy router simply translating
IP addresses in both directions of traffic so that the censor believes
that the client is communicating with the decoy site.

In TLS session resumption, the client and server are able to
avoid a full handshake overhead by storing the previously used
master_secret and re-deriving session keys by exchanging solely
the ClientHello and ServerHello (and the ChangeCipherSpec
and Finishedmessages). In fact, TLS session resumption halves the
TLS handshake performance overhead from two RTTs to one RTT.
In addition to performance benefits, there are significant privacy
and security reasons for using session resumption in our protocol:
because session resumption does not involve the sending of the
server certificate back to the client, it reduces the risk of covert
site detection based on identifiable information in the certificate.
This also means the SNI, which reveals the identity of the server, is
not an important component of the ClientHello for resumption
and can be harmlessly spoofed by the client to prevent detection
of the covert site. While session resumption makes use of the old
master_secret generated during the original handshake, new ses-
sion keys are still computed based on more recently exchanged
random values in order to maintain forward secrecy [4].

3.6 Discussion

Decoy router implementation. In our example protocol, the de-
coy router does not need to perform complicated cryptographic
operations. It is relatively easy to implement the decoy router using
a programmable switch [3], with the control plane for receiving
data from the decoy site and updating forwarding tables, and the
data plane for forwarding packets and translating IP addresses.
Honest-but-curious decoy site and decoy router. Our protocol
is applicable even for an honest-but-curious decoy site in the data
center setting: the decoy site cannot access the client-to-covert-site
traffic unless it compromises the data center networking infras-
tructure. An honest-but-curious decoy router cannot decrypt the
end-to-end encrypted client traffic without the session keys.
Volunteer decoy site. Our protocol only requires minimal mod-
ifications to the decoy site, so any sites that are interested in ex-
panding Internet freedom can participate in REDACT with little
effort. One may imagine adding a privacy extension to the HTTP
protocol that triggers session data transfer for special requests.
Recovery from failure. The state of the REDACT system can only
be compromised at the critical juncture point when the connection
“migration” is triggered because this is the only time when the
decoy router has to change its packet forwarding rules (otherwise,
it simply NATs packets). Hence, recovery from failure is much
simpler in REDACT than in many prior systems, as we only need
to store a backup of the system before this juncture point in order
to recover from failure and avoid a complete restart.
Session cache and routing table maintenance. The routing ta-
ble and session cache must be pruned periodically in order to avoid
memory overflow. While we lack the empirical data on traffic pat-
terns to impose a strict pruning rule, the general trade-offs in decid-
ing this rule are clear: frequent pruning reduces security threats by
disposing of session credentials and redirection information quickly
but also hinders the client experience, as individual connections
with the covert site may be more short-lived.

4 SECURITY ANALYSIS
4.1 Active Attacks

Routing attacks.Apowerful censor can route client traffic through
network paths that do not contain decoy routers to bypass refrac-
tion networks (i.e., routing-around-the-decoy attacks). In REDACT,
such attacks are no longer possible because the decoy site is located
within the same data center network as the decoy router, which also
serves as the border router of the network. Asymmetric routing
similarly does not affect REDACT because all traffic sent to/from
the decoy site must pass through the border router. REDACT also
reduces the complexity of refraction networking, as researchers
do not need to evaluate the optimal placement of decoy routers to
achieve robust anti-censorship guarantees.
Decoy site detection. The censor can follow the REDACT protocol
as a normal client to interact with “suspicious” sites to infer if they
are participating in REDACT, and block the discovered decoy sites.
In fact, all refraction networking and proxy systems are vulnerable
to such attacks in which the censor successfully registers for the

ACM SIGCOMM Computer Communication Review Volume 51 Issue 4, October 2021



service. However, this type of attack is generally considered to
be heavyweight and is not very cost-efficient. Assuming that the
censor is unwilling to block the entire data center network due
to high collateral damage, the blocked decoy sites can frequently
change their IP addresses within the same data center to bypass IP
blocking, or use domain fluxing to defeat DNS-based blocking.
Replay attacks.While some protocols may be vulnerable to replay
attacks from an incriminating response to a steganographic tag,
REDACT conducts registration over an end-to-end TLS session.
The censor cannot spoof the client after registration because it does
not know the ISNs the client will use for communication (under
the assumption that ISN selection is relatively random with a low
collision probability); any SYN packet spoofing the client 5-tuple
with the incorrect ISN will still be forwarded to the decoy site.

However, consider an attack in which the censor replays the
client’s second SYN packet (using the registered ISN and secretly
intended for the covert site) with a new ClientHello that lacks a
session_id. In this case, the SYN would be sent to the covert site,
allowing the censor to establish a TCP connection with the covert
site. Because the ClientHello does not contain a session_id, the
covert site would require a full TLS handshake to be completed,
resulting in it sending its Certificate back to the censor-spoofed
client. Thus, sending a blank ClientHello after replaying the regis-
tered client’s SYN will inform the censor that the client is accessing
the covert site. Thus, we added the requirement that in REDACT,
the decoy router must forward any replayed SYNs for a registered
client to the decoy site; this way, the blank ClientHello can never
be forwarded to the decoy site and used to incriminate the client.
Connection probing attacks. In many earlier refraction network-
ing protocols, censors could probe decoy sites by sending an in-
window TCP packet to determine their true connection state: an
error response would indicate that the client is no longer connected
to the decoy site and likely using a refraction networking service [6].
However, this attack is only successful if the decoy router does not
observe all traffic sent to the decoy site, allowing the probe to by-
pass the decoy router and reach the decoy site. In REDACT, the
decoy router, the data center’s border router, observes all traffic
to and from the decoy site. An in-window TCP probe would pass
through the decoy router and be considered a part of the registered
client’s flow, thereby diverted to the covert site; the probe would
elicit a response, as the client is connected to the covert site at this
point, so the censor would not be able to incriminate the client. (To
the censor, it would appear like the client is still connected to the
decoy site, due to the response received and the NATting of the
source and destination IP addresses by the decoy router.) Probes
sent during the registration phase of the protocol—when the client
is actually connected to the decoy site—would obviously be trivial.
Active probing attacks, however, can still compromise REDACT
without assumptions about the number of decoy sites, as mentioned
earlier (Decoy site detection).

4.2 Passive Attacks

Traffic analysis. In existing refraction networking systems, the
routing paths taken to the decoy and covert sites can differ substan-
tially, and decoy routers also impose significant per-packet delays

due to cryptographic operations. The censor therefore may detect
participating clients through latency analysis (e.g., checking the
distribution of packet RTTs against the expected distribution for
the decoy site). REDACT does not involve any additional per-packet
latency since the decoy router simply forwards packets according to
rules for the TCP flow. Most importantly, REDACT is resistant to la-
tency analysis because the decoy and covert sites are located in the
same data center. By geographic fact, it is likely that RTTs for client
communications with the decoy and covert sites are extremely simi-
lar and indistinguishable to the censor. REDACT currently does not
defend against more sophisticated traffic-analysis attacks (e.g., web-
site fingerprinting), but it is relatively easy to incorporate existing
client-side countermeasures (e.g., padding) into REDACT.

Performing TLS session resumption shortly after connection
establishment seems to be a suspicious behavior. However, the
findings in [24] indicate that most servers only allow a session
resumption lifetime of less than ten minutes, with the mode being
just five minutes, suggesting that initiating session resumption
in close temporal proximity to the original TLS handshake could
appear relatively “normal.” We leave inspecting the typical gap
between connection establishment and TLS session resumption as
future work.
System fingerprinting. The censor could obtain fingerprints of
the TCP/IP stacks of the decoy and covert sites, which could indi-
cate differences in operating systems and alert the censor of the
client’s use of REDACT. In REDACT, the decoy and covert sites can
choose to run on the same operating system, through a common
VM image extended by the cloud provider [16], thereby eliminating
differences in their TCP/IP stack fingerprints. Similarly, TLS hand-
shake fingerprinting, by analyzing the list of available ciphersuites
in the ClientHello, is not a problem in REDACT because it is the
same client—the REDACT user—who sends the ClientHello in
both TLS handshakes. It is unlikely that the censor would be able to
obtain a fingerprint from the ServerHello, which only indicates
the ciphersuite that was ultimately selected for the session.

5 CONCLUSION
Wepropose a novel design space for refraction networking, REDACT,
in which the decoy router is a border router of a multi-tenant data
center and the decoy and covert sites are tenants in this data center.
REDACT defends against latency analysis and routing attacks while
also reducing the complexity of and workload imposed on the de-
coy router under the more stringent assumption that the decoy site
willingly participates in the REDACT protocol, and that the decoy
and covert sites share similar properties from being colocated in
the same data center. Leveraging TLS session resumption, our ex-
ample REDACT protocol enables an end-to-end native TLS session
between the client and covert site, and reduces the performance
overhead. We believe that REDACT offers a unique approach to
censorship circumvention as a middle ground between the sim-
plicity of traditional proxy servers and the security of refraction
networking. Areas for future work include researching typical TLS
session resumption traffic patterns, designing pruning rules for
the routing table and storage server in our example protocol, and
extending REDACT to other transport-layer protocols such as UDP
and QUIC.

ACM SIGCOMM Computer Communication Review Volume 51 Issue 4, October 2021



ACKNOWLEDGMENTS
We thank the anonymous reviewers for their detailed feedback. We
also thank Jack Wampler and Eric Wustrow for early discussions
about Conjure.

REFERENCES
[1] Jeff Benson. 2021. Blocked by Iran, Signal App Moves to Decentralize Servers.

(February 2021). https://decrypt.co/56665/blocked-by-iran-signal-app-moves-
to-decentralize-servers Accessed on: May 28, 2021.

[2] Cecylia Bocovich and Ian Goldberg. 2016. Slitheen: Perfectly Imitated Decoy
Routing through Traffic Replacement. In ACM SIGSAC Conference on Computer
and Communications Security (CCS). 1702–1714.

[3] Pat Bosshart, Dan Daly, Glen Gibb, Martin Izzard, Nick McKeown, Jennifer
Rexford, Cole Schlesinger, Dan Talayco, Amin Vahdat, George Varghese, et al.
2014. P4: Programming protocol-independent packet processors. ACM SIGCOMM
Computer Communication Review 44, 3 (2014), 87–95.

[4] Tim Dierks and Eric Rescorla. 2008. The Transport Layer Security (TLS) Protocol
Version 1.2. RFC 5246. (August 2008). https://rfc-editor.org/rfc/rfc5246.txt

[5] Roger Dingledine, Nick Mathewson, and Paul Syverson. 2004. Tor: The Second-
Generation Onion Router. In USENIX Security Symposium.

[6] D. Ellard, C. Jones, V. Manfredi, W. T. Strayer, B. Thapa, M. Van Welie, and
A. Jackson. 2015. Rebound: Decoy Routing on Asymmetric Routes via Error
Messages. In Annual IEEE Conference on Local Computer Networks (LCN). 91–99.

[7] Roya Ensafi, David Fifield, Philipp Winter, Nick Feamster, Nicholas Weaver,
and Vern Paxson. 2015. Examining How the Great Firewall Discovers Hidden
Circumvention Servers. In Internet Measurement Conference. 445–458.

[8] Marwan Fayed, Lorenz Bauer, Vasileios Giotsas, Sami Kerola, Marek Majkowski,
Pavel Odintsov, Jakub Sitnicki, Taejoong Chung, Dave Levin, Alan Mislove,
Christopher A. Wood, and Nick Sullivan. 2021. The ties that un-bind: decoupling
IP from web services and sockets for robust addressing agility at CDN-scale. In
ACM SIGCOMM Conference. 433–446.

[9] David Fifield, Chang Lan, Rod Hynes, Percy Wegmann, and Vern Paxson. 2015.
Blocking-resistant communication through domain fronting. In Proceedings on
Privacy Enhancing Technologies. 46–64.

[10] Sergey Frolov, Jack Wampler, Sze Chuen Tan, J. Alex Halderman, Nikita Borisov,
and Eric Wustrow. 2019. Conjure: Summoning Proxies from Unused Address
Space. In ACM SIGSAC Conference on Computer and Communications Security
(CCS). 2215–2229.

[11] Nikhil Handigol, Brandon Heller, Vimal Jeyakumar, Bob Lantz, and Nick McKe-
own. 2012. Reproducible Network Experiments Using Container-Based Emula-
tion. In CoNEXT.

[12] Nguyen Phong Hoang, Arian Akhavan Niaki, Michalis Polychronakis, and
Phillipa Gill. 2020. The web is still small after more than a decade. ACM SIGCOMM
Computer Communication Review (CCR) 50, 2 (April 2020), 24–31.

[13] Amir Houmansadr, Giang Nguyen, Matthew Caesar, and Nikita Borisov. 2011.
Cirripede: Circumvention Infrastructure Using Router Redirection with Plausible

Deniability. In ACM Conference on Computer and Communications Security (CCS).
187–200.

[14] Josh Karlin, Daniel Ellard, Alden W. Jackson, Christine E. Jones, Greg Lauer,
David P. Mankins, and W. Timothy Strayer. 2011. Decoy Routing: Toward Un-
blockable Internet Communication. In USENIX Workshop on Free and Open Com-
munications on the Internet (FOCI).

[15] Victoria Manfredi and Pi Songkuntham. 2018. MultiFlow: Cross-Connection
Decoy Routing using TLS 1.3 Session Resumption. In USENIX Workshop on Free
and Open Communications on the Internet (FOCI).

[16] Hodan M. Musse and Lama A. Alamro. 2016. Cloud Computing: Architecture
and Operating System. In Global Summit on Computer Information Technology
(GSCIT). 3–8.

[17] Milad Nasr, Hadi Zolfaghari, and Amir Houmansadr. 2017. The Waterfall of
Liberty: Decoy Routing Circumvention That Resists Routing Attacks. In ACM
SIGSAC Conference on Computer and Communications Security (CCS). 2037–2052.

[18] Hal Roberts, Ethan Zuckerman, Jillian York, Robert Faris, and John Palfrey. 2010.
2010 Circumvention Tool Usage Report. Technical Report. The Berkman Center
for Internet & Society.

[19] James Sanders. 2018. As Google and AWS kill domain fronting, users must find a
new way to fight censorship. (May 2018). https://www.techrepublic.com/article
/as-google-and-aws-kill-domain-fronting-users-must-find-a-new-way-to-f
ight-censorship/ Accessed on: October 8, 2021.

[20] Sambhav Satija and Rahul Chatterjee. 2021. BlindTLS: Circumventing TLS-based
HTTPS censorship. In ACM SIGCOMM Workshop on Free and Open Communica-
tions on the Internet (FOCI). 43–49.

[21] Max Schuchard, John Geddes, Christopher Thompson, and Nicholas Hopper. 2012.
Routing Around Decoys. In ACM Conference on Computer and Communications
Security (CCS).

[22] Piyush Kumar Sharma, Devashish Gosain, Himanshu Sagar, Chaitanya Kumar,
Aneesh Dogra, Vinayak Naik, H B Acharya, and Sambuddho Chakravarty. 2020.
SiegeBreaker: An SDN Based Practical Decoy Routing System. In Proceedings on
Privacy Enhancing Technologies. 243–263.

[23] Ramesh Subramanian. 2011. The Growth of Global Internet Censorship and
Circumvention: A Survey. Communications of the International Information
Management Association (CIIMA) 11, 2 (October 2011), 33–42.

[24] Erik Sy, Christian Burkert, Hannes Federrath, andMathias Fischer. 2018. Tracking
Users across the Web via TLS Session Resumption. In Annual Computer Security
Applications Conference (ACSAC). 289–299.

[25] uProxy. 2017. uProxy: Your private access to the open internet. (2017). https:
//www.uproxy.org/

[26] Philipp Winter and Stefan Lindskog. 2012. How the Great Firewall of China
is Blocking Tor. In USENIX Workshop on Free and Open Communications on the
Internet (FOCI).

[27] Eric Wustrow, Colleen M. Swanson, and J. Alex Halderman. 2014. TapDance: End-
to-Middle Anticensorship without Flow Blocking. In USENIX Security Symposium.
159–174.

[28] Eric Wustrow, Scott Wolchok, Ian Goldberg, and J. Alex Halderman. 2011. Telex:
Anticensorship in the Network Infrastructure. In USENIX Security Symposium.

ACM SIGCOMM Computer Communication Review Volume 51 Issue 4, October 2021

https://decrypt.co/56665/blocked-by-iran-signal-app-moves-to-decentralize-servers
https://decrypt.co/56665/blocked-by-iran-signal-app-moves-to-decentralize-servers
https://rfc-editor.org/rfc/rfc5246.txt
https://www.techrepublic.com/article/as-google-and-aws-kill-domain-fronting-users-must-find-a-new-way-to-fight-censorship/
https://www.techrepublic.com/article/as-google-and-aws-kill-domain-fronting-users-must-find-a-new-way-to-fight-censorship/
https://www.techrepublic.com/article/as-google-and-aws-kill-domain-fronting-users-must-find-a-new-way-to-fight-censorship/
https://www.uproxy.org/
https://www.uproxy.org/

	Abstract
	1 Introduction
	2 Problem Statement
	2.1 Censorship Threat Model
	2.2 Design Space

	3 Example REDACT System
	3.1 Initiating a TLS Session with Decoy Site
	3.2 Registering for REDACT with Decoy Site
	3.3 Transferring the TLS Session Credentials
	3.4 Updating the Decoy Router's Routing Table
	3.5 Resuming the TLS Session with Covert Site
	3.6 Discussion

	4 Security Analysis
	4.1 Active Attacks
	4.2 Passive Attacks

	5 Conclusion
	Acknowledgments
	References

