
Revisiting Route Caching:
The World Should Be Flat

Changhoon Kim1, Matthew Caesar2, Alexandre Gerber3, and Jennifer Rexford1

1Princeton University,2UIUC, 3AT&T Labs–Research

Abstract. Internet routers’ forwarding tables (FIBs), which must be stored in
expensive fast memory for high-speed packet forwarding, are growing quickly
in size due to increased multihoming, finer-grained traffic engineering, and de-
ployment of IPv6 and VPNs. To address this problem, several Internet archi-
tectures have been proposed to reduce FIB size by returning to the earlier ap-
proach ofroute caching: storing only the working set of popular routes in the
FIB. This paper revisits route caching. We build upon previous work by study-
ing flat, uni-class (/24) prefix caching, with modern traffic traces from more than
60 routers in a tier-1 ISP. We first characterize routers’ working sets and then
evaluate route-caching performance under different cachereplacement strategies
and cache sizes. Surprisingly, despite the large number of deaggregated /24 sub-
nets, caching uni-class prefixes can effectively curb the increase of FIB sizes.
Moreover, uni-class prefixes substantially simplify a cache design by eliminating
longest-prefix matching, enabling FIB design with slower memory technologies.
Finally, by comparing our results with previous work, we show that the distri-
bution of traffic across prefixes is becoming increasingly skewed, making route
caching more appealing.

1 Introduction

Packet forwarding on core Internet routers is an extremely challenging process. Upon
receiving an IP packet, routers have just a few nanoseconds to buffer the packet, select
thelongest-matching prefixcovering the packet’s destination, and forward the packet to
the corresponding outbound interface. To allow this process to happen quickly, routers
often make use of special-purpose high-speed memory such asTCAM and SRAM.
Unfortunately, the need for multi-homing and fine-grained traffic engineering, the de-
sire to mitigate prefix hijacking by advertising more-specific routes, and the continuing
rapid growth of the Internet have rapidly increased the number of routes that an Internet
router has to maintain. The accelerating deployments of protocols with large address
spaces such as IPv6 and VPNs, combined with the rapidly increasing link speeds, stand
to worsen this problem even further.

Unfortunately, the special-purpose memory used for high-speed packet forwarding
is orders of magnitude more expensive, more power-hungry, bigger in physical size,
and generates substantially more heat than conventional DRAM. This is because man-
ufacturing fast memory requires more transistors per bit [1]. Due to these factors, it
will be increasingly challenging to manufacture a line cardwith large, fast memory at

a reasonable price and power-consumption budget. To save expenses, service providers
may therefore be forced to provision with little headroom for growth, making their net-
works unable to handle sudden spikes in table size. Providers will also be forced to
upgrade their equipment more often, a substantial problem given maintenance of op-
erational networks can be much more expensive than hardwarecosts. To keep up with
these demands, future routers must reduce the number of routes stored in the FIB.

In this paper we revisitroute caching, where the FIB stores only the frequently-used
routes and other routes are retrieved from a larger but slower memory (e.g., DRAM) on
a miss. This approach is motivated by the fact that Internet traffic exhibits high degrees
of temporal locality (as packets are grouped into flows, which are often transmitted
in bursts) and spatial locality (as many hosts access a smallnumber of popular des-
tinations). In fact, route cachingwasonce widely used in Internet routers. In the late
1980s and early 1990s, most routers were built with a route caching capability, such as
fast switching[2, 3]. Unfortunately, these designs were not able to keep upwith fast-
increasing packet forwarding rates, due to the large cost ofcache misses, such as lower
throughput and high packet loss ratio. While this limitation of route caching is yet to be
addressed, revisiting it with modern Internet traffic seemsworthwhile because recent
research results indicate that route caching might be bothpossibleandnecessary:

Route caching may be possible:New Internet routing architectures (such as ViAg-
gre [4], or SEATTLE [5]) can improve feasibility of route caching by reducing the cost
of a cache miss. For example, when a cache miss happens, a router can immediately
forward a packet via a backup default route, without forcingthe packet to be queued
(while waiting for the cache to be updated from the slow memory) or to traverse the
“slow path” (through the router CPU). The backup default route indirectly leads the
packet to an alternate router that always maintains a correct route to the destination in
its FIB (more explanation in Section 2.1). This “fall-back”mechanism has substantial
performance benefits, because packets can always be sent immediately after the cache
lookup completes. Since a route cache can be much smaller than a full FIB and takes
substantially less time for a lookup, ensuring line-rate packet forwarding becomes eas-
ier.

Route caching may be necessary:New protocols with larger (e.g., IPv6) or even flat
address spaces (e.g., ROFL [6], LISP [7], AIP [8]) have been proposed to facilitate the
Internet’s growth and configuration. However, deploying these protocols would signifi-
cantly increase FIB sizes beyond the capacities of much currently-deployed equipment,
and is predicted to require several million FIB entries within several years if current
growth trends continue. When FIBs fill up, conventional routers crash or begin behav-
ing incorrectly [9], forcing operators to deploy new line cards or even routers with a
larger memory. Alternatively, in such a case, the use of caching would only increase the
volume of the traffic handled via the “fall-back” mechanism,instead of incurring hard
crashes, improving availability and extending times between router upgrades.

We start by describing our traffic traces collected from over60 routers in a tier-1
ISP, and justify caching flatuni-class(i.e., /24) prefixes (Section 2). We then character-
ize the working sets of popular prefixes (Section 3) and evaluate route-caching perfor-
mance under our uni-class model (Section 4). Despite the significantly larger number of
uni-class prefixes as compared to CIDR, the cache size neededfor a reasonably small

miss rate is comparable to the size of FIBs in conventional Internet routers. Moreover,
a uniform prefix length allows use ofhashingfor faster lookups, greatly reducing the
number of memory accesses per lookup (e.g., looking up an item in a chained hash table
with N bins andN items requires1.58 memory accesses on average, whereas a lookup
in a trie-based approach, such as [10], takes much more than that). Therefore, caching
uni-class prefixes may be implementable with a slower and cheaper memory (e.g., RL-
DRAM [1], or even regular DRAM). Finally, by comparing our results with previous
work, we show that Internet traffic today is more amenable to caching (Section 5).

2 Measurement Methodology and Route-Cache Design

Our data sets were collected from a tier-1 ISP’s backbone in the U.S. First, we collected
unsampled packet-leveltraces over a one-week period at an access router servicing
regional DSL subscribers in the ISP. Second, we collectedflow-level traffic records
from more than60 edge routers in different geographical and topological regions. Since
the volume of the traffic transited by those routers was extremely large, we utilized a
samplingtechnique (Sampled NetFlow [11]) to reduce the overhead of collecting traffic.
These two sets of traces are complementary to each other; theflow-level traces allow
us to compare behavior across different routers, while the packet-level traces allow us
to study finer-grained behavior at a single access router. Additionally, using unsampled
packet-level traces allows us to validate the accuracy of our methodology for using
sampled flow-level traces to study route caching.

DSL traces: We collected IP packet headers that originated from roughly20, 000 re-
gional DSL subscribers in the USA using our network traffic monitoring platform. Our
monitor is attached to the access router aggregating trafficfrom subscribers, and was
configured to monitorinboundtraffic sent from DSL subscribers to the rest of the In-
ternet. Note that we deliberately captured inbound traffic because destination addresses
accessed by the inbound traffic are much more diverse than those by outbound traffic
and are thus very challenging for our route-caching study. We ran our monitor for8
consecutive days from Feb 29 through Mar 7, 2008, and captured roughly40 billion
packets, corresponding to an average of∼ 65, 000 packets per second.

NetFlow traces:To study differences in workload across routers, we collected NetFlow
records from inbound traffic to the ISP via two representative POPs (Points of Presence)
containing over60 routers, respectively located on the east and west coasts ofthe USA.
To avoid overloading the router CPU, we were forced to configure NetFlow to perform
deterministic sampling with a sampling ratio of1/500 [11]. The active and inactive
time-out values were set to60 and15 seconds respectively. We ran NetFlow for15 hours
on January 23 - 24, 2008, collecting the information of∼ 330 billion packets (roughly
100K pkts/sec per edge router on average). Some of our analysis (e.g., estimating cache
miss rate) requires packet-level arrival information. To construct packet records from
flow records, we post-processed the trace to distribute all counted packets in a flow
evenly over the measured duration of the flow. To check for sampling inaccuracies,
we generated sampled DSL traces by applying the NetFlow sampling algorithm to our
unsampled DSL traces. There was no statistically significant difference between the
results acquired with sampled and unsampled traces.

2.1 Route caching model

To evaluate the performance of route caching, we define a simple and generic caching
architecture. In this architecture, a packet forwarding unit (e.g., a line card, or a for-
warding engine) incorporates hierarchical, two-level memory. The first level is aroute
cache, which is embodied by a small, but very fast memory containing only a sub-
set of the entire routes. The second level is afull routing table, which is a slow, but
large memory storing all routes. Once a packet arrives, the forwarding unit first looks
up the packet’s destination address in the route cache. If itfinds a match, the packet
is immediately forwarded based on the lookup result. If not,the forwarding unit for-
wards the packet using a backup route. The backup route indicates an alternate router,
which can be either statically configured or dynamically chosen from a small set of al-
ternate routers via a very simple computation (e.g., hashing) on the packet header. Note
that this computation can be done in parallel with the cache lookup without increasing
packet forwarding latency. The alternate router finally forwards the packet to the des-
tination via a direct route residing in its FIB; to ensure this, administrators can run a
well-provisioned router in each POP that always keeps the entire set of routes in its FIB
or employ a routing protocol, such as ViAggre [4] or SEATTLE [5], where each router
maintains a small amount of additional routing informationin its route cache. Apart
from this packet forwarding procedure, the forwarding unitseparately updates its route
cache by looking up the full routing table. If needed, an existing entry in the cache is
evicted based on a cache replacement strategy.

Conventional routers store information about paths to CIDR(variable-length) pre-
fixes in their routing and forwarding tables. Hence, at first glance, it appears that the
cache should also store information in the same structure. However, caching CIDR pre-
fixes presents a serious technical challenge arising from the need to perform longest-
prefix matching: if multiple CIDR prefixes contain a destination address, the most-
specific one – longest-matching prefix (LMP) – must be chosen to forward the packet.
Unfortunately, in a route-caching system, only the contents of the cache are referred to
when making a packet forwarding decision, and thus thecache-hidingproblem arises:
consider an empty cache, and suppose the full routing table contains two prefixes:
10.1.0.0/16 associated with output interfaceO1, and10.1.5.0/24 associated withO2.
Suppose a new packet destined to10.1.2.3 arrives. The router will find the LMP for
this destination, which is10.1.0.0/16, and will install the route [10.1.0.0/16 → O1]
into the cache. Now, suppose the next packet the router receives is destined to10.1.5.6.
Then, the router will discover [10.1.0.0/16 →O1] in the cache, and send the packet to
O1. This, however, is incorrect because the LMP for10.1.5.6 is 10.1.5.0/24, and hence
the packet must have been sent toO2. Unfortunately, proposed solutions to this prob-
lem involve either a complicated data structure with on-the-fly computation to eliminate
inter-dependency among prefixes [12], or grouping all prefixes containing a destination
address as an atomic unit of caching operation (insertion, deletion, and update). The
latter approach leads to cache thrashing because the size ofan atomic prefix group in
today’s FIB can be larger than25, 000. Worse yet, a cache storing CIDR prefixes still
has to perform longest-prefix matching on every lookup.

To avoid these difficulties, we explore an alternative modelwhich we refer to as
“flat”, uni-classcaching. This model is identical to the technique that Feldmeier used in

1 10 100 1K 10K 100K 1M 10M
Number of popular prefixes (log)

0

0.2

0.4

0.6

0.8

1

F
ra

ct
io

n
of

 p
kt

s

DSL unsampled
DSL sampled
NetFlow

(a)

0 2 4 6 8 10 12 14 16 18 20 22 24
Time (hour)

0

200K

400K

600K

800K

1M

1.2M

S
iz

e
(#

 o
f p

re
fix

es
)

tout = 60 min

tout = 30 min

tout = 5 min

tout = 1 min

(b)

Fig. 1. (a) CDF of uni-class prefix popularity (b) Time series of working set size (DSL trace).

his 1987 study on route caching [13]. In this model, a route cache automatically divides
up a CIDR prefix into small, fixed-length (i.e.,/24) sub-prefixes that are mutually non-
overlapping, and then store only the single/24 sub-prefix matching to the destination1.
For example, suppose a full routing table contains a prefix10.1.0.0/16, along with sev-
eral more-specific subprefixes under it. In the uni-class model,10.1.0.0/16 is internally
considered as a collection of256 independent/24 routes, ranging from10.1.0.0/24

to 10.1.255.0/24. Hence, if the destination of an incoming packet is10.1.2.3, only
10.1.2.0/24 is stored in the route cache. Note that the full routing tablestill contains a
single CIDR prefix,10.1.0.0/16, as the sub-prefix is generated upon cache update. The
reason why we chose/24 as the length for our study is multifold. First, it is the most-
specific prefix length in common use for inter-domain routing; most providers filter
routes more specific than/24 to protect themselves against misconfiguration and prefix
hijacking. Also, it is the largest source of FIB growth in today’s Internet: from Route-
Views traces collected from Nov 2001 through Jul 2008, we found that the number of
/24 prefixes has increased from60K to 140K, while other prefix lengths increased at
a much slower rate (e.g./16s increased from7K to 10K, /8s increased from18 to 19).

3 Analysis of Traffic Workload

Prefix popularity: Before directly evaluating performance of caching on our traces, we
first analyze relevant properties of the workload. Specifically, since our uni-class model
can significantly inflate the number of unique prefixes, we areinterested in figuring out
how small (or large) the set of frequently-accessed /24 prefixes is. Figure 1a plots the
fraction of packets sent to a given top-x number of prefixes, for both DSL and NetFlow
traces. We set the maximum value of thex-axis to be the maximum possible FIB size
(9.3M), which is the number of unique/24 prefixes we count when deaggregating the
305K CIDR prefixes advertised in the Internet as of February2008. We find that roughly
one tenth (i.e.,0.93M) of the entire prefixes accounts for more than97% of traffic
(consistent with previous work [13–15]), and nearly60% (i.e.,5.3M/9M) of the prefixes

1 Uni-class caching can still support more specific routes than /24, if desired, by maintaining a
small secondary table for those routes.

are never accessed. We found that this result holds across a variety of routers in the
network, as shown by theNetFlowcurve and error bars. Finally, we also confirmed that
packet sampling does not noticeably affect the popularity distribution, shown by the
DSL sampledcurve closely matching theDSL unsampledcurve.

Temporal analysis of working sets:Understanding the temporal dynamics of traffic
destinations is important because it determines the stability and predictability of caching
performance. Hence, we study how prefix popularity varies atdifferent times and across
different timescales as well. To address this, we leverage the notion of aworking set,
which is defined to be the set of prefixes accessed over a given period of time. The
size of the working set and its variation are often used to estimate how large a cache
will be needed to achieve a low miss rate. Figure 1b shows variation in the size of
the working set over time, under four different definitions of the working set: the set
of items accessed over last 60, 30, 5, and 1 minute. As one might expect, largertout
values induce larger working set sizes. Interestingly, however, we found the size of
working sets across a variety of timeout values to be highly stable. Over our entire set
of traces, the standard deviation in working set size was∼ 3.2% of the average, and the
maximum working set size was no more than∼ 5.6% larger than the average. This fact
bodes well for deployability of caching solutions using small fixed-size caches, as cache
sizes can be provisioned close to the observed mean without requiring large headroom.
Our further analysis also confirmed that the contents of the working sets vary little.

Cross-router analysis of working sets:Understanding the similarity of working sets
across routers is important because it allows a cache to bepre-provisionedwith the
contents from another cache, significantly reducing the cold misses after network events
(e.g., router or line-card reboot, routing change due to a network failure). Thus, we need
to understand how working sets vary across different routers, router roles, and regions
within the ISP. We chose several representative access routers:7 from the ISP’s west
coast POP, and9 from its east coast POP. To quantify the similarity of working sets at
two different routersr1 andr2, we define thesimilarity factor (sfactor) as the number
of common prefixes maintained by bothr1 andr2, divided by the sum of the number
prefixes maintained individually byr1 andr2. We computed thesfactorand its standard
deviation, across all pairs of routers within the east-coast POP (sfactor=59.1% with
stdev=11.8%), the west-coast POP (sfactor=64.9% with stdev=17.6%), and between
pairs of routers in different POPs (sfactor=50.7% with stdev=14.3%). Overall, despite
the limited aggregation benefit of using/24 prefixes, working sets of routers within a
POP tend to be quite similar, with an sfactor of59 − 65% on average. Working sets of
routers in different POPs tend to differ more, with only a50.7% overlap on average.
Some of these differences were due to localized DNS redirection (e.g., large content
distribution sites redirecting users to geographically-closer servers).

4 Evaluation of Route Caching

LRU vs. LFU: In this section, we explore performance of caching algorithms directly
on network traces, and start by comparing LRU (which keeps track of when each entry
was used and evicts the one used the longest time ago) and LFU (which keeps track
of how many times each entry is used and evicts the one used thesmallest number of

0 2 4 6 8 10 12 14 16 18 20 22 24
Time (hour)

0.1

1

10

100

M
is

s
ra

te
 in

 %
 (

lo
g) LFU

LRU

(a)

5K 10K 50K 100K 500K 1M
Cache size (log)

0.1

1

10

M
is

s
ra

te
 in

 %
 (

lo
g)

 LFU, DSL
 LRU, DSL
 Optimal, DSL
 LRU, NetFlow

(b)

Fig. 2. Miss rate with the DSL traces, (a) Time series of miss rate, cache size = 500K, (b) Miss
rates under LRU and the optimal strategy

times while resident in the cache). Figure 2a shows that LRU outperforms LFU by a
large margin. Interestingly, the miss rate for LFU initially decreases during cold-start,
which lasts for approximately5 to 10 minutes as the cache fills. Several minutes after
the cache reaches capacity, the miss rate sharply increases. This happens because the
destinations of heavy (i.e., long and fat) flows become “stuck” in the cache, and the
only way of evicting those is waiting for even heavier flows tooverwrite those entries.
LRU’s miss rate also converges quickly to its long-term average and remains stable,
whereas LFU’s miss rate takes a few hours to converge and varies more. This happens
because LFU tends to keep unnecessary entries for a long period of time. We observed
these two findings across a variety of cache sizes and different input traffic mixes. Since
LRU vastly outperforms LFU, we focus only on LRU for the rest of the paper.

LRU vs. Optimal: Next, we compare LRU’s performance to anoptimalscheme that
has knowledge of future access times. The optimal caching algorithm (OPT) works
by evicting entries that will not be needed for the longest time in the future. Note
that implementing the optimal algorithm in practice is impossible (as it requires fu-
ture knowledge), whereas implementing LRU (or an approximation of it) is possible
– if not highly efficient or accurate. Figure 2b compares average miss rates over the
unsampled DSL trace (solid curves). In a well-provisioned network, the cache would
be large enough to attain a low miss rate. In this scenario, LRU performs nearly as well
as OPT. For example, with a cache size of500K, LRU’s miss rate is only0.3%-point
higher than OPT’s miss rate. We also study the fine-grained convergence behavior of
OPT and LRU by measuring how fast their miss rates stabilize.We find that OPT’s miss
rate stabilizes within roughly120 seconds, and that LRU converges almost as quickly,
stabilizing within roughly180 seconds. Given these results, it may be possible to design
cache algorithms that outperform LRU on IP traffic, but it is unlikely the performance
of these schemes will be substantially greater than that of LRU.

Cache size and miss rate:Figure 2b shows cache miss rates as a function of cache size
for both the DSL traces (solid) and the NetFlow traces (dotted). The NetFlow curve
shows average miss rate across all routers. Here we eliminated cold-start effects by
measuring miss rates values only after the cache has reachedcapacity. We found that,
with the DSL (NetFlow) traces, LRU attains a miss rate of2.7% (4%) for a cache size

0 1 2 3 4 5 6 8 10
Time (hour)

0.1

0.2

0.3

0.4

0.5

0.6

M
is

s
ra

te
 in

 %
5K

10K

50K

500K 1M

100K

(a)

0 1 2 3
Time (hour)

0

1

2

3

4

 M

is
s

ra
te

 in
 %

 entire next-hop failure
 single next-hop failure

(b)

Fig. 3. Effect of routing change, (a) Inbound change (NetFlow traces), (b) Outbound change
(DSL traces, cache size = 1M)

of 100K, which is roughly28% of the FIB size in conventional Internet routers. Based
on the measured miss rates, we suggest some rough guidelinesfor determining a cache
size: a cache size of1M – which is less than1/16 of the maximum number of unique
/24 prefixes in theory, and roughly1/10 of the total number of /24 prefixes used in the
Internet today – may maintain a miss rate of roughly0.1%. For a target miss rate of1%,
a cache size of roughly500K may suffice. Overall, caching uni-class prefixes enables a
route cache that is roughly an order of magnitude smaller than its full address space.

Impact of routing changes:Next, we evaluate the effect of network dynamics by man-
ually injecting route changes into our traces, and evaluating how quickly caching algo-
rithms converge after these changes are introduced. Two different route-change events
can affect cache contents. First, routing changes upstreamof the router may alter the
distribution ofinboundtraffic arriving at router interfaces, leading to an abrupt change
in the working set. We simulate this (Figure 3a) by randomly switching to a different
router’s NetFlow trace every hour while replaying against the same cache. While these
events cause short-lived increases in miss rate, these spikes were roughly a factor of 3
above the average miss rate, and the miss rate stabilized in afew hundred seconds after
these changes. Second, failures downstream of the router may alter the set of available
outboundroutes, causing multiple cache entries to become invalid simultaneously. We
emulate (Figure 3b) the failure of multiple randomly-selected next hops by removing
all cached entries associated with the given next hop upon its failure. Here, we find that
for extreme scenarios where large numbers of next-hop routers fail, these spikes can be
fairly large, increasing to15 times the original value. However, for smaller numbers of
failures, this value decreases substantially.

5 Related Work

Our paper is not the first to propose route caching. In fact, during the early 1990s, most
Cisco routers were built with a route caching capability known asfast switching[2]. In
these designs, packet forwarding decisions were made by invoking a user-level process
that looks up a routing table (RIB) stored in slow memory. To boost lookup speeds,
a route cache stored the results of recent lookups. Unfortunately, the large speed dif-

ference between the two lookup paths caused many packets to be kept in a buffer
awaiting service in the slow path. In addition, upon routingchanges or link failures,
large groups of cached routes were simultaneously invalidated, dramatically decreasing
packet forwarding rate and increasing loss probability [16]. This limitation actually led
to the abandonment of route-caching and motivated the evolution of today’s caching-
free routers. Our findings of large bursts of consecutive misses support these earlier
observations about the limitation of route caching. However, the “fall-back” scheme
(explained in Section 2.1) ensures full line-rate forwarding even on cache misses by
immediately sending traffic to an intermediary. Several recent works suggest that con-
structing a reliable and efficient traffic indirection system is possible [4, 5, 7] and thus
warrant revisiting route caching.

Also there has been research which recognized the difficultyof ensuring forward-
ing correctness when caching CIDR prefixes [12]. These approaches increase cache size
and require a logarithmic searching algorithm even when prefixes are not overlapping.
Recently, Iannone et al. studied the cost of route caching under the IETF LISP archi-
tecture [7] using traffic traces to and from a campus network [17]. Hence, their analysis
results are applicable to estimating caching behavior at a stub network’s egress router,
whereas our results are suitable to understand caching performance in a large ISP’s net-
work, where route caching would be most beneficial. Moreover, although their study
was based on caching CIDR prefixes, they did not address the problem of ensuring
forwarding correctness with a subset of CIDR prefixes.

To understand howmodernworkloads change the performance of route caching,
we compared our results with those of earlier studies. For example, in 1988, Feld-
meier studied performance of caching /24 prefixes on traces captured at a gateway con-
nected to the ARPANET [13]. Partridge repeated a similar analysis to Feldmeier’s in
1995 [18] and confirmed Feldmeier’s earlier findings. We compared our results against
Feldmeier’s to better understand how characteristics of Internet traffic have changed for
the past 20 years. By comparing the cache size needed for a target hit rate with the
number of unique /24 prefixes seen in the trace, we observed some interesting results.
For example, when targeting a high hit rate (larger than98%), route caching on modern
traces performs better than in these earlier studies; achieving a hit rate of98% today
requires a cache size, normalized by the number of entire /24 prefixes in the traces, of
0.1 (i.e.,10%), whereas Feldmeier reported a normalized cache size of0.23. Moreover,
when targeting a lower hit rate than98%, modern workloads are even more amenable
to caching than 20 years ago. In particular,when targeting a sub-95% hit rate, route
caching today is an order of magnitude more efficient than it was 20 years ago. For ex-
ample, for a hit rate of95%, we found modern workloads required a normalized cache
size of only0.008, while Feldmeier reported0.096. Traditionally a sub-95% hit rate
was not considered to be tolerable, but recent routing architectures that leverage the
“fall-back” mechanism can easily tolerate such a rate.

6 Conclusion

An increasing number of network architectures make use ofroute cachingto achieve
scalability. Evaluating the feasibility of these techniques requires rigorous evaluation

of the benefits and costs of caching. This paper revisits several earlier works from the
late 1980s on route caching and evaluates the practicality of their techniques on modern
workloads. To the best of our knowledge, this paper constitutes the first measurement
study of route-caching performance in a large ISP network. Key observations from
our study are: (i) Working set sizes are stable over time, allowing route caches to be
provisioned with relatively little headroom; (ii) Working sets of routers in a single POP
are very similar to one another, introducing the possibility of pre-populating a cache;
(iii) Uni-class caching eliminates complexity of longest-prefix matching and enables a
cache using slower, cheaper memory; and (iv) Ensuring full line-rate forwarding upon
cache misses is critical for the success of route caching. For future work, we plan to
investigate theoretical models for the effects of samplingon estimating cache-miss rate.

References

1. E. Chang, B. Lu, and F. Markhovsky, “RLDRAMs vs. CAMs/SRAMs: Part 1.” http:
//www.commsdesign.com/design corner/OEG20030603S0007.

2. “How to Choose the Best Router Switching Path for Your Network,” August 2005. Cisco
Systems,http://www.cisco.com/warp/public/105/20.pdf.

3. C. Partridge, P. Carvey,et al., “A 50-Gb/s IP router,” inIEEE/ACM Trans. Networking, 1998.
4. H. Ballani, P. Francis, T. Cao, and J. Wang, “Making Routers Last Longer with ViAggre,” in

Proc. NSDI, April 2009. (To Appear).
5. C. Kim, M. Caesar, and J. Rexford, “Floodless in SEATTLE: AScalable Ethernet Architec-

ture for Large Enterprises,” inProc. SIGCOMM, August 2008.
6. M. Caesar, T. Condie, J. Kannan, K. Lakshminarayanan, andI. Stoica, “ROFL: Routing on

Flat Labels,” inProc. ACM SIGCOMM, September 2006.
7. D. Farinacci, V. Fuller, D. Oran, D. Meyer, and S. Brim, “Locator/ID Separation Protocol

(LISP).” Internet-Draft (work in progress), December 2008.
8. D. Andersen, H. Balakrishnan, N. Feamster,et al., “Accountable Internet Protocol (AIP),” in

Proc. ACM SIGCOMM, 2008.
9. D. Chang, R. Govindan, and J. Heidemann, “An empirical study of router response to large

BGP routing table load,” inProc. Internet Measurement Workshop, 2002.
10. W. Eatherton, G. Varghese, and Z. Dittia, “Tree bitmap: Hardware/Software IP Lookups with

Incremental Updates,” inACM Computer Communication Review, 2004.
11. “Sampled NetFlow,” Cisco Systems,http://www.cisco.com/en/US/docs/ios/

12 0s/feature/guide/12s sanf.html.
12. H. Liu, “Routing Prefix Caching in Network Processor Design,” in Proc. International Con-

ference on Computer Communications and Networks, October 2001.
13. D. Feldmeier, “Improving Gateway Performance With a Routing-table Cache,” inProc. IEEE

INFOCOM, 1988.
14. J. Rexford, J. Wang, Z. Xiao, and Y. Zhang, “BGP Routing Stability of Popular Destinations,”

in Proc. Internet Measurement Workshop, November 2002.
15. R. Jain, “Characteristics of Destination Address Locality in Computer Networks: A Compar-

ison of Caching Schemes,”Computer Networks and ISDN, vol. 18, pp. 243–254, 1989/1990.
16. D. McRobb, “Path and Round Trip Time Measurements (slides 19-21).” http://www.

caida.org/publications/presentations/nanog9806/index.html.
17. L. Iannone and O. Bonaventure, “On the Cost of Caching Locator/ID Mappings,” inProc.

ACM CoNEXT, December 2007.
18. C. Partridge, “Locality and Route Caches,” 1996.http://www.caida.org/

workshops/isma/9602/positions/partridge.html.

