Revisiting Route Caching:
The World Should Be Flat

Changhoon Kirh, Matthew Caesér Alexandre Gerbér and Jennifer Rexford

LPrinceton University?UIUC, 3AT&T Labs—Research

Abstract. Internet routers’ forwarding tables (FIBs), which must tered in
expensive fast memory for high-speed packet forwarding,gaowing quickly

in size due to increased multihoming, finer-grained traffigineering, and de-
ployment of IPv6 and VPNs. To address this problem, severtalret archi-
tectures have been proposed to reduce FIB size by returnitiget earlier ap-
proach ofroute caching storing only the working set of popular routes in the
FIB. This paper revisits route caching. We build upon prasiovork by study-
ing flat, uni-class @4) prefix caching, with modern traffic traces from more than
60 routers in a tier-1 ISP. We first characterize routers’ wogksets and then
evaluate route-caching performance under different cagplacement strategies
and cache sizes. Surprisingly, despite the large numbesadgtegated4 sub-
nets, caching uni-class prefixes can effectively curb tloeeimse of FIB sizes.
Moreover, uni-class prefixes substantially simplify a @adesign by eliminating
longest-prefix matching, enabling FIB design with slowenmoey technologies.
Finally, by comparing our results with previous work, we whtihat the distri-
bution of traffic across prefixes is becoming increasinglgvegd, making route
caching more appealing.

1 Introduction

Packet forwarding on core Internet routers is an extremiajlenging process. Upon
receiving an IP packet, routers have just a few nanoseconulsfer the packet, select
thelongest-matching prefigsovering the packet’s destination, and forward the paaket t
the corresponding outbound interface. To allow this predesappen quickly, routers
often make use of special-purpose high-speed memory sudiCA® and SRAM.
Unfortunately, the need for multi-homing and fine-grainedfic engineering, the de-
sire to mitigate prefix hijacking by advertising more-sffiegioutes, and the continuing
rapid growth of the Internet have rapidly increased the nemalb routes that an Internet
router has to maintain. The accelerating deployments aiopods with large address
spaces such as IPv6 and VPNs, combined with the rapidlyasarg link speeds, stand
to worsen this problem even further.

Unfortunately, the special-purpose memory used for hijoges packet forwarding
is orders of magnitude more expensive, more power-hungggeo in physical size,
and generates substantially more heat than conventionAMDR his is because man-
ufacturing fast memory requires more transistors per Hit Due to these factors, it
will be increasingly challenging to manufacture a line caith large, fast memory at

a reasonable price and power-consumption budget. To spens&s, service providers
may therefore be forced to provision with little headroomdoowth, making their net-
works unable to handle sudden spikes in table size. Pravidélr also be forced to
upgrade their equipment more often, a substantial probleengmaintenance of op-
erational networks can be much more expensive than hardveats. To keep up with
these demands, future routers must reduce the number @fsretdred in the FIB.

In this paper we revisibute cachingwhere the FIB stores only the frequently-used
routes and other routes are retrieved from a larger but slaveenory (e.g., DRAM) on
a miss. This approach is motivated by the fact that Internaéft¢ exhibits high degrees
of temporal locality (as packets are grouped into flows, Whace often transmitted
in bursts) and spatial locality (as many hosts access a smaiber of popular des-
tinations). In fact, route cachingasonce widely used in Internet routers. In the late
1980s and early 1990s, most routers were built with a routbiog capability, such as
fast switching2, 3]. Unfortunately, these designs were not able to keepitip fast-
increasing packet forwarding rates, due to the large cosaclfie misses, such as lower
throughput and high packet loss ratio. While this limitataf route caching is yet to be
addressed, revisiting it with modern Internet traffic seemosthwhile because recent
research results indicate that route caching might be posgsibleandnecessary

Route caching may be possible:New Internet routing architectures (such as ViAg-
gre [4], or SEATTLE [5]) can improve feasibility of route daiag by reducing the cost
of a cache miss. For example, when a cache miss happens,ea cantimmediately
forward a packet via a backup default route, without fording packet to be queued
(while waiting for the cache to be updated from the slow memor to traverse the
“slow path” (through the router CPU). The backup defaultteoindirectly leads the
packet to an alternate router that always maintains a domete to the destination in
its FIB (more explanation in Section 2.1). This “fall-baakiechanism has substantial
performance benefits, because packets can always be seatliately after the cache
lookup completes. Since a route cache can be much smalleithal FIB and takes
substantially less time for a lookup, ensuring line-ratelgd forwarding becomes eas-
ier.

Route caching may be necessaryiNew protocols with larger (e.g., IPv6) or even flat
address spaces (e.g., ROFL [6], LISP [7], AIP [8]) have beepgsed to facilitate the
Internet’s growth and configuration. However, deployingsté protocols would signifi-
cantly increase FIB sizes beyond the capacities of muclentiy-deployed equipment,
and is predicted to require several million FIB entries wwiteeveral years if current
growth trends continue. When FIBs fill up, conventional evatcrash or begin behav-
ing incorrectly [9], forcing operators to deploy new linerda or even routers with a
larger memory. Alternatively, in such a case, the use of icapivould only increase the
volume of the traffic handled via the “fall-back” mechanidnstead of incurring hard
crashes, improving availability and extending times betmveouter upgrades.

We start by describing our traffic traces collected from osM@routers in a tier-1
ISP, and justify caching flatni-class(i.e., 24) prefixes (Section 2). We then character-
ize the working sets of popular prefixes (Section 3) and ateloute-caching perfor-
mance under our uni-class model (Section 4). Despite tmfimigntly larger number of
uni-class prefixes as compared to CIDR, the cache size néedadeasonably small

miss rate is comparable to the size of FIBs in conventiontariet routers. Moreover,

a uniform prefix length allows use ¢fashingfor faster lookups, greatly reducing the
number of memory accesses per lookup (e.g., looking up amiiteé chained hash table
with N bins andN items required .58 memory accesses on average, whereas a lookup
in a trie-based approach, such as [10], takes much more ltiaén Therefore, caching
uni-class prefixes may be implementable with a slower andm&rememory (e.g., RL-
DRAM [1], or even regular DRAM). Finally, by comparing oursts with previous
work, we show that Internet traffic today is more amenableatthing (Section 5).

2 Measurement Methodology and Route-Cache Design

Our data sets were collected from a tier-1 ISP’s backborfeditk S. First, we collected
unsampled packet-levélaces over a one-week period at an access router servicing
regional DSL subscribers in the ISP. Second, we colleéitad-leveltraffic records
from more thar60 edge routers in different geographical and topologicalneg) Since
the volume of the traffic transited by those routers was exélg large, we utilized a
samplingtechnique (Sampled NetFlow [11]) to reduce the overheadltédcting traffic.
These two sets of traces are complementary to each othéfiptirdevel traces allow
us to compare behavior across different routers, while teket-level traces allow us
to study finer-grained behavior at a single access routatitidally, using unsampled
packet-level traces allows us to validate the accuracy ofneethodology for using
sampled flow-level traces to study route caching.

DSL traces: We collected IP packet headers that originated from rougtly00 re-
gional DSL subscribers in the USA using our network trafficnitoring platform. Our
monitor is attached to the access router aggregating tifaffin subscribers, and was
configured to monitomboundtraffic sent from DSL subscribers to the rest of the In-
ternet. Note that we deliberately captured inbound trafficause destination addresses
accessed by the inbound traffic are much more diverse thae thy outbound traffic
and are thus very challenging for our route-caching studg.réh our monitor fol8
consecutive days from Feb 29 through Mar 7, 2008, and captaneghly 40 billion
packets, corresponding to an average-ai5, 000 packets per second.

NetFlow traces:To study differences in workload across routers, we cadié®etFlow
records from inbound traffic to the ISP via two represeneB®Ps (Points of Presence)
containing ovet60 routers, respectively located on the east and west coasis ofSA.
To avoid overloading the router CPU, we were forced to coméduetFlow to perform
deterministic sampling with a sampling ratio ©f500 [11]. The active and inactive
time-out values were set & and15 seconds respectively. We ran NetFlow férhours
on January 23 - 24, 2008, collecting the informationo830 billion packets (roughly
100K pkts/sec per edge router on average). Some of our anadgis éstimating cache
miss rate) requires packet-level arrival information. Bmstruct packet records from
flow records, we post-processed the trace to distributealhted packets in a flow
evenly over the measured duration of the flow. To check formim inaccuracies,
we generated sampled DSL traces by applying the NetFlow lsagnglgorithm to our
unsampled DSL traces. There was no statistically signifidifference between the
results acquired with sampled and unsampled traces.

2.1 Route caching model

To evaluate the performance of route caching, we define alsiamul generic caching
architecture. In this architecture, a packet forwarding (9., a line card, or a for-
warding engine) incorporates hierarchical, two-level menThe first level is aoute
cache which is embodied by a small, but very fast memory contajronly a sub-
set of the entire routes. The second level i&larouting table which is a slow, but
large memory storing all routes. Once a packet arrives, ehedrding unit first looks
up the packet’s destination address in the route cachefitfds a match, the packet
is immediately forwarded based on the lookup result. If to, forwarding unit for-
wards the packet using a backup route. The backup routeaitedi@n alternate router,
which can be either statically configured or dynamicallysgrofrom a small set of al-
ternate routers via a very simple computation (e.g., hagtun the packet header. Note
that this computation can be done in parallel with the caob&up without increasing
packet forwarding latency. The alternate router finallyfards the packet to the des-
tination via a direct route residing in its FIB; to ensuresttddministrators can run a
well-provisioned router in each POP that always keeps ttieeeset of routes in its FIB
or employ a routing protocol, such as ViAggre [4] or SEATTLH,[where each router
maintains a small amount of additional routing informatiorits route cache. Apart
from this packet forwarding procedure, the forwarding weiparately updates its route
cache by looking up the full routing table. If needed, an taxgsentry in the cache is
evicted based on a cache replacement strategy.

Conventional routers store information about paths to C(Ré&iable-length) pre-
fixes in their routing and forwarding tables. Hence, at filsinge, it appears that the
cache should also store information in the same structweeder, caching CIDR pre-
fixes presents a serious technical challenge arising fram#ed to perform longest-
prefix matching: if multiple CIDR prefixes contain a destinataddress, the most-
specific one — longest-matching prefix (LMP) — must be chosdartvard the packet.
Unfortunately, in a route-caching system, only the corg@fithe cache are referred to
when making a packet forwarding decision, and thuscdighe-hidingproblem arises:
consider an empty cache, and suppose the full routing tadii¢ams two prefixes:
10.1.0.0/16 associated with output interfa€®., and10.1.5.0/24 associated witl®2.
Suppose a new packet destinedltbl.2.3 arrives. The router will find the LMP for
this destination, which i80.1.0.0/16, and will install the route 10.1.0.0/16 — O1]
into the cache. Now, suppose the next packet the routemesisi destined td0.1.5.6.
Then, the router will discoverl]).1.0.0/16 —OL] in the cache, and send the packet to
OL. This, however, is incorrect because the LMP¥0r1.5.6 is 10.1.5.0/24, and hence
the packet must have been sentO@. Unfortunately, proposed solutions to this prob-
lem involve either a complicated data structure with orHtlieomputation to eliminate
inter-dependency among prefixes [12], or grouping all pesfizontaining a destination
address as an atomic unit of caching operation (insertieletion, and update). The
latter approach leads to cache thrashing because the sa@eaibmic prefix group in
today’s FIB can be larger tha2b, 000. Worse yet, a cache storing CIDR prefixes still
has to perform longest-prefix matching on every lookup.

To avoid these difficulties, we explore an alternative moaleich we refer to as
“flat”, uni-classcaching. This model is identical to the technique that Feliémused in

Fraction of pkts

[

=
[N
<

a \ -
) =
0.8 2 M tout = 60 min
:‘E 800K| tout = 30 min
0.6 =%
S 600K|
0.4 ®
‘ © 400K W
02 | . DSL unsampled N tout =5 min
E } —— DSL sampled N 200K|
——— NetFlow WWWMWWWMMWW
0 a tut = 1 min
1 10 100 1K 10K 100K 1M 10M 0 2 4 6 8 _10 12 14 16 18 20 22 24
Number of popular prefixes (log) Time (hour)

(a) (b)

Fig. 1. (a) CDF of uni-class prefix popularity (b) Time series of wiakset size (DSL trace).

his 1987 study on route caching [13]. In this model, a routdheautomatically divides
up a CIDR prefix into small, fixed-length (i.e.24) sub-prefixes that are mutually non-
overlapping, and then store only the singft sub-prefix matching to the destinatfon
For example, suppose a full routing table contains a pié¥ik.0.0/16, along with sev-
eral more-specific subprefixes under it. In the uni-classehdd.1.0.0/16 is internally
considered as a collection @66 independeny24 routes, ranging from0.1.0.0/24

to 10.1.255.0/24. Hence, if the destination of an incoming packetlis1.2.3, only
10.1.2.0/24 is stored in the route cache. Note that the full routing tatilecontains a
single CIDR prefix,10.1.0.0/16, as the sub-prefix is generated upon cache update. The
reason why we chos@4 as the length for our study is multifold. First, it is the most
specific prefix length in common use for inter-domain routinpst providers filter
routes more specific thaf24 to protect themselves against misconfiguration and prefix
hijacking. Also, it is the largest source of FIB growth in &y Internet: from Route-
Views traces collected from Nov 2001 through Jul 2008, wenfbthat the number of
/24 prefixes has increased frof0 K to 140K, while other prefix lengths increased at
a much slower rate (e.g16s increased fromK to 10K, /8s increased froni8 to 19).

3 Analysis of Traffic Workload

Prefix popularity: Before directly evaluating performance of caching on oacés, we
first analyze relevant properties of the workload. Spedificsince our uni-class model
can significantly inflate the number of unique prefixes, weigterested in figuring out
how small (or large) the set of frequently-accessedprefixes is. Figure 1a plots the
fraction of packets sent to a given tamumber of prefixes, for both DSL and NetFlow
traces. We set the maximum value of thaxis to be the maximum possible FIB size
(9.3M), which is the number of uniqug24 prefixes we count when deaggregating the
305K CIDR prefixes advertised in the Internet as of Febriagg. We find that roughly
one tenth (i.e.0.93M) of the entire prefixes accounts for more th@ro of traffic
(consistent with previous work [13—15]), and nedils (i.e.,5.3M/9M) of the prefixes

! Uni-class caching can still support more specific routes t#a, if desired, by maintaining a
small secondary table for those routes.

are never accessed. We found that this result holds acroaseiyof routers in the
network, as shown by thgetFlowcurve and error bars. Finally, we also confirmed that
packet sampling does not noticeably affect the populaigiridution, shown by the
DSL sampledurve closely matching thBSL unsampledurve.

Temporal analysis of working sets:Understanding the temporal dynamics of traffic
destinations is important because it determines the gtgdild predictability of caching
performance. Hence, we study how prefix popularity varieifégrent times and across
different timescales as well. To address this, we leverhgenbtion of aworking set
which is defined to be the set of prefixes accessed over a geeéodpof time. The
size of the working set and its variation are often used tomegé how large a cache
will be needed to achieve a low miss rate. Figure 1b showstian in the size of
the working set over time, under four different definitiorfsttoe working set: the set
of items accessed over last 60, 30, 5, and 1 minute. As onetmigiect, largetout
values induce larger working set sizes. Interestingly, énev, we found the size of
working sets across a variety of timeout values to be higtdple. Over our entire set
of traces, the standard deviation in working set size was2% of the average, and the
maximum working set size was no more tharb.6% larger than the average. This fact
bodes well for deployability of caching solutions using #irfired-size caches, as cache
sizes can be provisioned close to the observed mean witequiring large headroom.
Our further analysis also confirmed that the contents of theking sets vary little.

Cross-router analysis of working sets:Understanding the similarity of working sets
across routers is important because it allows a cache tord@rovisionedwith the
contents from another cache, significantly reducing thd nokses after network events
(e.g., router or line-card reboot, routing change due totevoik failure). Thus, we need
to understand how working sets vary across different rayteuter roles, and regions
within the ISP. We chose several representative accessrsodtfrom the ISP’s west
coast POP, anfl from its east coast POP. To quantify the similarity of worksets at
two different routers:; andr,, we define thesimilarity factor (sfactor) as the number
of common prefixes maintained by bath andr,, divided by the sum of the number
prefixes maintained individually by, andr,. We computed thefactorand its standard
deviation, across all pairs of routers within the east-t&B8P (sfactor=59.1% with
stdev=11.8%), the west-coast POP (sfactor=64.9% withvstde6%), and between
pairs of routers in different POPs (sfactor=50.7% with stdiel. 3%). Overall, despite
the limited aggregation benefit of usiri@4 prefixes, working sets of routers within a
POP tend to be quite similar, with an sfactors6f— 65% on average. Working sets of
routers in different POPs tend to differ more, with only@7% overlap on average.
Some of these differences were due to localized DNS redtrece.g., large content
distribution sites redirecting users to geographicaltyser servers).

4 Evaluation of Route Caching

LRU vs. LFU: In this section, we explore performance of caching algangtdirectly

on network traces, and start by comparing LRU (which keegsktof when each entry
was used and evicts the one used the longest time ago) andwhRidh(keeps track
of how many times each entry is used and evicts the one usetrtallest number of

10

—_ —
3 LFU 3
X 10 X
£ £
1] 2
© LJRU [=8 LFU, DSL
1 % " ~—4 LRU, DSL
8 MMMWM 24, |o—o Optimal, DSL
= = 2--A LRU, NetFlo .
A
0% =2 7 6 8 10 12 1416 18 20 22 24 5K 10K 50K 100K 500K 1M
Time (hour) Cache size (log)
(a) (b)

Fig. 2. Miss rate with the DSL traces, (a) Time series of miss rateheasize = 500K, (b) Miss
rates under LRU and the optimal strategy

times while resident in the cache). Figure 2a shows that LRtperforms LFU by a
large margin. Interestingly, the miss rate for LFU initjalecreases during cold-start,
which lasts for approximately to 10 minutes as the cache fills. Several minutes after
the cache reaches capacity, the miss rate sharply increBisisshappens because the
destinations of heavy (i.e., long and fat) flows become ‘Istuic the cache, and the
only way of evicting those is waiting for even heavier flowst@rwrite those entries.
LRU’s miss rate also converges quickly to its long-term agerand remains stable,
whereas LFU’s miss rate takes a few hours to converge andsvarore. This happens
because LFU tends to keep unnecessary entries for a longdpefrtime. We observed
these two findings across a variety of cache sizes and diffarput traffic mixes. Since
LRU vastly outperforms LFU, we focus only on LRU for the restlee paper.

LRU vs. Optimal: Next, we compare LRU’s performance to aptimalscheme that
has knowledge of future access times. The optimal cachiggrithm (OPT) works

by evicting entries that will not be needed for the longestetiin the future. Note
that implementing the optimal algorithm in practice is inspible (as it requires fu-
ture knowledge), whereas implementing LRU (or an approxionaof it) is possible

— if not highly efficient or accurate. Figure 2b compares agermiss rates over the
unsampled DSL trace (solid curves). In a well-provisionetivork, the cache would
be large enough to attain a low miss rate. In this scenarid) p&forms nearly as well

as OPT. For example, with a cache siz&06K, LRU’s miss rate is only).3%-point
higher than OPT’s miss rate. We also study the fine-grainedergence behavior of
OPT and LRU by measuring how fast their miss rates stabMefind that OPT’s miss
rate stabilizes within roughly20 seconds, and that LRU converges almost as quickly,
stabilizing within roughlyl 80 seconds. Given these results, it may be possible to design
cache algorithms that outperform LRU on IP traffic, but it rdikely the performance

of these schemes will be substantially greater than thaRbf.L

Cache size and miss ratefigure 2b shows cache miss rates as a function of cache size
for both the DSL traces (solid) and the NetFlow traces (abtt&he NetFlow curve
shows average miss rate across all routers. Here we elieinadld-start effects by
measuring miss rates values only after the cache has reaepedity. We found that,
with the DSL (NetFlow) traces, LRU attains a miss rat&a®s (4%) for a cache size

-——- entire next-hop failurg
— single next-hop failure|

Miss rate in %
Miss rate in %
N w

=

et

4 5 6 8 1 _ 2
Time (hour) Time (hour)

(a) (b)

Fig. 3. Effect of routing change, (a) Inbound change (NetFlow tsacéb) Outbound change
(DSL traces, cache size = 1M)

of 100K, which is roughly28% of the FIB size in conventional Internet routers. Based
on the measured miss rates, we suggest some rough guidelirtetermining a cache
size: a cache size dM — which is less thar /16 of the maximum number of unique
124 prefixes in theory, and roughly/10 of the total number of24 prefixes used in the
Internet today — may maintain a miss rate of roughly?. For a target miss rate @%6,

a cache size of roughB00K may suffice. Overall, caching uni-class prefixes enables a
route cache that is roughly an order of magnitude smaller itsfull address space.

Impact of routing changes:Next, we evaluate the effect of network dynamics by man-
ually injecting route changes into our traces, and evatgatiow quickly caching algo-
rithms converge after these changes are introduced. Tvierelift route-change events
can affect cache contents. First, routing changes upstodéahe router may alter the
distribution ofinboundtraffic arriving at router interfaces, leading to an abrupamege

in the working set. We simulate this (Figure 3a) by randomijtching to a different
router's NetFlow trace every hour while replaying agaiigt same cache. While these
events cause short-lived increases in miss rate, thesesspi&re roughly a factor of 3
above the average miss rate, and the miss rate stabilizefgvn laundred seconds after
these changes. Second, failures downstream of the routealtes the set of available
outboundroutes, causing multiple cache entries to become invaimisaneously. We
emulate (Figure 3b) the failure of multiple randomly-sédecnext hops by removing
all cached entries associated with the given next hop ugdailure. Here, we find that
for extreme scenarios where large numbers of next-hop retad, these spikes can be
fairly large, increasing ta5 times the original value. However, for smaller numbers of
failures, this value decreases substantially.

5 Related Work

Our paper is not the first to propose route caching. In faaipdithe early 1990s, most
Cisco routers were built with a route caching capability wnasfast switchind?2]. In

these designs, packet forwarding decisions were made b¥iimg a user-level process
that looks up a routing table (RIB) stored in slow memory. To&t lookup speeds,
a route cache stored the results of recent lookups. Unfatély the large speed dif-

ference between the two lookup paths caused many packets kegi in a buffer
awaiting service in the slow path. In addition, upon routaignges or link failures,
large groups of cached routes were simultaneously inv@ijaramatically decreasing
packet forwarding rate and increasing loss probability] [T®is limitation actually led
to the abandonment of route-caching and motivated the gwalof today’s caching-
free routers. Our findings of large bursts of consecutivesegssupport these earlier
observations about the limitation of route caching. Howetlee “fall-back” scheme
(explained in Section 2.1) ensures full line-rate forwagleven on cache misses by
immediately sending traffic to an intermediary. Severaérgavorks suggest that con-
structing a reliable and efficient traffic indirection systés possible [4,5, 7] and thus
warrant revisiting route caching.

Also there has been research which recognized the diffiadilgnsuring forward-
ing correctness when caching CIDR prefixes [12]. These ambres increase cache size
and require a logarithmic searching algorithm even whefix@e are not overlapping.
Recently, lannone et al. studied the cost of route cachimgutihe IETF LISP archi-
tecture [7] using traffic traces to and from a campus netwd7f.[Hence, their analysis
results are applicable to estimating caching behavior &ifarsetwork’s egress router,
whereas our results are suitable to understand cachingrpghce in a large ISP’s net-
work, where route caching would be most beneficial. Moreoakhough their study
was based on caching CIDR prefixes, they did not address titdegon of ensuring
forwarding correctness with a subset of CIDR prefixes.

To understand hownodernworkloads change the performance of route caching,
we compared our results with those of earlier studies. Fan®te, in 1988, Feld-
meier studied performance of cachirzg prefixes on traces captured at a gateway con-
nected to the ARPANET [13]. Partridge repeated a similatyaigto Feldmeier’s in
1995 [18] and confirmed Feldmeier’s earlier findings. We camad our results against
Feldmeier’s to better understand how characteristicstefiret traffic have changed for
the past 20 years. By comparing the cache size needed foget tait rate with the
number of unique24 prefixes seen in the trace, we observed some interestinfjsiesu
For example, when targeting a high hit rate (larger thg¥b), route caching on modern
traces performs better than in these earlier studies; aclge hit rate 0f98% today
requires a cache size, normalized by the number of ertirprefixes in the traces, of
0.1 (i.e.,10%), whereas Feldmeier reported a normalized cache si2aedfMoreover,
when targeting a lower hit rate th&8%, modern workloads are even more amenable
to caching than 20 years ago. In particul@hen targeting a sul5% hit rate, route
caching today is an order of magnitude more efficient tharas @0 years agd-or ex-
ample, for a hit rate 095%, we found modern workloads required a normalized cache
size of only0.008, while Feldmeier reported.096. Traditionally a sut#5% hit rate
was not considered to be tolerable, but recent routing techires that leverage the
“fall-back” mechanism can easily tolerate such a rate.

6 Conclusion

An increasing number of network architectures make us@ute cachingo achieve
scalability. Evaluating the feasibility of these techreguequires rigorous evaluation

of the benefits and costs of caching. This paper revisitsrabearlier works from the
late 1980s on route caching and evaluates the practicdlibeo techniques on modern
workloads. To the best of our knowledge, this paper corisstthe first measurement
study of route-caching performance in a large ISP networy Kbservations from
our study are:ij Working set sizes are stable over time, allowing route eadio be
provisioned with relatively little headroomijY Working sets of routers in a single POP
are very similar to one another, introducing the possipitit pre-populating a cache,;
(iif) Uni-class caching eliminates complexity of longest-prefiatching and enables a
cache using slower, cheaper memory; angl Ensuring full line-rate forwarding upon
cache misses is critical for the success of route cachingfufore work, we plan to
investigate theoretical models for the effects of sampdingstimating cache-miss rate.

References

1. E. Chang, B. Lu, and F. Markhovsky, “RLDRAMSs vs. CAMs/SRAMPart 1.” htt p:
/I www. conmsdesi gn. conf desi gn_cor ner/ OEG0030603S0007.
2. “How to Choose the Best Router Switching Path for Your Nefy/ August 2005. Cisco
Systemsht t p: / / www. ci sco. comf war p/ publ i ¢/ 105/ 20. pdf .
3. C. Partridge, P. Carvegt al., “A 50-Gb/s IP router,” InEEE/ACM Trans. Networking 998.
4. H. Ballani, P. Francis, T. Cao, and J. Wang, “Making Rautexst Longer with ViAggre,” in
Proc. NSDJ April 2009. (To Appear).
5. C. Kim, M. Caesar, and J. Rexford, “Floodless in SEATTLESéalable Ethernet Architec-
ture for Large Enterprises,” iRroc. SIGCOMM August 2008.
6. M. Caesar, T. Condie, J. Kannan, K. Lakshminarayanan|.atica, “ROFL: Routing on
Flat Labels,” inProc. ACM SIGCOMMSeptember 2006.
7. D. Farinacci, V. Fuller, D. Oran, D. Meyer, and S. Brim, ‘tador/ID Separation Protocol
(LISP).” Internet-Draft (work in progress), December 2008
8. D. Andersen, H. Balakrishnan, N. Feamsgé¢rl., “Accountable Internet Protocol (AIP),” in
Proc. ACM SIGCOMM?2008.
9. D. Chang, R. Govindan, and J. Heidemann, “An empiricalystaf router response to large
BGP routing table load,” ifProc. Internet Measurement Worksh@®02.
10. W. Eatherton, G. Varghese, and Z. Dittia, “Tree bitmaardivare/Software IP Lookups with
Incremental Updates,” iIACM Computer Communication Revie2004.
11. “Sampled NetFlow,” Cisco Systenis,t p: / / ww. ci sco. conmf en/ US/ docs/ i os/
12 0s/feature/guide/ 12s_sanf. htnm .
12. H. Liu, “Routing Prefix Caching in Network Processor sl in Proc. International Con-
ference on Computer Communications and Netwdbksober 2001.
13. D. Feldmeier, “Improving Gateway Performance With afR@sitable Cache,” ifProc. IEEE
INFOCOM, 1988.
14. J.Rexford, J. Wang, Z. Xiao, and Y. Zhang, “BGP Routire8ity of Popular Destinations,”
in Proc. Internet Measurement Workshdiovember 2002.
15. R. Jain, “Characteristics of Destination Address Libga Computer Networks: A Compar-
ison of Caching Scheme<Computer Networks and ISDMol. 18, pp. 243-254, 1989/1990.
16. D. McRobb, “Path and Round Trip Time Measurements (slit®21).” htt p: / / www.
cai da. or g/ publi cati ons/ present ati ons/ nanog9806/ i ndex. ht i .
17. L. lannone and O. Bonaventure, “On the Cost of CachingatayiD Mappings,” inProc.
ACM CoNEXTDecember 2007.
18. C. Partridge, “Locality and Route Caches,” 1996.htt p://ww. cai da. or g/
wor kshops/i sma/ 9602/ posi tions/ partridge. htm .

