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Abstract—In a WiFi deployment with multiple access points,
optimizing the way each client selects an AP from amongst
the available choices, has a significant impact on the realized
performance. When two or more such multi-AP networks are
deployed in the same region, APs from different networks can
cause severe interference to one another. In this paper, we
study how inter-network interference effects the intra-network
association optimization and propose a cooperative optimization
scheme to mitigate the interference. We model the interference
between multiple overlapping WiFi deployments, determine the
information that networks need to share, and formulate a
non-linear program that each network can solve for optimal
proportional-fair association of clients to APs. Assuming a ‘sum
of log rates’ utility function, we apply a known 2+ ǫ approxima-
tion algorithm for solving the NP-hard problem in polynomial
time. We evaluate the performance gain through large-scale
simulations with multiple overlapping networks, each consisting

of 15-35 access points and 50-250 clients in a 0.5x0.5 sq.km.
urban setting. Results show an average of 150% improvement
in random deployments and upto 7x improvements in clustered
deployments for the least-performing client throughputs with
modest reductions in the mean client throughputs.

I. INTRODUCTION

To satisfy the exponential growth in mobile data demand [1],

mobile operators, broadband Internet providers and stand-

alone services such as Boingo and IPass are deploying large-

scale WiFi hot-spot networks in urban areas worldwide. This

expanding class of WiFi hot-spot access points, expected to

grow at more than 350% over the next four years [2], are

generally managed through central controllers via solutions

such as those from Meraki [3], Ruckus Wireless [4], and Be-

lAir Networks [5]. While performance improvement through

centralized control is now standard practise in enterprise WiFi

networks [6], [7], [8], [9], the benefits of central control in

public locations with multiple overlapping managed networks

is unclear due to inter-network interference. In this paper, we

study the effect of inter-network interference on the intra-

network optimization problem that each network solves. Fur-

ther, we propose a scheme for cooperative sharing of channel

access information between the different overlapping networks

and show the benefits of such cooperation for all the networks

involved.

Figure 1 shows a real-world example of overlapping WiFi

AP deployments of two leading broadband Internet providers

in a ∼1 sq. km. cross section of the Brooklyn area in New

York, USA, compiled using their respective WiFi location
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Fig. 1: WiFi AP locations of two providers in Brooklyn, NY

finder services [10], [11]. The exact nature of inter-network

interference on the client throughputs in such a scenario

depends on the number of co-channel APs, their transmit pow-

ers, rate allocation algorithm, and MAC parameter selection.

However, inference of these channel access parameters through

passive observations is a hard problem and often requires

active probing [12]. A key challenge in passive interference

estimation is to incorporate the large variation in the number

of interferers - for example the number of potential interferers,

i.e. Xfinity APs surrounding an Optimum AP in Figure 1 varies

from 0 to 5, even in this small scenario. Inference of active

interferers becomes even more challenging considering the

reality of tens of networks, non-beaconing APs, and dynamic

channel selection.

In order to alleviate this inter-network interference, we

propose a back-end operational cooperation between the

networks: each network periodically shares the information

about the location and operating channels of its APs with all

other networks operating in the same area. Note that clients

belonging to one network cannot join other networks in this

model. In this paper, we do not focus on the messaging

interfaces, which could be implemented either in a distributed

fashion, i.e. each AP sends a message to the neighboring APs

of other networks or centrally, i.e. the aggregated information

is passed through a single interface between networks. Rather,

assuming the presence of such side-channel information, we

show how each network can optimize client-AP associations to

minimize the effects of inter-network interference. Within the

scope of the traffic model described in Section III, this form of

information exchange followed by intra-network optimization
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Fig. 2: Qualtitative example of why cooperation is needed: (a) Default mode chooses the least distance AP, (b) Intra-network optimization selects least crowded AP if their

distance to the client are comparable, (c) Cooperative optimization selects AP with least internal and external interference

is the same as a global optimization considering all APs

of all networks as being controlled by a single entity. This

follows from the fact that for certain problem formulations,

the interference terms in the intra-network problem can be

summarized and substituted using the information received

from neighboring networks. To the best of our knowledge,

such forms of cooperation between multiple managed WiFi

networks has received very little attention with only some

recent works in the related area of cellular networks [13].

While operational cooperation can be devised for optimizing

the channel selection, rate allocation, power control, and

back-off windows, we focus on the more tractable case of

optimizing client-AP associations: given a set of APs that a

client can potentially connect to, selecting the best AP so as

to maximize the sum utility of all the clients across all the

network. Due to its direct impact on both the client experience

(in terms of throughput) as well as the network performance

(in terms of traffic load), this problem has been approached

through both centralized network utility maximization

framework [6], [8] and game-theoretic formulations [14]. In

particular, we follow the proportional fairness framework

developed in [6] for the basic intra-network optimization and

enhance it to incorporate inter-network interference.

Operational vs. Access Cooperation: While we propose

the operational form of cooperation in this paper, it is im-

portant to compare it with a simpler form of cooperation

which can be termed access cooperation. Through access

cooperation between two networks, unlike our assumption,

clients of one network can join the other network. While

this can increase the coverage area for both the networks, we

show that unless the two networks also jointly manage their

networks, i.e. solve a global optimization problem, network

utility cannot be maximized by only access cooperation. In

addition, operational cooperation has three distinct advantages

over access cooperation: (i) a network does not have to handle

authentication for clients from other networks, (ii) networks

do not have to over-provision capacity since they do not have

to cater to extra clients and (iii) networks can retain the control

of sessions, policy, and billing of their clients.

The rest of the paper is organized as follows. In Sec-

tion II, we describe why cooperation is required in a multi-

network hot-spot deployment and outline our system model

in Section III. Next, we formulate the optimization problem

in Section IV and present simulation results in Section V.

Section VI concludes the paper and outlines the future work.

II. MOTIVATION

Figure 2 shows an illustrative example of cooperation gain.

Client C1 is in communication range of three APs of the same

network; and the default 802.11 rule as shown in Figure 2(a)

is to choose the closest AP (here AP1), which gives the

highest rate to the client. However, if there is another client C2
attached to AP1, AP1 has to divide its downlink transmission

time between the two clients, as in Figure 2(b). Assuming pro-

portional fair scheduling, the real throughput that C1 gets from

AP1 is only 27 Mbps. Intra-network optimization through a

central controller (e.g., Aruba WLAN controllers [15]) can

identify this load imbalance and connect C1 to AP2 instead

and allow the client to get a throughput of 48 Mbps. In doing

so, the network controller assumes that AP2 has sole control

of the channel. However in a multi-network setting, a foreign

network may have a nearby AP that shares AP2’s channel.

CSMA contention leads to approximately equal time share

between the two APs, leading to an actual throughput of only

24 Mbps for C1 if connected to AP2, as shown in Figure 2(c).

Cooperative optimization incorporates the effect of APs of

other networks and thus connects C1 to AP3 leading to a

throughput of 36 Mbps.

III. SYSTEM MODEL

We consider a system with N independently operated WiFi

networks with Ui and Ai denoting the set of clients and

APs in the ith network respectively. Table I summarizes

the notations we use in this paper. Binary variables xij(k)
indicate the connection state between the jth client and kth

AP of the ith network (1 is connected, 0 if not), while pij(k)
denote the fraction of time provided by the AP to the client.

Similarly, rij(k) denotes the effective bit rate which includes

the retransmission overhead and is assumed to be a step-

wise function of the distance between the client and the AP,

as specified in the 802.11 standard. Since air time fraction

and rate are relevant only for clients connected to an AP,



Symbol Meaning

N No. of WiFi networks

Ui Set of clients in network i

Ai Set of access points in network i

Rcs Carrier sense radius (equal for all APs)

Rint Interference radius (equal for all APs)

Bik Set of co-channel foreign APs within Rcs of
kth AP of ith network

Cik Set of co-channel foreign APs outside Rcs but
within Rint of kth AP of ith network

ηik Number of clients connected to the
kth AP of ith network

rij(k) Wireless PHY rate obtained by the jth client of ith
network when connected to the kth AP of that network

xij(k) Association indicator between the jth client of ith
network and its kth AP (value = 0 or 1)

pij(k) Fraction of time the jth client of ith
network gets from its kth AP

TABLE I: Definition of parameters

pij(k) = 0 and rij(k) = 0 whenever the corresponding

xij(k) = 0. Thus the jth client of the ith network has an

effective downlink rate of
∑

k∈Ai
rij(k)xij(k)pij(k).

As is common in commercial WLAN controllers [15], each

AP employs a proportional fairness policy. Ignoring the pro-

tocol overheads and assuming equal priorities for all clients,

proportional fairness translates to equal time share between

clients in multi-rate WLAN [16]. Thus for the kth AP of the

ith network, each of its ηik clients receive a fraction 1/ηik the

APs airtime. We focus on downlink traffic which forms the

majority of WiFi data transmission [17] and assume clients

always have pending data requests at the AP. This assumption

simplifies the estimation of the client rates significantly and

is valid in hot-spot deployments where the number of clients

is large enough that each client cannot receive its maximum

desired data rate.

In order to account for the inter-network interference, we

denote the set of co-channel foreign APs within carrier sense

range of the kth AP of ith network as Bik and those outside

carrier sense but within interference range (potential hidden

nodes) as Cik . Each AP has to participate in CSMA and

thus shares the channel with co-channel APs within its carrier

sense radius. We assume that within each network, frequency

planning is such that no two APs within carrier sense distance

are assigned the same channel. Thus the kth AP of the

ith network has to share its channel with |Bik| other APs,

bringing its share of the channel access time fraction to

approximately 1/(1+|Bik|) [18]. Further we model the hidden

node interference (interference from APs outside the carrier

sense range but with signals still strong enough to affect

ongoing transmissions) by lowering the channel access time

further. We introduce a parameter α ∈ [0, 1] which captures

the average effect of hidden node interference per interferer.

The channel access time fraction for the kth AP of the ith
network is thus also reduced by a factor of 1/(1 + α|Cik|).
The choice of the α parameter can either be made through

probe experiments during the deployment stage or be pre-

set to the values derived through testbed measurements [19],

[20]. α values in the (0.2, 0.6) range satisfy most of our past

experiments on the ORBIT testbed [21].

The objective of the intra-network association optimization,

given such a model, is to optimize the set of xij(k) variables

for maximum utility which we choose to be one which results

in proportional fairness. The choice of a proportional fair

utility function is a de facto standard in the current EV-

DO, 3G cellular systems, as well as in emerging 4G systems

based on LTE and WiMAX and has been shown to provide

a good balance between resource utilization and fairness of

allocation [6], [8], [22]. For cooperative optimization, each

network first ascertains the values of |Bik| and |Cik| for

each of its APs through periodic message exchange with

other networks. This information is then used to formulate

a similar optimization problem as in the case of intra-network

optimization. Note however, that by including the hitherto

unknown interference components, the cooperative problem

formulation now matches the real interference scenario.

IV. PROBLEM FORMULATION AND SOLUTION

A. Individual Network Optimization

The intra-network non-cooperative optimization problem

formulation is similar to the description in [6]. Since xij(k)
equals 1 only if client j is associated with AP k and channel

access time is equally divided between clients connected to

an AP, the association optimization within network i can be

denoted by:

Maximize:
∑

j∈Ui

log

(

∑

k∈Ai

rij(k)xij(k)pij(k)

)

subject to: pij(k) =
1

∑

j′∈Ui
xij′ (k)

∀k ∈ Ai, j ∈ Ui

∑

k∈Ai

xij(k) = 1 ∀j ∈ Ui

xij(k) ∈ {0, 1} ∀k ∈ Ai, j ∈ Ui

(1)

Here the first constraint models the proportional fairness

policy of each AP and makes the problem non-linear in xij(k)
while the second constraint along with the binary constraint

restricts each client to connect to exactly one AP. Note that

the pij(k) in (1) is not the actual time fraction that the

client would receive as it does not capture the effect of

foreign APs. But without any cooperation, each network has

no idea about the number/location of such APs and thus uses

this value. Reference [6] shows an efficient approximation

algorithm to solve this NP-hard non-linear integer problem

for a slightly different problem formulation. This method first

requires converting (1) to a relaxed discretized linear program

without the integrality constraint on xij(k), i.e., each client

is allowed to connect to multiple APs simultaneously. Then

the rounding process described by Shmoys and Tardos for

the generalized assignment problem [23] is used to arrive at

binary values. This polynomial time 2-approximate rounding

algorithm thus results in a total utility bounded below by that

of the optimal assignment scaled down by a factor of 2 + ǫ.



B. Cooperative Optimization

Extending the above formulation based on the assumptions

of equal time sharing MAC and availability of |Bik| and |Cik|
values, the global association optimization problem can be

written as:

Maximize:

N
∑

i=1

∑

j∈Ui

log

(

∑

k∈Ai

rij(k)xij(k)pij(k)

)

subject to: pij(k) =
1

∑

j′∈Ui
xij′ (k)

.
1

(1 + |Bik|)(1 + α|Cik|)

∀k ∈ Ai, j ∈ Ui, i ∈ [1, N ]
∑

k∈Ai

xij(k) = 1 ∀j ∈ Ui, i ∈ [1, N ]

xij(k) ∈ {0, 1} ∀k ∈ Ai, j ∈ Ui, i ∈ [1, N ]
(2)

The constraints in (2) are a simple extension to those in (1)

Note here that the first term in pij(k) is directly dependent on

the optimization variables xij(k). However |Bik| and |Cik| are

only dependent on the relative placement of co-channel APs

of different networks and are thus constants given a certain

topology. So once each network i knows about the |Bik| and

|Cik| values for each of its AP k, it can individually solve the

association problem. This joint problem can be solved using

the same technique as the individual network optimization.

V. SIMULATION RESULTS

We compare three cases to quantify gains -

• Least Distance: Each client connects to the closest AP of

the same network (benchmark case).

• Intra-Network Optimization: Each network optimizes the

association pattern of its clients.

• Cooperative Optimization: All networks share informa-

tion for optimizing the client association.

Note that in all the three cases we assume that the clients

belonging to a network can only connect to APs from that

network. The discretized linear program was solved using

the open source lpsolve solver [24]. All the results presented

are averaged over 10 simulation runs. We present results for

two deployment scenarios: random deployment and clustered

deployment as follows.

A. Random Deployment

Multiple overlapping networks are considered in a 0.5x0.5

sq. km area, which reflect deployment scenarios in urban hot-

spot networks, multi-tenant buildings, or airports. Each net-

work has a variable 15-25 APs placed at uniformly randomly

selected points. While there is a minimum separation of 50

meters between two APs of the same network, there is no

such restriction for APs of different networks. Reasonable

frequency planning is assumed - each AP chooses one of the

three orthogonal channels in the 2.4 GHz range to minimize

the number of co-channel APs. However due to dense deploy-

ment of multiple overlapping networks, choosing a completely

isolated channel is seldom possible. Clients are placed at

random within the area with the total number of clients of
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Fig. 3: Topology showing an instance of 2 Networks, 25 APs per network and 150

clients per network at random points

each network set as a parameter. Figure 3 shows an instance

of the random AP and client placement. The carrier sense

and interference range thresholds of all devices are set to 215

meters and 250 meters respectively as per the specifications

in [25]. The physical data rates rij(k) are selected based on

the distance between the client j and AP k, also from [25].

The value of the interference scaling parameter α is taken as

0.5.

Figure 4 shows the cumulative distribution of the client

throughputs for all the clients in the system for the topology

shown in Figure 3. The plot shows that while intra-network

optimization improves fairness in client throughput, its effect

is limited due to the presence of APs of another network.

Cooperative optimization more than doubles the 10 percentile

throughput from 230 Kbps to 550 Kbps compared to least

distance scheme and shows a 77% gain when compared

to the same metric in intra-network optimization. Since the

cooperative optimization problem (2) decouples into separate

problems for each network, utility of each network is individ-

ually maximized.

Figure 5 further dissects the comparison between intra-

network and cooperative optimization schemes. In this figure,

clients are arranged in the increasing order of the throughput

they get through intra-network optimization. The key observa-

tion here is that almost all lowest throughput clients are better

off after cooperative optimization, while the accompanying

loss in throughput is inflicted primarily on the clients with

high throughputs.

Figure 6 shows the 10 percentile and mean throughput

values for simulations with N = {2, 3, 4}, 25 APs, and

150 clients. We note that in each of the cases, the 10

percentile throughputs improve by 140-170% with a small 8-

10% decrease in the mean throughput. The achievable mean

throughput naturally goes down with increasing N due to

sharing of the spectrum between a larger number of users.

Table II shows the effect of variations in the number of APs
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and clients per network for the case of N = 3. The key

observation here is that the percentage gain brought about

due to cooperation increases with AP density, but decreases

with client density. The insight from these trends suggests

that higher AP densities lead to greater uncertainties that each

network has to cope with and thus the information sharing

becomes more valuable. However, under a capacity limited

regime with large number of users, since all APs are heavily

crowded, the relative gain of shifting clients from one AP to

another reduces.

B. Clustered Deployment

Clustered deployments, characterized by a large number of

APs placed in a targeted small region are commonly used

to serve public places with very high number of peak users,

e.g., waiting rooms, mall entrance, etc. In order to study

the effects of such topology-specific interference patterns, we

considered a clustered topology with two networks. APs of

the first network are clustered in three rectangular regions

of size 200x200 meters each, while the second network still

has a random AP deployment. All other access parameters

remain the same as in the random deployment case. Figure 7

shows the CDF of the client throughputs for each network.

We observe that since network 1 APs are strongly clustered,
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Fig. 6: 10 percentile and mean client throughput values for varying N with

|Ai| = 25, |Ui| = 150

10 %ile throughput(Mbps) Mean throughput(Mbps)
|Ai| |Ui| Least Intra Coop. Least Intra Coop.

Dist. Optim. Optim. Dist. Optim. Optim.

15 150 0.09 0.13 0.19 0.7 0.66 0.62

25 150 0.1 0.14 0.27 0.78 0.77 0.71

35 150 0.11 0.14 0.31 0.85 0.85 0.77

25 50 0.21 0.33 0.64 1.95 2.17 2

25 150 0.1 0.14 0.27 0.78 0.77 0.71

25 250 0.07 0.09 0.17 0.49 0.47 0.43

TABLE II: 10 percentile and mean client throughput values for varying number of APs

and clients with N = 3

the relative effect of network 2 APs on its performance is

minimal. Hence cooperative optimization does not improve

the client throughputs for this network. Conversely, network

1 clusters strongly effect the performance of network 2, thus

cooperating between the two networks leads to large gains for

network 2.

C. Comparison with Access Coordination

A simple alternative cooperation scheme in a multi-network

scenario is access coordination in which two or more networks

agree to allow each others’ clients to access their networks.

Each client can now connect to the nearest AP of any network.

In order to compare the operational cooperation scheme pro-

posed in this paper with an access coordination scheme, we

reuse the topology in Figure 3 but allow clients to connect

to APs in either network. Figure 8 shows the throughput

of each client under the three association schemes with the

client indices arranged in the order of increasing throughput.

We note that, access cooperation leads to a decrease in the

shortest distance between an AP and a client and thus gives

higher throughput for almost all clients. However, since access

to more APs does not solve the load balancing problem,

operational cooperation results in better performance for more

than 2/3rd of the lowest throughput clients.

VI. CONCLUSION

Overlapping managed WiFi networks are increasingly com-

mon in urban hot-spot deployments, multi-tenant buildings,

office complexes, and airports. While optimizing a single

network has been the subject of a number of studies in
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the last decade, such inter-network interactions are not well

understood. In this paper, we present a first step towards

that and study the effect of inter-network interference on

the client-AP association optimization problem. Since such

planned AP deployments are designed to support a large

number of users, balancing the number of clients associated

to each AP is important. We show that ignoring the presence

of other networks leads to significant throughput degradation,

especially for clients at the edge of an APs coverage region. To

alleviate this problem, we propose an operational cooperation

model under which all networks share the information about

the location and operating channel for all their APs. We show

that incorporating this information for client-association opti-

mization within a network leads to 140-170% improvements

in the 10 percentile client throughputs when clients and APs

are randomly placed. Clustered AP deployments lead to a

much higher gain of upto 7x since the value of the shared

information increases significantly.

We plan to extend the operational cooperation framework

to include channel selection and transmit power optimization.

Studying the effects of non-saturated traffic patterns and a mix

of uplink and downlink transmissions would also lead to a

more pragmatic solution.
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