
Security Vulnerabilities and Solutions
for Packet Sampling

Sharon Goldberg and Jennifer Rexford
Princeton University, Princeton, NJ, USA 08544

{goldbe, jrex}@princeton.edu

Abstract— Packet sampling supports a range of Internet mea-
surement applications including characterizing the spatial flow
of traffic through a network for traffic engineering purposes,
identifying the flows utilizing a link for billing purposes or for
intrusion detection, and monitoring end-to-end data-path quality.
However, packet-sampling mechanisms must be robust to adver-
sarial hosts that craft packet streams that are disproportionately
selected by a packet sampler. For example, a botnet flooding a
network with packets in a denial-of-service attack, or a greedy
customer trying to avoid being billed for network utilization,
each have a strong incentive to craft packet streams that evade
selection by the packet sampler.

In this paper, we focus on securing the passive packet sampling
mechanisms recommended by PSAMP (the IETF Packet Sam-
pling working group [1]) against adversarial hosts. We show that
(1) some of the packet sampling techniques suggested in current
drafts of the PSAMP charter have security vulnerabilities, (2)
secure uncoordinated sampling can be achieved using random
sampling with a cryptographic random number generator, and
(3) secure coordinated sampling requires a cryptographic pseudo-
random function, keyed with a secret key that should be changed
each time the sampler leaks information to the hosts.

I. INTRODUCTION

In packet sampling, statistical (or other) techniques are used
to sample subsets of packets from the traffic flowing through a
network element. The sampled subsets are then used to obtain
statistics that characterize the traffic, and are used for an range
of purposes, including traffic engineering, troubleshooting,
billing and intrusion detection. When sampling is used to
determine the traffic mix or for billing purposes, it sufficient to
collect data at a single link. However, for certain applications
it is necessary to combine data collected in a coordinated
manner at multiple vantage points in the network. For example,
in Trajectory Sampling [2], where the spatial path of certain
packets is traced through a network, statistics are combined
from different network elements that sample the same subset
of packets via coordinated sampling. Furthermore, in passive
path-quality measurement, packet loss rates and delay statistics
are inferred by sampling packets in a coordinated manner at
the ingress and egress ports of a network.

A framework for packet sampling: In Figure 1 we outline a
framework for packet sampling, following PSAMP, the IETF
Packet Sampling working group [1], [3]. Packet sampling
proceeds in three phases: In the selection process, the Sampler
takes in a data packet stream and selects a subset of the
packet stream as an output. Here we model this process with
a (possibly randomized) algorithm Samp(d) that is equal to 1

Host

Sampler

Samp(•)
1

0

Export

Export
Packets

Data

packets

Collector

Sampler

Samp(•)
1

0

Export

d

d

d

Fig. 1. A framework for packet sampling.

if a data packet d is sampled and 0 otherwise. In the reporting
process, the Sampler creates a report stream using relevant
statistics (e.g. packet contents, packet arrival time, etc.) from
the selected packet stream. Finally, during the export process,
the Sampler sends an export packet, containing the outcome
of the reporting process, to the Collector which aggregates
statistics from various Samplers and performs analysis on
the aggregated data. Export packets are typically sent via the
same network that carries the traffic observed by the Sampler.
Following the PSAMP working group [1], in this paper we
focus on passive sampling techniques that do not modify or
mark sampled packets. Thus, while the selection process must
run at line rate, the Sampler may be implemented as a separate
packet monitor that taps off a link, as in Figure 1.

The presence of adversaries: The design of robust packet
sampling schemes is complicated by the presence of hosts on
the network that have a strong incentive to behave adversari-
ally in order to cause the Sampler to disproportionately select
their packets. Consider these natural scenarios:
• Greedy customers have an incentive to generate packet

streams that evade selection by the Sampler in order to
avoid being billed by providers for network utilization.

• Malicious users or botnets performing a denial of service
(DoS) attack have an incentive to generate packets that
evade selection by the Sampler in order to avoid an
intrusion detection system.

• Malicious users or botnets may attempt to flood the
network with export packets, or overload and crash the
Sampler itself, by crafting packet streams that are selected
with 100% probability.

We say that a packet sampling scheme is secure if no
adversarial host can generate a packet stream from which
packets are disproportionately selected by the Sampler, (i.e.

that are sampled more or less frequently than they appear in
the observed packet stream). We will assume that the host
has complete control over all fields of the packets that he
sends. We do not consider techniques for preventing a host
from spoofing fields in a packet; we are only concerned with
ensuring that the Sampler obtains an accurate estimate of the
packets actually traversing a network element.

A. Packet sampling techniques

In this paper, we analyze a subset of the packet-sampling
techniques considered by the IETF PSAMP working group [4].
We assume that the packet sampling rate is p. We consider two
types of uncoordinated sampling, where each Sampler samples
packets independently of all other Samplers:

1) random sampling, where each packet d is sampled
randomly with uniform probability p, independent of
packet contents (i.e. for all data packets d, Samp(d) = 1
with probability p).

2) deterministic periodic sampling, where a packet d is se-
lected based on either arrival time (e.g. packets arriving
every T ms are selected), or packet count (e.g. the T th

packet to arrive at the Sampler is selected).
In coordinated sampling, Samplers at different vantage points
in the network sample the same subset of packets by selecting
packets a deterministic manner that is completely dependant
on packet contents. We consider the following passive coor-
dinated sampling scheme, that does not require the Samplers
to modify packets:

3) hash-based sampling, where each packet d is sampled
if the hash of the packet d falls within a selection range

Samp(d) =
{

1, f(d) ∈ [R1, R2];
0, otherwise. (1)

where f is a hash function taking on values in {1, ..., 2n}
and the size of the selection range [R1, R2] is p 2n.
Hash-based sampling may also be performed using a
keyed hash function fk, where k is a secret key known
only to the Samplers. That is, a packet d is selected if
fk(d) ∈ [R1, R2].

B. Overview of our results and recommendations

We find that the following packet sampling schemes are
vulnerable1 to attacks by adversarial hosts:
• Deterministic periodic sampling. (Section II-B.)
• Unkeyed hash-based sampling, even with a cryptographic

hash function and secret selection range [R1, R2] un-
known to the host. (Section III-A.)

• Keyed hash-based sampling using a non-cryptographic
hash function, even with a secret hash key k and secret
selection range [R1, R2]. (Section III-B.)

While the current drafts of the PSAMP charter suggest that
last two (hash-based) schemes may be used for secure packet

1These vulnerabilities exist even when there is no leakage of information to
the adversarial host about the past history of packets selected by the Sampler.

TABLE I
SYMBOLS USED IN THIS PAPER.

p Sampling rate
d Data packet

f(·) Hash function
produces outputs in the set {1, ..., 2n}

k Hash key (in hash-based sampling)
[R1, R2] Selection range (in hash-based sampling)

T Sampling period (in deterministic sampling)
H Past history of selected packets

sampling, our results indicate that these schemes have serious
security vulnerabilities.

We make the following recommendations for secure packet
sampling in the presence of adversarial hosts:
• Random sampling should be used for uncoordinated sam-

pling using a cryptographically-strong random number
generator. (Section II-A)

• Keyed pseudorandom function (PRF)-based sampling
with a secret key k and a publicly-known selection range
[R1, R2] should be used for passive coordinated sampling.
(Section IV-B.) Furthermore, to protect the system from
adversarial hosts that attempt to break security by re-
peatedly sending identical packets in a replay attack, we
further recommend (see Section IV-C) the following:

* Export packets sent from Sampler to Collector
should be secured (see Section I-C for details).

* The secret key to the PRF should be changed every
so often to limit the time window of vulnerability to
replay attacks. For example, the PRF key could be
changed each time any side channel (e.g. a bill sent
to a customer) leaks information to the host about
the past history of packets selected by the Sampler.

We believe that these modest recommendations could readily
be implemented in practical packet sampling schemes. The
high-throughput PRFs required for coordinated sampling can
be efficiently implemented in hardware using pipelined AES in
CBC-mode or with a cryptographic hash function like MD5,
SHA1, or the hash functions of [5]. Furthermore, since the
random number generator required for uncoordinated sampling
is typically implemented using cryptographic techniques of
comparable complexity to a PRF (e.g. AES in counter mode,
or a stream cipher), PRFs-based coordinated sampling may be
sufficient for most applications. Finally, updating the PRF key
with a new session key derived from a master secret shared by
the Samplers can be done without incurring much additional
management overhead (e.g. using a ‘forward secrecy’ protocol
as in the Internet Key Exchange (IKE) [6]),

C. Past history: Export packets and other side channels

An adversarial host can often use information about the
past history of packets selected by the Sampler to learn how
to break the security of a packet sampling scheme. Past
history information may be obtained by eavesdropping on
the export packets sent over the network from a Sampler
to a Collector. Notice that even if the export packets are

encrypted, and adversary might still be able to use timing
information to determine whether or not a packet is sampled
(e.g. if export packets are released immediately after a packet
is sampled, the adversary can use timing to learn which packets
where sampled). Furthermore, the length of the export packet
can also leak information about the packets or number of
packets sampled by the device. Other ‘side channels’ can
also leak information about selected packets. For example, an
adversarial host can monitor his billing information to learn
the fraction of the packets that he sent that were also selected
by the Sampler.

Securing the export packets: A simple approach to prevent
export packets from leaking information is to do away with
them altogether; that is, to physically co-locate the Sampler
and Collector, so that export packets need not be sent via the
network. However, this solution in infeasible in coordinated
sampling applications that require the Collector to aggregate
statistics from Samplers at different physical locations in the
network. Alternatively, to prevent export packets sent via the
network from leaking information, they should be encrypted,
padded to constant length, and sent out a fixed time intervals.

The effect of past history on security: When an unkeyed
hash function or a non-cryptographic keyed hash function is
used for sampling, an adversarial host can use as small amount
of past history information to not only break the security, but
also to learn the secret selection range and hash key used
by the Sampler (Sections III-A and III-B). Furthermore, in
Section IV-C we discuss how past history information can be
used by adversarial host to launch replay attacks in PRF-based
sampling.

II. UNCOORDINATED SAMPLING

A. Random Sampling: Security

In random sampling, each Sampler flips an independent,
p-biased coin to decide whether or not it selects a packet.
Because each Sampler independently decides whether or not
to select a packet, random sampling can only be used for
uncoordinated packet sampling. Random sampling is secure
even when an adversarial host knows the entire past history
of packets selected by the Sampler. This follows from the fact
that each packet is selected independently with probability p,
independent of packet contents, and thus independent of past
history. Random sampling requires a cryptographically-strong
random number generator for packet selection (in practice,
a stream cipher, or a block cipher in counter mode may be
used); otherwise, it is possible for an adversary to predict the
result of the Samp(·) function with better probability than just
guessing randomly with probability p. Notice that security
fails if the Samp(·) function uses a number generator the
produces a pattern of numbers that the adversary can predict
(e.g. a deterministic sequence that repeats the same pattern of
numbers, e.g. the Quasi-Random Signal Sequence (QRSS)).

B. Deterministic Periodic Sampling: Vulnerabilities

In deterministic periodic sampling, a packet is selected (in
count-based sampling) if it is the T th packet to arrive at

the Sampler, or (in time-based sampling) if it arrives at the
Sampler during the sampling time interval (of length pT) that
repeats every T seconds. We claim that an adversarial Host
who knows the sampling period T can easily break security
of deterministic periodic sampling, even when there is no
leakage of past history information. Here we only describe the
attack on time-based sampling. Assume that Host knows the
sampling period T . Then, Host simply chooses a random time
instant to to send his first packet, and then proceeds to send
his next packet at time to + T . He continues in this manner
so that his packets are sent spaced out at time intervals of T .
With high probability 1− p, the random start time to will not
coincide with the sampling interval used by the Sampler. As
such, with high probability, the Sampler will not select the
any of the packets sent by the Host, and the scheme is not
secure.

III. VULNERABLE COORDINATED SAMPLING SCHEMES

Recall that in hash-based coordinated sampling, a packet d
is selected if its hash f(d) falls in a selection range [R1, R2],
(see Equation 1). In this section, we start by presenting
attacks by adversarial hosts that that break the security of
unkeyed-hash-based sampling, even when the hash function
is cryptographic and the selection range is kept secret. We
then show attacks that break the security of non-cryptographic
keyed-hash-based sampling, even when the hash key k and
selection range [R1, R2] are kept secret. These attacks suggest
that a secure coordinated packet sampling scheme should use
a keyed hash function, and furthermore, that the keyed hash
function should be cryptographically strong. (In Section IV-B
we shall present a security argument that shows that keyed-
hash-based sampling using cryptographically-strong pseudo-
random functions is indeed secure.)

Cryptographic hash functions: In this paper, we idealize
an unkeyed cryptographic hash function f as a publicly
known truly random function2 which can be thought of as
the following: for each input x, a value in {1, . . . , 2n} is
chosen uniformly at random to be f(x). In practice, we
can think of MD5, SHA1 or the hash functions in [5] as
cryptographic hash functions. For our purposes, a (keyed, or
unkeyed) hash function that is ‘not cryptographically strong’
is a hash function that can be efficiently distinguished from
a random function. It follows that any hash function that is
easy to invert (i.e. if given some output y it is easy to find
an input x such that f(x) = y) is also not cryptographically
strong. Our canonical example of a non-cryptographic keyed
hash function will be the CRC keyed with a secret modulus
k, which we model as

fk(d) = d mod k (CRC)

Observe that because the CRC is a linear function, it can
easily be distinguished from a random function by checking if
fk(d + 1) = fk(d) + 1 for arbitrary d.

2More precisely, we model the hash as a random oracle, see [7].

A. Unkeyed Hash Based Sampling: Vulnerabilities

We now show attacks on unkeyed-hash-based packet sam-
pling with a cryptographically-strong hash-function and secret
selection range. In our first attack, the adversarial host breaks
security without using any information about the past history
of selected packets. While the first attack is serious enough
to break the security of the packet sampling scheme, we also
present a second (more serious, but perhaps less realistic3)
attack in which the Host uses a very small amount of past
history information (e.g. billing information) to not only break
security, but also to learn the secret selection range.

Attack without past history: To attack, Host starts by
choosing a random number R̂1 ∈ {1, 2, ..., 2n}, and setting
R̂2 = R̂1+p 2n. Then, Host does the following for each packet
that he wants to send to Sampler: Host chooses d. Then Host
computes f(d). If he finds that f(d) ∈ [R̂1, R̂2], he sends d
to Sampler (since we model f as a truly random function,
this happens with probability p). Otherwise, he tries the above
again with a newly chosen packet d′. Using this process, Host
ensures that the hash of each packet he sends falls in the
range [R̂1, R̂2]. Now observe that with high probability 1−2p,
[R̂1, R̂2] will be different from the true private selection range
[R1, R2] used by Sampler, so that none of Host’s packets will
be selected by Sampler, and Host breaks security. Notice that
the for each packet that Host sends to Sampler, then with 99%
probability Host needs to try at most log(0.01)

log 1−p packets before
he finds one that falls in his chosen range [R̂1, R̂2] (e.g. if
p = .02, then with 99% probability he needs to compute
at most 228 hashes). Furthermore, if the hash function is
not cryptographically strong, the adversary needs to compute
even fewer hashes for each packet he sends (e.g. if the hash
function is the CRC function with a publicly-known key k,
then the adversary can immediately choose packets d such that
d mod k ∈ [R̂1, R̂2]).

Learning the selection range using past history: We will
assume that during every billing interval Host obtains a bill
that indicates whether or not he sent packets over the network
during that interval. (This past history information could also
have been obtained for unsecured export packets or other side
channels.) To learn Sampler’s secret selection range [R1, R2],
Host does the following: During each billing interval, Host
chooses a new range [R̂1, R̂2] and crafts packets such that the
hash of each packets falls in [R̂1, R̂2] as described in the attack
above. If Host is not charged during the billing interval, then
he learns that [R̂1, R̂2] is disjoint from the true selection range
[R1, R2]. Similarly, if he is charged, it follows that [R̂1, R̂2]
overlaps with [R1, R2]. This process can be repeated (with
cleverly selected ranges [R̂1, R̂2]) during each billing interval
until Host eventually learns the secret selection range [R1, R2].

3These attacks may be more realistic than they first appear, particularly if
the Host knows that only the first N bytes of each packet are used as input
to the hash function. Then, the Host can break security by crafting packets
as shown in these attacks, while still getting useful communication from the
remaining bytes of each packet.

Packet number

mk di dj (m+1)k dl

k

Selected

packets

Fig. 2. Attack on the CRC with secret modulus.

B. Non-Cryptographic Keyed Hash Based Sampling:
Vulnerabilities

Because of the large variety of non-cryptographic hash
functions, in this section we focus on the CRC as an example
of a non-cryptographic keyed hash function. We assume that
the key k and the selection range [R1, R2] are kept secret. As
in Section III-A, we show an attack where the adversarial host
breaks security without using any past history information, and
another attack where the Host uses past history to learn the
secret key and selection range. We will think of a data packet d
as an integer (using the obvious mapping from bits to integers).

Attack on CRC without past history: This attack is very
similar to the attack without past history in Section III-A,
except that here, the Host does not know know the hash key
k, and instead relies on the linearity of the CRC function. To
attack, Host starts by choosing a packet d, and then sends
a linear progression of packets d, d + 1, ..., d + p 2n to
Sampler. Observe that by the linearity of the CRC, all the
packets sent by Host will fall in the range [R̂1, R̂2] where
R̂1 = d mod k and R̂2 = R̂1 + p 2n. As in Section III-A,
with probability 1 − 2p the range [R̂1, R̂2] will be different
from the true private selection range [R1, R2], so that none of
Host’s packets will be selected and Host breaks security.

Learning the selection range and the CRC hash key
using past history: As in Section III-A, we will again assume
that at the end of every ‘interval’ Sampler leaks information
(because of billing, or export packets) about whether or not
a packet was selected. We sketch the method Host uses to
learn Sampler’s secret information as follows: Host starts by
choosing a data packet d1. In the first interval Host sends
packet d1, and checks at the end of the interval if d1 was
selected. During the next interval, he sends d2 = d1 + 1 and
checks if d2 was selected. He continues this process until he
finds packets di, dj , d` such that
• di is not selected and di+1 is selected
• dj is selected and dj+1 is not selected, and j > i
• d` is not selected and d`+1 is selected and ` > j > i.

Now, observe from Figure 2 that because the CRC is linear,
the transition between selected packets and unselected packets
occur at the edges of the true selection range [R1, R2], and that
selection ranges are separated by an additive distance of k. It
follows the adversary can learn the key and selection range as
follows:

k = d` − di

R1 = di mod k

R2 = dj mod k

Note that this attack can be made faster by using more
efficient search techniques to find, di, dj , d` (instead of simply
incrementing d by 1 at each interval). For example, Host can
increment each packet by p 2n at each interval, until he finds
two packets that land inside two consecutive selection ranges
(see Figure 2), and then search around those packets until he
finds the edges of the selection ranges, di, dj , d`.

Attacks on other non-cryptographic keyed hash functions:
Instead of sending a linear progression of packets as in the
attacks on the CRC, attacks on other non-cryptographic keyed
hash functions require the Host to send a more complicated
packet stream that depends on the structure of the hash
function. For example, if the hash function is easy to invert
(i.e. given output y it is easy to find an input x such that
fk(x) = y), then the following attack breaks security of the
sampling scheme: if the Host sends a progression of packets
di+1 such that fk(di+1) = fk(di)+1 (i.e. Host finds di+1 by
inverting the hash function), then as above with probability
1− 2p none of Host’s packets will be selected.

IV. SECURE PRF-BASED COORDINATED SAMPLING

In this section, we use techniques from theoretical crypto-
graphy to argue that coordinated sampling based on keyed
pseudorandom functions is secure. To do this, we first formal-
ize the intuitive notion of security that we have been using
throughout this paper with a game-based security definition. In
cryptography, game-based definitions (consisting of a security
game and a security condition) are used to obtain precise
guarantees of security (e.g. see [8]). Next, we use the game-
based definition to argue that PRF-based sampling is secure
if the hash key k is kept secret, up to the possibility of
replay attacks. Finally, we give practical recommendations for
mitigating the effect of replay attacks on PRF-based sampling.

Pseudorandom Functions (PRFs): A PRF is a determin-
istic4 function that takes in a random secret key k and an
input x and outputs a value in {1, . . . , 2n} as fk(x). A PRF
[8] is a keyed function that cannot be distinguished by any
computationally-efficient algorithm (that does not know the
key) from a truly random function with better than non-
negligible probability. In practice, a PRF can be realized with
e.g. AES in CBC-mode, MD5, SHA1, or [5].

A. Adversarial Hosts: Formal Security Definition

The game setting: The game setting for packet sampling
with adversarial hosts, shown in Figure 3, defines the power
of the (computationally-efficient) adversary Host and models
how he interacts with the honest parties (Sampler, Collector).
Host generates data packets d, subject to the requirement
that each packet is unique (this requirement precludes replay
attacks, see our discussion below), and sends data packet
d to Sampler who then runs Samp(d) on each packet. If
Samp(d) = 1 then the data packet is sampled and included
in the export packet that Sampler sends to Collector. We also
give Host the power to eavesdrop on the export packets that

4All the randomness in the PRF comes from the choice of secret key.

Host Sampler Collector
d export

packets

Fig. 3. Packet sampling with adversarial hosts.

Sampler sends to Collector. The game proceeds in two phases:
During the training phase, Host is allowed to generate and
send data packets, and observe export packets. During the
training phase, we keep track of H , the history of packets
sampled by Sampler, and export packets sent to Collector.
(H contains a list of pairs, where each pair (di, Samp(di))
records the ith data packet sent by Host di, and whether or
not Sampler selected di.) Then, during the challenge phase,
Host must generate a challenge data packet d∗.

Security condition: We say that Host wins the packet
sampling game (i.e. breaks the security the packet sampling
scheme) if, conditioned on the past history H , the challenge
packet d∗ is sampled with probability different from the
sampling rate p. That is, for some negligibly small value of ε,
we say the packet sampling scheme is secure if, for all possible
Host playing the packet sampling game, then

| Pr[Samp(d∗) = 1|H]− p | ≤ ε

Replay Attacks: In a hash-based sampling protocol, when
Host learn (e.g. from export packets or other side channels)
whether or not some packet d was selected by the Sampler,
then Host can trivially break security by re-sending d.5 We
call this a replay attack. Replay attacks may be a significant
threat when only a portion of the fields in a packet is used
to decide if a packet should be selected; a user may replay
those portions of the packet while using the rest of the packet
to carry his (non-replayed) communication payload without
being detected by the Sampler. Malicious hosts launching a
DoS attack on a network may also attempt to flood a network
with replays of a packet that they learned was not selected
by Sampler. Because our game-based definition restricted the
Host to sending only unique packets, our security game does
not consider replay attacks (i.e. a scheme that satisfies our
security definition may still be vulnerable to replay attacks).
We take this approach because, in a deterministic packet sam-
pling scheme, completely preventing replay attacks requires
the Sampler to append a unique identifier to each packet as
it enters the network. However, since we are interested in
passive sampling protocols that do not modify packets, tagging
packets in not a viable solution.6 Thus, while our formal
security definition does not preclude replay attacks, we discuss
practical techniques for mitigating the effect of replay attacks
in Section IV-C.

5More formally, if past history H contains the pair (d, 1), then if Host
knows to send d∗ = d as his challenge packet then d∗ is selected with
probability 1 and Host breaks security.

6Another way to completely prevent replay attacks in a deterministic
scheme is to change the sampling scheme’s parameters, e.g. hash key, each
time a packet is sampled. This approach is, again, too impractical to consider
here.

B. Security of PRF-based Sampling

We claim that keyed cryptographic pseudorandom function
(PRF) based sampling satisfies the game-based security de-
finition of Section IV-A. The key k to the PRF fk must
be kept secret. The selection range [R1, R2] need not be
kept secret. To prove this, we consider two different packet
sampling games; Game Gprf is the packet sampling game
(Section IV-A) with PRF hash-based sampling and publicly
known sampling range [R1, R2], and Game Grand is the same
packet sampling game but with random sampling. Consider an
adversary Host playing game Grand, where for every packet
d that Host gives to Sampler during game Grand, Sampler
decides to sample d with truly random probability p. Note
that game Grand is identical to game where Sampler generates
a new, truly random number for each packet d that Host
gives him, and decides to sample d if the random number
falls in the publicly known selection range [R1, R2]. Next,
consider Host playing game Gprf , where for each packet d,
Sampler generates a new pseudorandom number fk(d), and
checks if the pseudorandom number falls in the selection
range [R1, R2]. Recall that our security game in Section IV-A
restricts the Host to sending only distinct data packets d to
Sampler. It follows that in game Gprf Sampler will generate a
new, distinct pseudorandom number for every data packet that
Sampler receives. Now by the definition of PRFs, the random
numbers generated by the PRF will be indistinguishable (by
any computationally-efficient algorithm) from truly random
numbers. Therefore, since each for each packet in Game
Gprf Sampler generates a new pseudorandom number that
is indistinguishable from a truly random number, it follows
that game Gprf is (computationally) indistinguishable from
game Grand. (Notice that if games Gprf and Grand could
be distinguished by some computationally-efficient algorithm,
we could use that algorithm to construct an algorithm that
distinguishes between PRF and truly random functions, and
therefore break the security of the PRF.) Now because game
Grand is secure even when the adversary has access to the
entire past history H (see Section II-A), it follows that game
Gprf is also secure, so that PRF-based sampling is secure.

C. Mitigating Replay Attacks in PRF-based Sampling

Replay attacks are particularly problematic when the host
has access to past history of selected packets (because he
can use this history to figure out exactly which packets he
should replay to, say, avoid being detected by the Sampler).
Thus, one way to mitigate the impact of replay attacks over
a long time scale is to change the PRF key k each time
past history information leaks out of the Sampler. A forward
secrecy protocol, e.g. as in the IKE [6], can be used to update
the PRF key with a session key derived from a master secret
shared by the Samplers. When the PRF key is changed, past
history information becomes useless; that is, since from the
properties of PRFs, any packet d will selected with a new PRF
key independently of whether or not d was selected by the old
PRF key. In most systems, past history information leaks out
of the Sampler on a relatively slow timescale (e.g. every time

an unsecured export packet is sent, or each time a bill is sent).
Thus, a practical approach to mitigating the effect of replay
attacks is to prevent export packets from leaking information
(by securing them as described in Section I-C), and to change
the PRF-key each time other side channels (e.g. billing) leak
information to the hosts.

However, short-time-scale replay attacks are still possible!
We emphasize here that securing the export packets and
changing the PRF key does not prevent an adversarial Host
from blindly performing the following replay attack: Host
sends N consecutive identical packets to the Sampler in hopes
that all N of his packets will not be selected. Recall that
(uncoordinated) random sampling is not vulnerable to these
blind replay attacks. Again, the PRF key can be changed to
limit the time window of vulnerability to these blind replay
attacks.

V. OTHER SECURITY ISSUES

In the previous sections, we considered the security of
the packet sampling system in Figure 1 against adversarial
hosts that attempt to craft packets that are disproportionately
selected by the Sampler. We now consider the security of
the system against adversaries that try to ‘game’ the system
by tampering with the export packets, and adversarial routers
inside the network that attempt to bias passive measurement.

A. Authenticity of Export Packets

In Section I-C we argued that to prevent leakage of in-
formation about the past history of selected packets to the
adversary, then export packets must be encrypted, padded to
fixed length, and send out at constant time intervals. We now
call attention to the fact that some entities on the network
may have an incentive to forge the export packets sent from
Sampler to Collector (see Figure 1). For example, during a
DoS attack, an adversary may forge export packets to trick
the Collector into thinking that the network is operating under
normal conditions. Fortunately, there are simple solutions to
this problem. One approach is to secure the infrastructure
itself, by configuring access control lists at the perimeter of
the network to filter all the packets destined to a Collector
that originate outside the network. When the infrastructure
cannot be secured (e.g. because adversarial entities may be
located inside the network) then export packets should be
authenticated (using a symmetric- or public-key signature
[8]) to prevent an adversary from modifying information sent
between Sampler and Collector.

B. Secure Passive Path Measurement

As discussed in [3], another application of coordinated
packet sampling is to allow network entities to measure packet
loss and delay through the network. In passive path mea-
surement, different Samplers sample the same set of packets;
information is aggregated at the Collector, and then packet
loss and delay are calculated (e.g. by checking if a packet
seen by an ingress Sampler was dropped before it reached
an egress Sampler). Passive measurement can be used for

Ingress

Sampler
Host

Collector

d

export

packets

Egress

SamplerEve

d d

Fig. 4. Passive path measurement in the presence of adversaries (Eve).

troubleshooting purposes, or to inform routing decisions. A
passive path measurement scheme (especially one designed
for the interdomain setting) must be robust to adversarial
routers along the data path that attempt to bias path loss
measurements by dropping packets in a manner that is not
detected by the measurement system.

We studied this problem, which we called fault detection,
in [9]. The setting is reproduced in Figure 4. Instead of con-
sidering an adversarial Host, here we consider an adversarial
router (aka Eve) on the data path between the ingress Sampler
(aka Alice) and the egress Sampler (aka Bob). The adversarial
router Eve wants to drop packets without being detected.
Eve also eavesdrops on the export packets sent between the
Sampler and Collector. In [9], we proposed two new fault
detection protocols, Pepper Probing and Salt Probing, for
secure fault detection that are compatible with the packet
sampling framework of Figure 1. Both Pepper Probing and
Salt Probing use a pseudorandom function to sample packets
in a coordinated manner at the ingress and egress Sampler.
Authenticated export packets, containing lists of the packets
selected by egress Sampler, are sent to a Collector co-located
with the ingress Sampler, as shown in Figure 4. In [9] we
show that both Pepper Probing and Salt Probing are secure
even if the adversarial router has access to unsecured export
packets. The results of [9] again confirm the importance of
pseudorandom functions in secure coordinated sampling.

VI. CONCLUSIONS

Vulnerable Sampling Techniques: We showed that, even
when an adversarial host has no information about the past
history of packets selected by the Sampler, the host can
break security by crafting packets that are disproportionably
selected by the Sampler in (1) deterministic periodic sampling,
(2) unkeyed hash-based sampling, and (3) non-cryptographic
keyed hash based sampling. We also showed how an adversary
can use information obtained from export packets or billing
to learn the secret selection range (and hash key) in unkeyed
hash-based sampling, and non-cryptographic keyed hash-based
sampling.

Recommendations for Secure Sampling: For secure uncoor-
dinated sampling, we recommend the use of random sampling
with a cryptographically-strong random number generator (e.g.
a stream cipher, or a AES in counter mode). Random sampling
schemes are not subject to replay attacks, even when export
packets are not secured.

For secure coordinated sampling, we recommend the use
of a cryptographically-strong pseudorandom function (PRF)
keyed with a secret key and with a publicly known selection
range. We emphasize that a PRF operating at router line rates
can be efficiently implemented using pipelining in hardware
(e.g. AES in CBC mode, MD5, SHA1, or the hash function
of [5]). Furthermore, despite the fact that passive PRF-based
sampling remains vulnerable to blind, short-time-scale replay
attacks when the host sends consecutive identical packets in
hopes that none of his packets will be selected, we make the
following modest recommendations for mitigating the effect of
replay attacks over long time scales, while still preserving the
passive properties of the sampling scheme: (1) export packets
should be secured (either by (a) collocating the Sampler
and Collector so that export packets need not traverse the
network, or by (b) encrypting, padding to constant length,
and sending export packets over the network at constant rate),
and (2) the PRF key should be changed (using ‘forward
secrecy’ techniques, as in IKE [6]) to limit the time the time
window of vulnerability to replay attacks, e.g. each time billing
information is sent to the end hosts. We believe that these
modest recommendations could readily be deployed in secure
implementations of the PSAMP charter.

ACKNOWLEDGMENTS

The authors thank David Xiao, Boaz Barak, Haakon Ring-
berg and the members of the Cabernet Group at Princeton
University for helpful comments and discussions.

REFERENCES

[1] IETF, “Packet sampling working group,”
http://www.ietf.org/html.charters/psamp-charter.html.

[2] N. G. Duffield and M. Grossglauser, “Trajectory sampling for direct traffic
observation,” IEEE/ACM Transactions on Networking, vol. 9, no. 3, pp.
280 – 292, June 2001.

[3] N. Duffield, Ed., A Framework for Packet Selection and Reporting,
Internet Draft. IETF Packet Sampling Working Group, January 2005 -
work in progress.

[4] T. Zseby, M. Molina, N. Duffield, S. Niccolini, and F. Raspall, Sampling
and Filtering Techniques for IP Packet Selection, Internet Draft. IETF
Packet Sampling Working Group, July 2005 - work in progress.

[5] NIST, “Hash function workshop,” http://csrc.nist.gov/pki/HashWorkshop/.
[6] D. Harkins and D. Carrel, Internet RFC 2409: The Internet Key Exchange

(IKE), 1998.
[7] M. Bellare and P. Rogaway, Random oracles are practical: a paradigm

for designing efficient protocols. ACM First Annual Conference on
Computer and Communications Security, 1993.

[8] O. Goldreich, Foundations of Cryptography. Cambridge University
Press, 2007.

[9] S. Goldberg, D. Xiao, B. Barak, and J. Rexford, “Measuring path quality
in the presence of adversaries: The role of cryptography in network
accountability,” Technical Report, Available upon request.

