
E�cient Precomputation of Quality-of-Service RoutesAnees Shaikhy, Jennifer Rexfordz, and Kang G. ShinyyDepartment of Electrical Engineering zNetwork Mathematics Researchand Computer Science Networking and Distributed SystemsUniversity of Michigan AT&T Labs { ResearchAnn Arbor, MI 48109-2122 Florham Park, NJ 07932-0971fashaikh,kgshing@eecs.umich.edu jrex@research.att.comAbstractQuality-of-service (QoS) routing satis�es application performance requirements and optimizes net-work resource usage by selecting paths based on connection tra�c parameters and available link capacity.However, QoS-routing protocols can introduce signi�cant network overhead for computing routes anddistributing information about link load. These issues must be carefully addressed before deployingQoS-routing protocols in large backbone networks. Route precomputation is an e�ective way to amor-tize the cost of the path-selection algorithm over multiple connection requests, at the risk of selectingsuboptimal routes. This paper introduces e�cient mechanisms for precomputing one or more routes toeach destination, and on-demand checking of the suitability of the routes at connection arrival, based onthe most recent link-state information. The algorithm uses a small extension of the traditional Dijkstrashortest-path computation to precompute a minimum-cost graph, and an on-demand depth-�rst searchto extract a feasible route for each connection. As part of the extraction process, the algorithm canrerank the routes in the minimum-cost graph to improve the routing choices for subsequent connections.Simulation experiments show that the route precomputation and extraction techniques are e�ective atlowering the computational overheads for QoS routing, while achieving performance similar to the moreexpensive on-demand path-selection schemes.1 IntroductionThe success of distributed audio and video applications hinges on having predictable performance in theunderlying communication network. The network can provide throughput and delay guarantees by re-serving resources for individual connections or
ows. The routing algorithm plays a pivotal role in thisprocess by locating paths that can satisfy the performance requirements of arriving connections. This isparticularly important for handling high-bandwidth multimedia streams, which often consume a relativelylarge fraction of the link capacity. Quality-of-service routing has the potential to optimize the usage ofnetwork resources, and increase the likelihood of accepting new connections, by selecting paths based onexisting network load and connection tra�c parameters [1{3]. However, distributing link load informationand computing routes for new connections can consume considerable bandwidth, memory, and processingresources. Controlling these overheads in large backbone networks requires a careful trade-o� betweenaccuracy and complexity. In this paper, we present an e�cient path-selection scheme that precomputesroutes, while still capitalizing on the most recent network load information available at connection arrival.Our study focuses on link-state routing algorithms where the source router or switch selects a pathbased on connection throughput requirements and the available resources in the network. For example, the

ATM Forum's PNNI standard [4] de�nes a routing protocol for distributing topology and load informationthroughout the network, and a signalling protocol for processing and forwarding connection-establishmentrequests from the source. Similarly, proposed QoS extensions to the OSPF protocol include an \explicitrouting" mechanism for source-directed IP routing [5, 6]. Each switch maintains its own view of the availablelink resources, distributes link-state information to other switches, and selects routes for new connections.To improve the scalability of these protocols in large con�gurations, the switches and links can be assignedto smaller peer groups or areas that exchange detailed link-state information. In this paper, we focus onreducing the overheads of QoS routing within a single peer group, though the algorithms apply to thegeneral case of hierarchical networks. We consider the case of large, relatively well-connected, backbonetopologies that o�er the possibility of multiple routes between source-destination pairs. In addition, wecompare performance on more sparsely-connected networks that provide fewer routing options.E�cient QoS routing requires e�ective techniques for computing routes and exchanging link-state in-formation. Link state is typically propagated in a periodic fashion, or in response to a signi�cant change inavailable capacity. For example, a link may advertise its available bandwidth metric whenever it changesby more than 10% since the previous update message; in addition, a minimum time between update mes-sages is often imposed to avoid excessive link-state update tra�c. When a connection request arrives,the source typically computes a suitable route, using the most recent link-state information, and initiateshop-by-hop signalling to reserve resources along the path to the destination. The set-up attempt fails ifone or more of the links no longer has su�cient resources to accept the new connection. After such asignalling failure, the source may decide to try a new route, that excludes the o�ending link, or may simplyblock the connection. These route computations and signalling attempts consume processing resources atthe switches, and introduce set-up latency for each accepted connection. Minimizing these overheads isparticularly important during periods of transient overload, such as bursty connection arrivals or reroutingof tra�c after a link failure.Most previous research on QoS routing has investigated on-demand policies that compute a pathat connection arrival. Recent work considers precomputation or path caching schemes that attempt toamortize the overheads of route computation by reusing the paths for multiple connection requests [6{10].Path precomputation introduces a trade-o� between processing overheads and the quality of the routingdecisions. Previous work on precomputed routes has focused on quantifying this trade-o� and developingguidelines for when to recompute routes. We extend this work by presenting e�cient mechanisms forprecomputing paths under source-directed link-state routing. In particular, this paper addresses severalimportant practical questions:� How should the precomputed routes be stored?� How should multiple routes be computed?� How much work should be performed at connection arrival?� How should routing and signalling overheads be limited?We answer these questions with four key elements that are described in detail in Section 2:� Coarse-grain link costs: Path selection is based on link-cost metrics, which are a function of link-stateinformation. Limiting link costs to a small number of values reduces the computational complexity2

of the path-selection algorithm. Coarse-grain link costs do not signi�cantly degrade performance,and increase the likelihood of having more than one minimum-cost route to a destination.� Precomputation of minimum-cost graph: Each switch or router precomputes a compact data struc-ture that stores all minimum-cost routes to each destination. A small modi�cation to Dijkstra'sshortest-path algorithm can locate all minimum-cost routes to each destination. Instead of storingthe precomputed paths in a cache or table, route extraction is postponed until connection arrival.� Route extraction with feasibility check: As part of extracting a route, the source checks the feasibilityof each link, based on the most recent link-state information and the bandwidth requirement of thenew connection. The algorithm performs a depth-�rst search through the Dijkstra data structure,extracting the �rst route in the common case. Then, the source initiates signalling in the network toreserve resources along the selected path.� Reranking of multiple routes: The depth-�rst extraction algorithm imposes an implicit ordering ofthe links when a node appears in multiple minimum-cost paths. As part of route extraction, thesource can rerank these links to improve the path-selection process for the next connection. Thisprovides a simple framework for a number of alternate-routing policies.These mechanisms enable a wide range of policies for when to compute new routes, how many candidateroutes to try for a new connection, and how often to update link-state information. Coupled with oure�cient routing mechanisms, these policy decisions allow the network to signi�cantly reduce processingoverheads and set-up delay, in comparison to traditional on-demand algorithms. In addition, the simu-lation experiments in Section 3 show that the feasibility check, and the potential for multiple candidateroutes, results in lower likelihood of rejecting requests and lower signalling overheads, in relation to otherprecomputation schemes. Section 4 compares our approach to related work on QoS route precomputation,and Section 5 concludes the paper with a discussion of future research directions.2 Precomputation of QoS RoutesReducing the overheads of route computation requires careful consideration about how much informationand processing are involved on various time scales. The source receives the most accurate informationabout network load and connection resource requirements upon the arrival of new link-state updates andconnection requests. To lower complexity, though, our precomputation scheme does not perform any workupon receiving a link-state message, beyond recording the new load information, and only modest work onconnection arrival. Instead, most of the processing is relegated to background computation of a shortest-path graph of routes to each destination. By delaying route extraction until connection arrival, we exploitthe most recent link-state to �nd a suitable path while incurring only modest overhead. Allowing occasionaltriggered recomputation for individual connection requests further improves the ability to �nd a path andto select better routes for future connections.2.1 Compact Storage of Precomputed RoutesOur study of path precomputation focuses on intra-domain routing in large,
at networks with N nodes(switches or routers) and L links. In this context, we focus on topologies with relatively high connectivity,an increasingly common feature of emerging core backbone networks [11,12], and on multimedia tra�c3

1

11

1

source

1

5 4

3
7

1

2

2

2

1

11

1

source

1

5 4

3
7

1

2

2

2

X

source

(a) Shortest-path graph (b) All-shortest-path graph (c) Route extractionFigure 1: Delayed Pruning of Shortest-Path Routes: The left �gure shows a network graph with alink-cost metric on each edge. Each node has a parent pointer to the upstream node along a minimum-costpath from the source. By allowing multiple parent pointers at each node, the graph can represent all ofthe minimum-cost paths for each node, as shown in the center �gure. These parent pointers allow e�cientextraction of a route for a speci�c destination, as shown in the right �gure. If a link appears infeasible(denoted by the \X"), an alternate minimum-cost route (shown by dashed lines) can be extracted througha search along the parent pointers.that requires throughput guarantees. Each switch knows the underlying topology and has (possibly out-of-date) information about the unreserved bandwidth on each link. Link state is
ooded periodically, orin response to a signi�cant change in available bandwidth, ensuring that the switches have fairly accurateknowledge of network load. The source switch selects a route for an arriving connection, based on the linkstate and the connection's bandwidth requirement. Route computation is based on the Dijkstra shortest-path algorithm [13], where link cost (or \distance") is a function of the link load. To minimize resourcerequirements and end-to-end delay, we focus on link-cost functions that favor routes with a small numberof links.The Dijkstra shortest-path algorithm computes a route to a destination node in O(L logN) time, whenimplemented with a binary heap [13]. Although advanced data structures can reduce the average and worst-case complexity [14], the shortest-path computation still incurs signi�cant overhead in large networks. Incomputing a route to each destination, the Dijkstra algorithm generates a shortest-path graph, where eachnode has a parent pointer to the upstream node in its route from the source, as shown in Figure 1(a).Extracting a route to a particular destination involves traversing these parent pointers, and introducescomplexity in proportion to the path length. For on-demand routing of a single connection, the constructionof the shortest-path graph terminates upon reaching the destination. Continuing the computation togenerate a route for every destination does not signi�cantly increase the processing requirements, and thecomplexity remains O(L logN). This allows path precomputation schemes to amortize the overhead of theshortest-path calculation over multiple destination nodes.Path precomputation schemes typically store one or more routes in a cache or table. In hop-by-hoprouting, the router stores only the next hop of the route to each destination, allowing for simple storage ina route table. In contrast, source-directed routing requires the source to maintain a variable-length list of4

the links on the path to the destination. This list (or stack) becomes part of the signalling message thatestablishes a connection (e.g., a \designated transit list" in PNNI, or an \explicit route advertisement"in the QoS extensions to OSPF), instructing each intermediate node to forward the message to the nextlink on the route. To precompute routes, the source could generate paths to one or more destinations andstore each route list in a cache, occasionally recomputing one or more routes based on the most recentlink-state information. However, computing and extracting multiple routes introduces computational andstorage complexity. In addition, since link-state information changes over time, these cached routes mustbe invalidated and/or recomputed periodically. Instead of caching paths in a separate data structure, weconsider a compact representation of the variable-length routes directly in the shortest-path graph, as inFigure 1(a).2.2 Precomputation of Multiple Minimum-Cost RoutesPath precomputation schemes bene�t from having multiple candidate routes to each destination, to balancenetwork load and have additional routing choices in case of a signalling failure. However, the multipleroutes should have similar cost, to avoid selecting paths that make ine�cient use of network resources.A switch could conceivably precompute the k > 1 shortest paths (in terms of hop-count or other cost)to each destination. Alternatively, a routing algorithm could compute all paths within some additive ormultiplicative factor � of the best path. However, these approaches introduce considerable computationalcomplexity. For example, computing the k shortest paths for a single destination in a directed graph hascomplexity as high as O(kN3) [15,16]. In addition, the k shortest paths (or paths within � of optimal) toone node may not be part of the best routes to other destinations; hence, it is not usually possible to storethese multiple routes in a compact, shortest-path graph representation.Instead, we focus on an e�cient special case of computing multiple equal-cost paths to each destina-tion. This formulation permits a compact representation of the multiple routes, as shown in Figure 1(b).Computing all minimum-cost routes requires a small modi�cation to the traditional Dijkstra computationto store multiple parent pointers for each node; each pointer identi�es an upstream node along a shortestpath to the destination. The nodes and parent pointers form a directed, acyclic subgraph of the originalgraph, rooted at the source switch. Each node in the graph has a circular list of its parent pointers (tofacilitate simple traversal), or a bit-mask to indicate which upstream nodes reside on shortest-path routes.Figure 2 summarizes the algorithm, which is similar to a traditional Dijkstra computation, except for theaddition of lines 4{5. The algorithm uses a heap to visit the nodes in order of their distance from thesource, and relaxes each outgoing link. A parent pointer is assigned if a link is on a minimum-cost path (sofar) to the neighboring node. To minimize the storage requirements and complexity of route extraction,the algorithm can impose a limit on the number of parents for each node (e.g., 2 or 3).The likelihood of having multiple minimum-cost routes to a destination depends on the link costfunction and the underlying network topology. To increase the chance of \ties" in the route computation,we limit the link costs to a small number of discrete values (say, C = 5 or C = 10). Although �ne-grainlink costs (larger values of C) usually result in lower blocking probabilities, a moderately coarse link-costfunction does not signi�cantly degrade performance, as shown in Section 3. Moreover, when link-stateinformation is somewhat out-of-date, the bene�t of a �ne-grain link cost function is greatly diminished.5

0: Heap = set of all N nodes;1: while (Heap is not empty) f # visit each node2: u = PopMin(Heap);3: foreach node v 2 Neighbors(u) f # relax each link4: if (dist[u] + cost[u,v] == dist[v]) # equal route5: parent[v] = parent[v] [fug;6: else if (dist[u] + cost[u,v] < dist[v]) f # cheaper route7: parent[v] = fug;8: dist[v] = dist[u] + cost[u,v];9: g10: g11: gFigure 2: Dijkstra algorithm with multiple parent pointers: Initially, each node u has distancedist[u]=1, except for the source which has a distance of 0. Starting with the source, the algorithm visitsthe node u with the smallest distance and considers the cost cost[u,v] of the link to each neighboringnode v, extending or reassigning the set of parent pointers parent[v] if the new route has equal or lowercost, respectively. At the end, each connected node has one or more parent pointers to upstream nodesalong minimum-cost routes from the source.Perhaps more importantly, coarse-grain link costs reduce the processing requirements of the shortest-pathcomputation by reducing heap complexity. The complexity of Dijkstra's algorithm, and the variationin Figure 2, decreases from O(L logN) to O(L + CN) [13], while more advanced data structures o�ereven further reduction [14]. Hence, these coarse-grain link costs become particularly appropriate in large,well-connected networks (large L and N) where the switches have out-of-date link-state information.2.3 Delayed Extraction of Precomputed RoutesRather than extracting and caching routes in a separate data structure, we store the precomputed routesin the shortest-path graph and delay the extraction operation until a connection request arrives. Duringthe path extraction the source applies the most recent link-state information in selecting a route. Theextraction process operates on the subgraph of nodes and parent pointers along minimum-cost routesto the destination, as shown in Figure 1(c). Though the switch could conceivably run a new Dijkstracomputation on this subgraph to select the \best" precomputed route, we instead optimize for the commoncase of extracting the �rst route by following a single set of parent pointers (e.g., the leftmost path inFigure 1(c)). More generally, we perform a depth-�rst search through the reduced graph to extract the�rst feasible route, based on the current link-state information and the bandwidth requirement of the newconnection. If the extraction process encounters a link that does not (appear to) have enough availablebandwidth, the algorithm backtracks and tries a di�erent parent pointer.The depth-�rst search and the feasibility check e�ectively \simulate" hop-by-hop signalling, using themost recent link-state information. Note that this operation is purely local at the source, and much lesscostly than discovering an infeasible link by sending and processing signalling messages in the network.Starting at the destination node, the algorithm builds a stack of the nodes in the route from the source,as shown in Figure 3. Each node has a circular list of parent pointers, starting with the head parent; a6

1: push(dest); # start at the destination node2: ptr[dest] = head[dest]; # start at dest's first parent3: while ((top != NULL) and (top != src)) f # continue until reaching src4: new = ptr[top].nodeid; # explore parents of top node5: if (feasible(new, top)) f6: push(new); # explore next node in route7: ptr[new] = head[new];8: g9: else f10: while (ptr[top].next == head[top])11: pop(); # backtrack from exhausted node(s)12: if (top != NULL)13: ptr[top] = ptr[top].next; # sequence to next parent pointer14: g15: gFigure 3: Depth-�rst route extraction: Starting at the destination node (dest), the algorithm performsa depth-�rst traversal of parent pointers to construct a stack of the nodes in the route. By the end of thealgorithm, the top of the stack points to the source (src) if a feasible route exists; otherwise, the stack isempty (top == NULL). The algorithm explores multiple parent pointers by sequencing through a circularlist, starting with the head parent.second pointer ptr is used to sequence through the list of one or more parents, until ptr cycles back tohead. Each iteration of the while loop considers the link between the node at the top of the stack and itscurrent parent (pointed to by the ptr pointer and denoted by new in line 4). If the link is feasible, newis added to the stack and its parents are considered in the next iteration (lines 5{8). Otherwise, if thefeasibility check fails, we proceed to the next parent, or backtrack until we �nd a node whose parent listhas not been exhausted (lines 10{13). The algorithm terminates when we reach the source via a feasiblepath (top == src), or when the path stack becomes empty (top == NULL) because no feasible path wasfound. In the former case, the route is read by popping the stack from source to destination.A potential drawback of this approach is that a subsequent connection request may have to duplicatesome of the same backtracking as the preceding request, particularly since the traversal always starts withthe parent marked by the head pointer. We can avoid this problem by performing some simple pointermanipulations at the end of a successful route extraction. As we pop each node in the route from the pathstack, we may alter the position of its head pointer so that a subsequent extraction attempt for the samedestination (or any destination along the path) visits a di�erent set of links. Three possibilities are:� Leave parents in existing order (do nothing).� Make the selected parent the new head (head[node] = ptr[node]). This amounts essentially to\sticky" routing where we stay with the �rst route that was found to be feasible in the last extraction.� Round-robin to the next parent (head[node] = ptr[node].next). This policy attempts to balanceload by alternating the links that carry tra�c for a set of destinations.These alternation policies di�er from traditional alternate routing, where the switch rotates among a setof cached paths. Here, the rotation for one destination node in
uences the order in which links are visited7

Policy Descriptionon-demand or precomputed recompute routes for every request or try �rst to extract from theexisting shortest-path graphallow multiple routes limit extraction to just one route instead of allowing backtracking to�nd alternate routesfeasibility checking whether to use feasibility checking during route extractionre-rank multiple routes policy to arrange head pointers in the shortest-path graph duringroute extraction (none, sticky, round-robin)periodic recomputations speci�cation of a background route computation frequencyrecompute on routing failure trigger recomputation when initial route extraction failsrecompute on signalling failure trigger recomputation on signalling failurereextract on signalling failure try to reextract another feasible route (rather than recompute) whensignalling failsprune on recomputation whether to omit the links that failed the admission test when recom-puting after a signalling failuremaximum signalling attempts limit the number of times each connection request may attempt sig-nallingTable 1: Routing and signalling policy options: This table summarizes some possible policies forconnection request handling. The choice of policies may be dictated by objectives such as minimizingprocessing overhead, connection set-up delay, or blocking probability.for other destination nodes along the path. Moreover, changing the position of the head pointer is simplerthan extracting and rotating entire paths, and may actually provide added bene�t because the alternaterouting is performed on a more global scale.2.4 Route Computation Policy OptionsThe path precomputation and extraction algorithms provide a useful framework for computing, storing, andselecting from multiple quality-of-service routes. These techniques provide signi�cant latitude in handlingindividual connection requests, depending on the inaccuracy of the link-state information, connectivityof the underlying network, and tolerance to set-up delay. Table 1 summarizes the key policy decisions,starting with four options discussed in the previous subsections. The remaining design decisions concernhow and when to recompute routes and initiate signalling for new connections. The simplest approachrelies entirely on a periodic, background computation of the shortest-path graph. When a request arrives,the source extracts a route and initiates signalling. The source blocks the request if the extraction processdoes not produce a route, and connection set-up delay is determined almost entirely by signalling delay.Periodic recomputation also simpli�es CPU provisioning, at the expense of higher connection blockingprobabilities and the selection of suboptimal routes for other connections.Instead, the source could trigger recomputation of the shortest-path graph after a failure in routeextraction or connection signalling. Recomputing routes with the most recent link-state information wouldreduce connection blocking, at the expense of additional processing load and set-up delay. Inaccuratelink state or rapidly arriving connection requests may require frequent path recomputation, introducingcomputation overhead comparable to on-demand routing. To bound set-up delay and limit processingoverheads, the source can impose a maximum number of route computations and signalling attempts for8

each connection. Since the source recomputes the entire shortest-path graph, the overhead is amortized overall destinations and can bene�t subsequent connection requests. To bound the worst-case computationalload, the source can impose a minimum time between route recomputations, even in the presence of routingand signalling failures.When routes are recomputed after a signalling failure, the source can choose to omit the link that failedthe admission test. In e�ect, the signalling failure provides more recent information about the load on theo�ending link. Pruning this link from the graph is particularly important if the source attempts to computeand signal a new route for the same connection. This new route should avoid using the link that causedthe previous failure. In addition, pruning the heavily-loaded link is useful for future connection arrivals,particularly if the shortest-path graph is dedicated to connections with the same (or similar) bandwidthrequirements. When connections have more diverse quality-of-service parameters, the source can supporta small number of di�erent bandwidth classes (e.g., audio and video), with separate precomputed routesthat are tailored to the performance requirements [6, 7]. Employing a di�erent link-cost function and pathcomputation policy to each class enhances the network's ability to route high-bandwidth tra�c.3 Performance EvaluationIn this section, we evaluate the proposed routing algorithm under a range of recomputation periods and link-state update policies. The experiments show that precomputation of the minimum-cost graph, coupled witha feasibility check, approximates the good performance of on-demand routing and the low computationaloverhead of path caching. The feasibility check is especially e�ective in reducing the likelihood of expensivesignalling failures, even when link-state information is somewhat out-of-date.3.1 Simulation ModelTo evaluate the cost-performance trade-o�s of precomputed routes, we have developed an event-drivensimulator that models link-state routing at the connection level. A route is chosen for each incomingconnection based on a throughput requirement (bandwidth b) and the available bandwidth in the network,based on the source's view of link-state information. Then, hop-by-hop signalling reserves the requestedbandwidth at each link in the route. That is, if a link has a reserved bandwidth with utilization u, admittingthe new connection increases the reservation to u = u+ b. A signalling failure occurs if a link in the pathcannot support the throughput requirement of the new connection (i.e., if u+ b > 1). For the simulationsin this section, we assume that a connection blocks after a signalling failure, though we brie
y summarizeother experiments that allow multiple signalling attempts. Blocking can also occur during path selectionif the feasibility check suggests that none of the candidate routes can support the new connection; theserouting failures impose less of a burden on the network than signalling failures, which consume resources atdownstream nodes. Although our experiments do not explicitly model propagation and processing delays,we gain an estimate of average set-up latency through the connection blocking rate and frequency of routecomputation.The source selects a minimum-hop route with the least cost1; previous studies show that algorithms1A careful assignment of link weights wi permits a single invocation of the Dijkstra algorithm to produce a minimum-cost,shortest path. In a network with diameter D, and link costs in the range 0 < ci � 1, the link weights wi = D+ ci ensure that9

Parameter MCI Internet 5-ary 3-cubeo�ered load � = 0:65 � = 0:85bandwidth b = (0; 4%] b = (0; 6%]arrival rate � = 1 � = 1connection duration ` = 46:8 ` = 46:8Table 2: Simulation invariants: This table lists the parameters that remain �xed throughout thesimulation experiments., In the MCI topology N = 19, L = 64, diameter D = 4, and average nodedegree is 3:4. The 5-ary 3-cube has N = 125, L = 750, D = 6, and degree 6.with a strong bias toward minimum-hop routes almost always outperform algorithms that do not considerthe hop-count [17{20]. To distinguish among paths of the same length, each link has a cost in the setf1=C; 2=C; : : :; C=Cg. For the experiments in this paper, a link with reserved capacity u has cost c =(du2 � (C � 1)e + 1)=C; our experiments with link-cost functions show that an exponent of 2 biases awayfrom routes with heavily-loaded links, without being too sensitive to small changes in link-state information.For simplicity we assume that links are bidirectional, with unit capacity in each direction. We evaluate therouting algorithms on a \well-known" core topology (an early version of the MCI Internet backbone [7, 20])and a uniformly connected 125-node 5-ary 3-cube topology (with 5 nodes along each of 3 dimensions). Therelationship between size and connectivity in the 5-ary 3-cube is similar to existing commercial networks,and allows us to study the potential bene�ts of having multiple minimum-hop routes between pairs ofnodes.Connection requests arrive at the same rate at all nodes and destinations are selected uniformly. Con-nection holding times have mean ` and follow a Pareto distribution with shape parameter 2:5 to capture theheavy-tailed nature of connection durations. Connection interarrival times are exponentially distributedwith mean 1=�, and requested bandwidths are uniformly distributed with equal spread about a mean size�b. The experiments focus on mean bandwidth in the range of 2{3% of link capacity. While smaller band-widths may be more realistic, the large requests provide some insight to the behavior of the high-bandwidthmultimedia tra�c (e.g., video) we are interested in. Also, smaller bandwidths result in very low blockingprobabilities, making it very di�cult to gain su�cient con�dence on the simulation results in a reasonabletime. With a connection arrival rate � at each of N nodes, the o�ered network load is � = �N`�b�h=L,where L is the number of links and �h is the mean distance (in hops) between nodes, averaged across allsource-destination pairs. Table 2 summarizes the simulation parameters for the two network topologies.3.2 Accurate Link-State InformationThe initial simulation experiments compare the performance and overhead of the routing algorithms underaccurate link-state information, as shown in Figure 4 and 5. We vary the background period for pathprecomputation, and also allow a switch to recompute its shortest-path graph when the route extractiondoes not produce a candidate route (due to failed feasibility checks) and after a signalling failure. Since weallow only one signalling attempt for each connection, recomputing after a signalling failure only bene�tspaths with fewer hops always appear cheaper. Such an assignment for wi results in a relatively small number of possible pathcost estimates, thus reducing the complexity of the computation.10

0 5 10 15 20 25 30
Route recomputation period (unit time)

0.00

0.01

0.02

0.03

0.04

0.05

0.06
C

on
ne

ct
io

n
bl

oc
ki

ng
 p

ro
ba

bi
lit

y

multiple routes, feasibility−check
single route, feasibility−check
single route, no feasibility−check
on−demand, C = 5
on−demand, C = inf

0 5 10 15 20 25 30
Route recomputation period (unit time)

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

C
on

ne
ct

io
n

bl
oc

ki
ng

 p
ro

ba
bi

lit
y

multiple routes, feasibility−check
single route, feasibility−check
single route, no feasibility−check
on−demand, C = 5
on−demand, C = inf

(a) MCI Internet topology (b) 5-ary 3-cubeFigure 4: Performance with accurate link state: These graphs plot the blocking probability as afunction of the background path computation period under accurate link-state information, for both theMCI and 5-ary 3-cube topologies.future arrivals. The single-route algorithms use a precomputed shortest-path graph with one route, asin Figure 1(a). The multiple-route approach o�ers greater
exibility by allowing the source to performfeasibility checks on several paths in the graph, as in Figure 1(b). We also consider two on-demandalgorithms that compute routes on a per-request basis. One has a link-cost discretization of C = 5,identical to the precomputed routing algorithms, and the other has discretization limited only by machineprecision (referred to as C = 1).Figure 4 plots the connection blocking probability as we increase the recomputation period to morethan 30 times the connection interarrival time. The precomputation algorithms perform well, relativeto the more expensive on-demand schemes. Feasibility checking substantially improves performance overtraditional path-caching techniques, allowing the use of much larger computation periods. In addition,under accurate link-state information, feasibility checking completely avoids signalling failures by correctly\simulating" the e�ects of signalling during the route extraction process. This is particularly helpful in the5-ary 3-cube network, since the richly-connected topology frequently has an alternate shortest-path routeavailable when the �rst choice is infeasible. Other experiments illustrate that, without a feasibility check,precomputed routing can only achieve these performance gains by allowing multiple signalling attemptsfor a connection, at the expense of longer set-up delays and higher processing requirements.The ability to precompute multiple candidate routes does not substantially reduce the blocking proba-bility in Figure 4(a), since the sparsely-connected MCI topology typically does not have multiple shortest-path routes, let alone multiple routes of equal cost. In contrast, the 5-ary 3-cube experiment in Figure 4(b)shows a more substantial performance bene�t. We expect a more signi�cant gain under nonuniform tra�cloads, since alternate routes would enable connections to circumvent regions of congestion. This is espe-cially true during transient
uctuations in network load, caused by bursty connection arrivals or reroutingafter a link failure. In these cases, the precomputation of multiple routes allows the source to survive longerintervals of time without computing a new shortest-path graph. The algorithm with multiple precomputed11

0 5 10 15 20 25 30
Route recomputation period (unit time)

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

R
ou

te
 c

om
pu

ta
tio

n
ra

te
 p

er
 n

od
e

multiple routes, feasibility−check
single route, feasibility−check
single−route, no feasibility−check
on−demand

0 5 10 15 20 25 30
Route recomputation period (unit time)

0.00

0.20

0.40

0.60

0.80

1.00

1.20

1.40

R
ou

te
 c

om
pu

ta
tio

n
ra

te
 p

er
 n

od
e

multiple routes, feasibility−check
single route, feasibility−check
single route, no feasibility−check
on−demand

(a) MCI Internet topology (b) 5-ary 3-cubeFigure 5: Overhead with accurate link state: These graphs plot the route computation frequency asa function of the background path computation period under accurate link-state information for both theMCI and 5-ary 3-cube topologies.routes, coupled with the feasibility test, performs almost as well as on-demand routing with the samenumber of cost levels. However, using C =1 o�ers a noticeable performance advantage in Figure 4, sincethe accurate link-state information enables the �ne-grain link-cost function to locate the \best" routes.The lower blocking probabilities for on-demand routing come at the expense of a signi�cant cost inprocessing load, as shown in Figure 5. In both the MCI and 5-ary 3-cube topologies, the route computationfrequency is lowered by a factor of 10 below that of on-demand routing. In addition, the precomputationschemes have much lower complexity for each route computation, relative to the C = 1 on-demand al-gorithm. Comparing the di�erent precomputation algorithms, the processing load is dominated by thebackground recomputation of the shortest-path graph, though the feasibility test introduces slightly moretriggered recomputations. As the period increases, the graphs
atten since triggered recomputations be-come increasingly common for all of the algorithms. Although disabling these triggered recomputationsresults in more predictable processing overheads, additional simulation experiments (not shown) indicatethat this substantially increases the blocking probability.3.3 Inaccurate Link-State InformationWhile the previous experiments assume that the source has accurate knowledge of network load, Figure 6considers the e�ects of stale link-state information, for both periodic and triggered link-state updates, witha background recomputation period of 5 time units. As staleness increases, the C = 1 and C = 5 curvesgradually converge, since �ne-grain link costs o�er progressively less meaningful information about networkload. However, large link-state update periods also degrade the e�ectiveness of the feasibility check in ourprecomputed routing scheme, as shown in Figure 6(a). Periodic updates can lead the source switch tomistakenly identify infeasible links as feasible, and feasible links as infeasible. When link-state informationis extremely stale (e.g., an update period that is 20 times larger than the mean connection interarrivaltime), signalling blindly without a feasibility check o�ers better performance. In fact, under such large12

0 5 10 15 20 25 30
Link−state update period (unit time)

0.00

0.03

0.05

0.08

0.10

0.12

0.15

0.18

0.20
C

on
ne

ct
io

n
bl

oc
ki

ng
 p

ro
ba

bi
lit

y

feasibility−check
no feasibility−check
on−demand, C = 5
on−demand, C= inf

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80
Link−state update trigger

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.10

C
on

ne
ct

io
n

bl
oc

ki
ng

 p
ro

ba
bi

lit
y

feasibility−check
no feasibility−check
on−demand, C = 5
on−demand, C = inf

(a) Periodic link-state updates (b) Triggered updatesFigure 6: Performance with stale link state: These graphs plot the blocking probability for the 5-ary3-cube topology for periodic and triggered link-state updates, with a background path computation periodof 5 time units.update periods, none of the QoS-routing algorithms perform well; under the same network and tra�ccon�guration, even static shortest-path routing (not shown) can achieve a blocking probability of 16%.Experiments with the MCI topology con�guration do not show as much bene�t from feasibility checking,due to the lower number of shortest-path routes, though the feasibility test does reduce the likelihood ofsignalling failures.Despite the e�ects of large update periods, we �nd that the feasibility check still o�ers signi�cantadvantages under more reasonable levels of link-state staleness. This is particularly true when link-stateupdates are triggered by a change in available link capacity, as shown in Figure 6(b). For example, atrigger of 0:2 spawns a link-state update message whenever available capacity has changed by 20% sincethe last update, due to the establishment and termination of connections. Triggered link-state updates, liketriggered path recomputations, generate new routing information during critical
uctuations in networkload. Under triggered link-state updates, the switches typically have accurate information about heavily-loaded links, even for large trigger values. Consequently, the connection blocking probability is fairlyinsensitive to the trigger, across all of the routing algorithms. In addition, feasibility checking remains verye�ective across the range of update triggers and competitive with on-demand routing (with C = 5), incontrast to the results for update periods in Figure 6(a). We �nd also that using triggered updates allowsfeasibility checking to reduce blocking even in the MCI topology, though the di�erence between feasibilityand no feasibility checking is less signi�cant than in the 5-ary 3-cube.Although the blocking probability remains nearly constant as a function of the link-state trigger, smalltriggers result in fewer signalling failures, as long as the source performs a feasibility test. In contrast,signalling failures account for all connection blocking when routing does not involve feasibility checking. Asthe trigger grows, the feasibility test sometimes mistakenly concludes that a heavily-loaded link is feasible,and the connection blocks in signalling instead of experiencing a routing failure. Still, even for a 50%trigger, signalling failures only contribute 30% of the connection blocking under feasibility checking. Also,13

despite the fact that periodic updates cause signi�cant staleness and worsen overall connection blocking,feasibility checking still manages to avoid signalling for connections that ultimately block about 30� 40%of the time. The ability of feasibility checking to reduce blocking inside the network is an important bene�tsince signalling failures consume processing resources and delay the establishment of other connections.Routing failures, on the other hand, are purely local and do not consume additional resources beyond theprocessing capacity at the source switch.Examining the blocking relative to hop-count shows that feasibility checking at the source also helps inrouting connections between distant source-destination pairs. Since bandwidth must be reserved on morelinks, signalling blindly without checking recent link state has a lower probability of �nding a successfulroute. Other experiments show that when a hold-down timer is used to impose a minimum time betweenconsecutive update messages, the blocking probability rises slightly for all algorithms, though the bene�tof feasibility checking remains. The hold-down timer is useful, however, in reducing link-state updateoverhead, especially when using small trigger levels. For example, with a hold-down timer equal to themean connection interarrival time, the update generation rate can be reduced by over 35% for triggers inthe range 0 � 0:1. Moreover, even with a hold-down timer, coarser triggers do not degrade performance.The combination of triggered updates and a small hold-down timer, coupled with feasibility checks andmultiple precomputed routes, o�er an e�cient and e�ective approach to quality-of-service routing in largenetworks.4 Related Work in QoS Route PrecomputationPrevious work on route precomputation has focused on path caching policies, performance evaluation,and algorithmic issues. Our work complements these studies by emphasizing lower-level mechanisms andintroducing an e�cient framework for precomputing and storing QoS routes, which applies to a variety ofrouting and signalling policies.Research on path caching has focused on storing routes in a separate data structure and consideringdi�erent policies for updating and replacing precomputed routes. The work in [8] introduces a policythat invalidates cache entries based on the number of link-state updates that have arrived for links inthe precomputed paths. The proposed algorithms also check the current link-state when selecting a pathfrom the cache and allow recomputation when the cached paths are not suitable, similar to the feasibilitycheck in this paper. This earlier work does not, however, address route computation or path extractionmechanisms. Another study proposes a set of route precomputation policies that optimize various criteria,such as connection blocking and set-up latency [10]. The algorithms try to locate routes that satisfy severalQoS requirements through an iterative search of precomputed paths (optimized for hop-count) followed,if necessary, by several on-demand calculations that optimize di�erent additive QoS parameters, one at atime.Other research has focused on detailed performance evaluation to compare precomputed and on-demandrouting under di�erent network, tra�c, and staleness con�gurations. The work in [21] evaluates theperformance and processing overhead of a speci�c path precomputation algorithm. The study adopts aBellman-Ford-based algorithm from [6] and evaluates a purely periodic precomputation scheme under avariety of tra�c and network con�gurations. The study presents a detailed cost model of route computation14

to compare the overhead of on-demand and precomputed strategies. As part of a broader study of QoSrouting, the work in [7] evaluates a class-based scheme that precomputes a set of routes for di�erentbandwidth classes. The evaluation compares the performance of several algorithms for class-based pathcomputation to on-demand computation. These two studies do not propose any particular strategy forpath storage or extraction but instead focus on performance trends.The remaining studies consider di�erent ways to precompute paths for multiple destination nodesand connection QoS requirements. The work in [6] proposes a Dijkstra-based algorithm that computesminimum-hop paths for di�erent bandwidth classes. Another algorithm, introduced in [9], precomputes aset of extremal routes to all destinations such that no other route has both higher bottleneck bandwidthand smaller hop-count. The Bellman-Ford-based algorithm in [6] uses a similar optimization criterion toconstruct a next-hop routing table with multiple routing entries for each destination. The emphasis ofthese last three proposals is on algorithmic issues, such as reducing complexity. In addition to a focus oncomputational overheads, we also consider e�cient ways to store precomputed paths and apply the mostrecent link-state information.5 Conclusions and Ongoing WorkIn this paper, we have proposed e�cient mechanisms for precomputing quality-of-service routes, whilestill applying the most recent link-state information at connection arrival. Route computation employs asmall extension to Dijkstra's algorithm, coupled with discretized link costs, to generate a shortest-pathgraph with one or more routes to each destination. On connection arrival, route extraction involves adepth-�rst search with a feasibility test, which returns the �rst route in the common case. Simulationexperiments show that the algorithm o�ers substantial reductions in computational load with only a smalldegradation in performance, compared to more expensive on-demand algorithms. Our precomputationscheme continues to perform well under stale link-state information, particularly under triggered link-stateupdates. In addition to having lower blocking probabilities than traditional path-caching schemes, thefeasibility test reduces network overhead by decreasing the frequency of signalling failures.As part of future work, we are investigating enhancements to our path precomputation and extractionalgorithms. To increase the likelihood of having multiple candidate routes to each destination, we are con-sidering heuristics for generating near-minimum-cost alternate routes, while still storing the precomputedroutes in a compact graph representation. In addition, we are pursuing other ways to test the suitabilityof routes during the extraction process. For example, instead of checking link feasibility, the source coulduse the most recent link-state information to compute new path costs as part of the depth-�rst search fora route; whenever the accumulated path cost exceeds a certain threshold, the algorithm can backtrackto consider other precomputed routes. This approach is well-suited to precomputing paths that balancenetwork load without requiring information about the tra�c or QoS parameters of individual connections.Finally, we are performing more extensive simulation experiments to evaluate our path-selection schemesunder a wider range of network topologies, communication workloads, and routing/signalling policies.References[1] W. C. Lee, M. G. Hluchyj, and P. A. Humblet, \Routing subject to quality of service constraints in integrated15

communication networks," IEEE Network Magazine, pp. 46{55, July/August 1995.[2] Z. Whang and J. Crowcroft, \Quality-of-service routing for supporting multimedia applications," IEEE Journalon Selected Areas in Communications, vol. 14, pp. 1228{1234, September 1996.[3] E. Crawley, R. Nair, B. Rajagopalan, and H. Sandick, \A framework for QoS-based routing in the Internet."Internet Draft (draft-ietf-qosr-framework-03.txt), March 1998.[4] PNNI Working Group, ATM Forum 94-0471R13 PNNI Draft Speci�cation. Document available atftp://ftp.atmforum.com/pub/contributions.[5] Z. Zhang, C. Sanchez, B. Salkewicz, and E. S. Crawley, \Quality of service extensions to OSPF or quality ofservice path �rst routing (QOSPF)." Internet Draft (draft-zhang-qos-ospf-01.txt), September 1997.[6] R. Guerin, A. Orda, and D. Williams, \QoS routing mechanisms and OSPF extensions," in Proceedings of IEEEGLOBECOM, (Phoenix, AZ), November 1997. Extended version appears as Internet Draft (draft-guerin-qos-routing-ospf-03.txt), March, 1998.[7] Q. Ma and P. Steenkiste, \On path selection for tra�c with bandwidth guarantees," in Proceedings of IEEEInternational Conference on Network Protocols, (Atlanta, GA), October 1997.[8] M. Peyravian and A. D. Kshemkalyani, \Network path caching: Issues, algorithms and a simulation study,"Computer Communications, vol. 20, pp. 605{614, 1997.[9] J.-Y. Le Boudec and T. Przygienda, \A route pre-computation algorithm for integrated services networks,"Journal of Network and Systems Management, vol. 3, no. 4, pp. 427{449, 1995.[10] A. Iwata, R. Izmailov, H. Suzuki, and B. Sengupta, \PNNI routing algorithms for multimedia ATM internet,"NEC Reserach & Development, vol. 38, January 1997.[11] E. W. Zegura, K. L. Calvert, and S. Bhattacharjee, \How to model an internetwork," in Proceedings of IEEEINFOCOM, pp. 594{602, March 1996.[12] A. G. Greenberg and R. Srikant, \Computational tecniques for accurate performance evaluation of multirate,multihop communication networks," IEEE/ACM Transactions on Networking, vol. 5, pp. 266{277, April 1997.[13] T. H. Cormen, C. E. Leiserson, and R. L. Rivest, Introduction to Algorithms. Cambridge, MA (New York):MIT Press (McGraw-Hill), 1990.[14] B. V. Cherkassky, A. V. Goldberg, and T. Radzik, \Shortest-path algorithms: Theory and experimental evalu-ation," Mathematical Programming, vol. 73, pp. 129{174, May 1996.[15] J. Y. Yen, \Finding the K shortest loopless paths in a network," Management Science, vol. 17, pp. 712{716,July 1971.[16] E. L. Lawler, \A procedure for computing the K best solutions to discrete optimization problems and itsapplication to the shortest path problem," Management Science, vol. 18, pp. 401{405, March 1972.[17] H. Ahmadi, J. S. Chen, and R. Guerin, \Dynamic routing and call control in high-speed integrated networks,"in Teletra�c and Datatra�c in a Period of Change: Proceedings of the International Teletra�c Congress(A. Jensen and V. B. Iversen, eds.), vol. 14 of Studies in Telecommunication, pp. 397{403, Copenhagen, Denmark:North-Holland, June 1991.[18] R. Gawlick, C. Kalmanek, and K. Ramakrishnan, \Online routing for virtual private networks," ComputerCommunications, vol. 19, pp. 235{244, March 1996.[19] C. Pornavalai, G. Chakraborty, and N. Shiratori, \QoS based routing in integrated services packet networks,"in Proceedings of IEEE International Conference on Network Protocols, (Atlanta, GA), October 1997.[20] Q. Ma and P. Steenkiste, \Quality-of-service routing for tra�c with performance guarantees," in Proc. IFIPInternational Workshop on Quality of Service, (Columbia University, New York), pp. 115{126, May 1997.[21] G. Apostolopoulos and S. K. Tripathi, \On the e�ectiveness of path pre-computation in reducing the processingcost of on-demand qos path computation," in to appear in Proceedings of IEEE Symposium on Computers andCommunication, (Athens, Greece), June 1998. 16

