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Abstract
Virtualized data-centers use software hypervisor switches to
steer packets to and from virtual machines (VMs). The switch
frequently needs upgrading and customization—to support
new protocol headers or encapsulations for tunneling or over-
lays, to improve measurement and debugging features, and
even to add middlebox-like functions. Software switches
are typically based on a large body of code, including ker-
nel code. Changing the switch is a formidable undertaking
requiring domain mastery of network protocol design and de-
veloping, testing, and maintaining a large, complex code-base.
In this paper, we argue that changing how a software switch
forwards packets should not require intimate knowledge of
its implementation. Instead, it should be possible to spec-
ify how packets are processed and forwarded in a high-level
domain-specific language (DSL) such as P4, then compiled
down to run on the underlying software switch. We present
PISCES, a software switch that is not hard-wired to specific
protocols, which eases adding new features. We also show
how the compiler can analyze the high-level specification to
optimize forwarding performance. Our evaluation shows that
PISCES performs comparably to Open vSwitch, a hardwired
hypervisor switch, and that PISCES programs are about 40
times shorter than equivalent Open vSwitch programs.

1 Introduction
When we think of Ethernet switches, we tend to think of a
physical box in a wiring closet or sitting at the top of a rack
of servers. But every hypervisor in a virtualized data center
contains a software switch, such as Open vSwitch [39], to
connect VMs to the outside world. Because such a data center
contains more hypervisors than hardware switches, it contains
more software switches than physical ones. Likewise, because
each hypervisor hosts several VMs, the data center has more
virtual Ethernet ports than physical ones. Thus, the design of
software switches is an important topic.

One of the main advantages of a software hypervisor switch
is that it can be upgraded more easily than a hardware switch.
As a result, hypervisor switches are frequently called upon to
support new tunneling and overlay protocols, improved trou-
bleshooting and debugging features, and middlebox functions

such as load balancing, address virtualization, and encryption.
In the future, as data center owners customize and optimize
their infrastructure, many more features will be added to the
hypervisor switch.

Each new feature requires the hypervisor switch software
to be changed, yet customizing a hypervisor switch is more
difficult than it may appear. First, customization is techni-
cally challenging because most of the machinery that enables
fast packet forwarding resides in the kernel. Writing kernel
code requires domain expertise that most network operators
lack, and thus introduces a significant barrier for developing
and deploying new features. Some steps have been made to
accelerate packet forwarding in user-space (e.g., DPDK [24]
and Netmap [43]), yet still it requires significant software
development expertise and intimate familiarity with a large,
intricate, and complex code-base. The available options for
customizing a hypervisor switch thus require both domain
mastery of network protocol design and the ability to develop,
test, and maintain a large, complex code-base. Furthermore,
customization requires not only incorporating changes into
switch code, but also maintaining these customizations—a
tall order in enterprises and organizations that do not have
large software development teams.

Changing how a software switch forwards packets should
not need intimate knowledge of how the switch is imple-
mented. Rather, it should be possible to specify custom net-
work protocols in a domain-specific language (DSL) such as
P4 [8], which is then compiled to custom code for the hy-
pervisor switch. Such a DSL would support customizing the
forwarding behavior of the switch, without requiring changes
to the underlying switch implementation. Decoupling custom
protocol implementations from underlying switch code also
makes it easier to maintain these customizations, since they
remain independent of the underlying switch implementation.
With a standardized DSL, customizations may also be more
easily portable from one switch to another, in software or
hardware, that supports the same language.

A key insight, borrowed from a similar trend in hardware
switches [9, 37], is that the underlying switch should be a
substrate, well-tuned to process packets at high speed, but not
tied to a specific protocol. In the extreme, the switch is said
to be “protocol independent” meaning that before it is told



how to process packets (via a DSL), it does not know what
a protocol is. Put another way, protocols are represented by
programs written in the DSL, which protocol authors create.

Our approach in software is similar. We assume the DSL
specifies which packet headers to parse and the structure of
the match-action tables (i.e., which header fields to match
and which actions to perform on matching headers). The
underlying software substrate is a generic engine, optimized
to parse, match, and act upon the packet headers in the form
the DSL specifies.

Expressing these customizations in a DSL, however, entails
compilation from the DSL to code that runs in the underlying
switch. Compared to a switch that is handwritten to imple-
ment fixed protocols, this protocol compilation process may
reduce the efficiency of the underlying implementation and
thus come at the cost of performance. Our goals in this paper
are to (1) quantify the additional cost that expressing cus-
tom protocols in such a DSL produces; and (2) design and
evaluate domain-specific compiler optimizations that reduce
the performance overhead as much as possible. Ultimately,
we demonstrate that, with the appropriate compiler optimiza-
tions, the performance of a protocol-independent software
switch—a switch that supports custom protocol specifica-
tion in a high-level DSL without direct modifications to the
low-level source code—approaches parity with the native
hypervisor software switch.

PISCES is the first software switch that allows custom
protocol specification in a high-level DSL, without requir-
ing direct modifications to switch source code. Our results
are promising, particularly given that Open vSwitch, our
base code, was not designed to support protocol indepen-
dence. Nevertheless, our results demonstrate that the “cost of
programmability” in hypervisor switches is negligible. We
expect our results will inspire the design of new protocol-
independent software switches running at even higher speeds.

We first motivate the need for a customizable hypervisor
software switch with a description of real use cases from
operational networks (Section 2) and present background in-
formation on both P4 and Open vSwitch (Section 3). We then
present PISCES, a prototype protocol-independent software
switch based on Open vSwitch that can be programmed from
a high-level DSL such as P4. The prototype uses a set of
domain-specific compiler optimizations to reduce the perfor-
mance overhead of customizing the software switch using a
DSL (Section 4). Finally, we evaluate code complexity and
forwarding performance of PISCES (Section 5). Our eval-
uation shows that PISCES programs are on average about
40 times shorter than equivalent OVS programs and incur a
forwarding performance overhead of only about 2%.1

2 The Need for a Protocol-Independent Switch
We say that PISCES is a protocol-independent software
switch, because it does not know what a protocol is, or how to

1Reproducibility: The final version of the paper will be accompanied by
an open-source version of PISCES, the compiler, the patches to OVS, and
the P4 programs needed to reproduce our results.

process packets on behalf of a protocol, until the programmer
specifies it. For example, if we want PISCES to process IPv4
packets, then we need to describe how IPv4 packets are pro-
cessed in a P4 program. In the P4 program (e.g., IPv4.p4)
we need to describe the format and fields of the IPv4 header,
including the IP addresses, protocol ID, TTL, checksum, flags,
and so forth. We also need to specify that we use a lookup
table to store IPv4 prefixes, and that we search for the longest
matching prefix. We also need to describe how a TTL is
decremented, a checksum is updated and so on. The P4 pro-
gram captures the entire packet processing pipeline, which is
compiled to source code for OVS that specifies the switch’s
match, action, and parse capabilities.

A protocol-independent switch brings many benefits:
Adding new standard or private protocol headers. New
protocol headers are being standardized all the time, partic-
ularly for data centers. In recent years, VXLAN, NVGRE,
Geneve have all been standardized, and STT and NSH are also
being discussed as potential standards. Private, proprietary
protocols are also added, to provide a competitive advantage
by, for example, creating better isolation between applica-
tions, or by introducing novel congestion marking. Before
new protocols can be deployed, all hardware and software
switches must be upgraded to recognize the headers and pro-
cess them correctly. For hardware switches, the data center
owner must provide requirements to their chip vendor and
then wait three to four years for the new feature to arrive, if the
vendor agrees to add the feature at all. In the case of software
switches, they must wait for the next major revision, testing,
and deployment cycle. Even modifying an open-source soft-
ware switch is not a panacea because once the data center
owner directly modifies the open-source software switches
to add their own custom protocols, these modifications still
need to be maintained and synchronized with the mainline
codebase, introducing significant code maintenance overhead
as the original open-source switch continues to evolve. If in-
stead the data-center owner could add new protocols to their
P4 program, they would be able to compile and deploy the
new protocols much more quickly.
Removing a standard protocol header. Data-center net-
works typically run a lot fewer protocols than legacy campus
and enterprise networks, in part because most of the traffic
is machine-to-machine and many legacy protocols are not
needed (e.g., multicast, RSVP, L2-learning). It therefore
benefits the data-center owner to remove unused protocols,
thus eliminating the burden of needing to understand un-
used protocols and the CPU cycles required to parse them.
It is bad enough to have to support many protocols; much
worse to have to support and understand protocols that are
not even used in your network. Therefore, data-center own-
ers frequently want to eliminate unused protocols from their
switches, NICs, and operating systems.2 Removing protocols
from conventional switches is difficult; for hardware, it means
waiting for new silicon, and for software switches it means

2For example, AWS reportedly only forwards packets using IPv4 headers.
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Figure 1: P4 abstract forwarding model.

wrestling with a large codebase to extract a specific protocol.
In PISCES, removing an unused protocol is as simple as re-
moving (or commenting out) unused portions of a protocol
specification and recompiling the switch source code. (Sec-
tion 5.2.2 shows how this can even improve performance.)
Adding better visibility. As data-centers get larger and are
used by more applications, it becomes important to under-
stand the network’s behavior and operating conditions. Fail-
ures can lead to huge loss in revenue, exacerbated by long
debug times as the network gets bigger and more complicated.
It is therefore not surprising that there is growing interest
in making it easier to see what the network is doing. Im-
proving network visibility might entail adding new counters,
generating new probe packets, or adding new protocols and
actions to collect switch state (as is enabled by in-band net-
work telemetry [28]). Users will want to see how queues are
evolving, latencies are varying, whether tunnels are correctly
terminated, and whether links are still up. Often, during an
emergency, users want to add visibility features very quickly.
Having them ready to deploy, or being able to modify for-
warding and monitoring logic quickly may reduce the time to
diagnose and fix a network outage.
Adding entirely new features. If users and network own-
ers can modify the forwarding behavior, they may even add
entirely new features. For example, over time we can ex-
pect switches to take on more complex routing, such as
path-utilization aware routing [2], new congestion control
mechanisms [6, 15, 27], source-controlled routing [40], new
load-balancing algorithms [21], new methods to mitigate
DDoS [3, 20], and new virtual-to-physical gateway func-
tions [13]. If a network owner can upgrade infrastructure
to achieve greater utilization or more control, then they will
know best how to do it. Given the means to upgrade a pro-
gram written in a DSL like P4 for adding new features to
a switch, we can expect network owners to improve their
networks much more rapidly.

3 Background
PISCES is a software switch whose forwarding behavior is
specified using a domain-specific language. Our prototype
PISCES switch is based on the Open vSwitch (OVS) soft-
ware switch and is configured using the P4 domain-specific
language. We describe both P4 and OVS below.
Domain-Specific Language: P4. P4 is a domain-specific
language that expresses how the pipeline of a network for-
warding element should process packets using the abstract
forwarding model shown in Figure 1. In this model, each
packet first passes through a programmable parser, which
extracts headers. The P4 program specifies the structure of
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Figure 2: OVS forwarding model.

each possible header as well as a parse graph that expresses
ordering and dependencies. Then, the packet passes through
a series of match-action tables (MATs). The P4 program spec-
ifies the fields that each of these MATs may match and the
control flow among them, as well as the spectrum of permissi-
ble actions for each table. At “runtime” (i.e., while the switch
is forwarding packets), controller software may add, remove,
and modify table entries with particular match-action rules
that conform to the P4 program’s specification. Finally, a
deparser writes the header fields back onto the packet before
sending it out the appropriate port.
Software Switch: Open vSwitch. Open vSwitch (OVS)
is widely used in virtualized data-center environments as a
software switch running inside the hypervisor. In such an
environment, OVS switches packets among virtual interfaces
to VMs and physical interfaces. OVS implements common
protocols such as Ethernet, GRE, and IPv4, as well as newer
protocols found in datacenters, such as VXLAN, Geneve, and
STT for virtual network overlays.

The Open vSwitch virtual switch is divided into two im-
portant pieces, called the slow path and the fast path (aka
datapath), as shown in Figure 2. The slow path, which is
the larger component of the two, is a user-space program;
it supplies most of the intelligence of Open vSwitch. The
fast path acts as a caching layer that contains only the code
needed to achieve maximum performance. Notably, the fast
path must pass any packet that misses its caches to the slow
path to get instructions for further processing. Open vSwitch
includes a single, portable slow path and multiple fast-path
implementations for different environments: one based on
a Linux kernel module, another based on a Windows kernel
module, and another based on Intel DPDK [24] userspace for-
warding. The DPDK fast path yields the highest performance,
so we use it for our work; with additional effort, our work
could be extended to the other fast paths.

As an SDN switch, Open vSwitch relies on instructions
from a controller to determine its behavior, specifically using
the OpenFlow protocol [34]. OpenFlow specifies behavior in
terms of a collection of match-action tables, each of which
contains a number of entries called flows. In turn, a flow
consists of a match, in terms of packet headers and metadata,
actions that instruct the switch what to do when the match
evaluates to true, and a numerical priority. When a packet
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arrives at a particular match-action table, the switch finds a
matching flow and executes its actions; if more than one flow
matches the packet, then the flow with the highest priority
takes precedence.

A software switch that implements the behavior exactly as
described above cannot achieve high performance, because
OpenFlow packets often pass through several match-action
tables, each of which requires general-purpose packet clas-
sification. Thus, Open vSwitch relies on caches to achieve
good forwarding performance. The primary OVS cache is
its megaflow cache, which is structured much like an Open-
Flow table. The idea behind the megaflow cache is that one
could, in theory, combine all of the match-action tables that
a packet visits while traversing the OpenFlow pipeline into
a single table by computing their cross-product. This is in-
feasible, however, because the cross-product of k tables with
n1, . . . ,nk flows might have as many as n1 × ·· ·× nk flows.
The megaflow cache functions somewhat like a lazily com-
puted cross-product: when a packet arrives that does not
match any existing megaflow cache entry, the slow path com-
putes a new entry, which corresponds to one row in the the-
oretical cross-product, and inserts it into the cache. Open
vSwitch uses a number of techniques to improve megaflow
cache performance and hit rate [39].

When a packet hits in the megaflow cache, the switch can
process it significantly faster than the round trip from the
fast path to the slow path that a cache miss would require.
As a general-purpose packet classification step, however, a
megaflow cache lookup still has a significant cost. Thus, Open
vSwitch fast path implementations also include a microflow
cache. In the DPDK fast path, the microflow cache is a hash
table that maps from a packet five-tuple to a megaflow cache
entry. At ingress, the fast path uses this hash table as a hint to
determine which megaflow cache entry to check first. If that
megaflow cache entry matches, the lookup cost is just that
of the single hash table lookup. Since this is generally much
cheaper than general packet classification, it is a significant
optimization for traffic patterns with relatively long, steady
streams of packets. (If the megaflow cache entry check fails,
e.g., because the flow table does not treat all packets with the
same five-tuple alike, the packet continues through the usual
megaflow cache lookup process, skipping the entry that it has
already checked.)

4 PISCES Prototype
Our PISCES prototype is a modified version of OVS with the
parse, match and action code replaced by C code generated
by our P4 compiler. The workflow is as follows: First, the
programmer creates a P4 program and uses the PISCES P4
compiler to generate new parse, match and action code for
OVS. Second, OVS is compiled (using the regular C compiler)
to create a protocol-dependent switch that processes packets
as described in the P4 program. To modify a protocol, a user
modifies the P4 program which compiles to a new hypervisor
switch binary.

Parse ActionMatch

OVS Source Code

Flow Rule
Type Checker

OVS Executable

Runtime Flow RulesP4 Program

P4 Compiler

C Code

Slow Path
Configuration

Match-Action
Rules

Figure 3: The PISCES P4-to-OVS Compiler.

We use OVS as the basis for PISCES because it is widely
used and contains some basic scaffolding for a programmable
switch, thus allowing us to focus only on the parts of the
switch that need to be customized (i.e., parse, macth, and
action). The code is well-structured, lending itself to modifi-
cation, and test environments already exist. It also allows for
apples-to-apples comparisons: We can compare the number
of lines of code in OVS to the resulting PISCES code, and we
can also compare their performance.

4.1 The PISCES P4-to-OVS Compiler
P4 compilers have two parts: a front end that turns the P4
code into a target-independent intermediate representation
(IR), and a back end that maps the IR to the target. In our
case, the back end optimizes CPU time, latency, or other
objectives by manipulating the IR, and then generates C code
that replaces the parsing, match, and action code in OVS,
as shown in Figure 3. The P4-to-OVS compiler outputs C
source code that implements everything needed to compile the
corresponding switch executable. The compilation process
also generates an independent type checking program that
the executable uses to ensure that any runtime configuration
directives from the controller (e.g., insertion of flow rules)
conforms to the protocol specified in the P4 program.
Parse. The C code that replaces the original OVS parser
is created by replacing struct flow, the C structure that
OVS uses to track protocol header fields, to include a member
for each field specified by the P4 program, and generating
code to extract header fields from a packet into struct
flow.
Match. OVS uses a general-purpose classifier data structure,
based on tuple-space search [46], to implement matching. To
perform custom matches, we do not need to modify this data
structure or the code that manages it. Rather, the control plane
can simply populate the classifier with new packet header
fields at runtime, thereby automatically making those fields
available for packet matching.
Action. The back end of our compiler supports custom ac-
tions by automatically generating code that we statically com-
pile into the OVS binary. Custom actions can execute either
in the OVS slow path or the fast path; the compiler deter-
mines where a particular action will run to ensure that the
switch performs the actions efficiently. Certain actions (e.g.,
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set field) can execute in either component. The program-
mer can offer hints to the compiler as to whether slow path or
fast path implementation of an action is most appropriate.
Control flow. A P4 program defines a control flow to specify
the possible sequences of match-action tables that a packet
will traverse. In OVS, individual flow entries added at run-
time specify control flow, allowing arbitrary control flow at
runtime. Therefore, our compiler back end can implement P4
control semantics without OVS changes.
Optimizing the IR. The compiler back end contains an opti-
mizer to examine and modify the IR, so as to generate high-
performance C code. For example, a P4 program may include
a complete IP checksum, but the optimizer can turn this op-
eration into an incremental IP checksum to make it faster.
The compiler also performs liveness analysis on the IR [1],
allowing it to coalesce and specialize the C code. The opti-
mizer also decides when and where in the packet processing
pipeline to edit packet headers. Some hardware switches post-
pone editing until the end of the pipeline, whereas software
switches typically edit headers at each stage in the pipeline.
If necessary, the optimizer converts the IR for in-line editing.
We describe the optimizer in more detail in Section 4.3.

As is the case with other P4 compilers, the P4-to-OVS
compiler also generates an API to interface to the match-
action tables, and extends the OVS command-line tools to
work with the new fields.

4.2 Modifications to OVS
We needed to make three modifications to OVS to enable it
to implement the forwarding behavior described in any P4
program.
Arbitrary encapsulation and decapsulation. OVS does not
support arbitrary encapsulation and decapsulation, which a
P4 program might require. Each OVS fast path has its own
specialized support for various fixed forms of encapsulation.
The Linux kernel fast path and DPDK fast path, for example,
each separately implement GRE, VXLAN, STT, and other
encapsulations. The metadata required to encapsulate and
decapsulate a packet for a tunnel is statically configured. The
switch uses a packet’s ingress port to map it to the appropriate
tunnel; on egress, the packet is encapsulated in the correspond-
ing IP header based on this static tunnel configuration. We
therefore added two new primitives to OVS, add header()
and remove header(), to perform encapsulation and de-
capsulation, respectively, and performs these operations in
the fast path.
Conditionals based on comparison of header fields. Open-
Flow directly supports only bitwise equality tests against
header fields. Relational tests such as < and > to compare
a k-bit field against a constant can be expressed as at most
k flows that use bitwise equality matches. A relational test
between two k-bit fields, e.g. x < y, requires k(k+1)/2 such
flows. To simultaneously test for two such conditions that
individually take n1 and n2 flows, one needs n1 × n2 flows.
P4 directly supports such tests, but implementing them in

Optimization CPU Cycles Slow Path Trips
Inline- vs. post-pipeline editing X
Incremental checksum X
Parser specialization X
Action specialization X
Action coalescing X
Stateful operations X X
Stage assignment X X

Table 1: Back-end optimizations and how they improve perfor-
mance.

OpenFlow this way is too expensive, so we added direct sup-
port for them in OVS as conditional actions, a kind of “if”
statement for OpenFlow actions. For example, our extension
allows the P4 compiler to emit an action of the form “If x < y,
go to table 2, otherwise go to table 3.”
General checksum verify/update. An IP router is supposed
to verify the checksum at ingress, and recompute it at egress,
and most hardware switches do it this way. Software routers
often skip checksum verification on ingress to reduce CPU
cycles. Instead, it just incrementally updates the checksum
if it changes any fields (e.g. the TTL).3 Currently, OVS
only supports incremental checksums, but we want to support
other uses of checksums in the way the programmer intended.
We therefore added incremental checksum optimization, de-
scribed in Section 4.3. Whether this optimization is valid
depends on whether the P4 switch is acting as a forwarding
element or an end host for a given packet—if it is an end host,
then it must verify the checksum—so it requires hinting by
the P4 programmer.

4.3 The Compiler’s Back-end Optimizer
Two aspects of a software switch ultimately affect forwarding
performance: (1) the per-packet cost for fast-path processing
(adding 100 cycles to this cost reduces the switch’s throughput
by about 500 Mbps), and (2) the number of packets sent to the
slow path, which takes 50+ times as many cycles as the fast
path to process a packet. Table 1 lists the optimizations that
we have implemented, as well as whether the optimization
reduces trips to the slow path, fast path CPU cycles, or both.
The rest of the section details these optimizations.
Inline editing vs. post-pipeline editing. The OVS fast path
does inline editing, applying packet modifications immedi-
ately (the slow path does some simple optimization to avoid
redundant or unnecessary modifications). If a large number of
header fields are modified, removed or inserted, it can become
costly to move and resize packet data on the fly. Instead, it
can be more efficient to delay editing until the headers have
been processed (as hardware switches typically do). The
optimizer analyzes the IR to determine how many times a
packet may need to be modified in the pipeline. If the value is
below a certain threshold, then the optimizer performs inline
editing; otherwise, it performs post-pipeline editing. We al-

3If the checksum was incorrect before the update, it is still incorrect
afterward, and we rely on the ultimate end host to discard the packet.
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low the programmer to override this heuristic using a pragma
directive.

Incremental checksum. By expressing a checksum oper-
ation in terms of a high-level program description such as
P4, a programmer can provide a compiler with the neces-
sary contextual information to implement the checksum more
efficiently. For example, the programmer can inform the
compiler via a pragma that the checksum for each packet
can be computed incrementally [32]; the optimizer can then
perform liveness analysis to determine which packet header
fields change, thus making re-computation of the checksum
more efficient.

Parser specialization. Protocol-independent software
switches can optimize the implementation of the packet parser,
since a customized packet processing pipeline (as specified
in a high-level language such as P4) provides specific infor-
mation about which fields in the packet are modified or used
as the basis for forwarding decisions. For example, a layer-2
switch that does not make forwarding decisions based on
information at other layers can avoid parsing packet header
fields at those layers. Specifying the forwarding behavior in
a high-level language provides the compiler with information
that it can use to optimize the parser.

Action specialization. The inline editing actions in the OVS
fast path group together related fields that are often set at the
same time. For example, OVS implements a single fast path
action that sets the IPv4 source, destination, type of service,
and TTL value. This is efficient when more than one of these
fields is to be updated at the same time, with little marginal
cost if only one is updated. IPv4 has many other fields, but
the fast path cannot set any of them.

The design of this aspect of OVS required expert knowl-
edge: its designer knew which fields were important for the
fast path to be able to change. A P4 compiler does not have
this kind of expert knowledge, so a design similar to the
OVS fast path would require bundling every field in, say, the
IPv4 header into a single action, incurring expensive checks
that can significantly impede performance. Fortunately, the
high-level P4 description of the match-action and control
flow allows the optimizer to identify and eliminate redun-
dant checks in the fast-path set actions, using optimizations
like dead-code elimination [1]. This way, the optimizer only
checks those fields in the set actions that will actually be set
in the match-action control flow.

Action coalescing. By analyzing the control-flow and match-
action processing in the P4 program, we can find out which
fields are actually modified and can generate an efficient,
single action to directly update those fields. Thus, if a rule
modifies two fields, the optimizer only installs one action in
OVS.

Cached field modifications. OVS does not decrement TTLs
in the fast path. Instead, the slow path relies on the fact that
most packets from a given source have the same TTL. There-
fore, it matches on the TTL value observed in the packet that

it is forwarding and emits an action that overwrites the old
value with one less than that observed value. This works be-
cause the OVS designers knew the semantics of TTL and that
caching this way would yield a high hit rate. However, this
will not be effective with every field. Suppose, for example,
that we wished to hash a set of packet headers and store the
hash value somewhere in the packet. With the OVS approach,
the cache would have to match on every field that contributes
to the hash value. Unless all of these inputs are as predictable
as TTL, this is impractical, because the cache entry would
have a “hit rate” approaching zero, defeating its purpose.

The optimizer uses dataflow analysis based on the IR to
help it determine whether it can safely install a match rule
in the fast path cache. If it cannot, then the packet must be
processed in the slow path.

Stage assignment. OVS implements staged lookups [39] to
reduce the number of trips to the slow path. It divides fields
into four groups: metadata, L2, L3, and L4, in decreasing
order of their entropy (or traffic granularity). In this model,
each hash table used in a tuple space search classifier is split
into four hash tables, called stages. The first stage searches
using metadata fields only, the second using metadata and L2
fields, the third using metadata, L2, and L3 fields, and the
fourth stage using all fields. A lookup therefore searches each
of these stages in order. If any yields no match, the overall
search terminates and only the fields included in the last stage
matched must be matched in the cache entry.

The optimizer uses a heuristic to try to get the benefits of
staging. It analyzes the header definitions specified in the P4
program and divides the fields into groups. We augmented the
P4 language to enable a user to tag each header with a relative
entropy value. For example, if header h1 has lower entropy
than header h2, the user can assign h2 a value of 0 and h2 a
value of 1. We then sort these headers in decreasing order of
their entropy value. Once the headers are sorted, we generate
stages as follows: the first stage has header h1, the second
stage has headers h1 and h2, the third stage has headers h1,
h2, and h3, and so on. The total number of stages is equal to
the total number of headers in a P4 program.

5 Evaluation
We compare the complexity and performance of a virtual soft-
ware switch generated by PISCES with equivalent OVS native
packet processing. We compare the resulting programs along
two dimensions: (1) complexity, including development and
deployment complexity as well as maintainability; (2) per-
formance, by comparing packet-forwarding performance of
PISCES to the same native OVS functionality.

5.1 Complexity
Complexity indicates the ease with which a program may
be modified to fix defects, meet new requirements, simplify
future maintenance or cope with changes in the software en-
vironment. We evaluate two categories of complexity: (1) de-
velopment complexity of developing baseline features for a
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LOC Methods Method Size
Native OVS 14,535 106 137.13
ovs.p4 341 40 8.53

Table 2: Native OVS compared to equivalent baseline functionality
implemented in PISCES.

Files Changed Lines Changed

Connection Label
OVS 28 411

ovs.p4 1 5

Tunnel OAM Flag
OVS 18 170

ovs.p4 1 6

TCP Flags
OVS 20 370

ovs.p4 1 4

Table 3: The number of files and lines we needed to change to imple-
ment various functionality in P4, compiled with PISCES, compared
to adding the same functionality to native OVS.

software switch; and (2) change complexity of maintaining an
existing software switch.

5.1.1 Development complexity

We evaluate development complexity with three different
metrics: lines of code, method count, and average method
size. We count lines of code simply by counting line break
characters and the number of methods by counting the number
of subroutines in each program, as measured using ctags.
Finally, we divide lines of code by number of methods to
arrive at the average method size. A high average might
indicate that (some) methods are too verbose or complex.
ovs.p4 contains the representation of the headers, parsers
and actions that are currently supported in OVS [38]. Much
of the code in Open vSwitch is out of the scope of P4, so our
measurements include only the files that are responsible for
protocol definitions and header parsing.

Table 2 summarizes each of these metrics for the native
OVS header fields and parser implementation, and the equiva-
lent logic in P4.4 PISCES reduces the lines of code by about
factor of 40 and the average method size by about a factor of
20.

5.1.2 Change complexity

To evaluate the complexity of maintaining a protocol-
independent software switch in PISCES, we compare the
effort required to add support for a new header field in a pro-
tocol that is otherwise already supported, in OVS and in P4.
Table 3 shows our analysis of changes to add support for three
fields: (1) connection label, a 128-bit custom metadata to the
connection tracking interface; (2) tunnel OAM flag, which
many networking tools use to distinguish test packets from
real traffic; and (3) TCP flags, a modification which adds sup-

4We reused the same code for the match-action tables in both implementa-
tions because this logic generalizes for both OVS and a protocol-independent
switch such as PISCES.

PISCES	Switch	

DPDK	
MoonGen	
Traffic		

Source/Sink	

MoonGen	
Traffic		

Source/Sink	

3x	10G	 3x	10G	

Figure 4: Topology of our evaluation platform.

port for parsing all of the TCP flags. The numbers for Open
vSwitch, based on the public Open vSwitch commits that
added support for these fields [35], are conservative because
they include only the changes to one of the three OVS fast
path implementations.

The results demonstrate that modifying just a few lines of
code in a single P4 file is sufficient to support a new field,
whereas in OVS, the corresponding change often requires
hundreds of lines of changes over tens of files. Among other
changes, one must add the field to struct flow, describe
properties of the field in a global table, implement a parser for
the field in the slow path, and separately implement a parser
in one or more of the fast paths.

5.2 Forwarding Performance
In this section, we compare OVS and PISCES packet-
forwarding performance.

5.2.1 Experiment setup and evaluation metrics

Figure 4 shows the topology of the setup for evaluating the
forwarding performance of PISCES. We use three PowerEdge
R730xd servers with 8-core, 16-thread Intel Xeon E5-2640 v3
2.6GHz CPUs running the Proxmox Virtual Environment [41],
an open-source server virtualization platform that uses virtual
switches to connect VMs, with Proxmox Kernel version 4.2.6-
1-pve. Each of our machines is equipped with one dual-port
and one quad-port Intel X710 10GE NIC. We configured two
such machines with MoonGen [17] to send minimum-size
64-byte frames at 14.88 million packets per second (Mpps)
full line rate on three of the 10GE interfaces [43], leaving the
other interfaces unused. We connect these six interfaces to
our third machine, the device under test, sending a total of 60
Gbps of traffic for our PISCES prototype to forward.

We consider throughput and packets-per-second to com-
pare the forwarding performance of PISCES and OVS, using
the MoonGen packet generator to generate test traffic for our
experiments. To further understand performance bottlenecks,
we use the machine’s time-stamp counter (TSC) to measure
the number of CPU cycles used by various packet processing
operations (i.e., parser, megaflow cache lookup, and actions).
When reporting CPU cycles, we report the average CPU cy-
cles per packet over all packets forwarded in an experiment
run; each run lasts for 30 seconds and typically forwards
about seven million packets.

For most of our experiments, we disabled OVS’s microflow
cache because it relies on matching a hash of a packet’s
five-tuple, which most NICs can compute directly in hard-
ware. Although OVS’s microflow cache significantly im-
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(a) Forwarding performance in packets per second.
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(b) Forwarding performance in Gigabits per second.

Figure 5: Forwarding performance for OVS without the microflow
cache enabled, for input traffic of 60 Gbps.

proves its forwarding performance, this feature relies on
protocol-dependent features (specifically, that the packet has
a five-tuple in the first place). Because our goal is to evalu-
ate forwarding rates for protocol-independent switches, we
disabled OVS’s microflow cache so that we could compare
PISCES, a protocol-independent switch, with a version of
OVS that has no protocol-dependent optimizations. Com-
paring PISCES performance to that of OVS with microflow
caching disabled thus offers a more “apples-to-apples” per-
formance comparison.
Calibrating OVS to enable performance comparison. To
allow us to more accurately measure the cost of parsing for
both OVS and PISCES in subsequent experiments, we begin
by establishing a baseline for Open vSwitch performance
with minimal parsing functionality. To minimize the cost of
parsing, we disabled the OVS parser, which ordinarily parses
a comprehensive fixed set of headers, so that it reports only
the input port. After this change, we sent test traffic through
the switch with a trivial flow table that matches every packet
that ingresses on port 1 and outputs it to port 2.

Figures 5a and 5b show the maximum throughput that our
setup achieved with OVS, with and without the microflow
cache, for 60-Gbps traffic. For 64-byte packets, disabling the
microflow cache reduced performance by about 35%, because
a lookup in the OVS megaflow cache consumes five times
as many cycles as the microflow cache (Table 4). For small
packets, the OVS switch is CPU-bound on lookups; thus, in

Switch With Without
Components MicroFlow MicroFlow
Parser 19.0 18.9
MicroFlow Cache 18.9 —
MegaFlow Cache — 92.2
Slow Path — —
Fast-Path Actions 39.9 38.8
End-to-End 100.6 166.0

Table 4: Average number of cycles per packet consumed by each
element in the virtual switch when processing a 64-byte packet.
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Figure 6: Throughput comparison of L2L3-ACL benchmark appli-
cation between OVS and PISCES.

this operating regime, the benefit of the microflow cache is
clear. With this calibration in mind, for the remainder of the
evaluation section, we use the forwarding performance for
OVS with the microflow cache disabled as the basis for our
performance comparison to PISCES.

5.2.2 End-to-end performance

We next measured the forwarding performance of a real-world
network application for both OVS and PISCES. This evalu-
ation provides a clear illustration of the end-to-end perfor-
mance costs of programmability. We selected a realistic and
relatively complex application where both switch implemen-
tations provided all packet processing features to provide a
fair performance comparison of PISCES in realistic network
settings.

This application, which is shown in Figure 7 and which we
call “L2L3-ACL”, performs the following operations:

• Parse Ethernet, VLAN, IP, TCP and UDP protocols.
• Perform VLAN encapsulation and decapsulation.
• Perform control-flow and match-action operations ac-

cording to Figure 7 to implement an access control list
(ACL).

• Set Ethernet source, destination, type and VLAN fields.
• Decrement IP’s TTL value.
• Update IP checksum.

Table 5 shows the forwarding performance results for this
application. The most important rows are the last two, which
show a “bottom line” comparison between OVS and PISCES,
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Switch Optimizations Parser
MegaFlow Fast-Path End-to-End Throughput

Cache Actions (Avg.) (Mbps)
PISCES Baseline 76.5 209.5 379.5 737.4 7590.7

Inline Editing -42.6 — +7.5 -45.4 +281.0
Inc. Checksum — — -231.3 -234.5 +4685.3
Action Specialization — — -10.3 -9.2 +191.2
Parser Specialization -4.6 — — -7.6 +282.3
Action Coalescing — — -14.6 -14.8 +293.0

All optimizations 29.7 209.0 147.6 425.8 13323.7
OVS — 43.6 197.5 132.5 408.7 13497.5

Table 5: Improvement in average number of cycles per packet, consumed by each element in the virtual switch when processing 64-byte packet,
for L2L3-ACL benchmark application.

VLAN	Ingress	
Processing	

Match:	ingress_port	
							vlan.vid	
Action:	add_vlan	
								no_op	

MAC	
Learning	

Match:	eth.src	
Action:	learn	
								no_op	

Switching	

Match:	eth.dst	
							vlan.vid	
Action:	forward	
								bcast	

Routing	

Match:	ip.dst	
Action:	nexthop	
								drop	

Routable	

Match:	eth.src	
							eth.dst	
							vlan.vid	
Action:	no_op	

ACL	

Match:	ip.src,ip.dst	
							ip.prtcl,	
							port.src,port.dst	
Action:	no_op	
								drop	

VLAN	Egress	
Processing	

Match:	egress_port	
							vlan.vid	
Action:	remove_vlan	
								no_op	

route	

Figure 7: Control flow of L2L3-ACL benchmark application.

after we apply all compiler optimizations. These results show
that both the average number of CPU cycles per packet and
the average throughput for PISCES with all compiler op-
timizations is comparable to OVS with microflow caching
disabled: both require just over an average of 400 CPU cy-
cles per packet, and both achieve throughput of just over
13 Gbps—a performance overhead of less than 2%. Figure 6
demonstrates that this result also holds for larger packet sizes.
In all cases, PISCES with compiler optimizations achieves
performance comparable to OVS.

Next, we discuss in more detail the performance benefits
that each compiler optimization achieves for this end-to-end
application.
Benefits of individual compiler optimizations. P4 supports
post-pipeline editing, so we started by compiling L2L3-ACL
with post-pipeline editing. PISCES required an average of
737 cycles to process a 64-byte packet. Packet parsing and
fast-path actions are primarily responsible for these addi-
tional CPU cycles. As our microbenchmarks demonstrate
(Section 5.2.3), if the number of adjustments to packets are
less than eight, using inline-editing mode provides better for-
warding performance. Based on that insight, our compiler
compiles PISCES with inline-editing, which reduces the num-
ber of cycles consumed by the parser by about 56%. However,
fast-path actions cycles slightly increased (still 255 cycles
more than OVS).

Next, we introduced incremental checksum updates to re-
duce the number of cycles consumed by the fast-path actions.
The only IP field that is modified is TTL, but the full check-

sum verify and update design supported by P4 abstract model
runs the checksum over entire headers once at the ingress and
once at egress. For our P4 program, we specified that we
wanted to use incremental checksum. Using this knowledge,
instead of recalculating checksum on all header fields, using
data flow analysis on the P4 program (MAT and control-flow),
the P4 compiler determined that the pipeline modified only
the TTL and adjusted the checksum using only that field,
which reduced the number of cycles consumed by the fast-
path actions by 59.7%, a significant improvement. However,
PISCES was still consuming 23.24 more cycles than OVS.

To further improve the performance we applied action spe-
cialization and coalescing, and parser specialization. This
brought the number of cycles consumed per packet by
PISCES to 425.82.
Performance benefits of parser specialization. A protocol-
independent switch only needs to parse the packet-header
fields for the protocols defined by the programmer. The
PISCES compiler can optimize the parser further to only
parse the header fields that the switch needs to process the
packet. To evaluate the potential benefits of this specialization,
we repeated our end-to-end performance evaluation using two
subsets of the L2L3-ACL program: the “L2L3” program,
which does not perform the ACL functions, and the “L2”
program, which manipulates the Ethernet and VLAN headers
and performs VLAN encapsulation, but which does not parse
any IP headers or decrement the TTL (and thus does not
update the IP checksum). In terms of the control flow from the
original “L2L3-ACL” benchmark program from Figure 7, the
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Switch Programs Optimizations Parser
MegaFlow Fast-Path End-to-End Throughput

Cache Actions (Avg.) (Mbps)

PISCES L2L3 Optimized 22.9 188.4 130.5 392.3 14159.1
OVS L2L3 — 43.6 176.0 131.8 388.3 14152.2

PISCES L2 Optimized 19.7 148.2 90.9 305.7 18118.5
OVS L2 — 43.6 155.2 78.7 312.1 17131.3

Table 6: Improvement in average number of cycles per packet, consumed by each element in the virtual switch when processing 64-byte packet,
for L2L3 and L2 benchmark applications.

“L2L3” program removes the dark grey ACL tables, and the
“L2” program additionally removes the light grey Routable
and Routing tables.

Table 6 compares the forwarding performance of OVS
and PISCES for these two programs. For L2L3, PISCES
consumed 4 more cycles per packet than OVS. However, note
PISCES improvement in parsing performance: compared to
L2L3-ACL, parsing in L2L3 is about 7 cycles per packet
cheaper. OVS uses a fixed parser, so its cost remains constant.
Parser specialization removed redundant parsing of fields
from the parser that are not used in the control-flow (i.e., TCP
and UDP headers). Because OVS does not know the control-
flow and MAT structure a priori, its parser cannot achieve the
same specialization. In the case of the L2 application, the
parser could specialize further, since it needed only to parse
Ethernet headers. In this case, PISCES can actually process
packets more quickly than the protocol-dependent switch.

5.2.3 Microbenchmarks

We now evaluate the performance of individual components
of our PISCES prototype. We focus on the parser and ac-
tions, which are applied on every incoming packet and have
the largest effect on performance. We now benchmark how
increasing complexity in both parser and actions affect the
overall performance of PISCES.

Parser performance. Figure 8a shows how per-packet cycle
counts increase as the P4 program parses additional protocols,
for both post- and inline-editing modes. To parse only the
Ethernet header, the parser consumes about 20 cycles, in
either mode. As we introduce new protocols, the cycle count
increases, more rapidly for post-pipeline editing, for which
the switch creates an extra copy of the protocol headers for
fast-path actions. For the largest protocol combination in
Figure 8a, the parser requires about 133 cycles (almost 6×
Ethernet alone) for post-pipeline editing and 54 cycles for
inline-editing. Figure 8b shows how the throughput decreases
with the addition of each new protocol in the parser. For
64-byte packets at 60 Gbps, switching throughput decreases
about 35%, from 51.1 Gbps to 33.2 Gbps, for post-pipeline
editing and about 24%, from 52.4 Gbps to 40.0 Gbps, for
inline editing.

Fast-path action performance. Performance-wise, the dom-
inant action in a virtual switch is the set-field (or modify-field)
action or, in other words, a write action. Figure 9 shows the
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(a) CPU cycles.
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(b) End-to-end throughput.

Figure 8: Effect on parser CPU cycles and end-to-end throughput
as more protocols are added to the parser.

per-packet cost, in cycles, as we increase the number of set-
field actions in the fast path for both post- and inline-editing
modes. In post-editing mode, we apply our changes to a copy
of the header fields (extracted from the packet) and at the
end of the pipeline execute a “deparse” action that writes
the changes back to the packet. The “deparse” bar shows
how deparsing consumes about 99 cycles even if no fields are
modified, whereas inline editing has no cost in this case. As
the number of writes increases, the performance difference
between the two modes narrows. For 16 writes, this differ-
ence is 20 cycles less than for a single write. Still, in both
cases, the number of cycles increases. For post-editing case,
16 writes consumes 354 cycles, about 3.6× a single write; for
inline editing, 16 writes consumes 319 cycles, or about 5.6×.

We also measured cycles-per-packet for adding or remov-
ing headers. Figures 10 and 11 show cycles-per-packet for an
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Figure 9: Fast Path Set-Field Action Performance.
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Figure 10: Fast Path Add-Header Performance.

increasing number of add-header and remove-header actions,
respectively, in the post- and inline-editing modes.

For the add header() action, for inline-editing mode,
the number of cycles doubles for every new action. This is
because these actions are applied directly on the packet, ad-
justing the packet size each time, whereas post-editing adjusts
the packet size only once, in the “deparse” action, so that the
number of cycles consumed remains almost constant. For
a single add header() action, post-editing cost is higher,
but for four or more actions the inline-editing mode is more
costly. For 16 add-header actions, inline editing consumes
577 more cycles per packet than post-editing.

We observe a similar trend for remove header().
There is one additional wrinkle: as the number of
remove header() actions increase, the cost of post-
pipeline editing actually decreases slightly, because fewer
bytes need to be adjusted in the packet as the packet shrinks.
As we increase the number of remove-header actions from 1
to 16, the per-packet cycle count decreases by about 21%.
This led us to the following rule of thumb: for fewer than
8 packet-size adjustments (i.e., add- and remove-header ac-
tions), the compiler uses inline-editing; otherwise, it applies
post-pipeline editing, as the added number of cycles required
by the parser to generate a copy of the parsed packet headers
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Figure 11: Fast Path Remove-Header Performance.

is offset by the number of cycles required by the add/remove
header actions in the inline-editing mode.

Slow-path forwarding performance. When OVS must send
all packets to the slow path, it takes on average about 3,500
cycles to process a single packet (about 50× a microflow
cache hit). In this case, the maximum packet forwarding rate
is about 0.66 Mpps regardless of packet size. This per-packet
cycle count for slow-path processing was for the simplest
possible program that sends every packet to the same output
port. Most real packet processing program would require sig-
nificantly more cycles. For example, for the L2L3-ACL pro-
gram, slow-path processing required anywhere from 30,000 to
60,000 CPU cycles per packet. These performance numbers
indicate the importance of the megaflow cache optimizations
that we described in Section 4.3 to reduce the number of trips
to the slow path. Clearly, the number of trips to the slow
path depends on the actual traffic mix (because this affects
cache hit rates in the megaflow cache), so it is difficult to
state general results about the benefits of these optimizations,
but computing the slowdown as a result of cache misses is
straightforward.

Control flow. Control flow in Open vSwitch, and thus in
PISCES, is implemented in the slow path. It has a small
one-time cost, which is impossible to separate from slow path
performance in general, at the setup of every new flow.

6 Related Work
PISCES is a software switch whose protocols and packet-
processing functions can be specified using a high-level
domain-specific language for packet processing. Although
PISCES uses P4 as its high-level language and OVS as its
software switch, previous work has developed both domain
specific languages for packet processing and virtual software
switches, where our approaches for achieving protocol inde-
pendence and efficient compilation from a DSL to a software
switch may also apply.

Domain specific languages for packet processing. The P4
language provided the main framework for protocol inde-
pendence [8]; PISCES realizes protocol independence in a
real software switch. P4 itself borrows concepts from prior
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work [5, 18, 31]; as such, it may be possible to apply simi-
lar concepts that we have implemented in PISCES to other
high-level languages. Although our current PISCES pro-
totype compiles P4 to OVS source code, the concepts and
optimizations that we have developed could apply to other
high-level langauges and target switches; an intermediate rep-
resentation such as NetASM [44] could ultimately provide a
mechanism for a compiler to apply optimizations for a variety
of languages and targets. Languages such as Pyretic [42] and
Frenetic [19] are domain-specific languages that specify how
packets should be processed by a fixed-function OpenFlow
switch, not by a protocol-independent switch.
Virtual software switches. Existing methods and frame-
works for building software switches like Linux Kernel [30],
DPDK [24], Netmap [43], and Click [29] require intimate
knowledge about the underlying implementation and, thus,
make it difficult for a network programmer to rapidly adapt
and add new features to these virtual switches. PISCES, on
the other hand, allows programmer to specify packet process-
ing behavior independent of the underlying implementation
details. Open vSwitch [39] provides interfaces for populating
its match-action tables but does not provide mechanisms to
customize protocols and actions.
Other programmable switches. Software routers such as
RouteBricks [14], PacketShader [22], and GSwitch [47] rely
on general-purpose processors or GPUs to process packets;
these designs generally focus on optimizing server, network
interface, and processor scheduling to improve the perfor-
mance of the software switch. These switches do not enable
programmability through a high-level domain-specific lan-
guage such as P4, and they also do not function as hypervisor
switches. CuckooSwitch [48] can be used as a hypervisor
switch. However, it focuses on providing fast FIB lookups by
using highly-concurrent hash tables based on Cuckoo hash-
ing [36], and, also does not provide a high-level domain-
specific language to configure the switch. SwitchBlade [4]
enables some amount of protocol customization and forwards
packets at hardware speeds, but also acts as a standalone
switch and requires an FPGA as a target.
Measuring performance. Previous work has both mea-
sured [7, 16] and improved [11, 12, 38, 39] the performance
of software virtual switches. Work on measurement has con-
verged on a set of performance metrics to compare various
switch architectures and implementations; our evaluation uses
these metrics to compare the performance of PISCES to that
of other virtual switches.
Measuring complexity. A number of metrics for measuring
the complexity and maintainability of a program written in a
DSL are developed in software engineering [10,23,25,26,33].
One of the goal of PISCES is to make it easier for the pro-
grammer to develop and maintain code. For our evaluations,
we have taken these metrics from software engineering to
to evaluate the complexity of writing a program in P4 vs.
directly modifying the OVS source code in C.

7 Conclusion
The increasing use of software hypervisor switches in virtual-
ized data centers has introduced the need to rapidly modify the
packet forwarding behavior of these software switches. Today,
modifying these switches requires both intimate knowledge
of the switch codebase and extensive expertise in network pro-
tocol design, making the bar for customizing these software
switches prohibitively high. As an alternative to this mode of
operation, we developed PISCES, a programmable, protocol-
independent software switch that allows a protocol designer
to specify a software switch’s custom packet processing be-
havior in a high-level domain-specific language (in our case,
P4); a compiler then produces source code for the underlying
target software switch (in our case, OVS). PISCES programs
are about 40 times more concise than the equivalent programs
in native code for the software switch. We demonstrated that,
with appropriate compiler optimizations, this drastic reduc-
tion in complexity comes with hardly any performance cost
compared to the native software switch implementation.

Our prototype demonstrates the feasibility of a protocol-
independent software switch using P4 as the programming
language and OVS as the target switch. Moreover, our tech-
niques for software switch protocol independence and for
compiling a domain-specific packet-processing language to
an efficient low-level implementation should generalize to
other languages and targets. One way to achieve language and
target-independence would be to first compile the domain-
specific languages to a protocol-independent high-level in-
termediate representation (HLIR) such as protocol-oblivious
forwarding [45] or NetASM [44], then apply the techniques
and optimizations from PISCES to the HLIR.

Another future enhancement for PISCES is to enable cus-
tom parse, match, and action code to be dynamically loaded
into a running protocol-independent switch. Our current
PISCES prototype requires recompilation of the switch source
code every time the programmer changes the P4 specification.
In certain instances, such as adding new features and proto-
cols to running production switches or temporarily altering
protocol behavior to add visibility or defend against an attack,
dynamically loading code in a running switch would be valu-
able. We expect future programmable protocol-independent
software switches to support dynamically loading new or
modified packet-processing code.

It is too early to see the effects of PISCES on protocol
development, but the resulting code simplicity should make
it easier to deploy, implement, and maintain custom soft-
ware switches. In particular, protocol designers can maintain
their custom software switch implementations in terms of a
high-level domain-specific language like P4 without needing
to track the evolution of the (larger and more complex) un-
derlying software switch codebase. The ability to develop
proprietary customizations without having to modify (and
track) the source code for a software switch such as OVS
might also be a selling point for protocol designers. We in-
tend to study and characterize these effects as we release
PISCES and interact with the protocol designers who use it.
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