Programmable In-Network Obfuscation of Traffic

Liang Wang, Hyojoon Kim, Prateek Mittal, Jennifer Rexford
Princeton University

ABSTRACT

Recent advances in programmable switch hardware offer a
fresh opportunity to protect user privacy. This paper presents
PINOT, a lightweight in-network anonymity solution that runs
at line rate within the memory and processing constraints of
hardware switches. PINOT encrypts a client’s IPv4 address
with an efficient encryption scheme to hide the address from
downstream ASes and the destination server. PINOT is readily
deployable, requiring no end-user software or cooperation
from networks other than the trusted network where it runs.
We implement a PINOT prototype on the Barefoot Tofino
switch, deploy PINOT in a campus network, and present
results on protecting user identity against public DNS, NTP,
and WireGuard VPN services.

1 INTRODUCTION

Network traffic contains privacy-sensitive information. While
encryption protocols such as TLS provide confidentiality
of data, they do not hide sensitive meta-data such as the
identities of endpoints. Specifically, an Internet Protocol
(IP) address can still be used to pinpoint and identify a
user and device communicating on the Internet, putting
privacy and security at risk [17-19, 22, 31, 43, 45]. However,
existing approaches for anonymous communications either
introduce high performance overhead (e.g., Tor) [12, 42] or
face significant deployment challenges [4-6, 11, 24, 37].

Programmable switch hardware creates an opportunity to
build a high-performance anonymity system by offloading
privacy functionality to the network. Nevertheless, pro-
grammable switch hardware has limited memory and pro-
cessing resources, posing challenges for implementing crypto-
graphic algorithms that are commonly used in privacy applica-
tions. This begs the question: can we leverage programmable
data planes to design a readily-deployable anonymity system
that balances the privacy/performance trade-off?

In this paper, we push the boundaries of offloading privacy
functionality to programmable data planes. We present
PINOT (Programmable In-Network Obfuscation of Traffic), a
lightweight anonymity system that runs in programmable
switch hardware. In this preliminary work, we focus on
protecting client IPv4 addresses against particular public
services that provide DNS, NTP, and WireGuard VPN (a
connectionless VPN) services, and will extend PINOT to
support more services in future work.

PINOT runs at the border of a trusted network and encrypts
the users’ IPv4 addresses in packet headers before packets

Contyoller NomTTes

A\ Adversary .

PINOT enabled ; Internet \

I\ i //
‘ J (DNS, NTP, ‘v \ ™
W y /g )

Chent Server //

AN -
PINOT Sso --7

Figure 1: PINOT setup.

leave the network, as shown in Figure 1. We use a secure and
efficient cipher built atop iterated Even-Mansour (EM) [2],
which can perform encryption and decryption in a manner
that is compatible with a single pass through the packet-
processing pipeline of a hardware switch. Thus, PINOT can
encrypt/decrypt IP addresses at hardware switch rates (e.g., up
to 12.8 Tbps on a state-of-the-art Tofino switch). Leveraging
the growing IPv6 deployment, PINOT converts an encrypted
IPv4 packet to an IPv6 packet that embeds the encrypted IPv4
address in the IPv6 source address (similar to NAT46 [9])
to (1) carry encryption-related state and (2) ensure response
packets can be forwarded back normally. After encryption,
the source IP address in a packet becomes meaningless to
an adversary, who only knows which Autonomous System
(AS) initiated the packet but cannot pinpoint the specific host
that sent the packet, nor associate multiple packets as coming
from the same host. Our security analysis demonstrates that
PINOT is secure against a realistic adversary under practical
constraints.

In contrast to stateful NATs [8], PINOT is stateless for
the connectionless protocols that we target, which makes it
scalable and also allows it to handle asymmetric routing. With
a software controller distributing the per-AS secret keys, an
AS can deploy PINOT at multiple border points of the trusted
network; outgoing traffic can go through any egress points
while return traffic can come into any ingress point. Besides,
PINOT offers cryptographic protection for IP addresses and
better traffic-analysis resilience than conventional NATSs [8].
The support for single-AS deployment and ubiquitous IP
obfuscation for all users in the trusted network also ease
the deployment of PINOT, compared to other anonymity
solutions that require multi-AS cooperation or user participa-
tion [4-6, 11, 12, 24, 37].

We showcase that PINOT can protect users’ network
identities against malicious public services and eavesdroppers
in DNS, NTP, and WireGuard VPN protocols. Because of
the design of WireGuard, a WireGuard session, regardless of



the protocols underneath, would not be disrupted by PINOT
even if every WireGuard packet has a different source IP
address [15]. The combination of WireGuard and PINOT
can be a useful building block for bootstrapping advanced
privacy-enhancing techniques.

We implement a prototype of PINOT on a Tofino switch
and deploy it in a campus network to forward DNS, NTP,
and WireGuard traffic. We show PINOT is feasible as it
can correctly encrypt, decrypt, and forward packets. While
previous works have implemented cryptographic algorithms
on programming data planes using CPUs, SmartNICs, or
NetFPGAs [20, 21, 39], to the best of our knowledge, we
are the first to implement a working secure and efficient
encryption scheme that runs at line rate within Tofino ASICs.

2 PINOT PROBLEM DEFINITION

We study how to design a readily-deployable, in-network
privacy-enhancing system with minimal performance over-
head. As the first step towards a comprehensive in-network
anonymity system, we consider a lightweight notion of
anonymity, in which the AS where PINOT is deployed is
trusted and can observe both ends of a communication session.
We only consider protecting the user’s IP address against
widely-used public services that are running connectionless
protocols, namely, DNS, NTP, and WireGuard. In this section,
we elaborate on motivating use cases, design goals, threat
model, and hardware resource constraints.

2.1 Connectionless use cases
There are numerous privacy threats related to IP address leaks:

DNS. DNS recursive resolvers are typically operated by the
users’ Internet service provider or third-party services (e.g.,
Google and Cloudflare). Since DNS requests and responses
are in cleartext, DNS recursive resolvers or any on-path
eavesdroppers can learn the IP address of a user and the
domain the user visited. Such information can be further used
for inferring users’ browsing behaviors, fingerprinting and
tracking users, or deanonymizing Tor users [19, 22, 45].

NTP. NTP is widely used for synchronizing the clocks of
computer systems. A scanner may exploit NTP to discover
active IPv6 and IPv4 hosts and conduct unauthorized scans.
One such example is shodan.io [40], who contributes its own
NTP servers to a public NTP server pool, collects IP addresses
of active NTP clients [18, 43], and performs vulnerability
scans. The vulnerability information of hosts is publicly-
available and can easily be gathered by attackers during
reconnaissance, posing security threats to the scanned hosts.

VPN. There are privacy concerns with third-party VPN
providers. A recent report shows that 25 out of 123 VPN
services collect client IP addresses [31]. The IP information
could be sold to advertising companies to facilitate delivering

of personalized ad content (i.e., IP targeting ads) [17].
Besides, VPN services may unintentionally leak clients’
IP information [34]. We focus on WireGuard, a UDP-
based, connectionless VPN protocol being added to the
Linux kernel [15]. WireGuard leverages a special mechanism
to achieve good IP mobility: it assumes a peer’s public
IP address can change frequently, and maintains a peer
address table to record the source IP address in the latest
packet received from the peer for future commutations. This
mechanism enables us to obfuscate peer (user) IP addresses
in WireGuard traffic without disrupting connectivity.

2.2 Design goals

Motivated by the above use cases, we seek to design a system
that achieves the following privacy properties:

Sender anonymity. With sender anonymity, an adversary
cannot discover the identity (IP address) of the client (sender).
We do not try to hide the server’s identity or the Autonomous
System (AS) of the client.

Packet unlinkability. We define packet unlinkability for
connectionless protocols as: given a set of packets, the ad-
versary cannot determine whether the packets are associated
with the same client based on observed IP addresses. This
property helps protect users against traffic-analysis attacks
or user tracking. Associating packets to clients using non-IP
information is beyond the scope of this paper.
Additionally, we want to achieve two operational goals:

Low deployment barriers. The solution should be read-
ily deployable without modifications to existing Internet
infrastructure and protocols, or running special client-side
software (i.e., no involvement of end-users).1 In addition,
the solution should be able to provide ubiquitous privacy
protection for a set of users.

Low performance overhead. We want our solution to pro-
cess network traffic at hardware switch rates. Therefore, we
need to minimize the overhead introduced by cryptographic
operations, and keep as little per-packet/per-flow state as
possible (or, better yet, no state at all).

2.3 Threat model and assumptions

As shown in Figure 1, we assume an unmodified client
communicates with a server through a trusted entity (an
enterprise network or an ISP). The trusted entity and the
server should have both IPv4 and IPv6 connectivity. The goal
of an adversary is to recover the actual client IP addresses of
network traffic it observes, given the contents of the packets
that it can see.

We consider two types of attackers: passive and active. The
passive adversary could be the remote server, or any network

IClient-side software could enhance privacy protection further, e.g., Tor
browser mitigates many application-layer privacy leaks.



element between the trusted network and the server. The
adversary may be an AS; it could also be any intermediate
network point such as an Internet exchange point (IXP) or
even simply a link. An active adversary may control a few
hosts in the trusted network, and is able to send packets with
arbitrary spoofed source IP addresses. We assume, however,
that an active adversary cannot observe other users’ traffic in
the trusted network.

Finally, we do not yet consider implementation-specific
attacks, such as bugs in the implementation and bias in the
random number generators offered by hardware switches.

2.4 Hardware resource constraints

High-speed programmable switches can facilitate achiev-
ing the performance goal in §2.2. Programmable switches
deployed at the border of the trusted network can process
terabytes of traffic per second. Nevertheless, to build a system
with the desired privacy properties, we need to work carefully
within the hardware resource constraints.

In a programmable switch, the packet-processing pipeline
is divided into multiple stages. Each stage only allows a
limited number of table lookups, and mathematical and
logical operations. A program running in the data plane
can process traffic at line rate only if it can “fit” into the
switch ASIC—that is, if the program only requires the
packet to go through the pipeline once. Given the limited
stages in commodity programmable switches, fitting standard
cryptographic algorithms into the switch, if possible, is
extremely challenging (see §6 for more discussions).

3 PINOT DESIGN

PINOT consists of a software controller for key management,
and a data-plane program that performs IP address encryp-
tion/decryption at hardware switch rates using a lightweight
yet secure cipher [2]. We use the IPv6 address encoding
technique to avoid maintaining any per-flow or per-packet
state, similar to NAT46 [9]. With the controller distributing
the per-network encryption keys, PINOT can be deployed at
multiple border points of the trusted network and naturally
handles asymmetric routing. Next, we discuss the encryption
scheme and IPv6 encoding.

3.1 Efficient encryption in the data plane

Standard encryption algorithms such as AES are too complex
to implement in a single pass through the switch ASIC.
Performing multiple passes over the packets would cause
significant performance degradation, making line-rate en-
cryption infeasible. Therefore, we look for a lightweight
and secure cipher that can fit into switch ASICs. After
exploring various options, we found that the two-round Even-
Mansour (2EM) scheme [2] satisfies our requirements. 2EM
can be implemented using table lookups and XORs, avoiding

complex cryptographic computations such as hashing in the
data plane. With careful code optimization (e.g., rearranging
actions using P4 compiler macros to maximize the number
of parallel actions in each stage), 2EM can encrypt a packet
in a single pass through the packet processing pipeline, yet
is secure against a computationally bounded adversary in
practice.
Our cipher encrypts a n-bit message M by computing:

E(M) = P,(Py(M ® ko) ® k1) @ k» (1)

where ko, k1, and k, are n-bit independent encryption keys
to thwart attacks that exploit key relation, and P; and P, are
independent permutations over n-bit strings, which can be im-
plemented as substitution-permutation networks (SPN) [44].
This construction has been proven to be secure up to
2% queries under adaptive chosen-plaintext and ciphertext
adversaries [7, 26]. For encrypting 32-bit IPv4 addresses
(n = 32), 2EM is only secure against 2.6 million queries,
i.e., an adversary can recover keys or plaintexts with high
probability after knowing 2.6 M plaintext-ciphertext pairs
using efficient attacks [7, 30]. To improve the security of
PINOT, we adopt two approaches:

e Random padding to increase message size: We append
a I-bit random string to an IP address to extend the length
of encryption input. The use of random padding improves
the security of the encryption as n becomes larger (I + 32).
For | = 32, our cipher is secure against about 7 trillion
queries. Random padding also makes the encryption non-
deterministic, i.e., encrypting a given IP addresses multiple
times will produce different ciphertexts. This is desirable for
achieving packet unlinkability.

e Key rotation to limit the number of encryptions under
given keys: We update the key set (i.e., the three encryption
keys) being used for encryption every t seconds. Key
rotation limits the number of plaintext-ciphertext pairs an
adversary can collect for given keys to reduce the attack
success probability, and minimizes the damage caused by
compromised encryption keys, as keys expire after at most
t seconds.” One potential issue caused by key rotation is
inconsistent keys during encryption and decryption, i.e., the
key set may be updated when the packets from the server
are still in transit. To address this issue, we maintain three
versions of key sets, and rotate the key sets using the algorithm
proposed in SPINE [11].

A realistic adversary can only perform a reasonable amount
of computation (i.e., computationally bounded) under limited
memory resources. Given that the adversary might not be able
to send more than 1 trillion packets per second (approximately
2.4 Pbps even if assuming the average IPv4 packet size is 300
bytes [3]), the best known practical attacks against 2EM,
which are chosen-plaintext attacks, require more than 2% bits
of memory for n = 64 [13]. This is infeasible in practice.

2We can also rotate the permutations.



In addition, generating a large volume of traffic from a few
hosts, if possible, can easily be flagged as DDoS attacks.? See
Appendix §A.1 for a detailed security analysis.

3.2 Translation from IPv4 to IPv6

Encrypting a 32-bit IPv4 address will produce a ciphertext
of 32 + 1 bits (I is the length of the random padding), which
cannot be used as a valid IPv4 address for routing. The whole
ciphertext also needs to be stored somewhere for decryption.
To ensure return traffic can be correctly routed back based on
the encrypted IP addresses and to avoid maintaining any state,
we transform an IPv4 packet into an IPv6 packet when the
packet leaves the trusted network. The IPv6 packet encodes
the encrypted IPv4 address in its IPv6 source address field,
as shown in Figure 2. The highest d bits of a transformed
IPv6 source address are the IPv6 network prefix reserved
by the trusted network, the lowest 32 + [ bits contain the
encrypted IPv4 source address, and the remaining bits are
used for storing encryption metadata such as the key set
version number. The values in the IPv4 header fields that
have corresponding IPv6 header fields are preserved.

The IPv4 destination addresses are replaced with their
IPv6 counterparts. Recall that we only consider services with
both IPv4 and IPv6 addresses. Therefore, we can perform
DNS lookups in advance to get the IPv4 and IPv6 addresses
of public servers of interest from their DNS A and AAAA
records, respectively, and store the IPv4/IPv6 address pairs in
a lookup table for later use.

We use the key version number in the IPv6 destination
address of a return (IPv6) packet to locate the key set for
decryption. The return packet is converted back to an IPv4
packet and forwarded based on the decrypted address.

3.3 PINOT in the wild

PINOT can improve user privacy for DNS, NTP, and Wire-
Guard VPN services. PINOT moves trust from third-party
servers to the trusted network so that no party outside the
trusted network can see the real originating IP address of
a packet. Unlike NAT that assigns a user the same IP for
a certain time period, PINOT assigns a random IP to every
packet, which is more effective at defeating user tracking
based on traffic patterns [22]. In addition, PINOT makes
unsolicited scanning harder, as the mapping between the
IP address and end-user device changes frequently. Finally,
PINOT can perform IP address obfuscation at line rate for all
users in the trusted network without cooperation from users,

3In fact, the adversary cannot perform the best known attacks in a majority
of networks because of a lack of support for address spoofing (i.e., choosing
plaintexts), according to the Spoofer project [27]. Adversaries are also limited
in terms of performing chosen-ciphertext attacks because they cannot see the
decrypted addresses: PINOT may forward a tampered packet based on the
decrypted address, or may drop the packet because it does not recognize the
decrypted address.

Original IPv4 Random | >
Address Padding Encryption
Keys ---==-=mmmmmmooem- : =

Key Set
Version #

| l A 4

Reserved |Pv6 Prefix Version # Encrypted |Pv4 Address

IPv6
Address

Figure 2: PINOT IPv6 source address encoding.

the destinations or any other AS (other than the trusted AS),
making it less prone to human errors and issues caused by
extra latency (e.g., inaccurate time synchronization in NTP).

4 IMPLEMENTATION

PINOT consists of a software controller for key distribution
and rotation, and a P4 data-plane program for encryption.
The controller, which can run on a dedicated host or in the
control plane of a programmable switch, generates three 64-
bit encryption keys using the Python urandom function. It
uses grpc to communicate with the data plane to update the
keys and the key version number. In our evaluation, the keys
are updated every five seconds.

The two-bit version number is stored along with the
port forwarding (i.e., switch ingress port to egress port)
information in a forwarding table. For IPv6/IPv4 packet
transformation, PINOT also maintains two address mapping
tables (IP4to6 and IP6to4) that store the corresponding IPv6
address of an IPv4 address, and vice versa, for the servers.

PINOT generates random paddings via the Random
external function in the Tofino switch, and uses substitution-
permutation networks for permutation [44]. To permute a
64-bit input, PINOT first performs substitution using 8-bit
substitution boxes (S-boxes) to substitute every byte of the
input with another byte, and then applies a 64-bit straight
permutation box (P-box) to shuffle the bits of the S-box output.
We currently use the static S-box in the AES standard and
randomly shuffle the bits in the P-box; we plan to generate S-
boxes and P-boxes dynamically and update them periodically
in the future.

We implement two different PINOT prototypes: a 56-bit
version and a 64-bit version that use 24-bit and 32-bit random
paddings (i.e., [ = 24 and [ = 32), respectively. We use the
56-bit version for the real-world deployment because we have
a /64 IPv6 network allocated; with the 64-bit version, there
is no space left in an IPv6 address for the two-bit version
number. Figure 3 shows an example of [Pv4 source address
encryption in the 56-bit PINOT. Even with the 64-bit PINOT,
the S-box or inverse S-box tables only take up about 16 KB
of memory, and the extra memory used for storing encryption
keys and P-boxes are negligible. Such low overhead allows
PINOT to store additional encryption keys to encrypt more
fields in the packet header. See Appendix §A.2.



Port forwarding Encryption keys

IPv4 pakcet

24-bit
random
padding

In Out | Ver Ver Keys
aaa, bbb,

0 2 0 0

0 1

2 .-

1P4t06 ) -7
Encryption: _ -

C=PyPiMe Ky @ Kq @Ky

IPv4 IPv6

8.8.8.8 | ff::8888

Straight N IPv6 pakcet

P-Box 8

Out

|

|

|

)

)

)

!
cee, v :

0x01 0x52 I shuffle bits

N ; _ I
In out ,_._._._._.::Output.c . srclP = h
+ Dlffusion Layer: |i—> | fe::190c:84b0:5b5b:5b5b | |

i |

|

|
————e— B A/ dstIP = .
H | f:8888

|
|

Oxdc 0x86 H [
H l
Input: M = IP || Padding H :

IPv6 address encoding

Ver
2)

Random

@

Network prefix
(64)

s |

Figure 3: IPv4 source address encryption in 56-bit PINOT.

WireGuard
Server

Trusted Network

B Web services

DNS
NTP IPv4 IPv6
WireGuard VPN . . [itasss

Q PH'iIOT

End-host

¥ Internet

DNS, NTP
public servers

Figure 4: PINOT deployment setup.
5 DEPLOYMENT AND EVALUATION

Wide-area tesbed: Figure 4 shows the PINOT deployment
in our network that connects to the wider Internet. The end-
host IPv4 client device is a Linux server with two Intel Xeon
E5530 2.4GHz CPUs and 16GB of memory. The PINOT
switch sits between our end-host device and the trusted
network’s border gateway. The switch is a Wedge 100BF-
32X switch with a Tofino programmable chip [29], and loads
the PINOT P4_16 program. The switch acts as the IPv4
gateway for the client. On the IPv6 side, our network’s border
gateway allocates a /64 IPv6 subnet to the PINOT switch;
PINOT selects IPv6 addresses in this subnet that are used by
the IPv4 client when communicating with the Internet.

The client’s DNS, NTP, and WireGuard traffic traverse the
PINOT switch and the IPv6 border gateway to reach public
servers on the Internet. The PINOT switch automatically
translates a target server address to an IPv6 equivalent and
vice versa for the response using pre-installed rules. For
the WireGuard VPN experiment, we set up a WireGuard
forwarding server on an AWS EC2 t 2 .micro instance. Our
client’s WireGuard traffic traverses this server to reach web
services on the Internet.

We test PINOT on DNS, NTP, and WireGuard traffic in our
evaluation. From the lists of 11,884 public DNS resolvers [35]
and 223 NTP servers [28], we found 374 DNS resolvers and
145 NTP servers that have both IPv4 and IPV6 addresses
thus can answer IPv4 or IPv6 queries correctly. The IPv4/v6
address pairs of these servers are stored in the PINOT switch’s

IP4to6 and IP6to4 tables. We omit the evaluation results for
NTP due to space considerations; note that the case is similar
to DNS as both are single-packet protocols.

Local testbed: For the performance evaluation (Section 5.2),
we set up a WireGuard tunnel in a local network. This is to
minimize the effect of network conditions on throughput. The
two machines (Intel Xeon 2.2GHz CPU, 96 GB Memory)
running WireGuard are connected to a Tofino Edge-Core
Wedge 100BF-32X switch using 40GbE links. One machine
is used as the client and the other one serves as the server.

5.1 Feasibility

We evaluate if PINOT correctly encrypts, decrypts, and
forwards DNS and WireGuard traffic.

DNS. We use dig to send DNS queries for A records of ten
unique domains randomly selected from the top 1 million
domains to each resolver (totalling 3,740 queries), using
IPv4 and IPv6 networks. There are 3,387 consistent queries,
i.e., returning the exact same A records in both settings;
the inconsistent responses are caused by either DNS load
balancing or resolver-side errors (misconfiguration, etc.). We
replay the consistent queries with PINOT running and find
all returned A records are consistent with the results that use
IPv4 or IPv6 networks.

WireGuard. We download 100 randomly selected files with
varying sizes (1 KB to 10 GB) from two websites [32, 41]. All
files download successfully through WireGuard and PINOT,
and the SHA1 hash of every file matches that of equivalent
downloads directly using the IPv4 network.

Overall, we conclude that per-packet encryption does not
affect the normal use of DNS and WireGuard.

5.2 Performance

Though encryption and decryption can be performed at switch
hardware rates (e.g., 3.2 Tb/s on our switch), there are two
potential sources of overhead:

Latency introduced by IPv6 routing. The routing paths
taken by IPv6 packets and IPv4 packets could be different,



T; 10
B = = == —T—
) 8 = T
5 6
s 4
&
2
=
8 0 | | | | |
=
I S AS

S SR N
$P> S S S (‘;Q
Q@O Q@O Q@O Q@O

Figure 5: WireGuard throughput tests.

affecting latency. We test 1,000 DNS queries and examine the
query time. Though using IPv6 may add up to 30 ms of delay
in a query, PINOT does not introduce additional latency in
97% of the cases.

WireGuard throughput degradation caused by address
table update. WireGuard may update its peer address table
more frequently to keep track of the ever-changing peer IP
addresses, which could affect its throughput. To minimize the
effect of other network conditions, we use the local testbed
described earlier in this section. We conduct throughput tests
with the switch running PINOT that performs per-packet
encryption (refer to this setting as PINOT-pp), and compare
the results to two baseline settings: (1) NAT: The switch acts
as an NAT46 and simply converts IPv4 addresses to fixed
IPv6 addresses. (2) PINOT-t: The switch runs a modified
version of PINOT that uses the same padding for ¢ seconds.
All the packets sent from the same client during that ¢ seconds
will have the same encrypted source address.

We run iperf TCP throughput tests (without optimization)
for 300 seconds and collect the throughput reported by iperf
every second. As shown in Figure 5, the throughput decreases
as the address table update frequency increases. The average
throughput drops from 8.3 Gbps (without address table
update) to 6.7 Gbps (with per-packet address table update).
The performance bottleneck is the server’s CPU rather than
PINOT.* If sender anonymity is the priority concern, one may
lessen this degradation by using fixed random padding for a
batch of packets, as in PINOT-5s. In fact, WireGuard includes
public peer identity information that can be used to associate
packets to WireGuard sessions in packet payloads. Future
work on improving WireGuard against traffic analysis attacks
may consider mitigating application layer leaks with QUIC’s
payload encryption mechanism.

6 RELATED WORK

Cryptographic algorithms in programmable data planes.
The ability to support cryptographic algorithms in pro-
grammable hardware is important for offloading security and

4iperf CPU utilization is near 100% in all the settings.

privacy applications to data planes. Previous works mostly
focus on using switch CPUs, SmartNICs, or NetFPGAs to
implement cryptographic algorithms, but these approaches
may have performance, scalability, or compatibility issues [20,
21, 39]. Very few studies have examined using switch ASICs
for cryptographic operations. SPINE implements a prototype
of SipHash for the BMv2 software model [11]. However,
unlike in software, SPINE likely needs at least three passes of
the packet on a hardware switch due to resource constraints,
degrading the throughput by a factor of three. Similarly,
P4-AES [1] requires at least two more passes of a packet
on hardware switches. In contrast to SPINE and P4-AES,
PINOT is able to fit into switch ASICs and encrypt source IP
addresses using a single pass of the packet processing pipeline
on commercial off-the-shelf programmable switches.

Hiding user IP addresses. Network-layer anonymity sys-
tems, such as LAP [24], Dovetail [37], HORNET [4], PHI [6],
and TARANET [5], typically require multiple ASes along an
end-to-end path to cooperate in the protocol and end-users to
run specialized software. The involvement of end-users not
only further raises deployment barriers, but also introduces
human errors [33] that cause privacy failures. None of the
systems were implemented on programmable hardware.

Address Hiding Protocol (AHP) [36] and SPINE [11] can
conceal users’ IP addresses without user participation. In
AHP, a trusted network assigns a random IP address to a user
from its own IPv4 address space, which poses security issues
for small networks. Besides, AHP does not provide packet
unlinkability. SPINE encrypts the IP address in every packet
using a programmable switch, but requires an additional
trusted network to decrypt every packet.

For DNS, DNS-over-HTTPS (DoH), DNS-over-TLS (DoT),
DNSCrypt [14, 23, 25], or VPNs can protect users’ IP ad-
dresses. However, they put trust in third-party servers, which
could become a single point of privacy failure. Oblivious
DNS [38] hides IP addresses from third-party resolvers, but
requires modifications to clients and infrastructure. In contrast
to known anonymity solutions, PINOT does not require
cooperation from end-users nor third-party services.

7 CONCLUSION

PINOT is a lightweight in-network anonymity solution that
hides users’ IP addresses from downstream ASes and desti-
nation servers. Utilizing an efficient and secure encryption
scheme, PINOT can encrypt IP addresses at hardware switch
rates. In contrast to known anonymity solutions, PINOT
has a low barrier to deployment, because it requires no
cooperation from end-users or any ASes other than the trusted
network where it is deployed. We implemented and deployed
a prototype of PINOT, and demonstrated PINOT is feasible
for improving user privacy in DNS, NTP, and WireGuard
VPN protocols.



REFERENCES

[1] Anonymous authors. 2020. Implementing AES Encryption on
Programmable Switches via Scrambled Lookup Tables. Under review
at SPIN workshop. (2020).

Andrey Bogdanov, Lars R Knudsen, Gregor Leander, Frangois-Xavier

Standaert, John Steinberger, and Elmar Tischhauser. 2012. Key-

alternating ciphers in a provable setting: Encryption using a small

number of public permutations. In International Conference on the

Theory and Applications of Cryptographic Techniques. Springer, 45—

62.

Caida. 2008. Packet size distribution comparison between Internet links

in 1998 and 2008. https://www.caida.org/research/traffic-analysis/pkt_

size_distribution/graphs.xml. (2008).

Chen Chen, Daniele E Asoni, David Barrera, George Danezis,

and Adrain Perrig. 2015. HORNET: High-speed onion routing at

the network layer. In ACM SIGSAC Conference on Computer and

Communications Security. 1441-1454.

Chen Chen, Daniele E Asoni, Adrian Perrig, David Barrera, George

Danezis, and Carmela Troncoso. 2018. TARANET: Traffic-analysis

resistant anonymity at the network layer. In IEEE European Symposium

on Security and Privacy. IEEE, 137-152.

Chen Chen and Adrian Perrig. 2017. PHI: Path-Hidden Lightweight

Anonymity Protocol at Network Layer. In Privacy Enhancing

Technologies. 100-117.

Shan Chen, Rodolphe Lampe, Jooyoung Lee, Yannick Seurin, and John

Steinberger. 2018. Minimizing the two-round Even—Mansour cipher.

Journal of Cryptology 31, 4 (2018), 1064—1119.

[8] Cisco. 2019. Configuring NAT for IP Address Conserva-
tion. https://www.cisco.com/c/en/us/td/docs/ios-xml/ios/ipaddr_nat/
configuration/xe- 1 6/nat-xe- 16-book/iadnat-addr-consv.html. (2019).

[9] Citrix.  2019. Stateless  NAT46. https://docs.
citrix.com/en-us/netscaler/12/networking/ip-addressing/
configuring-network-address-translation/stateless-nat46- translation.
html. (2019).

[10] Joan Daemen and Vincent Rijmen. 2006. Two-Round AES Differentials.
IACR Cryptology ePrint Archive (2006), 39.

[11] Trisha Datta, Nick Feamster, Jennifer Rexford, and Liang Wang. 2019.
SPINE: Surveillance Protection in the Network Elements. In USENIX
Workshop on Free and Open Communications on the Internet.

[12] Roger Dingledine, Nick Mathewson, and Paul Syverson. 2004. Tor:
The second-generation onion router. Technical Report. Naval Research
Lab Washington DC.

[13] Itai Dinur, Orr Dunkelman, Nathan Keller, and Adi Shamir. 2016.
Key recovery attacks on iterated Even-Mansour encryption schemes.
Journal of Cryptology 29, 4 (2016), 697-728.

[14] DNSCrypt. 2020. DNSCrypt. https://dnscrypt.info/. (2020).

[15] Jason A Donenfeld. 2017. WireGuard: Next Generation Kernel Network
Tunnel. In Network and Distributed System Security Symposium.

[16] Orr Dunkelman, Gautham Sekar, and Bart Preneel. 2007. Improved
meet-in-the-middle attacks on reduced-round DES. In International
Conference on Cryptology in India. Springer, 86—100.

[17] David A Gerken. 2008. System and method for selectively acquiring
and targeting online advertising based on user IP address. (May 20
2008). US Patent 7,376,714.

[18] Dan Goodin. 2016. Using IPv6 with Linux? You’ve
likely been visited by Shodan and other scanners.
https://arstechnica.com/information-technology/2016/02/

[2

—

3

—

[4

[inar)

[5

—_

[6

—_

[7

—

[20] Frederik Hauser, Marco Héberle, Mark Schmidt, and Michael Menth.
2019. P4-1Psec: Implementation of IPsec Gateways in P4 with SDN
Control for Host-to-Site Scenarios. arXiv preprint arXiv:1907.03593
(2019).

[21] Frederik Hauser, Mark Schmidt, Marco Hiberle, and Michael Menth.
2020. P4-MACsec: Dynamic Topology Monitoring and Data Layer
Protection with MACsec in P4-Based SDN. IEEE Access (2020).

[22] Dominik Herrmann, Christian Banse, and Hannes Federrath. 2013.
Behavior-based tracking: Exploiting characteristic patterns in DNS
traffic. Computers & Security 39 (2013), 17-33.

[23] P. Hoffman and P. McManus. 2018. DNS Queries over HTTPS (DoH).
RFC 8484. RFC Editor.

[24] Hsu-Chun Hsiao, Tiffany Hyun-Jin Kim, Adrian Perrig, Akira Yamada,
Samuel C Nelson, Marco Gruteser, and Wei Meng. 2012. LAP:
Lightweight anonymity and privacy. In IEEE Symposium on Security
and Privacy. IEEE, 506-520.

[25] Z. Hu, L. Zhu, J. Heidemann, A. Mankin, D. Wessels, and P. Hoffman.
2016. Specification for DNS over Transport Layer Security (TLS). RFC
7858. RFC Editor.

[26] Rodolphe Lampe, Jacques Patarin, and Yannick Seurin. 2012. An
asymptotically tight security analysis of the iterated Even-Mansour
cipher. In International Conference on the Theory and Application of
Cryptology and Information Security. Springer, 278-295.

[27] Matthew Luckie, Robert Beverly, Ryan Koga, Ken Keys, Joshua A
Kroll, and k claffy. 2019. Network Hygiene, Incentives, and Regulation:
Deployment of Source Address Validation in the Internet. In ACM
SIGSAC Conference on Computer and Communications Security. 465—
480.

[28] mutin sa. 2020. Public Time Servers. https://gist.github.com/mutin-sa/
eealc396ble610a2dale5550d94b0453. (2020).

[29] Edgecore Networks. 2019. Edge-core  Wedge 100BF-32X.
https://www.edge-core.com/productsInfo.php?cls=1&cls2=5&
cls3=181&id=335,2019. (2019).

[30] Ivica Nikoli¢, Lei Wang, and Shuang Wu. 2013. Cryptanalysis of
Round-Reduced LED. In International Workshop on Fast Software
Encryption. Springer, 112-129.

[31] Aimee O’Driscoll. 2019.  Does your VPN Keep Logs? 123
VPN Logging Policies Revealed. https://www.comparitech.com/vpn/
vpn-logging-policies/. (2019).

[32] University of Oregon. 2020. Route Views Archive Project. http:/
archive.routeviews.org/. (2020).

[33] Patrick Howell O’Neill. 2020. The real chink in Tor’s armor. https:
/Iwww.dailydot.com/crime/silk-road-tor-arrests/. (2020).

[34] Vasile C Perta, Marco V Barbera, Gareth Tyson, Hamed Haddadi, and
Alessandro Mei. 2015. A glance through the VPN looking glass: IPv6
leakage and DNS hijacking in commercial VPN clients. In Privacy
Enhancing Technologies Symposium, Vol. 2015. De Gruyter Open, 77—
91.

[35] public dns.info. 2020. Public DNS resolvers. https://public-dns.info/.
(2020).

[36] Barath Raghavan, Tadayoshi Kohno, Alex C. Snoeren, and David
Wetherall. 2009. Enlisting ISPs to Improve Online Privacy: IP Address
Mixing by Default. In Privacy Enhancing Technologies Symposium,
Ian Goldberg and Mikhail J. Atallah (Eds.). Springer Berlin Heidelberg,
Berlin, Heidelberg, 143-163.

[37] Jody Sankey and Matthew Wright. 2014. Dovetail: Stronger anonymity
in next-generation internet routing. In Privacy Enhancing Technologies

using-ipv6-with-linux-youve-likely-been-visited-by-shodan-and-other- scanne[rjsé. Symposium. Springer, 283-303.

(2016).

[19] Benjamin Greschbach, Tobias Pulls, Laura M Roberts, Philipp Winter,
and Nick Feamster. 2016. The effect of DNS on Tor’s anonymity. arXiv
preprint arXiv:1609.08187 (2016).

] Paul Schmitt, Anne Edmundson, Allison Mankin, and Nick Feamster.
2019. Oblivious DNS: Practical privacy for DNS queries. In Privacy
Enhancing Technologies Symposium, Vol. 2019. Sciendo, 228-244.

[39] Dominik Scholz, Andreas Oeldemann, Fabien Geyer, Sebastian
Gallenmiiller, Henning Stubbe, Thomas Wild, Andreas Herkersdorf,


https://www.caida.org/research/traffic-analysis/pkt_size_distribution/graphs.xml
https://www.caida.org/research/traffic-analysis/pkt_size_distribution/graphs.xml
https://www.cisco.com/c/en/us/td/docs/ios-xml/ios/ipaddr_nat/configuration/xe-16/nat-xe-16-book/iadnat-addr-consv.html
https://www.cisco.com/c/en/us/td/docs/ios-xml/ios/ipaddr_nat/configuration/xe-16/nat-xe-16-book/iadnat-addr-consv.html
https://docs.citrix.com/en-us/netscaler/12/networking/ip-addressing/configuring-network-address-translation/stateless-nat46-translation.html
https://docs.citrix.com/en-us/netscaler/12/networking/ip-addressing/configuring-network-address-translation/stateless-nat46-translation.html
https://docs.citrix.com/en-us/netscaler/12/networking/ip-addressing/configuring-network-address-translation/stateless-nat46-translation.html
https://docs.citrix.com/en-us/netscaler/12/networking/ip-addressing/configuring-network-address-translation/stateless-nat46-translation.html
https://dnscrypt.info/
https://arstechnica.com/information-technology/2016/02/using-ipv6-with-linux-youve-likely-been-visited-by-shodan-and-other-scanners/
https://arstechnica.com/information-technology/2016/02/using-ipv6-with-linux-youve-likely-been-visited-by-shodan-and-other-scanners/
https://gist.github.com/mutin-sa/eea1c396b1e610a2da1e5550d94b0453
https://gist.github.com/mutin-sa/eea1c396b1e610a2da1e5550d94b0453
https://www.edge-core.com/productsInfo.php?cls=1&cls2=5&cls3=181&id=335,2019
https://www.edge-core.com/productsInfo.php?cls=1&cls2=5&cls3=181&id=335,2019
https://www.comparitech.com/vpn/vpn-logging-policies/
https://www.comparitech.com/vpn/vpn-logging-policies/
http://archive.routeviews.org/
http://archive.routeviews.org/
https://www.dailydot.com/crime/silk-road-tor-arrests/
https://www.dailydot.com/crime/silk-road-tor-arrests/
https://public-dns.info/

and Georg Carle. 2019. Cryptographic Hashing in P4 Data Planes.
In ACM/IEEE Symposium on Architectures for Networking and
Communications Systems (ANCS). IEEE, 1-6.

[40] Shodan. 2020. The search engine for the Internet of Things. https:
/Iwww.shodan.io/. (2020).

[41] tele2. 2020. Tele2 Speedtest. http://speedtest.tele2.net/. (2020).

[42] Florian Tschorsch and Bjorn Scheuermann. 2016. Mind the gap:
Towards a backpressure-based transport protocol for the Tor network. In
USENIX Symposium on Networked Systems Design and Implementation.
597-610.

[43] Johannes B. Ullrich. 2016. Targeted IPv6 Scans Using
pool.ntp.org. https://isc.sans.edu/forums/diary/Targeted+IPv6+Scans+
Using+poolntporg/20681/. (2016).

[44] Wikipedia.  2020. Substitution—permutation  network.
=https://en.wikipedia.org/wiki/Substitution—permutation_network.
(Feb 2020).

[45] Fangming Zhao, Yoshiaki Hori, and Kouichi Sakurai. 2007. Analysis
of privacy disclosure in DNS query. In International Conference on
Multimedia and Ubiquitous Engineering. IEEE, 952-957.

A APPENDIX

A.1 Security analysis

The security of 2EM depends on the plaintext size n (32 + [).
With a larger IPv6 network (i.e., a short network prefix
d), PINOT can append more random bits to the original
IPv4 source address to produce a longer input. To facilitate
discussion, we fix n = 64 (i.e., I = 32). Note that 2%
is the lower bound obtained in the information-theoretic
model [7, 26]. There is a significant gap between this
lower bound and the complexity of the best-known attacks
in the computational model. We only consider the best-
known attacks for certain types of (computationally bounded)
adversaries in this section.

Passive adversary. A passive adversary can only perform the
trivial attacks, i.e., an exhaustive key search, which requires
brute forcing in the space of 23" or 212 keys. Such brute-force
attacks are clearly infeasible for computationally bounded
adversaries.

Known/chosen-plaintext adversary. Non-trivial attacks usu-
ally need to consider three important factors: data complex-
ity, memory complexity, and time complexity, where data
complexity is the number of ciphertext-plaintext pairs they
need to collect, and memory complexity is the number of
memory units (n-bit blocks) required during attacks. A known-
plaintext adversary may trade memory complexity for data
complexity using the man-in-the-middle (MITM) attacks
proposed by Andrey et al. [2]. A MITM attack only requires
knowing a small number of ciphertext-plaintext pairs (e.g.,
2); however, its memory complexity is 2", i.e., more than 147
exabytes of memory is required for storing a precomputed
table.

The best known attacks against 2EM with independent keys
and permutations are the key recovery attacks proposed by
Dinur et al. [13], aiming to lower time complexity. The key

®32 4400481156~ 64

100 |~
80 |-

60 |-
50(1P) |-
40(1T) |-
30(1G) |-

20 L

Data complexity

Memory complexity

Figure 6: Data complexity vs memory complexity of the
key recovery attacks under varied n (32,40, 48,56 and
64 bits). The memory complexity increases from 2! to
2", X-axis and Y-axis are in log2 scale. Data complexity
indicates the number of plaintext -ciphertext pairs (i.e.,
encrypted packets) an adversary needs to collect.

recovery attacks also require precomputing a big table, and the
memory complexity M and data complexity D approximately
satisfy D = 22"~V /(4M). The memory-data trade-offs are
shown in Figure 6. Indeed, a powerful adversary may be able
and be willing to prepare a large amount of memory. However,
practical attacks are hard., as the adversary must obey rate
limits. In practice, even a large ISP may not see more than
1 T packets per second (approximately 2.4 Pbps assuming the
average IPv4 packet size is 300 bytes). Under this constraint,
the adversary still needs to prepare 2% bits of memory for
n = 64, and more memory if targeting a lower packet rate.
The use of random padding also makes attacks harder because
the adversary can only choose or know partial plaintexts.
Besides, the adversary cannot perform chosen-plaintext
attacks in a majority of networks or ASes because of a
lack of capability on source address spoofing (i.e., choosing
plaintexts). The Spoofer project examined more than 7K
/24 networks and found about 85% of them implement
certain mechanisms (e.g. Source Address Validation) to
filter outbound spoofed-source packets [27]. For an active
adversary, generating a large volume of traffic from a few
hosts, if possible, can easily be flagged as DDoS attacks.

Chosen-ciphertext adversary. Our encryption scheme does
not provide malleability so the adversary might be able to
manipulate the destination addresses in the return traffic.
PINOT may forward a tampered packet based on the de-
crypted address, or may drop the packet because it does not
recognize the decrypted address. In either case the adversary
cannot see the decrypted address, and therefore is limited in
terms of performing chosen-ciphertext attacks.

2EM alternatives. It is possible to fit the standard ciphers
with reduced rounds into the data plane, e.g., 2-round AES
and 2-round DES. However, the adversary may break these


https://www.shodan.io/
https://www.shodan.io/
http://speedtest.tele2.net/
https://isc.sans.edu/forums/diary/Targeted+IPv6+Scans+Using+poolntporg/20681/
https://isc.sans.edu/forums/diary/Targeted+IPv6+Scans+Using+poolntporg/20681/
=

schemes with low data complexity attacks by exploiting the
relation between round keys and algebraic properties of the
algorithms [10, 16].

In our setting, a cipher is considered as secure if breaking
it requires attacks with high data complexity. Besides, the
encrypting and decrypting parties are the same in PINOT, so
we do not need to consider key distribution and can store
key materials of large sizes. A good alternative to 2EM
should use independent round keys to prevent the adversary
from exploiting its key schedule. We believe there are other
ciphers can be used in lieu of 2EM, and leave exploring 2EM
alternatives as future work.

A.2 Obfuscating other IP header fields

We have extended our prototypes to support port encryption
by adding a one-time pad table that stores random 16-bit
one-time pads. PINOT uses the first 16 bit of the generated
random padding as a key to fetch the corresponding one-time

pad in the one-time pad table, and XOR the one-time pad with
the source port in an IPv4 packet. Fetching one-time pads can
be done in parallel with IP address encryption, requiring no
additional stages. In fact, we can get multiple one-time pads
at the same time in one table lookup, and XOR them with
different header fields.

A.3 PINOT for IPv6 networks

We can also use PINOT to protect certain IPv6 networks.
For instance, the trusted entity has a /64 IPv6 network, and
reserves a /96 network for PINOT. We call the 64 to 96 bits in
an IPv6 source address subnet ID, which is static in this case.
We can use PINOT to encrypt the lowest 32 bits of an IPv6
source address with at most 30 bits of random padding, and
use subnet ID to carry the encryption meta. During decryption,
PINOT replaces the subnet ID part of an IPv6 address with
the original, static subnet ID.



	Abstract
	1 Introduction
	2 PINOT Problem definition
	2.1 Connectionless use cases
	2.2 Design goals
	2.3 Threat model and assumptions
	2.4 Hardware resource constraints

	3 PINOT Design
	3.1 Efficient encryption in the data plane
	3.2 Translation from IPv4 to IPv6
	3.3 PINOT in the wild

	4 Implementation
	5 Deployment and Evaluation
	5.1 Feasibility
	5.2 Performance

	6 Related Work
	7 Conclusion
	References
	A Appendix
	A.1 Security analysis
	A.2 Obfuscating other IP header fields
	A.3 PINOT for IPv6 networks


