
Link-State Routing with Hop-by-Hop Forwarding
Can Achieve Optimal Traffic Engineering

Dahai Xu∗
AT&T Labs - Research

dahaixu@research.att.com

Mung Chiang
Dept. of EE, Princeton University

chiangm@princeton.edu

Jennifer Rexford
Dept. of CS, Princeton University

jrex@cs.princeton.edu

Abstract—Link-state routing with hop-by-hop forwarding is
widely used in the Internet today. The current versions of these
protocols, like OSPF, split traffic evenly over shortest paths
based on link weights. However, optimizing the link weights for
OSPF to the offered traffic is an NP-hard problem, and even
the best setting of the weights can deviate significantly from an
optimal distribution of the traffic. In this paper, we propose a
new link-state routing protocol, PEFT, that splits traffic over
multiple paths with an exponential penalty on longer paths.
Unlike its predecessor, DEFT [1], our new protocol provably
achieves optimal traffic engineering while retaining the simplicity
of hop-by-hop forwarding. A gain of 15% in capacity utilization
over OSPF is demonstrated using the Abilene topology and traffic
traces. The new protocol also leads to significant reduction in
the time needed to compute the best link weights. Both the
protocol and the computational methods are developed in a new
conceptual framework, called Network Entropy Maximization,
which is used to identify the traffic distributions that are not
only optimal but also realizable by link-state routing.

Keywords: Interior gateway protocol, traffic engineering, routing,
OSPF, optimization, network entropy maximization.

I. INTRODUCTION

A link-state routing protocol has three components. First
is weight computation: the network-management system com-
putes a set of link weights through a periodic and centralized
optimization. Second is traffic splitting: each router uses the
link weights to decide traffic splitting ratios for every destina-
tion among its outgoing links. Third is packet forwarding: each
router independently decides which outgoing link to forward
a packet based only on its destination prefix, in order to
realize the desired traffic splitting. The popularity of link-
state protocols can be attributed to their ease of management;
in particular, each router’s decision on traffic splitting is
conducted autonomously without further assistance from the
network-management system, and each packet’s forwarding
decision is made in a hop-by-hop fashion without memory
or end-to-end tunneling.

Such simplicity seems to carry a cost on optimality. In
a procedure known as Traffic Engineering (TE), network
operators minimize a convex cost function of the link loads,
by tuning the link weights to be used by the routers. With
Open Shortest Path First (OSPF), the major variant of link-
state protocol in use today, computing the right link weights
is NP-hard and even the best setting of the weights can deviate

∗The work was done when Xu was in Dept. of EE, Princeton University.

TABLE I
Comparison of various TE schemes (new contributions in italics).

Commodity Link-State Routing
Routing OSPF PEFT

Traffic Splitting Arbitrary Even among shortest paths Exponential
Scalability Low High High
Optimal TE Yes No Yes
Complexity Convex Convex
Class Optimization NP Hard Optimization

significantly from optimal TE [2]. Contrary to some popular
belief, the optimal TE method in [3] is not distributed link-state
routing, and the following question remains open: can a link-
state protocol with hop-by-hop forwarding achieve optimal
TE? This paper shows that the answer is in fact positive, by
developing a new link-state protocol, Penalizing Exponential
Flow-spliTting (PEFT), proving that it achieves optimal TE,
and demonstrating that link weight computation for PEFT is
highly efficient in theory and in practice.

In PEFT, packet forwarding is just the same as OSPF:
destination-based and hop-by-hop. The key difference is in
traffic splitting. OSPF splits traffic evenly among the shortest
paths, and PEFT splits traffic along all paths but penalizes
longer paths (i.e., paths with higher sums of link weights)
exponentially. While this is a difference in how link weights
are used in the routers, it also enables a change in how
link weights are computed by the operator. It turns out that
using link weights in the PEFT way achieves optimal traffic
engineering. Using the Abilene topology and traffic traces,
we observe a 15% increase in the efficiency of capacity
utilization by PEFT over OSPF. Furthermore, exponential
penalty in traffic splitting is the only penalty that can lead
to this optimality result. The corresponding best link weights
for PEFT can be efficiently computed: as efficiently as solving
a linearly constrained concave maximization and much faster
than the existing weight computation heuristics for OSPF.

Clearly, if the complexity of managing a routing protocol
were not a concern, other approaches could be used to achieve
optimal TE. One possibility is multi-commodity-flow type of
routing, where an optimal traffic distribution is realized by
dividing an arbitrary fraction of traffic over many paths. This
can be supported by the forwarding mechanism in Multi-
Protocol Label Switching (MPLS) [4]. However, optimality
then comes with a cost for establishing many end-to-end
tunnels to forward packets. Second, other studies explored

more flexible ways to split traffic over shortest paths [3], [5],
but these solutions do not enable routers to independently
compute the flow-splitting ratios from link weights. Instead,
a central management system must compute and configure
the traffic-splitting ratios, and update them when the topology
changes, sacrificing the main benefit of running a distributed
link-state routing protocol. Clearly, there is a tension between
optimal but complex routing or forwarding methods and the
simple but to-date suboptimal link-state routing with hop-by-
hop forwarding. Recent works [1], [6] attempted to attain
optimality and simplicity simultaneously but neither proved
optimality for TE nor developed sufficiently fast methods for
computing link weights. A summary is provided in Table I.

There are several new ideas in this paper that enable a
proof of optimality and a much faster computational beyond,
for example, the theory and algorithm in DEFT [1]. One of
these ideas is to develop both the traffic splitting and the
weight computation methods from the conceptual framework
of Network Entropy Maximization (NEM). As a proof tech-
nique, we will construct an optimization called NEM that is
solved neither by the operator nor by the routers, but by us,
the protocol developers. The optimality condition of NEM
reveals the structure of hop-by-hop forwarding and is later used
to guide both the router’s traffic splitting and the operator’s
weight computation. In short, it turns out that a certain notion
of entropy can identify those optimal traffic distributions that
can be realized by link-state protocols.

The rest of the paper is organized as follows. Background
on optimal traffic engineering is introduced in Sec. II. The
theory of Network Entropy Maximization in Sec. III leads to
the routing protocol PEFT in Sec. IV and the associated link
weight computation algorithm in Sec. V. Extensive numerical
experiments are then summarized in Sec. VI. Differences from
our previous results [1] are summarized in Sec. VII, before we
conclude with further observations and extensions in Sec. VIII.
The key notation used in this paper is shown in Table II.

II. BACKGROUND ON OPTIMAL TE

A. Definitions of Optimality

Consider a wireline network as a directed graph G = (V, E),
where V is the set of nodes (where N = |V|), E is the set of
links (where E = |E|), and link (u, v) has capacity cu,v . The
offered traffic is represented by a traffic matrix D(s, t) for
source-destination pairs indexed by (s, t).

The load fu,v on each link (u, v) depends on how the
network decides to route the traffic. An objective function
enables quantitative comparisons between different routing
solutions in terms of the load on the links. Traffic engineering
usually considers a link-cost function Φ(fu,v, cu,v) that is a
increasing function of fu,v .

For example, Φ(fu,v, cu,v) can be the link utilization
fu,v/cu,v , and the objective of traffic engineering can be to
minimize max(u,v)∈E Φ(fu,v, cu,v).

As another example, let Φ(fu,v, cu,v) be a piecewise-linear
approximation of the M/M/1 delay formula [7], e.g.,

TABLE II
SUMMARY OF KEY NOTATION

Notation Meaning
D(s, t) Traffic demand from source s to destination t
cu,v Capacity of link (u, v)
fu,v Flow on link (u, v)
c̃u,v Necessary capacity of link (u, v)
f t

u,v Flow on link (u, v) destined to node t
f t

u Total incoming flow (destined to t) at u
wu,v Weight assigned to link (u, v)
wmin Lower bound of all link weights
dt

u The shortest distance from node u to node t. dt
t = 0

ht
u,v Gap of shortest distance, ht

u,v � dt
v + wu,v − dt

u

Γ(ht
u,v) Traffic splitting function

Φ(fu,v, cu,v) =



fu,v fu,v/cu,v ≤ 1/3
3fu,v − 2/3 cu,v 1/3 ≤ fu,v/cu,v ≤ 2/3
10fu,v − 16/3 cu,v 2/3 ≤ fu,v/cu,v ≤ 9/10
70fu,v − 178/3 cu,v 9/10 ≤ fu,v/cu,v ≤ 1
500fu,v − 1468/3 cu,v 1 ≤ fu,v/cu,v ≤ 11/10
5000fu,v − 16318/3 cu,v 11/10 ≤ fu,v/cu,v,

(1)

and the objective is to minimize
∑

(u,v) Φ(fu,v, cu,v).
More generally, we use “Φ({fu,v, cu,v})” to represent any

increasing and convex objective function. The optimality of
traffic engineering is with respect to this objective function.

At this point we can already observe that there is a “gap”
between the objective of TE and the mechanism of link-
state routing. Optimality is defined directly in terms of the
traffic flows, whereas link-state protocols represent the paths
indirectly in terms of link weights. Bridging this gap is one of
the challenges that have prevented researchers from achieving
optimal traffic engineering using link-state routing thus far.

B. Optimal TE Via Multi-Commodity Flow

Consider the following convex optimization problem: min-
imizing the TE cost function over flow conservation and link
capacity constraints:

COMMODITY:

min Φ({fu,v, cu,v}) (2a)

s.t.
∑

v:(s,v)∈E

f t
s,v −

∑
u:(u,s)∈E

f t
u,s = D(s, t), ∀s �= t (2b)

fu,v �
∑
t∈V

f t
u,v ≤ cu,v, ∀(u, v) (2c)

vars. f t
u,v, fu,v ≥ 0. (2d)

The above multi-commodity problem can be readily solved
in polynomial-time, where the flow destined to a single desti-
nation is treated as a commodity, and f t

u,v is amount of flow
on link (u, v) destined to node t 1.

The resulting solution, however, may not be realizable
through link-state routing and hop-by-hop forwarding. Indeed,

1 To prevent bandwidth waste, we can eliminate flow loop in the optimal
routing with a O(E log N)-time algorithm for each commodity [8]. The loop-
free property is important in designing link-state routing [3] as demonstrated
later in Sec. V.

for a network with N nodes and E links, the multi-commodity-
flow solution may require up to O(N2E) tunnels (i.e., explicit
routing) [9], making it difficult to scale. In contrast, link-state
routing is much simpler, requiring only O(E) parameters (i.e.,
one per link).

Furthermore, while it is true that, from the solution of the
COMMODITY problem, a set of link weights can be computed
such that all the commodity flow will be forwarded along the
shortest paths [3], [5], the flow-splitting ratios among these
shortest paths are not related to the link weights, forcing the
operator to specify up to O(NE) additional parameters (one
parameter on each link for each destination) as the flow-
splitting ratios for all the routers.

The rest of this paper shows that optimal traffic engineering
can, in fact, be achieved using only E link weights.

III. THEORETICAL FOUNDATIONS: NEM

In this section, we present the theory of realizing optimal
TE with link-state protocols. We first compute the minimal
load that each link must carry to achieve optimal traffic distri-
bution, then examine all the traffic splitting choices subject
to necessary (minimal) link capacities. The traffic splitting
configurations that is realizable with hop-by-hop forwarding
can be picked out by exploiting a property it has: maximizing
a weighted sum of the entropies of traffic splitting vectors. In
addition, the corresponding link weights can be found by solv-
ing the new optimization problem using gradient projection.
It is important to realize that the proposed NEM framework
developed in this section is used to design the protocol—the
NEM problem itself is not solved by the operator or routers.
It is constructed as a proof technique and an intermediate step
towards the results in the next two sections.

A. Necessary Capacity

Given the traffic matrix and the objective function, the so-
lution to the COMMODITY problem (2) provides the optimal
distribution of traffic. We represent the resulting flow on each
link (u, v) as the necessary capacity c̃u,v � fu,v (or c̃ as
a vector). The necessary capacity is a minimal 2 set of link
capacities to realize optimal traffic engineering.

There could be numerous ways of traffic splitting that realize
optimal TE. If we replace link capacity cu,v in COMMOD-
ITY (2) with the necessary capacity c̃u,v , we are free to impose
another objective function to pick out a particular optimal
solution to the original problem. A key challenge here is to
design a new objective function, purely for the purpose of
protocol development, such that the resulting routing of flow
can be realized distributively with link-state routing protocols.

B. Network Entropy Maximization

Denote Ps,t as the set of paths from s to t, and xi
s,t as the

probability (fraction) of forwarding a packet of demand D(s, t)
to the i-th path (P i

s,t). Obviously,
∑

i xi
s,t = 1. To be realized

with hop-by-hop forwarding, the values of xi
s,t should satisfy

2But may not be the minimum capacity. c̃ is minimal if �c̃′ : c̃′ �= c̃∧c̃′ �
c̃ whereas c̃ is the minimum if ∀c̃′ : c̃ � c̃′ .

(3) below where wu,v is the weight assigned to link (u, v),
and g(·) is a known function for all the routers.

xi
s,t

xj
s,t

=
g
(∑

(u,v)∈P i
s,t

wu,v

)
g
(∑

(u,v)∈P j
s,t

wu,v

) . (3)

We find that the set of values of xi
s,t satisfying (3) maximizes

a “network entropy” defined as follows. Consider the entropy
function z(xi

s,t) = −xi
s,t log xi

s,t for source-destination pair

(s, t). The weighted sum,
∑

s,t

(
D(s, t)

∑
P i

s,t
z(xi

s,t)
)

, is

defined as the network entropy. 3

Now we define the Network Entropy Maximization (NEM)
problem under the necessary capacity constraints as follows:

NEM:

max
∑
s,t

D(s, t)
∑
P i

s,t

z(xi
s,t)

 (4a)

s.t.
∑

s,t,i:(u,v)∈P i
s,t

D(s, t)xi
s,t ≤ c̃u,v,∀(u, v) (4b)

∑
i

xi
s,t = 1,∀s, t (4c)

vars. xi
s,t ≥ 0. (4d)

From the optimal solution of the COMMODITY problem, we
know the feasibility set of NEM is non-empty. For a concave
maximization over a non-empty, compact constraint set, there
exist globally optimal solutions to NEM.

C. Solve NEM by Dual Decomposition

We will connect the characterization of optimal solutions
to NEM with hop-by-hop forwarding and exponential penalty.
Towards that end, and to provide a foundation for link weight
computation in Sec. V, we first investigate the Lagrange dual
problem of NEM and a dual-gradient-based solution.

Denote dual variables for constraints (4b) as λu,v for link
(u, v) (or λ as a vector). The maximization of the Lagrangian
over x can be solved as a TRAFFIC-DISTRIBUTION problem
(5):

TRAFFIC-DISTRIBUTION:

max
∑

(u,v)∈E

λu,v c̃u,v +
∑
s,t

D(s, t)
∑
P i

s,t

z(xi
s,t)

 (5a)

−
∑

(u,v)∈E

λu,v

 ∑
s,t,i:(u,v)∈P i

s,t

D(s, t)xi
s,t


s.t.

∑
i

xi
s,t = 1. (5b)

Then, the dual problem can be solved by using the gradient
projection algorithm as follows for iterations indexed by q,

3The physical interpretation of entropy for IP routing and the uniqueness
of choosing the entropy function to pick out the right flow distributions are
presented in [10].

λu,v(q + 1)

=
[
λu,v(q) − α(q)

(
c̃u,v −∑s,t,i:(u,v)∈P i

s,t
D(s, t)xi

s,t(q)
)]+

= [λu,v(q) − α(q) (c̃u,v − fu,v(q))]+ , ∀(u, v) ∈ E.

(6)

where α(q) > 0 is the step size, xi
s,t(q) are solutions of the

TRAFFIC-DISTRIBUTION problem (5) for a given λ(q), and
fu,v(q) is the total flow on link (u, v).

After the above dual decomposition, the following result
can be proved with standard convergence analysis for gradient
algorithms [11]:

Lemma 1: By solving the TRAFFIC-DISTRIBUTION
problem for the NEM problem and the dual variable update
(6), λ(q) converge to the optimal dual solutions λ∗ and the
corresponding primal variables x∗ are the globally optimal
primal solutions of (4).

D. Solve TRAFFIC-DISTRIBUTION Problem

Note that, the TRAFFIC-DISTRIBUTION problem is also
separable, i.e., the traffic splitting for each demand across its
paths is independent of the others since they are not coupled
together with link capacity constraint (4b). So we can solve a
subproblem (7) below for each demand D(s, t) separately:

DEMAND-DISTRIBUTION for D(s, t):

max D(s, t)
∑
P i

s,t

z(xi
s,t) (7a)

−
∑

(u,v)∈E

λu,v

 ∑
i:(u,v)∈P i

s,t

D(s, t)xi
s,t


s.t.

∑
i

xi
s,t = 1. (7b)

We write the Lagrangian associated with the DEMAND-
DISTRIBUTION subproblem in (8).

Lr(xs,t, µs,t)

=
(
D(s, t)

∑
P i

s,t
z(xi

s,t)
)
− µs,t(

∑
i xi

s,t − 1)

−∑(u,v)∈E λu,v(
∑

i:(u,v)∈P i
s,t

D(s, t)xi
s,t)

(8)

where µs,t is the Lagrangian variable associated with (7b).
According to Karush-Kuhn-Tucker (KKT) conditions [12],

at the optimal solution of the DEMAND-DISTRIBUTION
subproblem, we have

z′(xi∗
s,t)−

∑
(u,v)∈P i

s,t
λu,v − µ∗

s,t

D(s,t) = 0. (9)

For the entropy function, z(x) = −x log x, z′(x) = −1 −
log x, we have

xi∗
s,t = e

−(
∑

(u,v)∈P i
s,t

λu,v+
µ∗

s,t
D(s,t)+1)

. (10)

where xi∗
s,t, µ

∗
s,t are the values of the xi

s,t, µs,t respectively at
the optimal solution.

Then for two paths i, j from s to t, we have

xi∗
s,t

xj∗
s,t

=
e
−(
∑

(u,v)∈P i
s,t

λu,v)

e
−(
∑

(u,v)∈P
j
s,t

λu,v)
. (11)

If we use λu,v as the weight wu,v for link (u, v), the
probability of using path P i

s,t is inversely proportional to
the exponential value of its path length. It is important to
observe at this point that, since (11) has no factor of µ∗

s,t,
an intermediate router can ignore the source of the packet in
forwarding. Equally importantly, from (6), in iteration q, the
procedure of link price (weight) updating does not need the
values of xi

s,t(q). Instead, it just needs fu,v(q), the aggregated
bandwidth usage. We will show how to calculate it efficiently
in Sec. V-B.

Now, combining the optimality results in Sec. II-B and
Lemma 1 with the distributed nature of (11), we have

Theorem 1: Optimal traffic engineering for a given traffic
matrix can be realized with link weights using exponential
flow splitting (11).

IV. A NEW LINK-STATE ROUTING PROTOCOL: PEFT

In this section, we translate the theoretical results in Sec. III
into a new link-state routing protocol run by routers. Each
router makes an independent decision on how to forward
traffic to a destination (i.e., flow-splitting ratios) among its
outgoing links using only the link weights. We first present
PEFT from (11), and summarize the notation of traffic-splitting
function [1] for calculating flow-splitting ratios. Then for
a PEFT flow, we show an efficient way to calculate its
traffic-splitting function, which can be approximated to further
simplify the computation of traffic splitting in practice.

A. PEFT

Based on (11), we propose a new link-state routing protocol,
called Penalizing Exponential Flow-spliTting (PEFT). The
fraction of the traffic (from u to t) distributed across the i-th
path (or probability of forwarding a packet), xi

u,t, is inversely
proportional to the exponential value of its path length pi

u,t

(sum of wu,v of the links along the path), as shown in (12).

PEFT: xi
u,t =

e−pi
u,t∑

j e−pj
u,t

. (12)

Theorem 1 in Sec. III shows PEFT can achieve optimal TE. A
PEFT flow can be realized with hop-by-hop forwarding. For
the sample network in Fig. 1, for the two paths from s to t,
s → u → a → t and s → u → b → t, and two paths from u
to t, the flows on them for PEFT (12) satisfy (13).

fs→u→a→t : fs→u→b→t = fu→a→t : fu→b→t (13)

Therefore, router u can treat the packets from different
sources (e.g. s or u) equally by forwarding them among
the outgoing links with precalculated splitting ratios. Further
discussions can be found in [10].

As a link-state routing protocol, we need to define the traffic
splitting function for PEFT as follows.

tu

a

b

s

Fig. 1. Realize a PEFT flow using hop-by-hop forwarding

B. Review: Traffic Splitting Function

The notation of traffic-splitting (allocation) function was
introduced in [1] to succinctly describe link-state routing
protocols. In a directed graph, each unidirectional link (u, v)
has a single, configurable weight wu,v . Based on a complete
view of the topology and link weights, a router can compute
the shortest distance dt

u from any node u to node t; dt
v +wu,v

represents the distance from u to t when routed through
neighboring node v. Shortest distance gap, ht

u,v , is defined
as dt

v + wu,v − dt
u, which is always greater than or equal

to 0. Then, (u, v) lies on a shortest path to t if and only
if ht

u,v = 0. Traffic-splitting function (Γ(ht
u,v)) indicates the

relative amount of traffic destined to t that node u will forward
via outgoing link (u, v) 4. Let f t

u denote the total incoming
flow (destined to t) at node u (including the bypassing flow
and self-originated flow). The total outgoing flow of traffic
(destined to t) traversing link (u, v), f t

u,v , can be computed as
follows:

f t
u,v = f t

u

Γ(ht
u,v)∑

(u,j)∈E Γ(ht
u,j)

. (14)

Consistent with hop-by-hop forwarding, u splits the traffic
over the outgoing links without regard to the source node or
the incoming link where the traffic arrived. Implementation
of PEFT on both data-plane and control-plane can be readily
accomplished using today’s technology, as discussed in [1].

C. Exact Traffic Splitting Function for PEFT

The traffic splitting function for PEFT can be calculated
in polynomial time. From the definition of PEFT (12), more
traffic should be sent along an outgoing link used by more
paths and the paths should be treated differently based on
their path lengths. To compute the traffic splitting on each
outgoing link, we first define a positive real number Υt

u as
the “equivalent number” of shortest paths from node u to
destination t, and let Υt

t � 1.
In a PEFT flow, we have

4For example, the traffic-splitting function for even-splitting across shortest
paths (e.g., OSPF) is

ΓO(ht
u,v) =

{
1 if ht

u,v = 0,
0 if ht

u,v > 0.

Υt
u �∑

i e−(pi
u,t−dt

u)

=
∑

(u,v)∈E

 ∑
j:(u,v)∈P

j
u,t

e
−(p

j
u,t−wu,v−dt

v+dt
v+wu,v−dt

u)


=

∑
(u,v)∈E

e−(dt
v+wu,v−dt

u)
∑

j:(u,v)∈P
j
u,t

e
−(p

j
u,t−wu,v−dt

v)


=

∑
(u,v)∈E

(
e−ht

u,v Υt
v

)
(15)

The recursive relationship represented in (15) can be used
in the following way: e−ht

u,vΥt
v is an “equivalent number”

of shortest paths from u to t for those paths bypassing link
(u, v) and the router should distribute the traffic from u on
link (u, v) in proportion to e−ht

u,vΥt
v . Then we have an exact

traffic splitting function 5 for PEFT at link (u, v):

ΓPX(ht
u,v) = Υt

ve
−ht

u,v (16)

To enable hop-by-hop forwarding, each router needs to in-
dependently calculate ΓPX(ht

u,v) for all node pairs. Then each
router first computes the all-pairs shortest paths, using, e.g., the
Floyd-Warshall algorithm with time complexity O(N3) [13],
and calculates the values of e−ht

u,v . Then for each destination
t, to compute the values of Υt

u, each router needs to solve N
linear equations (15), which requires O(N3) time [13]. Thus
the total complexity is O(N4).

D. Traffic Splitting Function for Downward PEFT

To prevent loops in link-state routing, packets are usually
forwarded along a “downward path” where the next hop is
closer to destination. This inspires the following Downward
PEFT, whose traffic splitting function is ΓPD(ht

u,v) 6:

ΓPD(ht
u,v) =

{
Υt

ve−ht
u,v if dt

u > dt
v,

0 otherwise.
(17)

ΓPD(ht
u,v) can approximate ΓPX(ht

u,v) and further simplify
the computation of Υt

u and traffic splitting as discussed below
and utilized in Sec. V-C.

We consider each destination t independently. After tem-
porarily removing link (u, v) where dt

u ≤ dt
v since there is

no flow on it, we get an acyclic network and do topolog-
ical sorting on the remaining network. Proceeding through
the nodes u in increasing topological order (starting with
destination t), we compute the value of Υt

u using (15). For
each destination, topology sorting requires O(N + E) time,
and summarizing the Υt

u across the outgoing links requires
O(N + E) time. Thus, the total time complexity to calculate
Υt

u is O(N3 + N(N + E)) = O(N3).
In general, downward PEFT does not provably achieve

optimal TE, although it comes extremely close to optimal
TE in practice, with the associated link weight computation
even faster than that for exact PEFT. In the case where the

5P in the subscript emphasizes that the calculation of traffic splitting
considers the paths towards destination, and X means the exactness.

6D in the subscript emphasizes “downward”.

lower bound of all link weights, wmin, is large enough, the
downward PEFT is same as exact PEFT 7.

V. LINK WEIGHT COMPUTATION FOR PEFT

The last section described traffic splitting under PEFT. A
new way to use link weights also means the network operator
needs a new way to compute, centrally and off-line, the optimal
link weights. It turns out that the NP-hard problem of link
weight computation in OSPF can be turned into a convex
optimization when link weights are used by PEFT. To do
that, we will convert the iterative method of solving the NEM
problem in Sec. III into a simple and efficient algorithm. We
first present an algorithm that iteratively chooses a tentative
set of link weights and evaluates the corresponding traffic
distribution by simulating the exact PEFT traffic splitting run
by the routers. From Theorem 1, the algorithm is guaranteed
to converge to a set of link weights, which realizes optimal
TE with PEFT. To further speed up the calculation, the
traffic distribution with exact PEFT for each iteration can be
approximated with downward PEFT. The simulation in Sec. VI
show that such an approximation is very close to optimal and
provides substantial speedup in practice.

A. Algorithm Framework for Optimizing Link Weights

The iterative algorithm consists of two main parts:

1) Computing the optimal traffic distribution (necessary
capacities) for a given traffic matrix by solving the
COMMODITY problem (2).

2) Computing the link weights that would achieve the
optimal traffic distribution.

Starting with an initial setting of link weights, the algorithm
(see Algorithm 1) repeatedly updates the link weights until the
load on each link is the same as the necessary capacity. Each
setting of the link weights corresponds to a particular way of
splitting the traffic over a set of paths. The Traffic Distribution
procedure computes the resulting link loads fu,v , based on
the traffic matrix. Then, the Link Weight Update procedure
(see Algorithm 2) increases the weight of each link (u, v)
linearly if the traffic exceeds the necessary capacity, or de-
creases it otherwise. The parameter α is a positive step size,
which can be constant or dynamically adjusted; we find that
setting α to the reciprocal of the maximum necessary link
capacity (1

max c̃u,v
) performs well in practice. Algorithm 1 is

guaranteed to converge to the global optimal solution as stated
in Lemma 1.

In terms of computational complexity, we know that
COMMODITY can be solved efficiently. The complexity of
Algorithm 2 is O(E). The remaining question is how to solve
the subproblem Traffic Distribution(w) efficiently.

7For link (u, v), if the shortest distance to t of u, dt
u ≤ dt

v , then
ht

u,v = dt
v + wu,v − dt

u ≥ wu,v and ΓPX(ht
u,v) ≤ Υt

ve−wu,v , and
the flow destined to t on (u, v) is close to 0 if wu,v is large enough,
e.g., e−10 ≈ 0.005%. Therefore, most flow in PEFT always makes forward
progress towards the destination, i.e., from router u with larger dt

u to router
v with smaller dt

v .

1: Compute necessary capacities c̃ by solving (2)
2: w ← Any set of link weights
3: f ← Traffic Distribution(w)
4: while f �= c̃ do
5: w ← Link Weight Update(f)
6: f ← Traffic Distribution(w)
7: end while
8: Return w /*final link weights*/

Algorithm 1: Optimize Over Link Weights

1: for each link (u, v) do
2: wu,v ← wu,v − α (c̃u,v − fu,v)
3: end for
4: Return new link weights w

Algorithm 2: Link-Weight Update(f)

B. Compute Traffic Distribution with Exact PEFT

To compute the traffic distribution for PEFT, we should first
compute the shortest paths between each pair of nodes and all
the values ΓPX(ht

u,v) as in Sec. IV-C. Computing the resulting
distribution of traffic is complicated by the fact that ΓPX(·)
may direct traffic “backwards” to a node that is further away
from the destination. To capture these effects, recall that f t

u is
the total incoming flow at node u (including traffic originating
at u as well as any traffic arriving from other nodes) that
is destined to node t. In particular, the traffic D(s, t) that
enters the network at node s and leaves at node t satisfies
the following linear equation:

f t
s −

∑
x:(x,s)∈E

f t
x

(
ΓPX(ht

x,s)∑
(x,j)∈E ΓPX(ht

x,j)

)
= D(s, t). (18)

That is, the traffic D(s, t) entering the network at node s
matches the total incoming flow f t

s at node s (destined to
node t), excluding the traffic entering s from other nodes. The
transit flow is captured as a sum over all incoming links from
neighboring nodes x, which split their incoming traffic f t

x over
their links based on the traffic-splitting function.

The N linear equations (18) for each t typically require
O(N3) time [13] to solve. Thus the total complexity is O(N4).

C. Approximate Traffic Distribution with Downward PEFT

To further reduce the computational overhead, we realize
that the optimal traffic distribution should be loop free. Thus,
in the last iteration in Algorithm 1, the flow loop should
be negligible. In addition, the accurate solution for each
intermediate iteration is not necessary in practice, we can
approximate Exact PEFT (ΓPX(·)) with Downward PEFT
(ΓPD(·)) to forward traffic only on “downward” paths, the
traffic distribution for each intermediate iteration can be com-
puted using a combinatorial algorithm, which is significantly
faster than solving linear equations (18).

As in Sec. V-B, we first compute the shortest paths between
all pairs of nodes, as well as the values of ΓPD(ht

u,v), as shown
in the first step of Algorithm 3. The following procedure is

1: For link weights w, construct all-pairs shortest paths and
compute ΓPD(ht

u,v)
2: for each destination t do
3: Temporarily remove link (u, v) where dt

u ≤ dt
v

4: Do topological sorting on the remaining network
5: for each source s �= t in the decreasing topological

order do
6: f t

s ← D(s, t) +
∑

x:(x,s)∈E f t
x,s

7: f t
s,v ← f t

s
ΓP D(ht

s,v)∑
(s,j)∈E

ΓP D(ht
s,j)

8: end for
9: end for

10: fu,v ←
∑

t∈V f t
u,v

11: Return f /*set of fu,v*/

Algorithm 3: Traffic Distribution(w) with ΓPD(·)

very similar to but subtly different from that for calculating
ΓPD(ht

u,v). We consider each destination t independently,
since the flow to each destination can be computed without
regard to the other destinations. After temporarily removing
link (u, v) where dt

u ≤ dt
v since there is no flow on it,

we get an acyclic network and do topological sorting on the
remaining network. The computation starts at the node without
incoming link in the acyclic network, since this node would
never carry any traffic to t that originates at other nodes.
Proceeding through the nodes s in decreasing topological
order, we compute the total incoming flow at node s (destined
to t) as the sum of the flow originating at s (i.e., D(s, t)) and
the flow arriving from neighboring nodes x (f t

x,s). Then, we
use the total incoming flow at s to compute the flow of traffic
toward t on each of its outgoing links (s, v), using the traffic-
splitting function ΓPD(·).

In Algorithm 3, computing the all-pairs shortest paths
with the Floyd-Warshall algorithm has time complexity
O(N3) [13]. For each destination, topology sorting requires
O(N + E) time, and summarizing the incoming flow and
splitting across the outgoing links requires O(N + E) time.
Thus, the total time complexity to run Algorithm 3 in each
iteration of Algorithm 1 is O(N3 + N(N + E)) = O(N3).

Finally, the total running time for Algorithm 1 depends on
the time required to solve (2) and the total number of iterations
required for Algorithms 2 and 3. Although the original NEM
problem involves an exponential number of variables, the
complexity of Algorithm 1 is still comparable to solving a
convex optimization with polynomial number of variables (like
the COMMODITY problem (2)) using gradient projection,
since we do not need to solve NEM directly.

VI. PERFORMANCE EVALUATION

How well can the new routing protocol perform and how
fast can the new link weight computation be? PEFT has been
proven to achieve optimal TE in Sec. III, with a complexity
of link weight computation similar to that of solving convex
optimization (with a polynomial number of variables). In
this section, we numerically demonstrate that its approximate

version, Downward PEFT, can make convergence very fast in
practice while coming extremely close to TE optimality.

A. Simulation Environment

We consider two network objective functions
(Φ({fu,v, cu,v})): maximum link utilization, and total
link cost (1) (as used in operator’s TE formulation). For
benchmarking, the optimal values of both objectives are
computed by solving linear program (2) with CPLEX 9.1 via
AMPL, and serve as the performance benchmarks.

To compare with OSPF, we use the state-of-the-art local-
search method in [2]. We adopt TOTEM 1.1 [14], which
follows the same approach as [2], and has similar quality of the
results 8. We use the same parameter setting for local search
as in [2], [7] where the link weights are restricted as integers
from 1 to 20 since a larger weight range would slow down the
searching [7], initial link weights are chosen randomly, and
the best result is collected after 5000 iterations.

To determine link weights under PEFT, we run Algorithm 1
with up to 5000 iterations of computing traffic distribution
and updating link weights. Abusing terminology a little, in this
section we use the term PEFT to denote the traffic engineering
with Algorithm 1 (including two sub-Algorithms 2 and 3).

We run the simulation on a real backbone network and
several synthetic networks. First is the Abilene network, which
has 11 nodes and 28 directional links with 10Gbps capacity.
The traffic demands are extracted from the sampled Netflow
data on Nov. 15th, 2005. To simulate networks with different
congestion levels, we create different test cases by uniformly
decreasing the link capacity until the maximal link utilization
reaches 100% with optimal TE.

We also test the algorithms on the same topologies and
traffic matrices as those in [2]. The 2-level hierarchical net-
works were generated using GT-ITM, which consists of two
kinds of links: local access links with 200-unit capacity and
long distance link with 1000-unit capacity. In the random
topologies, the probability of having a link between two nodes
is a constant parameter and all link capacities are 1000 units.
In these test cases, for each network, traffic demands are
uniformly increased to simulate different congestion levels.

B. Minimize Maximum Link Utilization

Since we create different levels of congestion for the same
network by uniformly decreasing link capacities or uniformly
increasing traffic demands, we just need to compute the
Maximum Link Utilization (MLU) for one test case in each
network because MLU is proportional to the ratio of total
demand over total capacity. In addition to MLU, we are
particularly interested in the metric “efficiency of capacity
utilization”, η, which is defined as the following ratio: the
percentage of the traffic demand satisfied when the MLU
reaches 100% under a traffic engineering scheme over that in
optimal traffic engineering. The improvement in η is referred
to as the “Internet capacity increase” in [2].

8Proprietary enhancements can bring in factors of improvement, but as we
will see, PEFT’s advantage of computational speed is orders-of-magnitude.

For any test case of a network, if MLU of optimal TE,
OSPF, and PEFT are ξ, ξO and ξD respectively, then ηO = ξ

ξO
,

and ηD = ξ
ξD

. Thus PEFT can increase Internet capacity over
OSPF by ηD−ηO. Fig. 2 illustrates the efficiency of capacity
utilization of the three schemes. They show that PEFT is very
close to optimal traffic engineering in minimizing MLU, and
increases Internet capacity over OSPF by 15% for Abilene
network and 24% for hier50b network, respectively.

abilene hier50a hier50b rand50 rand50a rand100
0

0.2

0.4

0.6

0.8

1

Network

E
ffi

ci
en

cy
 o

f C
ap

ac
ity

 U
til

iz
at

io
n

Optimal TE
PEFT
OSPF

Fig. 2. Efficiency of capacity utilization of optimal traffic engineering, PEFT
and local Search OSPF

C. Minimize Total Link Cost

We also employ the cost function (1) as in [2]. Comparison
is on the optimality gap, in terms of the total link cost, com-
pared against the value achieved by optimal traffic engineering.
Typical results for different topologies with various traffic
matrices are shown in Fig. 3, where the network loading is
the ratio of total demand over total capacity. From the results,
we observe that the gap between OSPF and optimal traffic
engineering can be very significant (up to 821%) for the most
congested case of Abilene network. In contrast, PEFT can
achieve almost the same performance as the optimal traffic
engineering in terms of total link cost. Note that, within those
figures, the maximum optimality gap of PEFT is only up to
8.8% in Fig. 3(b), which can be further reduced to 1.5% with
a larger step-size and more iterations (which is feasible as the
algorithm runs very fast to be shown in Sec. VI-D).

D. Running Time Requirement

The tests for PEFT and local search OSPF were performed
under the time-sharing servers of Redhat Enterprise Linux 4
with Intel Pentium IV processors at 2.8∼3.2 Ghz. Note that the
running time for local search OSPF is sensitive to the traffic
matrix since a near-optimal solution can be reached very fast
for light traffic matrices. Therefore, we show the range of their
average running times per iteration for qualitative reference.

Fig. 4 shows the optimality gap (in a log scale) achieved by
local search OSPF and PEFT, within the first 500 iterations for
a typical scenario (Fig. 3(c)). It demonstrates that Algorithm 1
for PEFT converges much faster than local search for OSPF.
Table III shows the average running time per iteration for
different networks. We observe that our algorithm is very fast,

0.05 0.1 0.15 0.2
0

100

200

300

400

500

600

700

800

900

Network Loading

O
pt

im
al

ity
 G

ap
 (

%
)

OSPF
PEFT

(a) Abilene Network

0.08 0.1 0.12 0.14 0.16 0.18
0

20

40

60

80

100

120

140

160

180

200

Network Loading

O
pt

im
al

ity
 G

ap
 (

%
)

OSPF
PEFT

(b) Rand100 Network

0.02 0.03 0.04 0.05 0.06
0

50

100

150

200

250

Network Loading

O
pt

im
al

ity
 G

ap
 (

%
)

OSPF
PEFT

(c) Hier50b Network

0.04 0.05 0.06 0.07 0.08 0.09
0

10

20

30

40

50

60

70

80

90

100

Network Loading

O
pt

im
al

ity
 G

ap
 (

%
)

OSPF
PEFT

(d) Hier50a Network

0.05 0.1 0.15 0.2
0

10

20

30

40

50

60

70

80

90

100

Network Loading

O
pt

im
al

ity
 G

ap
 (

%
)

OSPF
PEFT

(e) Rand50 Network

0.1 0.15 0.2 0.25
0

50

100

150

200

250

300

Network Loading

O
pt

im
al

ity
 G

ap
 (

%
)

OSPF
PEFT

(f) Rand50a Network

Fig. 3. Comparison of PEFT and Local Search OSPF in terms of optimality
gap on minimizing total link cost

0 100 200 300 400 500
10

−2

10
−1

10
0

10
1

10
2

10
3

Iteration

O
pt

im
al

ity
 G

ap
 (

lo
g

sc
al

e)

GAP−OSPF

GAP−PEFT

Fig. 4. Comparison of the drop in optimality gap between Local Search
OSPF and PEFT in a 2-level topology with 50 nodes and 212 links

requiring at most 2 minutes even for the largest network (with
100 nodes) tested, while the OSPF local search needs tens of
hours. On average, the algorithm developed in this paper to
find link weights for PEFT routing is 2000 times faster than
local search algorithms for OSPF routing.

VII. DIFFERENCE BETWEEN PEFT AND DEFT

Link-state routing protocols can be categorized as link-based
and path-based in terms of flow splitting. Their difference is
illustrated in Fig. 5, with a network that only has traffic demand

TABLE III
Average running time per iteration required by PEFT and local search OSPF

to attain the performance in Fig. 3

Time per Iteration (second)
Net. ID Topology Node # Link # PEFT OSPF
abilene Backbone 11 28 0.002 6.0∼13.9
hier50a 2-level 50 148 0.006 6.0∼13.9
hier50b 2-level 50 212 0.007 6.4∼17.4
rand50 Random 50 228 0.007 3.2∼9.0
rand50a Random 50 245 0.007 6.1∼14.1
rand100 Random 100 403 0.042 39.5∼105.1

from s to t. Assume the weights of the links are shown in
Fig. 5(a). Obviously, the shortest distance from s to t is 2
units and both nodes t and u are on the shortest paths from s
to t. In a link-based splitting scheme (e.g. OSPF, Fong [6] and
DEFT [1]), node s evenly splits traffic across its two outgoing
links (s, t) and (s, u) as shown in Fig. 5(b). Whereas in a
path-based splitting scheme, e.g. PEFT, there are three equal-
length paths from (s, t) and s evenly splits traffic across them
as shown in Fig. 5(c). Note that, the path-based model does
not imply explicit routing to set up tunnels for all the possible
paths. Instead, each node just needs to compute and stores
the aggregated flow-splitting ratio across its outgoing links,
like 66% on link (s, u) for the sample network in Fig 5(c).
Therefore, path-based splitting schemes can still be realized
with hop-by-hop forwarding.

(a) Link Weights

1

2

1

t

u

s

1

(b) Link-based Splitting

25%

50%

50%

t

u

s

25%

(c) Path-based Splitting

33%

33%

66%

t

u

s

33%

Fig. 5. Difference in traffic splittings for link-based and path-based link-state
routing protocol

This paper is substantially different from our previous work
on [1], with the following key differences:

1) DEFT is a link-based flow splitting while PEFT is a
path-based flow splitting.

2) The core algorithms for setting link weights are com-
pletely different. [1] introduces a non-convex non-
smooth optimization for DEFT and a two-stage iterative
solution method, while the theory for PEFT is Network
Entropy Maximization. The two-stage method for DEFT
is much slower than the algorithms developed for PEFT
in this paper.

3) [1] numerically shows DEFT can realize near optimal
TE in terms of a particular objective (total link cost),
while this paper proves that PEFT can realize optimal
TE with any convex objective function.

VIII. CONCLUDING REMARKS

Commodity-flow-based routing protocols are optimal for
any convex objective in Internet TE but introduce much

configuration complexity. Link-state routing is simple but does
not seem to achieve optimal TE based on prior works. This
paper proves that optimal traffic engineering, in fact, can be
achieved by link-state routing with hop-by-hop forwarding,
and the right link weights can be computed efficiently, as
long as flow splitting on non-shortest paths is allowed but
properly penalized. In [10], we also show uniqueness of the
exponential penalty in achieving optimal TE, and discuss
interpretations of NEM from the viewpoints of statistical
physics and combinatorics.

We also highlight that optimization is used in three different
ways in this paper [10]. First, it is used when developing
algorithms to solve the link weight computation problem for
PEFT. In a more interesting way, the level of difficulty of
optimizing link weights for OSPF is used as a hint that
perhaps we need to revisit the standard assumption on how
link weights should be used, in the approach of “Design For
Optimizability”. In yet another way, optimization in the form
of NEM is introduced as a conceptual framework to develop
link-state routing protocols with hop-by-hop forwarding.

ACKNOWLEDGMENT

This research is in part supported by DARPA W911NF-07-
1-0057, ONR YIP N00014-07-1-0864, AFOSR FA9550-06-1-
0297, NSF CNS-0519880 and CNS 0720570. We appreciate
the helpful discussions with D. Applegate, B. Fortz, J. He, J.
Huang, D. Johnson, H. Karloff, Y. Li, J. Liu, M. Prytz, A.
Tang, M. Thorup, J. Yu, and J. Zhang.

REFERENCES

[1] D. Xu, M. Chiang, and J. Rexford, “DEFT: Distributed exponentially-
weighted flow splitting,” in INFOCOM’07, Anchorage, AK, May 2007.

[2] B. Fortz and M. Thorup, “Increasing Internet capacity using local
search,” Computational Optimization and Applications, vol. 29, no. 1,
pp. 13–48, 2004.

[3] Z. Wang, Y. Wang, and L. Zhang, “Internet traffic engineering without
full mesh overlaying,” in INFOCOM’01, Anchorage, AK, 2001.

[4] D. Awduche, “MPLS and traffic engineering in IP networks,” IEEE
Communication Magazine, vol. 37, no. 12, pp. 42–47, Dec. 1999.

[5] A. Sridharan, R. Guérin, and C. Diot, “Achieving near-optimal traffic
engineering solutions for current OSPF/IS-IS networks,” IEEE/ACM
Transactions on Networking, vol. 13, no. 2, pp. 234–247, 2005.

[6] J. H. Fong, A. C. Gilbert, S. Kannan, and M. J. Strauss, “Better
alternatives to OSPF routing,” Algorithmica, vol. 43, no. 1-2, pp. 113–
131, 2005.

[7] B. Fortz and M. Thorup, “Internet traffic engineering by optimizing
OSPF weights,” in INFOCOM’00, Tel Aviv, Israel, 2000, pp. 519–528.

[8] D. D. Sleator and R. E. Tarjan, “A data structure for dynamic trees,”
Journal of Computer and System Sciences, vol. 26, no. 3, pp. 362–391,
1983.

[9] D. Mitra and K. G. Ramakrishnan, “A case study of multiservice
multipriority traffic engineering design for data networks,” in GLOBE-
COM’99, Rio de Janeiro, Brazil, Dec. 1999, pp. 1077–1083.

[10] D. Xu, M. Chiang, and J. Rexford, “Link-state routing with hop-by-
hop forwarding can achieve optimal traffic engineering,” in techreport,
http://www.research.att.com/∼dahaixu/pub/nem/peft.pdf, Jul. 2007.

[11] D. P. Bertsekas, Nonlinear Programming, 2nd ed. Athena Scientific,
1999.

[12] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge
University Press, 2004.

[13] T. Cormen, C. Leiserson, and R. Rivest, Introduction to Algorithms. The
MIT Press, Cambridge, 1990.

[14] TOTEM, http://totem.info.ucl.ac.be.

