ProActive Routing in Scalable Data Centers with PARIS

Dushyant Arora
Arista Networks
dushyant@arista.com

ABSTRACT

Modern data centers must scale to a large number of servers, while
offering flexible placement and migration of virtual machines. The
traditional approach of connecting layer-two pods through a layer-
three core constrains VM placement. More recent “flat” designs
are more flexible but have scalability limitations due to flood-
ing/broadcasting or querying directories of VM locations. Rather
than reactively learn VM locations, our PARIS architecture has a
controller that pre-positions IP forwarding entries in the switches.
Switches within a pod have complete information about the VMs
beneath them, while each core switch maintains complete forward-
ing state for part of the address space. PARIS offers network de-
signers the flexibility to choose a topology that meets their latency
and bandwidth requirements. We evaluate our PARIS prototype
built using OpenFlow-compliant switches and NOX controller. Us-
ing PARIS we can build a data center network that supports up to
100K servers.

Categories and Subject Descriptors

C.2.0 [Computer Communication Networks]; C.2.1 [Network
Architecture and Design]

General Terms

Design; Performance

Keywords

Data Center Networking; Network Virtualization; Software-
Defined Networking

1. INTRODUCTION

Large data centers have thousands of switches that interconnect
tens of thousands of servers running hundreds of thousands of vir-
tual machines (VMs). Operating at this large scale puts tremendous
pressure on the design of network topologies, routing architectures,
and addressing schemes. Recent designs rely on switches to query
directory servers to learn how to reach destination VMs, leading to

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

DCC’14, August 18, 2014, Chicago, Illinois, USA.

Copyright 2014 ACM 978-1-4503-2992-7/14/08 ...$15.00.
http://dx.doi.org/10.1145/2627566.2627571 .

Theophilus Benson
Duke University

tbenson@cs.duke.edu

Jennifer Rexford
Princeton University

jrex@cs.princeton.edu

overhead and delays. We advocate a different approach, where a
controller pre-positions IP forwarding entries in the network, based
on VM addresses and locations.

1.1 Scaling Data-Center Networks

Traditional data centers divide the network into small pods or
clusters (running Ethernet protocol), connected by a core (running
IP routing protocols). This design offers flexible VM placement
and migration within a pod, plus scalability by routing between
pods based on IP prefixes. However, intra-pod communication suf-
fers from the inefficiency of routes constructed by spanning tree,
and the overheads of flooding (to unknown destinations) and broad-
casting (of ARP traffic). In addition, pod boundaries become arti-
ficial constraints on VM placement and migration, since VMs in
different pods belong to different subnets.

In response, recent designs offer a "one big virtual switch" ab-
straction, with flat addressing so a VM can run on any server and
retain its IP address when it moves. However, flat addressing intro-
duces scalability challenges. Some solutions, like TRILL [1] im-
prove scalability through link-state routing in the core, while still
relying on flooding and broadcasting at the perimeter. To avoid
these overheads, VL2 [6] and NVP [11] rely on separate directory
servers that store the mapping from a VM’s address to its location.
However, these directories introduce scalability challenges of their
own, requiring many servers to handle the load of queries and up-
dates. In addition, edge switches incur delay to query the directory,
and overhead to cache the results and encapsulate packets, particu-
larly for the high volume of traffic entering the data center from the
Internet.

SEATTLE [10] improves scalability by distributing directory in-
formation over the switches, and directing traffic through an inter-
mediate switch on a cache miss at the ingress switch. However, re-
active caching can lead to large forwarding tables, unless the traffic
matrix is sparse — a reasonable assumption in enterprise networks,
but not necessarily in data centers. To reduce forwarding-table size,
PortLand [14] rewrites MAC addresses at the network edge, to en-
able prefix-based aggregation in the core. However, the design is
limited to fat-tree topologies. Both SEATTLE and PortLand re-
quire modifications to the switches, precluding the use of legacy
equipment.

Related work [12] improves scalability by leveraging unique
properties of the data center network. However, related work [12]
focuses on improving the scalability of multicast groups and does
not scalably support VM mobility.

1.2 ProActive Routing In Scalable DCs

In this paper, we present PARIS, a more scalable way to pro-
vide "one big virtual switch" in the popular setting of large private
clouds (e.g., Facebook, Google), where each VM has a unique IP

address. PARIS routes on flat IP addresses, rather than MAC ad-
dresses, to leverage legacy layer-three switches that forward pack-
ets based on destination IP prefixes. Our design has a controller
that pre-positions forwarding state in the network, based on knowl-
edge of each VM’s address and location. Rather than encapsulate
packets at the network edge, the bottom few levels of switches store
a forwarding entry for all VMs beneath them. To avoid a state ex-
plosion further up the hierarchy, the controller partitions the for-
warding state across the core switches, so each switch maintains
fine-grained forwarding state for a portion of the data center’s IP
address space.

The resulting design offers scalability (to a large number of
VMs), flexibility (to place VMs on any servers), and backwards
compatibility (to legacy layer-three switches), as well good path
diversity and bisection bandwidth.

Roadmap: The next section discusses the main architectural
principles underlying our design. Section 3 presents PARIS, in-
cluding how we achieve high path diversity and low stretch. We
present our prototype and evaluation in Section 4. Section 5 dis-
cusses multitenancy within PARIS. Section 6 concludes the paper.

2. ARCHITECTURAL PRINCIPLES

In rethinking how to design scalable data-center networks, we
identify four main principles:

Flat layer-three network: Having the entire data center form
one IP subnet simplifies host and DHCP configuration, and enables
seamless VM migration. However, forwarding on MAC addresses
introduces scalability challenges, since the address space is large
and flat—forcing the use of broadcasting/flooding which has the
side effect of each switch learning location of all hosts in the net-
work. In contrast, IP addresses are easily aggregated, with switches
forwarding traffic based on the longest-matching prefix.

Proactive installation of forwarding state: Installing
forwarding-table entries before the traffic arrives reduces packet
latency and avoids the overhead of learning the information re-
actively. However, injecting flat addresses into routing protocols
(e.g., OSPF or IS-IS) leads to large forwarding tables in every
switch. Instead, a logically-centralized controller can pre-position
the necessary forwarding-table entries in each switch, based on a
network-wide view of the topology and the locations and addresses
of VMs. This enables much smaller tables.

Complete forwarding information within a pod: Storing a
forwarding-table entry for every VM in every switch would not
scale. Yet, a switch could easily store the forwarding information
for all VMs in the same pod. Today’s low-end switches have room
for tens of thousands, or even hundreds of thousands of forwarding
entries—enough space for thousands of servers each running (say)
32 VMs. Future switches will have larger tables, to accommodate
multi-core servers hosting even more VMs. Storing complete in-
formation enables short paths and good path diversity within a pod,
and default routes up the hierarchy to the rest of the network.

Partitioned forwarding state in the core: Moving up the hi-
erarchical topology, the number of VMs lying “below” a switch
grows exponentially. We can no longer store complete forwarding
information inside the core-layer switch. So, we divide the data
center address space and store full forwarding state for a portion
of the IP address space in each core switch. For example, we can
divide a /14 address space into four /16 Virtual Prefixes [4] and a
core switch with a layer-3 table size of 64K can store forwarding
information for an entire /16 virtual prefix. Since we treat IP as a
flat address within a pod, VMs with IP address within this prefix
may be spread across multiple pods.

3. PARIS ARCHITECTURE

In PARIS, a logically-centralized controller proactively installs
forwarding-table entries in the switches. We initially assume a pri-
vate cloud, where all VMs belong to the same institution and have
unique IP addresses. First, we discuss how PARIS operates on a
range of core topologies. Next, we describe how to reduce stretch
and increase path diversity by having fine-grained forwarding en-
tries for popular destinations. Finally, we look at the architecture
components and network dynamics.

3.1 No-Stretch Topology

Data center applications have unique and varied traffic require-
ments. Some applications require high “east-west” bandwidth,
while others require low latency. We begin by looking at the No-
Stretch topology shown in Figure 1, which achieves the latter. In
this topology, each edge switch stores reachability information to
all directly-connected VMs, and each aggregation switch stores
reachability information to all hosts in its pod. Each aggregation
switch must be connected to all core switches in a complete bipar-
tite graph because each core switch stores reachability information
to only a subset of the address space. We do not place any restric-
tions on the topology at the aggregation and edge layer.

10.0.0.016 10.1.0.016 10.20.0/16 10.3.0.0116
CO& C1[# C2(* C3 (X

CORE CORE

REGAT|

EDGE

Figure 1: No-Stretch topology with core-layer switches aggregat-
ing /16 prefixes

Each virtual prefix has an Appointed Prefix Switch (APS) in the
core layer, responsible for storing forwarding information for all IP
addresses that lie within that virtual prefix. Aggregation switches
store forwarding information for all virtual prefixes in order to
reach destination VMs in other pods. Figure 1 shows a data center
network with 10.0.0.0/14 host address space, where each switch in
the core layer is aggregating a /16 IP prefix. We say, for example,
that core switch 1 is an APS for virtual prefix 10.1.0.0/16. The
actual prefix length depends on the routing table size of the core
switches.

Parameterized Construction: Assume a physical server can
host V. VMs, and let k be the port density of all switches. Since
each core-layer switch is connected to all the aggregation-layer
switches, we can have maximum k aggregation switches and 2k
edge switches (for the pod design of Figure 1). The maximum
number of hosts supported by this topology will be 2k(k —2) x V.

Packets always take the shortest path in the No-Stretch topol-
ogy. We take advantage of equal-cost multi-path routing (ECMP),
wherever possible. In Figure 1, there are two equal-cost paths be-
tween every edge and aggregation switch. We represent this as
ECMP qge agg = 2. Traffic between two hosts A (10.0.0.1) and
B (10.2.0.24), located in different pods, can take ECMP,qg0—sqgq
possible (default) routes from A’s edge switch to an aggregation
switch inside A’s pod. This aggregation switch has forwarding in-
formation for all virtual prefixes. It forwards the traffic to the APS

aggregating virtual prefix 10.2.0.0/16 in the core layer. The APS
can forward the traffic to ECMP g ge—sqg, number of destination pod
aggregation switches. It chooses one using ECMP. The destination
pod aggregation switch ultimately forwards the traffic to B via its
edge switch.

3.2 High-Bandwidth Topology

In order to support higher bisection bandwidth and make the ar-
chitecture more scalable, we now look at another flavor of PARIS.

10.2.0.0/16
)
co g

10.0.0.0/16 (%=

Figure 2: High-Bandwidth topology with a full mesh in the core
layer

Instead of having disjoint switches in the core layer, we connect
them to form a full mesh (See Figure 2). We choose a full-mesh
topology because it has low diameter and multiple paths for fault
tolerance and load balancing. Each aggregation switch is connected
to ECMP g6 core number of randomly selected core switches. The
aggregation-layer switches use ECMP to spread traffic across these
core-layer switches. As before, each core layer switch is an APS.
In order to reach all the hosts in the data center, each APS stores
reachability information for all virtual prefixes being aggregated
by all other APSs in the core layer. The aggregation switches no
longer store forwarding information to all virtual prefixes.

Parameterized Construction: Let’s say we wish to construct a
data center with 2" hosts using k-port switches, with pod design as
shown in Figure 2. The core-layer switches are connected in a com-
plete graph configuration with routing table size 2”. For connecting

2/1 Zh—l

these hosts we will need [m] edge switches, (WW ag-

gregation switches and 2"~ core switches, where V is the number
of VMs each physical server attached to the edge switch can host.
Each core layer switch will be connected to (2"=" — 1) other core
switches. The ECMP value for each aggregation switch will be

P {(kfzh_url)zj (k—2) ><2VJ

&)

Each aggregation switch is connected to min(k-4, E’) randomly-
selected core switches.

Traffic between two hosts A (10.0.0.1) and B (10.2.0.24), located
in different pods, flows through a maximum of three core switches
(two hops). The source pod aggregation switch hashes the five tuple
of the packet and forwards it to one of the core-layer switches (say
CO0). The ingress core switch looks at the destination IP address of
the packet and forwards it to the appropriate APS (C2). The APS
then tunnels the traffic to the destination pod aggregation switch
through the core layer, if it is not directly connected to it. For tun-
neling the packets, we can use MPLS labels, VLAN tags, or IP-in-
IP encapsulation. In this case, no tunneling is needed and the traffic
is directly forwarded to the aggregation switch in B’s pod. Traffic
between A and B can take ECMPqge e X ECMPygg—score number

of possible routes from A to the core switch. There are many possi-
ble paths through which the packet can reach the destination aggre-
gation switch from the APS. The exact path-multiplicity cannot be
determined because of the randomness involved in the link connec-
tion procedure used for connecting the aggregation and core-layer
switches. The APS and egress core switch use ECMP to spread
traffic across the available paths.

3.2.1 Valiant Load Balancing in Core Layer

Modern data centers support diverse applications and need to
provide good performance through equitable traffic distribution
among the links. Measurement studies have found the traffic pat-
terns inside a data center to be highly volatile [6]. Valiant Load
Balancing (VLB) is an efficient technique for handling traffic vari-
ations under the hose model.

In a full-mesh network of N nodes, where a node can send traffic
at a maximum rate to another node, the link capacity of mesh links
required to support any traffic matrix using VLB is only r(%) [17].
For implementing VLB in our topology, the link capacity required
between any pair of core switches will be r(%), where in the first
phase the packet is forwarded to an APS after bouncing it off a ran-
domly selected core switch, and in the second phase it is forwarded
to an egress core switch after again bouncing it off a random core
switch.

By implementing VLB, we can reduce the bandwidth require-
ment of the internal links in the core layer, and also support ar-
bitrary traffic matrices. However, a packet may now travel four
hops instead of two in the core layer, i.e., we trade-off stretch for
throughput. This is a reasonable trade-off in data centers, since they
have very low network latency.

In conclusion, the High-Bandwidth topology is more scalable,
has higher path diversity and can provide higher bisection band-
width compared to the No-Stretch topology. However, the topology
might incur some additional latency in doing so.

3.3 Generalized Core Topologies

So far we have seen No-Stretch and High-Bandwidth variants of
PARIS, with varying levels of connectivity between switches in the
core layer topologies. These are two special examples of core-layer
topologies with different path diversity, stretch, and fault-tolerance
properties. We will now look at other graph configurations for con-
necting the switches in the core layer.

If we have a sparse graph in the core layer with a small number
of internal edges, we will have more spare ports for supporting a
higher ECMP value at the aggregation layer. But a sparse graph
will have a larger diameter and lower path diversity within the core
layer. We seek a topology with high connectivity for fault tolerance
and load balancing, low diameter, and low vertex degree. These
properties are satisfied by Expander Graphs which have O(logn)
diameter, where 7 is the number of vertices in the graph. There are
many constructions for different families of expander graphs which
have varying vertex degree and diameter. Some of them are LPS
graph, Paley graph, Hypercube graph, and superconcentrators. The
network designer can choose a suitable expander graph topology
depending upon the latency, “east-west” bandwidth, and reliability
needs of the data center.

3.4 Fine-Grained Rules for Popular VMs

Traffic to popular destinations may experience stretch in the
High-Bandwidth topology, and low bisection bandwidth in No-
Stretch topology. To alleviate these problems, the controller can
install fine-grained forwarding entries (/32) for popular destinations
in the core-layer switches.

In the No-Stretch topology, if the controller installs fine-
grained forwarding entries for popular destinations on all core-
layer switches, the aggregation switches can use ECMP to spread
traffic across the core layer and achieve higher bisection bandwidth
for these destinations. For the High-Bandwidth topology, installing
individual destination rules on all the core-layer switches, instead
of aggregating them at APSs, ensures that all the traffic to these
destinations always takes the shortest path through the core layer.
For both topologies, the controller needs to install fine-grained for-
warding rules only in the core-layer switches.

3.5 Elements and Dynamics

In this section, we discuss the architecture components of PARIS
and how they interact. Also, we describe how the network handles
external traffic and copes with failure.

3.5.1 Network Elements

Controller/Fabric Manager: The controller has complete vis-
ibility into the network topology and knows the address and loca-
tion of all VMs. Using this initial information the controller per-
forms the following tasks: (i) tracking switch-level topology and
host location, (ii) optimally placing and updating forwarding in-
formation in switches after startup/failure, and (iii) monitoring net-
work traffic to perform traffic engineering. The controller can be an
OpenFlow [13] controller or any entity that can interact with legacy
switches through BGP or a command-line interface.

Switches: We do not run any intra-domain routing protocol be-
tween the switches. In order to learn about topology changes, the
switches must support neighbor discovery via protocols like LLDP
and send notification events to the controller. The switches should
have the minimal ability to map a destination IP prefix to an outgo-
ing link. Unlike other approaches [5], we don’t require the switches
to have expensive and power-hungry TCAMs. Our architecture can
work on SRAM/DRAM-based switches, which have higher mem-
ory density which allows us to aggregate larger virtual prefixes in
the APS. Switches should also support ECMP or should be able
to have multiple next-hops for the same destination prefix. All the
above features are supported by today’s commodity switches.

Hosts: Hosts send a variety of broadcast traffic which needs to
be managed in order to make the network scalable and save pre-
cious bandwidth. We place each host in its own /32 subnet with
a default route to its edge switch, so that it no longer sends ARP
broadcasts. Unlike other approaches [6, 10, 14], we don’t need to
lookup directory servers or do special handling of host ARP broad-
casts. Host DHCP messages are intercepted by the edge switches
and forwarded to the controller, which can assign any unallocated
IP address to any host.

3.5.2 External Traffic

Architectures that use packet encapsulation or header rewriting
to separate host location and identification [7, 11, 14] must perform
these actions on a large volume of diverse traffic arriving from the
Internet. For example, Nicira’s network-virtualization platform has
special gateway servers for this purpose. In contrast, PARIS does
not extend or modify the packet header, greatly simplifying the han-
dling of traffic entering the data center from the Internet.

For handling external traffic in the No-Stretch topology, we need
a border router which is attached to all the core layer switches and
which stores forwarding information for all the virtual prefixes. For
the High-Bandwidth topology, we do not need this border router as
all the core-layer switches are connected to each other in a full-
mesh topology.

3.6 Network Dynamics

Since, the controller has a network-wide view, it plays a crucial
role in coping with network dynamics.

Switch Dynamics: If an edge switch fails, the VMs attached to
that edge switch become unreachable. Unless there are redundant
edge switches, there is nothing that can be done to restore reach-
ability. If an aggregation switch fails, the controller can re-route
traffic through other aggregation switches in the pod. If a core-
layer switch fails, the virtual prefix being aggregated by it can be
sub-divided into smaller sub-prefixes and stored on other core-layer
switches until a new core-layer switch comes up. This provides
graceful degradation and load balancing properties to the architec-
ture.

Link Dynamics: Since, we have multiple paths between any
pair of hosts, simple re-routing of traffic by the controller can re-
store reachability after a link failure. The High-Bandwidth topol-
ogy is more resilient to link failures than No-Stretch topology be-
cause of higher ECMP value between aggregation and core layer.

Host Dynamics (VM Migration): When a VM migrates to a
new pod, the controller installs forwarding information on the new
edge and aggregation switches for reaching the migrated VM. Also,
it updates the APS entry, so that the APS forwards the packets to the
new aggregation switch. Finally, the controller deletes forwarding
entries from old edge and aggregation switches. The controller can
orchestrate VM migration or it can learn about it through gratuitous
ARP from the migrated VM.

4. EVALUATION

In this section, we will evaluate the ability of PARIS to scale to
large data centers focusing especially on analyzing the trade-offs
between latency and bandwidth.

4.1 Simulation Setup

We begin by describing the simulator used to evaluate PARIS as
well as the topologies and traffic matrices under which our evalua-
tions are performed.

To evaluate PARIS, we developed an emulator that runs our con-
troller without an actual network. The emulator emulates network
events such as switch join events and stores events from the con-
troller such as the flow table entries. This emulator allows us to
determine the number of flow table entries installed at each switch
as well as determine the runtime of our algorithm under varying
network conditions such as link failures.

To evaluate the trade off between bandwidth and latency, we use
the Mininet-HiFi [9] simulator to simulate a data-center environ-
ment. We use OpenFlow [13] switches for constructing the topolo-
gies, with NOX [8] serving as their controller/fabric manager. Due
to the inherent scalability limitations of the simulator, we are able
to perform experiments for moderately small data centers. How-
ever, we believe that the high level qualitative difference between
No Stretch and High BW remains the same in larger networks.

For our simulations, we evaluate two data center networks, with
the same number of hosts (64), edge (32) and aggregation switches
(16), but different number of core switches (4 and 8). For a fair
comparison, when a network with a given core switch count is con-
figured, it uses the same number of switches in each layer across
all topologies. The different number of core switches gives rise to
different ECMP 44 core Values for the High-Bisection topology.

The network has no over-subscription at any layer. We connect
the edge switches to the hosts via 1Mbps links and connect the
switches to each other using 10Mbps links. The link bandwidths
were scaled down compared to those in traditional data centers to
make the experiments run faster. For our traffic matrix, we use a

1200000 10
128 ports* [Highw +vLB

Hosts
CDF

4000 16000 32000 64000 00,

1000000 o] | I No-stretcn
800000
o6 Avg: 477 kbps
600000 :
Q Median: 483 kbps
400000 04 —
200000 I f
0.2
0 ||

[HighBw + VLB
09

08
f il
06

[No-stretch

w

a Avg: 681 kbps

o
Avg: 633 kbps o Median: 663 kbps
Median: 654 kbps 05

Avg: 652 kbps

04 Median: 582 kbps

03

200
of flow table rules

(a)

Sender Bandwidth (kbps)

600 800 1000 g 200 400 600 800 1000
Sender Bandwidth (kbps)

(©

Table 1: (a) Number of table entries at the core switches. (b) CDF of sender bandwidth for No-Stretch and High-Bandwidth PARIS. (c)

CCDF of sender bandwidth for No-Stretch and High-Bandwidth PARIS.

random traffic pattern, where each host sends traffic to one ran-
domly selected host for 20s. We use iPerf [2] for generating TCP
traffic between the hosts.

4.2 Hierarchal Rule Partitioning: Flow table
Scalability

Next, we examine the efficiency of PARIS’s rule partitioning al-
gorithms by analyzing its ability of PARIS to scale to large data
centers. We evaluate PARIS’s ability to minimize and reduce the
number of flow table entries stored in core switches.

Figures 1(a) presents the number of flow table entries that each
core switch needs to maintain to support data centers of varying
sizes. We observe that PARIS is able to effectively support large
data centers with as many as 100K physical hosts within the flow
table constraints of existing OpenFlow switches (NoviFlow devel-
ops switches with as many as 1M flow table entries [15].)

4.3 Trade-offs: Latency versus Bandwidth

Now we examine the throughput and latency of PARIS under
various topologies and configurations. First, we examine the la-
tency of routes created by the two modules in PARIS, namely No
Stretch and High BW modules. In Table 1(b) we examine the la-
tency for communication between VMs within a pod (intra-pod)
and for VMs in different pods (inter-pod).

Topology =~ Communication Average Latency
Pattern
No-Stretch ntra-pod 61us
No-Stretch inter-pod 106us
High-Bandwidth intra-pod 61us
High-Bandwidth inter-pod 126us

Table 2: Average latency between VMs.

Our measurements showed that the intra-pod RTT is approxi-
mately 61us for both schemes but the inter-pod RTT for No-Stretch
PARIS and High-Bandwidth PARIS is approximately 106us and
126us respectively. These results reflect the fact that RTT increases
as the average path length increases. Since the packet has to travel
a longer path through the core layer in High-Bandwidth PARIS, it
has slightly higher inter-pod RTT.

Figure 1(b) shows the CDF of sender bandwidth for both No-
Stretch and High-Bandwidth PARIS. Since there is no oversub-
scription in the network, a sender can at maximum achieve a band-
width of 1000kbps if there is no flow-collision in the switch layers.

As expected, given the random traffic pattern, we see that High-
Bandwidth PARIS achieves higher average sender bandwidth com-
pared to No-Stretch PARIS.

We now bias the topology in favor of No-Stretch PARIS and run
the experiment again. This time, we create a topology with 64
hosts, 32 edge switches, 16 aggregation switches and 8§ core-layer
switches. In No-Stretch PARIS, each aggregation switch will be
connected to all 8 core switches but in High-Bandwidth PARIS we
connect each aggregation switch to 4 random core switches. So, the
degree of multi-pathing is reduced. We run the experiment again
and we find that High-Bandwidth PARIS still achieves higher aver-
age sender bandwidth compared to No-Stretch PARIS. Figure 1(c)
shows the complementary CDF for this experiment. We can lever-
age other solutions like Hedera [3] to make sure flows don’t collide
in the data center network.

S. DISCUSSION

Multi-Tenancy: Our architecture so far was geared towards pri-
vate clouds, where all VMs have unique IP addresses. However, it
can be easily extended to provide multi-tenancy support, where a
tenant can request any (possibly overlapping) IP address. Unlike
VL2 [6] and NVP [11], we don’t need to tunnel the tenant traffic
using the layer-three network as an overlay, or query central direc-
tories for encapsulation information.

To uniquely identify each VM in the data center network, we al-
locate each tenant a unique ID. The edge and aggregation switches
store the tenant IDs along with the IP addresses of all VMs beneath
them in the pod. The edge switches are responsible for tagging
(MPLS/VLAN) the traffic coming from a VM with its tenant ID,
and removing the tag from the traffic going to a VM. The APS ag-
gregate virtual IP prefixes as before. However, they now also store
tenant IDs along with the /32 IP addresses. So, they might have
multiple entries with the same /32 IP address but different tenant
IDs. The virtual prefix size now not only depends on the routing
table size, but also the number of tenants we wish to support in the
data center network. There is a single entry for each tenant VM in
the edge and aggregation switches in its pod, and in the APS un-
der whose virtual prefix the tenant IP address lies. Traffic is routed
as before, but now using the combination of tenant ID and VM IP
address to uniquely identify each VM. We plan to implement our
architecture for the multi-tenant setting in future work.

Controller Scalability: In PARIS, the OpenFlow controller han-
dles the following tasks: (1) tracking VM location (migration), (2)
tracking the network topology, (3) calculating forwarding entries,

(4) responding to ARP messages, and (5) responding to DHCP
messages. While this imposes a non-trivial amount of load on
the controller, prior work [16] has shown that by distributing the
OpenFlow controller, the controllers can scale to clouds with 100K
servers and 2M VMs.

6. CONCLUSION

In this work, we demonstrate how Proactive Routing on flat IP
addresses can be used to build scalable and flexible data center net-
works. We eliminate flooding/broadcasting of packets and avoid
querying directories for VM location. Instead, we use a controller
to pre-position forwarding state in each switch layer. We propose
a new core-layer topology which provides us with increased multi-
pathing and bisection bandwidth. We also show how, through in-
stallation of fine-grained forwarding entries for popular destina-
tions, we can further improve performance. Finally, we evaluate
our architecture on Mininet-HiFi using NOX controller and user-
space software OpenFlow switches.

7. REFERENCES

[1] IETF TRILL working group.
http://www.ietf.org/html.charters/trill-charter.html.

[2] Iperf. http://iperf.sourceforge.net/.

[3] M. Al-Fares, S. Radhakrishnan, B. Raghavan, N. Huang, and
A. Vahdat. Hedera: Dynamic Flow Scheduling for Data
Center Networks. In Proceedings of the 7th USENIX
Conference on Networked Systems Design and
Implementation, NSDI’ 10, pages 19-19, Berkeley, CA,
USA, 2010. USENIX Association.

[4] H. Ballani, P. Francis, T. Cao, and J. Wang. Making Routers
Last Longer with ViAggre. In Networked Systems Design
and Implementation, 2009.

[5] C. Clos. A study of Non-blocking Switching Networks. Bell
System Technical Journal, 32:406-424, 1953.

[6] A. Greenberg, J. R. Hamilton, N. Jain, S. Kandula, C. Kim,
P. Lahiri, D. A. Maltz, P. Patel, and S. Sengupta. VL2: A
Scalable and Flexible Data Center Network. In Proceedings
of the ACM SIGCOMM 2009 Conference on Data
Communication, SIGCOMM ’09, pages 51-62, New York,
NY, USA, 2009. ACM.

[7]1 A. Greenberg, P. Lahiri, D. A. Maltz, P. Patel, and
S. Sengupta. Towards a Next Generation Data Center
Architecture: Scalability and Commoditization. In
Proceedings of the ACM Workshop on Programmable
Routers for Extensible Services of Tomorrow, PRESTO °08,
pages 57-62, New York, NY, USA, 2008. ACM.

[8] N. Gude, T. Koponen, J. Pettit, B. Pfaff, M. Casado,
N. McKeown, and S. Shenker. NOX: Towards an Operating
System for Networks. SIGCOMM Comput. Commun. Rev.,
38(3):105-110, July 2008.

[9] N. Handigol, B. Heller, V. Jeyakumar, B. Lantz, and
N. McKeown. Reproducible Network Experiments Using
Container-based Emulation. In Proceedings of the 8th
International Conference on Emerging Networking
Experiments and Technologies, CONEXT ’12, pages
253-264, New York, NY, USA, 2012. ACM.

[10] C. Kim, M. Caesar, and J. Rexford. Floodless in SEATTLE:
A Scalable Ethernet Architecture for Large Enterprises. In
Proceedings of the ACM SIGCOMM 2008 Conference on
Data Communication, SIGCOMM ’08, pages 3—14, New
York, NY, USA, 2008. ACM.

[11] T. Koponen, K. Amidon, P. Balland, M. Casado, A. Chanda,
B. Fulton, I. Ganicheyv, J. Gross, N. Gude, P. Ingram,

E. Jackson, A. Lambeth, R. Lenglet, S.-H. Li,

A. Padmanabhan, J. Pettit, B. Pfaff, R. Ramanathan,

S. Shenker, A. Shieh, J. Stribling, P. Thakkar, D. Wendlandt,
A. Yip, and R. Zhang. Network virtualization in multi-tenant
datacenters. In Proceedings of the 11th USENIX Conference
on Networked Systems Design and Implementation,

NSDI’ 14, pages 203-216, Berkeley, CA, USA, 2014.
USENIX Association.

[12] X.Liand M. J. Freedman. Scaling ip multicast on datacenter
topologies. In Proceedings of the Ninth ACM Conference on
Emerging Networking Experiments and Technologies,
CoNEXT 13, pages 61-72, New York, NY, USA, 2013.
ACM.

[13] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar,
L. Peterson, J. Rexford, S. Shenker, and J. Turner.
OpenFlow: Enabling Innovation in Campus Networks.
SIGCOMM Comput. Commun. Rev., 38(2):69-74, Mar. 2008.

[14] R. Niranjan Mysore, A. Pamboris, N. Farrington, N. Huang,
P. Miri, S. Radhakrishnan, V. Subramanya, and A. Vahdat.
PortLand: A Scalable Fault-tolerant Layer 2 Data Center
Network Fabric. In Proceedings of the ACM SIGCOMM
2009 Conference on Data Communication, SIGCOMM 09,
pages 39-50, New York, NY, USA, 2009. ACM.

[15] NoviFlow. 1248 Datasheet. http://bit.ly/1baQd0A.

[16] A. Tavakoli, M. Casado, T. Koponen, and S. Shenker.
Applying NOX to the Datacenter. In ACM SIGCOMM
HotNets Workshop, 2009.

[17] R.Zhang-Shen and N. McKeown. Designing a Predictable
Internet Backbone Network. In ACM SIGCOMM HotNets
Workshop, 2004.

