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ABSTRACT

The P4 language enables a range of new network applications. How-
ever, it is still far from easy to implement and optimize P4 programs
for PISA hardware. Programmers must engage in a tedious “trial
and error” process wherein they write their program (guessing it
will fit within the hardware) and then check by compiling it. If it
fails, they repeat the process. In this paper, we argue that program-
mers should define elastic data structures that stretch automatically
to make use of available switch resources. We present P4All, an
extension of P4 that supports elastic switch programming. Elastic
data structures also make P4All modules reusable across different
applications and hardware targets, where resource needs and con-
straints may vary. Our design is oriented around use of symbolic
primitives (integers that may take on a range of possible values
at compile time), arrays, and loops. We show how to use these
primitive mechanisms to build a range of reusable libraries such
as hash tables, Bloom filters, sketches, and key-value stores. We
also explain the important role that elasticity plays in modular pro-
gramming, and we allow programmers to declare utility functions
that control the relative share of data-plane resources apportioned
to each module.
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1 INTRODUCTION

For the past several decades, innovation in computer networking
has been painfully slow. Thanks to the closed, fixed-function devices
deployed in operational networks, the path from idea to implemen-
tation and deployment has been long and arduous. Now this is
changing. The advent of high-speed programmable data planes,
and programming languages like P4 [2, 24], enables new ideas to
come to fruition quickly.

However, despite making it possible to program the network, P4
does not make it easy. To process packets at high speed, P4-capable
devices impose restrictions on processing and memory resources,
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and these restrictions are specific to each target device. Program-
mers must grapple with these low-level resource limitations directly
in writing their P4 programs, never sure if their programs can even
“fit” on a given target, let alone use the available resources effec-
tively. They typically must iterate repeatedly, adding or removing
blocks of code manually, or adjusting magic constants.

The problem compounds when the programmer writes sophis-
ticated applications that combine multiple kinds of functionality.
Many applications suitable for production networks must combine
multiple functions, such as, traffic monitoring, packet forward-
ing, and access control. Each of these requires different kinds of
computation and data structures, yet deciding how much precious
switch resources to allocate to each function remains tedious and
error-prone. Worse yet, programmers cannot easily reuse common
modules across different applications and targets, because the re-
source needs and constraints change from one context to the next.
Although Figure 1 shows that many applications use common data
structures and could benefit from code reuse, these structures are
rarely shared between developers as libraries due to the lack of
modularity. Instead, they must be rewritten to fit the constraints
of a particular application. Of course, with more code rewriting,
comes more developer time, and worse, more bugs. In the long run,
such a writing and rewriting methodology is likely to lead to less
reliable networks.

P4 was intended to be a reusable language, with a single program
able to compile to many targets. While this is not the case today, we
believe that it is both possible and necessary. P4 applications should
only have to be written once, not rewritten for each programmable
target. In other words, the programming language should not be
tied to a target’s resources. The learning curve for programming
in P4 is significantly steeper because programmers must be so
cognizant of a target’s constraints. Rather than the programmer
incorporating target-specific constraints into an application’s code,
the target’s compiler should allocate available resources to each
piece of the application. The isolation of a target’s properties from
the language crucially eases the burden of the programmer.

Our solution is to extend the P4 language with the ability to
write elastic programs. An elastic program is a single, compact pro-
gram that can “stretch” to make use of available hardware resources.
Elastic programs can be constructed from any number of elastic
modules that each stretch arbitrarily to fill available space. For ex-
ample, consider the NetCache application [15] that caches popular
keys by combining (i) a count-min sketch [5] (to track key popular-
ity) and (ii) a key-value store (to store and serve popular keys), both
of which consume finite switch memory. An elastic NetCache ap-
plication may be constructed from an elastic count-min sketch and
an elastic key-value store. To control the relative stretch of these
modules, the programmer can specify a utility function that the
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Figure 1: PISA data structures

compiler maximizes. The NetCache application could maximize the
cache “hit rate” by allocating additional memory for the key-value
store (to store more of the “hot” keys) while ensuring that enough
remains for the count-min sketch to produce sufficiently accurate
estimates of key popularity. In addition to memory, programs could
simultaneously maximize the use of other switch resources such as
available arithmetic logic units and pipeline stages.

To implement these elastic programs, we present P4All, a backward-
compatible extension of the P4 language with four key additional
features: (1) symbolic values, (2) symbolic arrays, (3) bounded loops
with iteration counts governed by symbolic values, and (4) integer
linear utility functions. Symbolic values make the sizes of arrays
and other data structures flexible, allowing them to stretch when
necessary. Loops indexed by symbolic values make it possible to
operate on variably-sized, elastic data structures. Utility functions
allow the programmer to inform the P4All compiler how to op-
timize the allocation of limited data-plane resources, and how to
prioritize the resource needs of one elastic module over another.

To support these new features, the P4All compiler would need to
map an elastic data structure onto a fixed-size programmable switch.
In other words, the compiler would determine the symbolic values
and array lengths while optimizing the provided utility function.
Today’s P4 compilers already use optimization to compile to PISA
switches (e.g., [16]). We believe that by adding steps to optimize for
elastic parameters, we can adapt these existing compilers to P4All.

In this paper, we begin by discussing the difficulty of program-
ming for PISA (§ 2). We then describe the constructs P4All provides
to remedy these problems (§ 3). Next, we briefly sketch the P4All
compiler (§ 4). The paper ends with a discussion of related work
(§ 5), and future research directions (§ 6).

Ethics: This work does not raise any ethical issues.

2 PISA PROGRAMMING PERILS

Writing P4 programs for PISA switches is hard. In this section, we
review the many switch resource constraints that programmers
must consider, and then illustrate how they make P4 programming
so difficult.

2.1 PISA Resource Constraints

P4 is designed to program a Protocol Independent Switch Archi-
tecture (PISA) data plane (Figure 2). This architecture contains a
programmable packet parser, a processing pipeline, and a deparser.
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Figure 2: Protocol Independent Switch Architecture (PISA)

Between parser and deparser sits the packet-processing pipeline,
which contains fixed resources that bound the computation per-
formed on a packet.

o Pipeline stages. The processing pipeline is composed of a
fixed number of stages.

e Registers. A stage is associated with a limited number of
registers (of limited width) that serve as persistent memory.

e Match-action rules. Each stage stores match-action rules
in either TCAM or SRAM. When a packet’s fields match a
rule, an associated action is performed.

e ALUs. Actions are performed by the ALUs associated with
a stage. The numbers of stateful ALUs (that perform actions
requiring registers) and stateless ALUs are limited.

e Packet header vector (PHV). The PHV that carries infor-
mation from packet fields and additional per-packet meta-
data through the pipeline has limited width.

¢ Recirculation bandwidth. A program may recirculate a
packet by sending it back to the beginning of the pipeline
once it leaves the last stage. If too many packets are recircu-
lated, throughput is decreased.

2.2 Programming Under Resource Constraints

Programming PISA devices is difficult because the resources avail-
able are so limited. The architecture forces programmers to keep
track of implicit dependencies between actions, to try to lay out
those actions across stages, to compute memory requirements of
each task, and to fit the jigsaw pieces emerging from many inde-
pendent tasks together into the overall resource-constrained puzzle
of the pipeline. Although the compiler does these tasks, the pro-
grammer is forced to essentially do the work of the compiler by
themselves to construct a P4 program that “fits” well in a given
target.

The P4 language attempts to alleviate a number of these problems
by providing a layer of abstraction above PISA. However, experience
with P4 programming suggests, that while a good start, the language
is simply not abstract enough. It asks programmers to make fixed
choices ahead of time about the size of data structures and the
amount of computation the programmer believes the compiler can
squeeze onto a particular switch. These are difficult jobs to do well,
even for experts, and next to impossible for novices. Inevitably,



attempts at estimating resource bounds leads to some amount of
trial and error. Unfortunately, current P4 compilers are not terribly
fast and when compilation fails, feedback is limited. Hence, the
program-debug-optimize cycle is slow. In summary, the current
development environment requires a lot of fiddly, low-level work
and takes human time and energy away from innovating at a high
level of abstraction.

To illustrate some of the difficulties of programming with P4,
consider an engineer in charge of upgrading their network to use a
new caching subsystem, based on NetCache [15], which is designed
to serve cached items in the switch. NetCache contains two main
data structures, a count-min sketch (CMS) for tracking the popularity
of keys, and a key-value store to map popular keys to values.

First, the engineer focuses on implementing the CMS, a prob-
abilistic data structure that uses multiple hash functions to keep
approximate frequencies for a stream of items in sub-linear space.
Intuitively, CMS is a two-dimensional array of w columns and r
rows. For each packet (x) that enters the switch, its flow ID (fy) is
hashed using r different hash functions ({k;}). To approximate the
number of times flow fx has been seen, one computes the minimum
of the values stored in columns h;(fyx) for all r rows.

Figure 3 presents a fragment of the P4 program developed by our
engineer to create a CMS. Lines 1-7 declare the metadata needed
to look up estimates in the CMS for a particular packet with a
specific flow ID. Lines 10-13 declare the low-level data structures
(registers) that actually make up the CMS-four rows (r = 4) of
columns (w = 2048) that each store values of 32 bits. Lines 15-21
and 23-27 define the actions for hashing and updating values in the
CMS. The hashing action is a complex action containing several
atomic actions: (1) an action to hash the key to an index in a register
array, (2) an action to increment the count found at the index, and
(3) an action to write the result to metadata for use later in finding
the global minimum. As our engineer adds more of these actions, it
becomes increasingly difficult to estimate resource requirements.
In the apply fragment of the P4 program (lines 29-45), which details
the actions and/or rule tables applied to a packet, the program first
executes the hash actions, computing and storing counts for each
hash function, and then compares counts, looking for the minimal
one. To determine if this allocation actually works on the target,
the engineer must write and compile the full program. If it fits, then
great; if not, the engineer enters a tedious “trial and error” process
of rewriting and recompiling the program.

Upon reviewing the code for the CMS in the NetCache appli-
cation, some of the deficiencies of P4 are immediately apparent.
First, there is a great deal of repeated code: repeated data structure
definitions, repeated action definitions, and repeated invocations of
those actions in the apply segment of the program. Good program-
ming languages make it possible to avoid repeated code by allowing
programmers to craft reusable abstractions that can encapsulate
the behavior of many similar statements. Avoiding repetition in
programming has all sorts of good properties including the fact that
when errors occur or changes need to be made, they only need to
be fixed/made in one place. This not only saves time but helps avoid
subsequent errors. Effective abstractions also help programmers
change the number or nature of the repetitions easily. Unfortu-
nately, P4 is missing such abstractions. One might also notice that

struct custom_metadata_t {
bit<32>
bit<32>
bit<32>

min;
indexo;
counto;

bit<32> index3;
bit<32> count3; }
control Ingress( ) |
/* register array for each hash table =*/
register<bit<32>>(2048) countero;

register<bit<32>>(2048) counter3;
/* an action to update each hash table x*/
action incr_o() { . . . }

action incr_3() { . . . }
/* an action to set the minimum =x/

action min_0 () {meta.min = meta.counto;}

;céién min_3(){ . . .}

/* apply to each packet =/
apply {
/* initialize global min x/
meta.min = 0;
/* compute hashes */
incr_o();
incr_3();

/* compute minimum =*/
if (meta.count@ < meta.min)

{min_0 () ;}

if (meta.count3) < meta.min) {min_3();}

bl

Figure 3: Count-Min Sketch in P4 (16)

the programmer had to choose magic constants (like 2048) and test
themselves if such constants lead to programs that can compile.

3 ELASTIC PROGRAMMING IN P4ALL

To prevent the problem of repeated code and the tedious “trial
and error” process, we argue for the use of elastic data structures.
These data structures may be developed modularly in separate
libraries and then combined, off-the-shelf, to help users quickly and
easily build efficient new applications, like an elastic NetCache. We
present P4All as an extension to P4 that enables elastic programs.

To build elastic applications, programmers use the following
four-step design methodology: (i) declare the elastic parameters, (ii)
construct elastic data structures, (iii) define elastic operations, and
(iv) manage competing resource needs. We illustrate this process
by examining the definition of an elastic count-min sketch and its
use in an elastic NetCache application.

3.1 Declare the Elastic Parameters

The first step in defining an elastic data structure is declaring the
parameters that control the “stretch” of the structure. In the case of
the CMS there are two such parameters: (1) the number of rows in
the sketch (i.e., the number of hash functions), and (2) the numbers
of the columns (i.e,, the range of the hash). Such parameters are
defined as symbolic values:

symbolic int rows;
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/* Count-min sketch module =/

symbolic int rows;

symbolic int cols;

assume 0 <= rows && rows < 4;

struct custom_metadata_t {
bit<32> min;
bit<32>[rows] index;
bit<32>[rows] count; }

register<bit<32>>(cols)[rows] cms;
action incr()[int index] { ... }
action min()[int index] { ... }
control hash_inc( ... ) {

apply {

for (i < rows) {
iner()[i]; }
bl
control find_min( ... ) {
apply {
for (i < rows) {
if (meta.count[i]
min() [i]; } }

< meta.min) {

b}
/* Key-value module =/
symbolic int kv_items;
control kv (...) {....}
control NetCache( ... )
apply {
hash_inc.apply();
find_min.apply();
kv.apply (); } }
/% Utility function =/
utility kv_sum = .00@4+kv_items+6.5
utility cms_error = —.00007+cols+.07
optimize @.6+(kv_sum)+@.4+(1 — cms_error)

{ /* NetCache module x/

Figure 4: NetCache and Count-Min Sketch in P4All

Applications Pd P4All
Code | Code
NetCache 741 286
SketchLearn 366 88
Precision 283 266
ConQuest 694 649

Figure 5: P4All applications. The “P4 Code” and “P4All Code”
columns show the lines of code of the original P4 application and
the P4All implementation, respectively.

symbolic int cols;

Symbolic integers should be thought of as placeholders to be
determined (and optimized for) at compile time. As in other general-
purpose, solver-aided languages like Boogie [17], Sketch [29], or
Rosette [30], the user leaves the choice of value up to P4All

Often, programmers know constraints that are unknown to the
compiler. For instance, user experience might suggest that count-
min sketches with more than four hash functions offer diminishing
returns (or simply might not be available). Such constraints may
be written as assume statements:

assume @ <= rows && rows < 4

An assume statement is related to the more familiar assert state-
ment found in many conventional languages, such as C. However,
an assert statement fails (causing program termination) when its
underlying condition evaluates to false. An assume statement, in
contrast, always succeeds, but adds constraints to the system, guar-
anteeing the execution can depend upon the conditions assumed.

3.2 Construct Elastic Data Structures

P4 data structures are defined using a combination of metadata and
register arrays. The same is true of P4All. However, rather than
using constants to define the extent of these structures, one uses
symbolic values instead, so the compiler can optimize their extents.

In the count-min sketch, each row may be implemented as a
register array (whose elements, in this case, are 32-bit integers to
be used as counters). The size of each register array is the number
of columns in a row. In P4All, we define this matrix as a symbolic
array of register arrays:

register<bit<32>>(cols)[rows] cms;

In this declaration, we have a symbolic array cms, which contains
rows instances of the register type. Each register array holds cols
instances of 32-bit values.

Similarly, we can elastically define metadata fields. For a row in
our CMS, we have an index and a count, each of which are 32-bit
long fields, to store information from a single register in a row.
Within the metadata struct, we define:

bit<32>[rows]
bit<32>[rows]

index;
count;

We declare two symbolic arrays (index and count) which contain
rows instances of a 32-bit metadata field.

3.3 Define Elastic Operations in Loops

Because elastic data structures can stretch or contract to fit available
resources, elastic operations over those structures must do more
or less work accordingly. To accommodate such variation, P4All
extends P4 with loops whose iteration count may be controlled by
symbolic values.

Our CMS consists of two operations. The first operation hashes
the input rows times, incrementing the result found in the CMS at
that location, and puts the result in metadata. The second iterates
over this metadata to compute the minimum at all hash locations.
Operations are implemented using symbolic loops and are encapsu-
lated in control blocks. The code below illustrates these operations.

/* actions used in control segments */
action incr()[int i] { ... }
action min() [int 1] { ... }
/* hash and increment */
control hash_inc( ... ) {
apply {
for (i < rows) {

incr()[i]; }

b}
/* find global minimum =x/
control find_min( ... ) {
apply {

for (i < rows) {



if (meta.count[i] < meta.min) {
min()[i]; } }
b}

These simple symbolic iterations (for i < symbolic) iterate from
zero up to the symbolic bound, incrementing the index by one
each time. The overarching NetCache algorithm can now call each
control block in the ingress pipeline.

control NetCache( ... ) {
apply {
hash_inc.apply (...);
find_min.apply (...); } }

Figure 5 lists four of the P4 applications that we translated into
P4All using this methodology. We see reduction in lines of code
with P4All because of symbolic loops that eliminate repeated code.
We note that some applications saw a greater reduction than others,
due to the use of C-like macros in the P4 code. Our discussions with
P4 programmers suggest that while these macros make the program
more compact, they make debugging more difficult. Additionally,
changes to a program still require edits in multiple places, while
P4All aims to make programs more robust by reducing the places a
user must make edits.

3.4 Specify the Utility Function

Data structures designed for programmable switches are valid at a
range of sizes. In the CMS example above, multiple assignments to
rows and cols might fit within the resources of the switch. Finding
the right parameters becomes even more difficult with multiple
data structures involved. In the case of NetCache, after defining a
CMS, the programmer still needs to define and optimize a key-value
store.

To automate the process of selecting parameters, P4All allows
programmers to define a linear, univariate utility function that
expresses the relationship between the utility of a data structure
and its size (as defined by symbolic values). Utility is a function
of how well a data structure performs. For example, the error of
a CMS and the hit rate of a key-value store are representations of
utility for the respective data structures. The P4All compiler should
find instances of the symbolic values that optimize this function,
such that the resulting program fits within the switch resources.

The utility is often dependent on the workload, or the distribu-
tion of the network traffic. In this case, a user may want to include
a workload-specific parameter in a utility function. We assume
that the user knows what workload to expect before compiling and
running their program. In order to tune the function for different
distributions, the programmer can simply adjust this parameter.

For example, we can define the key-value store hit ratio as a
function of its size for a workload with a Zipfian distribution. Sup-
pose the key-value store has kv_items items. The probability of a
request to the i" most popular item is l% [4]. In this case, a is a
workload-dependent parameter that captures the amount of skew.
Then, for kv_items, the probability of a cache hit is the sum of the
probabilities for each item in the key-value store: Zf:l—items iL””
divided by a function of the overall number of accesses. Because
this function is not linear, we use an approximation as a utility

function. We generate an approximation using NumPy’s polyfit
function [22], according to the above summation with & = 0.9.

utility kv_sum = .Q04«kv_items+6.5

Similarly, we can define CMS error, €, in terms of the number
of columns, cols, in the sketch. For a workload a, we have cols =
3(1/€)Y/ @ [6]. While the number of rows in the CMS does not affect
its error, and is thus not in the utility function, we can incorporate
constraints in our compiler to guarantee a minimum number of
rows. The number of rows, rows, in a CMS is used to determine
a bound on the confidence, 8, of the estimations in the sketch
(rows = 2.5In1/8) [6]. We use the following linear approximation,
calculated using NumPy’s polyfit function [22] for & = 0.9:

utility cms_error = —.00007+cols+.07

In NetCache, the programmer must decide if either data struc-
ture should receive a higher proportion of the resources. If the
CMS is prioritized, it can more accurately identify heavy hitters.
However, the key-value store may not have sufficient space to store
the frequently requested items. Conversely, if the CMS is too small,
it cannot accurately measure which keys are popular and should
be stored in the cache.

To capture the balance between data structures, a programmer
can combine the utilities of each data structure into a weighted sum
of the utilities. For the NetCache application, this means creating a
utility function that slightly prioritizes the hit rate of the key-value
store over the error of the CMS:

optimize ©0.6+(kv_sum)+0.4«(1 — cms_error)

With a different workload or application, the utility function
may change. In P4, this would require the user to rewrite their
program, potentially introducing bugs or causing the code to fail
to compile. However, with P4All, the programmer need only adjust
the utility function, thus simplifying the “trial and error” process.
This performance tuning occurs in a centralized place rather than
being spread throughout the application, and hence, from a software
engineering perspective, leads to a superior process.

Limitations. P4All relies on a user’s ability to create a repre-
sentative utility function and to assign weights to each portion
of the utility function. Several of the data structures in Figure 1
have a well-defined notion of utility (e.g., CMS and KVS). How-
ever, this is not always true for each application, particularly those
that combine data structures. We recognize that effectively design-
ing a utility function can require significant effort to write these
functions. We leave this problem as an open question.

In our examples, we have workload-dependent utility functions.
Realistically, the programmer may not always know the workload
ahead of time, or the workload may change over time. P4All, how-
ever, is a static system, meaning the user must manually adjust the
workload parameter in their utility function. We leave as future
work the creation of a dynamic system, which can change a utility
function based on network measurements.

P4All optimizes a linear utility function, but the data structures
we examine have more complex measures of utility. Our ongoing
work includes extending P4All to support nonlinear, multivariate
utility functions.
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Figure 6: P4All compiler architecture.

4 P4ALL COMPILER ARCHITECTURE

The P4All compiler is responsible for assigning concrete values
to each symbolic value, along with mapping program elements
to a PISA switch. Figure 6 outlines a sketch of the compiler. The
user provides a P4All program, along with a file specifying the
resources of the target (e.g., number of stages, ALUs, etc. as defined
by the switch designer), and the compiler uses these to create a
resource-compliant mapping. While we use some of the existing
P4 compilation methods to generate this mapping, the addition of
symbolic values and loops presents new challenges in compiling
to PISA hardware. In this section, we describe the steps of the
compilation process and the challenges posed by symbolic values.

Unroll Loops. In P4 programs, there are a finite number of
program elements (e.g., actions, registers, etc.). Hence, we must
eliminate loops from P4All programs by unrolling them for a fixed
number of iterations. We then need to know the value of the sym-
bolic value that controls the loop. However, in P4All compilation,
we do not know the optimal number of loop iterations until after
the compilation process. We cannot unroll symbolic loops without
concrete values, but we cannot determine optimal concrete values
without unrolling loops. To solve this circularity, our compiler will
first determine upper bounds for symbolic loops. One way the com-
piler can handle this is by analyzing dependencies between actions,
since dependent actions must occur in separate stages.

Generate Constraints. As a second step, the P4All compiler
generates constraints for optimization. These represent target-
specific resource constraints of the switch, as given by the target
specification file. They ensure the compiler’s output respects the
target resources. For example, we have a constraint which prevents
the solution from using more memory than what is available. A
P4All compiler can use the constraints in existing P4 compilers
(e.g., [16]).

Optimize. Lastly, the P4All compiler generates and solves an
optimization problem that maximizes a linear utility function. The
solution to this problem is concrete values for each of the symbolic
values and a mapping of program elements to pipeline stages.

Compiler Output. In our initial experiments, the P4All com-
piler generates a P4 file that is then compiled with the Barefoot
Tofino compiler. A switch vendor could also incorporate the P4All
compiler into their P4 compiler to create a single, unified compiler.

While we envision P4All as part of existing P4 compilers, we
recognize that some target-specific constraints may be difficult to
model. For this reason, initially our compiler operates as a pre-
processor and generates a P4 file. Because we do not model every
target-specific constraint, our compiler could generate a solution
that does not compile to a physical switch. Then, we must recompile
the P4All program with additional constraints to limit the solution.

5 RELATED WORK

Languages for network programming. While P4 makes it pos-
sible to create exciting new applications over a variety of hardware
targets, it does not make it easy. Domino [27] and Chipmunk [7]
utilize a high-level C-like language to aid in programming packet-
processing algorithms. P4All also aims to simplify this program-
ming process, but by enhancing P4 with elastic data structures via
symbolic values and loops. Whereas these systems optimize data-
plane layout for static, fixed-sized data structures, P4All optimizes
the structure itself to make the most effective use of resources.

Using synthesis for compiling to PISA. Domino [27] is a pro-
gramming language for writing data-plane algorithms in a C-like
syntax. The Domino compiler extracts “codelets”, groups of state-
ments that must execute simultaneously. It uses program synthesis
(SKETCH [29]) to map a codelet to ALUs (atoms in the paper’s ter-
minology) in each stage. If codelets violate target constraints, the
program is rejected. Chipmunk [7] uses syntax-guided synthesis to
perform an exhaustive search of all mappings of the program to a
target. Thus, it can find mappings that might be missed by Domino.
Both Domino and Chipmunk map programs with fixed-size data
structures, while P4All enables elastic structures.

Compiling to RMT. Jose et al. [16] use ILPs and greedy algo-
rithms to compile packet-processing programs for RMT [3] and
FlexPipe [23] architectures. The P4All compiler can add additional
constraints for resolving symbolic values to these approaches.

6 CONCLUSION AND FUTURE WORK

This paper introduces the concept of elastic switch programs—programs
that contain data structures capable of expanding to use the re-
sources available on a particular hardware target. Compared to
their inelastic counterparts, elastic programs are more modular (as
they can stretch or contract depending on the resource needs of
other components on the switch) and more portable (as they can
be recompiled to a range of different targets). We believe that the
P4All language and our reusable modules will make it easier to
implement and deploy a range of future data-plane applications.
In addition to the open questions discussed throughout the paper,
we believe an object-oriented programming model would greatly
promote reusability in P4All. We envision objects such as the data
structures in Figure 1 being reused in a variety of applications.
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