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Abstract

We consider the problem of developing scalable and near-
optimal algorithms for orthogonal shared-memory multi-
processing systems with a multi-dimensional access (MDA)
memory array. An orthogonal shared memory system
consists of 2" processors and 2™ memory modules ac-
cessed in any one of m possible access modes. Data stored
in memory modules are available to processors under a
mapping rule which allows conflict-free data reads and
wriles for any given access mode. Scalable algorithms
are presented for two well known computational problems,
namely, Matriz Mulliplication and the Fast Fourier Trans-
form(FFT). A complete analysis of the algorithms based
on computational time and the access modes needed is
also presented. The algorithms presented scale very well
onto higher dimensional MDA architlectures but are not
always optimal. This reveals an ezisting trade-off between
the scalability of an algorithm and its optimality in the
MDA computational model.

1 Introduction

Much attention has been focused on orthogonal shared
memory multiprocessing architectures like the OMP [6,9]
and the RMOT [1]. Algorithms have been mapped success-
fully onto these architectures showing their potential appli-
cation in image processing, graph problems, vector computa-
tions and sorting. Since the introduction of OMP, Important
generalizations were suggested by Hwang [5] and by Scherson
(10,11]. The work in [8,10,11] is based on an elcgant defini-
tion of orthogonal graphs which leads to the construction
of several hypercube-like machines. An orthogonal graph is
defined as a set of 2™ nodes, which in turn are linked by
2™" edges for every link mode ¢ defined in an integer set
Q* = {¢:|0 £ ¢ £ m—1}. Given m-bit node labels, a mode-
¢-link exists between two nodes if and only if the labels match
over n bits starting at bit position ¢ € @Q*. These orthogo-
nal graphs lead to a number of interesting parallel computer
structures. Distributed systems with a inessage passing net-
work whose topology is defined by an orthogonal graph is
an obvious example. Multistage interconnection networks
characterized by orthogonal graphs are reported in {11].
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Orthogonal shared memory systems are obtained by asso-
ciating a memory module with each graph node. The 2™-
element memory array is then accessed by 2" processing cl-
ements according to the graph construction rule. That is,
a processor P; accesses a memory module M, under some
mode ¢ € Qx if and only if the n bits of the m-bit index
y, starting at bit position ¢, are equal to the n-bit index z.
A number of well known machine architectures exhibit the
shared memory topology which results from the application
of the orthogonal construction rule. OMP is only one exam-
ple. In addition, STARAN, with its Multi-Dimensional Ac-
cess (MDA) memory [2], also falls in the category of shared
memory orthogonal structures. Figures 1 and 2 illustrate an
MDA system with 64 memory modules and 8 and 16 pro-
cessing elements respectively. The boxes represent memory
modules and are assumed to be numbered in the natural row-
major order. The number in each box represents the index
of the processor which can access that memory module for
the given access mode.

The notation in this paper is based on [8]. Architectures
are referred to as M DA(n,m, {qo, @1 .., @t }), for some integer
| < m. The system is connected if and only if

Vie[0,m—1],Ig€Q* 5 |(g+n)modm — 1| < (m—n)

In general, an OMP is given by MDA(m/2,m,{0,m/2}),
while STARAN’s memory is M DA(m/2,m, {0,1,...,m—1}).
The shared memory equivalent of the binary hypercube is
MDA(m —1,m,{0,1,..,m — 1}). A very useful class of or-
thogonal graphs is one in which @+ is a set of disjoint modes.
These graphs are characterized by the fact that in the con-
nectivity expression ahove, for each 7 € [0,m — 1] there exists
a unique ¢ € Q= which satisfies the condition. The minimum
number of access modes to guarantee conectivity in a graph
with disjoint modes is w = -™—. Such orthogonal graphs
were named Omega Graphs and can be used effectively to
define spanning bus arrays of loosely or tightly coupled par-
allel processing systems.

In light of this generalized parallel computing structure,
several issues of algorithm-mapping assume importance. One
important problem is to devise techniques which allow scal-
ing of a problem to parallel systems which differ in the num-
ber of resources. We tackle here the scalability problem for
orthogonal shared memory systems. We assume that a fixed
size problem (thus m is a constant) is to be solved in MDA
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Figure 1: MDA(3,6,{0,3})
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Figure 2: MDA(4,6,{0,1,3,4})
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systems where n and Q+ may vary. That is, we allow changes
in the number of processors and the memory to processor
interconnect. Because of the large variety of systems which
can be described with orthogonal graphs, scalability of the
algorithms becomes important not only because it simpli-
fies matters but also because it is a very useful concept to-
wards making algorithms independent of the particular par-
allel computing structure. As will be seen later, scalability
does not always ensure optimality. This trade-off between
scalability and optimality can be best understood by con-
sidering practical problems. In this paper, we explore these
issues by looking at two very well known and fundamentally
important computational problems, namely Matrix Multipli-
cation and the Fast Fourier Transform (FFT). An analysis
of each algorithm is presented to determine their computa-
tional times and the number and type of access modes needed
(hence required connectivity).

2 Matrix Multiplication

In [6] and [9] algorithms are presented for matrix mul-
tiplication in the OMP. However, we have found that the
algorithms, although optimal, do not extend to higher di-
mensional MDAs. A different approach needs to be taken.
As we speculate that it is easier to scale down than to scale
up, we consider algorithms which will work on the high-
est dimensional orthogonal structure with all possible access
modes, that is MDA(m—1,m,{0,1,...,m— 1}). From it, as
n decreases from m — 1 to 0 (one processing element), access
modes in Qx are deleted to yield the minimum M DA system
capable of executing the procedure. This is an interesting ob-
servation as it points to the development of algorithms for
the largest possible system and scaling down to fit any other
system with the desired number of processing resources.

2.1 Suggested Algorithm

Consider the multiplication of two r x r matrices A = [a;;]
and B = [b;;] where r = 2P. The resulting product matrix is
denoted by C = [c;;]. In an MDA system with 2™ memory
modules, the matrices A and B are assumed to be stored in
row major form such that a;; and b;; are stored in a mem-
ory module whose index is obtained by concatenating the
binary expansions of the indexes i and j. We shall hence
refer to such memory module as M;;. Clearly p = m/2. An
algorithm is proposed below and claimed to be correct inde-
pendently of the value chosen for the number of processor
in the system (choice of n). For any given n, the set Q*
must be determined such as to provide connectivity in the
resulting orthogonal system.

The generalized algorithm for matrix multiplication is
based on a well known procedure for hypercube machines [4]
and comprises the following steps:

1. Broadcast the rows of A and the columns of B to the
diagonal memory modules.

Either the forward and/or backward diagonals need to
be used. Because connectivity depends on the choice
of n, access modes must be chosen to guarantee con-
nectivity and hence all processors may access simulta-
neously either the main and/or the backward diagonal
of the memory array. The rows in the top half of A are
sent to the forward diagonal while the rows in the bot-
tom half are sent to the back diagonal. The columns
of B are sent to both diagonals.

2. Align the column elements with the row elements for
correct computation.

This step is needed since the row and column vectors
may not be directed identically in the back-diagonal
memory modules and hence they need to be aligned
properly.

3. Repeat until done




(a) Multiply: Each of the processors multiplies the
two operands available in the diagonal memory
module accessible to it and places the result back
in the same memory module.

(b) Route the diagonal elements back to the rows.

(c) Add the components of the elements under suit-
able access modes and place the final result ac-
cordingly.

loop

Data is distributed among the memory modules such that
the elements a;; and b;; are in memory module M;;. A suit-
able choice of access modes is essential to accomplish the
three main steps in the algorithm. Access modes must be
such that every row and every column can be sent to the
diagonals in a finite number of steps. This is ensured by
guaranteeing connectivity and all other operations can be
accomplished using the same access modes. Routing back
to the rows is the exact reverse of broadcasting and utilizes
tlie access modes in the reverse order. It turns out that the
modes needed for addition are the same as the modes needed
for the column broadcast.

The elements of the matrix C are defined by the following
equation:

2¥-1
Gi= 3 kb 1,5=0,1,..,2° — 1
k=0

To compute element c;;, we require row ¢ of A and column
Jj of B. Since all rows and columns are sent to the diagonal
memory modules (broadcasting step), row i of A and column
J of B are present in the same diagonal and a; and b;; are
in the same memory module. Processors having access to
these diagonal memory modules compute the required par-
tial products which form the components of the dot product
for element ¢;;. These individual products are then moved
back to row i for ¢ = 0,1,..,2” — 1, and summed up in suit-
able access modes thereby giving rise to 2 elements of the
matrix C. This is done for j = 0,1,..,2P — 1 to generate any
cij- Thus, all elements of the matrix C can be computed and
the algorithm is correct.

2.2 Analysis of the algorithm

The implementation of matrix multiplication on MDA
architectures presents some interesting problems in light of
the suggested algorithm. To have a scalable algorithm, we
need to work through the diagonal memory modules. Omega
graphs provide connectivity and hence all steps in the algo-
rithm can be carried out. However, because of the access
patterns of some omega graphs, broadcasting may become
a nearly sequential process. To optimize the utilization of
the concurrency available in the algorithm, additional access
modes could be added. Thus, the choice of access modes for
a given n (number of processors) impinges on the utilization
of the processing resources.
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Consider an omega graph with 2™ nodes. Following [10]
again, this as a spanning bus structure with 2™~" nodes on
each spanning bus for each dimension ¢ defined in the integer
set Q+. We fix m and vary n, therefore we are scaling the ar-
chitecture from the OMP on one end to the hypercube on the
other. The OMP has 2™/2 nodes in each dimension whereas
the hypercube has 2. Thus, other intermediate architectures
should have 2™/2-t nodes on each spanning bus, assuming a
linear change of the exponent. The variable ¢ takes on the
values t = 0,1,...,(m/2 — 1). Note that this defines a class
of graphs different from omega graphs, since omega graphs
are characterized by 2™/ nodes in each dimension. As the
total number of memory modules in the system is fixed, the
following must hold true:

2% tx n =2

This equation leads to the relation m = 2n — 2¢, where
t = 0,1,.,(m/2 — 1). Define k = 2t + 2. The relation
now becomes m = 2n — (k — 2), where k = 2,4,6,..,m. All
MDA architectures can now be specified by this generating
equation. k is an even integer and the maximum value it
can take is m. It determines the number and type of ac-
cess modes needed and also specifies the communications
overhead [9,12]. Note that not all available modes may be
needed. There are m possible access modes but only some
are useful for achieving the desired connectivity in the net-
work. Let us illustrate this by a complete analysis of the
algorithm for M DA(n,m, {0,1,..,m — 1}):

o m=2n-(k2) k=246.,m

o Total number of modes needed = k

o Modes nceded for the broadcast of the rows of A and for routing:
Fork=2,¢=0
Fork>2,¢=0,m/2+1,m/2+2,..mf2+(k/2-1)

o Modes needed for the broadcast of the columns of B and for ad-
dition:
Fork=2,q=m/2
Fork>2 ¢=m/2,1,2,..,(k/2-1)

o Number of steps needed for broadcast/routing = k/2

In these many steps, 2*~™/% rows/columns are moved to the
diagonali(s) or back. Therefore, the overhead is O(k/2%/?) steps
per row/column in broadcasting and routing. For addition, the
overhead can be made O(k) by computing the partial products for
all the elements before starting the additions. In this manner,
all the processors can be made to work in the addition stage.

Multiplication is done by 2™/2*1 processors since there are only
two diagonals. The other processors are masked out in this stage.
Multiplication proceeds in parallel in the two diagonals. Hence,
it takes O(2™"1) steps.

o k = 2 gives the well known OMP architecture. Here, only 2
modes are needed. Note that k = 2 implies m = 2n.

o k = m generates the hypercube. Here, all the m modes are nec-
essary. Nole that k = m implies m —n = 1, the relation for the
hypercube architecture as shown in [8].

It must be noted here that both m and k are even integers.



As has been mentioned before, the processor utilization
can be increased by doing as much as possible in a particular
mode before changing the mode. This is true for broadcast-
ing/routing as well as addition. Clearly, the above gener-
alization simplifies the analysis of the algorithm for a given
architecture. This probably has some significance in the light
of a scaling in the number of processors in the system. More
degrees of freedom, so to say, are needed in systems with
a larger number of processors and for the same number of
memory modules.

2.3 Case Study

Case A: Consider MDA(n,m,{0,1,..,m — 1}) with the re-
striction m = 2n — 2. Evidently, this is the case with k = 4.
As will be seen later, the only modes used are ¢=0,1,m/2,
m{2 + 1. This architecture generates the hypercube for
n=3m=4Jq.

1. Broadcast rows of A and columns of B to the forward
and back diagonals:

(a) Broadcasting of rows of A: Move the top half rows
of A to the forward diagonal.

Starting mode: ¢ =0

i— 0

while § < 2P-1 -2

do

For k=i & i+1 in parallel do ~
For j=010 2° — 1 in parallel do
Mg,'(agj) — Mjj in 2 steps,
under modes g=0,m/2+1

loop

P —i+2

loop

(b) Broadcasting the rows of A: Move the lower half
rows of A to the back diagonal.

while i <27 — 2
do
For k=i & i+1 in parallel do
For j=0 1o 2° — 1 in paruallel do
Mij(az;) — M -1_j); in 2 steps,
snder the modes g=0,m/2+1
loop
f—it2
loop

(c

~

Broadcasting of columns of B: Move each column
to both diagonals.
Starting mode: ¢ = m/2
i~ 0
while j <r—2
do
For k=j & j+1 in parallel do
For i=0to 2P — 1 in parallel do
Mar(bie) — My
Mie(bie) — Mip_1-s
(Each is performed in 2 sleps,
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under modes g=m/2 and g=1 respectively)
loop
j—ji+2
loop

(Let & be the column index within the diagonal memory
modules and { be the row index within the diagonal mem-
ory modules)

2. Align the columns of B with the rows of A (for correct

computation) in the diagonal memory modules.

Fors=0to2r -1
Fori=0to2° — 1
Mi'(r—l-i) - M('r-l-i)i
loop
loop

Each transfer is done in two steps and under the modes

¢ =m/2 and q = O respectively. Data is read in mode

g =m/2 from the backward diagonal y modules and
written back onto these very memory modules under the
mode ¢ = 0. This transfer is done by the processors
having back diagonal Y access under the modes
¢g=0andqg=m/2.

3. Computation:

Starting mode: ¢ =0

Fors=012 -1
(a) For =010 2°~' ~ 1 do
Multiply:
For i= 0,1,,,27~! in parallel do
Forward diagonal: M;; — M}; + M},
Backward diagonal:
Mi(r—1-i) — M-"(r-x—i) *Mi__;
(These steps are computed in parallel! = 1step)
loop

This loop for | amounts to computing a;; * bij — cij,
i=0,1...r-1;j=9
Jor 2% elements(each column) of the product matriz C

(b) Route back to the rows:

For =0 to 2¢-!
For j=0,1,.., 22~} in parallel do
Forward diagonal routing: My; — Mi‘i
Backward diagonal routing:

Maiar-1)j M(‘r-l—j)j

(These steps are computed in parallel)

loop

Each transfer is done in 2 steps under modes g = 0 and
g =m/2+ 1 respeclively

(c) Add the comp s of each el t placed in the rows,
in the modes ¢ = m/2 and ¢ = 1 and place the result
in the memory module M;,, i=0,1,..2° — 1
i.e Fori=0,1,.,2° — 1 in parallel do
M;, — Z,’;;‘ M;; done in modes g=m/2,1
loop



Case B: Now consider MDA(n,m, {0,1,..., m—1}) with
m = 2n. Clearly, this case corresponds to k = 2. This is very
similar to the previous algorithm. However there are some
differences as can be seen. The only modes needed here are
g=0and ¢g=m/2.

1. Broadcast rows of A and columns of B to the forward
and back diagonals:

(a) Broadcasting of rows of A: Move the top half rows
of A to the forward diagonal and the bottom half
to the back diagonal.

Starting mode: ¢ =0
i— 0
while i < 2P — 1
do
For j=010 2P — 1 in parallel do
PE;: Mij(ai;) — My;
in 1 step, under mode ¢=0
PEj : Miyor-1)j(aG420-1)) = Mee_y_j);
in I step under mode ¢g=0
loop
feitl
loop

(b

~

Broadcasting of columns of B: Move each column
to both diagonals.
Starting mode: ¢ = m/2
j—20
while j <27 — 1
do
For i=0 10 27 — 1 in parallel do
M;i(bi;) — My
Mij(bi;) — M-‘(r-l-.‘)
loop
Jjo—Jj+2
loop

(Let s be the column index within the diagonal memory
modules and I be the row index within the diagonal mem-
ory modules)

2. Align the columns of B with the rows of A4 (for correct
computation) in the diagonal memory modules.

Fors=01to2r -1
Fori=0to2° -1
PE:Mi, )y~ M _1siy
loop
loop

Each transfer is done in two steps and under the modes
g =m/2 and q = 0 respectively. Data is read in mode
q=m/2 from the back diagonal memory modules and
written back under the mode ¢ = 0.

3. Computation:
Starting mode: ¢ =0
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Fors=01t02° -1
(a) Fori=0to 2?~' — 1 do
Multiply:
For i= 0,1,..,2° — 1 in parallel do
Forward diagonal: My; — M};» M}
Backward diagonal:
Mir—1-3) — Mi‘(r—l—i) * M1
(These steps are computed sequentially
and hence take 2 steps)
loop

(b) Route back o the rows:
Forl=0to 2?71~ 1
For j=0,1,..,2° — 1 in parallel do
Forward diagonal routing: M;; — M}j
Backward diagonal routing:
M- — Ml _j;
(These steps are computed sequentially)
loop

Each transfer is done in 1 siep under mode ¢ =0

(c) Add the components of each element placed in the rows,
in the mode ¢ = m/2 and place the result in the
memory module M;, i=0,1,.2° -1
i.e For1=0,1,...2° — 1 in parallel do
M, — E?;Bl M;;, done in mode g=m/2
loop

2.4 Comments

The essence of the algorithm given lies in the broadcast
of the rows and the columns to the diagonals. Once the
rows and the columns have been sent to the diagonals, the
operands are multiplied for each column and all the rows in
parallel, the products routed to the row-wise memory mod-
ules, and added under suitable modes thereby yielding 27
elements for each column. This is repeated for each column
until all the elements are computed.

The same algorithm maps well onto all MDA architec-
tures, including the OMP and the hypercube. However, for
the MDA(n,2n,{0,n}), which is nothing but the OMP, the
back diagonal need not be used. Since the number of pro-
cessors is equal to the number of forward diagonal memory
modules, no speed-up can be obtained by using the other
diagonal. Hence, the algorithm for M D A(n,2n,{0,n}) can
be implemented using just the forward diagonal yielding the
following modified algorithm:

For k=010 27 — 1
For m=0,1,..,2° — 1 in parallel do
Broadcasi=> PE,, . 6km — Mpm
(The transfer is done in Column Mode, ¢=0)
(akm is contained in memory module Mim)
Forj=0102? -1
For m=0,1,..,2° — 1 in parallel do
Compute: Multiply
PEp : agm *bmj — cmj (Row Mode, ¢=n)
(akm s in Mpm, byj is in My, cmj is in Mm;)
loop
Add in Column Mode (q=0) and place elements in
M;;,j=0,1,..,.2° — 1 i.e.,
For j=0,1,..,2° — 1 in parallel do



PE; : Myj — TiZ5" My, in mode g=0
loop

The difference here is that now the elements are com-
puted row-wise whereas, previously, they were being com-
puted column-wise. In this improved algorithm, there is no
aligning overhead since the back diagonal is not used at all.
Also, for the same reason, there is no column broadcasting
overhead. Such simplifications and improvements are, how-
ever, not possible for other MDA architectures because of
the type of memory accesses provided. One can, of course,
find another algorithm which does not involve any broadcast
to the diagonal modules but which requires internal register
memory at each PE and shifting of some columns (which
cannot be accessed otherwise), and hence would incur some
overhead. Most importantly, one then fails to see the cor-
respondence between the various orthogonal shared memory
multiprocessing systems. It must be mentioned here that for
the aligning step in the algorithm presented here, internal
register memory is assumed for processors accessing the back
diagonal memory modules under modes ¢ = 0 and ¢ = m/2.
Nowhere else is any memory needed or used. For better uti-
lization of processors, one can modify the algorithm to finish
all the partial multiplications before routing and then add
the components together. This way all the processors can be
made to work in the addition stage.

2.5 Complexity Analysis for Case Study

Recall that all matrices are r x r where r = 2%, p = m/2.
Consider MDA(n,m,{0,1,m/2,m/2+1}). Herem = 2n—2
and hence k = 4.

1. Broadcasting to diagonals: Both the row and column
broadcast take 2 steps for every pair of rows and columns
transferred to the diagonals. Thus, it yields an average
of 1 step per row/column. Therefore, the broadcasting
overhead is O(7) steps.

2. Aligning: The aligning overhead is 1 read-write step
per column. = O(r)steps.

3. Multiplication: This takes O(r?/2) steps by virtue of
the parallelism in computing components of the ele-
ments due to using 2r processors.

4. Routing: Routing overhead is O(r) steps.

5. Addition: This is done in O(r?/2 + r) steps. There is
some speed-up here by the use of 2r processors. By
modifying the algorithm to do all additions in the end,
a better processor utilization is also possible.

O(r(r/2+1)) "OF?/2)forr > 1
Thus the communications overhead here is O(3r) steps.
Now cousider the M DA(n,2n, {0,n}).

1. Broadcasting: This takes O(r) steps.
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2. Aligning: Takes O(r) steps as explained above.

3. Multiplication: Done in O(r?) steps. There is no ex-
tra speed-up as there are exactly r processors in the
system.

4. Routing: Routing overhead is again O(r) steps.
5. Addition: Done in O(r?) steps.

Clearly, the algorithm is close to optimal if compared
with the known algorithm for M D A(n, 2n, {0,n}), for which
it is known ([9] and [6]) that matrix multiplication takes
O(r?) for multiplication and addition. There is a communi-
cations overhead of O(2r) steps where each step comprises a
read and a write. This comes from reading the r rows and
reading and writing the r columns. Hence, the algorithm
given here is close to optimal since every broadcasting, rout-
ing and aligning step is essentially a read and write step.
For the MDA with m = 2n — 2 and access modes given by
¢=9,1,m/2,m/2 +1, a speed-up of 2 is obtained for addi-
tion as well as multiplication, as expected for a system with
twice the number of processors than the OMP for the same
number of memory modules.

2.6 Illustrative examples

The algorithm presented in this paper is illustrated here
with some examples. The examples considered are for n = 3
and m = 6, that is an OMP with 8 processors and 64 memory
modules, and an M DA(4,6,{0,1,3,4}) with 16 processors
and the same number of memory modules. Figures 1 and 2
show the memory accesses under the possible access modes.

Consider broadcasting the first two rows of matrix A to
the forward diagonal in the M DA(4,6,{0,1,3,4}). Proces-
sors labeled 0 through 7 have access to the first row and
processors 8 through 15 have access to the second row. It
turns out that in the first step of the broadcast under mode
g = 0, the rows are sent as close to the diagonal as is possible
under this mode such that the distance of the elements from
the diagonal is at most one vertical step away. This distance
can be positive (above the diagonal) or negative (below the
diagonal). The first row is sent such that its elements are
either 0 or +1 step away from the forward diagonal. For the
second row, which is accessed by a different set of processors,
this distance should be 0 or -1. Thus, for example, PEg and
PE, are masked off, PEs 2, 4, and 6 move elements down
to the diagonal memory modules, and PEs 3, 5, and 7 move
the elements such that they are in memory modules directly
above the desired diagonal memory modules. PEs 8 through
15 work similarly except that now they must move elements
such that they are either in the diagonal memory modules
or in memory modules directly below the desired diagonal
memory modules. This first step is similar for the broadcast
of the lower half rows of the matrix A. The second step of
the broadcast is done in mode ¢ = 4 where the remaining el-
ements are moved to the desired diagonal memory modules.



Column broadcast is done in a similar fashion except that
here the modes are ¢ = 1 and ¢ = 4 respectively. Each col-
umn is sent to both diagonals and the distances here would
be positive (left) and negative (right) with respect to the
diagonals. Routing is accomplished in exactly the reverse
sense of the row broadcast. Addition is done in two steps
in modes ¢ = 3 and q = 1 respectively. Placing of addition
results depends on the elements being computed. Thus, all
steps of the presented algorithm can be accomplished in the
four access modes allowed.

Matrix Multiplication on the M DA(3,6, {0,3}) proceeds
along similar lines. The difference here is that only one row
or column is moved to the diagonal at a time but this is
accomplished in just one step, in mode ¢ = 0 for row broad-
cast and in mode ¢ = 3 for column broadcast. The rest of
the operations are also done in only one of the two allowed
modes. The behavior of the algorithm is very similar to the
previous one.

A careful observation of Figures 1 and 2 reveals that each
diagonal is accessed by the same set of processors. This
fact was used in the algorithm presented. Also, as explained
above, the process of broadcasting to the rows comprises
steps which take the elements as close to the diagonal as
is possible under that mode. For row broadcast, this can
be thought of as a vertical distance between the starting
position of an element and its destination, i.e. the diagonal
memory module. If the vertical distance is d, the broadcast
proceeds in steps such that for each element this distance
reduces as d, —(d —1),+(d—2),..,0 where + indicates above
the diagonal and — indicates below the diagonal. There are
k/?2 such steps as explained before. For column broadcast,
the situation is very similar with the difference that distances
now are horizontal and hence left or right.

3 Fast Fourier Transform

In many applications of digital signal processing and im-
age processing, it is necessary to compute the Discrete Fourier
Transform (DFT) of a discrete input sequence. If the input
sequence is {@(n)}, then its N-point DFT is given by { X (p)},
where N is the length of the input sequence. The expression
for computing the DFT is

n=N-1

>

n=0

X(p) = z(n) « W p=0,1,.,,N -1
and is usually computed using the Fast Fourier Transform
(FFT) algorithm. Either decimation in frequency (DIF) or
decimation in time (DIT) can be used. For purposes of il-

lustration, we have chosen a DIF FFT algorithm.

3.1 DIF FFT on MDA architectures

The DIF method [7], involves splitting the original N-
point sequence into two .V/2-point sequences consisting of
the first and last halves of the original input. The com-
putation is carried out in logaN separate stages. At the

kih iteration the N/2 butterfly operations are performed be-
tween pairs of elements which are N/2% apart. After the
butterfly computation one element in each pair must be post-
multiplied by some power of a weighting factor Wy, where
Wy = e~ #2"/N_ Assuming that the proper weighting factor
for element z(:) at stage k is stored at W(z), the necessary
computations at iteration k take the form:

2(i) = (i) + (i + 37)

2+ D) )~ 2+ 5) WG+ 35)

Consider the problem of mapping the above computation
onto a two-dimensional array of 2™ memory modules which
can be accessed by 2" processors in certain modes. This
problem was solved for OMP and reported in [6]. For our
purposes we need to derive a mapping which can scale as we
change the number of processors in the system. With proper
initial storage of the powers of Wy, these factors can be eas-
ily routed to the correct processors at each stage. For refer-
ence, Figure 3 shown an M DA(3,4,{0,1,2,3}), in a manner
akin to Figures ??, and the proposed storage scheme for the
weighting factors is shown in Figure 4 for the case of a 16-
point FFT. Initially, the array of memory modules contains
the powers of Wy in the order

0:9N.ON IN.ON IN 3N, .ON 1IN
8)I NN

N N

24488 (z-Dx
When the powers of Wy are arranged in this manner,
with W (i) stored along with z(z) in row major form in the
memory array, routing the weighting factors reduces to copy-
ing the factor stored at W(i) to W(i + 2F) after iteration
stage k. During stage k computations are carried out be-
tween pairs of memory elements with indices that differ only
in the (m—k)th bit. Assuming initial storage of the sequence
= and the weighting factors W, the generalized algorithm for

the DIF FFT consists of the following steps:

fork=1tom
do

for all index pairs 7 and ¢ + 2™*
do
z(i) — z(@)+z(i +2m7F)
2(i +277F) e [2(d) —2(+277F)] W(i+2m7F)
W@+ 2mF) « W()
loop
loop

Figures 5 and 6 show, in an unfolded manner, the it-
erations needed for and FFT in the MDA(3,4,{0,1,2,3})
and the MDA(2,4,{0,2}). This algorithm can be mapped
onto any connected MDA(n,m,Q"). All of the necessary
data accesses at each stage k of the FFT can be accom-
plished in a single mode, since memory elements that are
% apart can always be accessed by a single processor in
at least one mode. An omega graph provides the minimal
set of modes, with only one mode accomplishing the nec-
essary accesses at each stage. Recall that each mode ¢ in
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Figure 3: MDA(3,4,{0,1,2,3})

an omega graph allows processor access to modules whose
indexes differ in m — n contiguous bits. Thus, each mode
must be used to perform m — n consecutive stages in the
DIF FFT. The access modes in an omega graph must satisfy
(9141 — @) mod m = m — n. For simplicity, assume go = 0,
which gives the relation ¢ = Ii(m —n) 1 =0,1,...,w -1,
where w denotes the cardinality of Q* and satisfies w = -2~
[8]. Note that any omega graph with ¢ in the range 1 to
(m — n — 1) is isomorphic to the graph with go = 0.

In the omega graph, mode go = 0 allows access to the
m —n most significant bits of the m-bit indices. Thus, mode
go must be used for the first m —n stages of the FFT compu-
tation. The next m — n bits can be accessed in mode ¢,
so the next m — n stages take place in this mode. Thus,
the modes must be used in the order go, qu-1, qu-2,- - -, 42, @1,
with each mode used for m —n consecutive stages. The min-
imal set of modes can provide all of the needed accesses for
the computations and routing in the DIF FFT algorithm.
Additional modes do not improve the performance of the
algorithm; the extra modes simply provide more than one
possible mode to use at some of the stages.

3.2 Complexity analysis

Note that M DA(n,m,Q*) performs the FFT on an N
element input, where N = 2™ with p processors, where
p = 2". The minimum required number of access modes is

721

o Total number of butterfly computations = %logzN =m2m-}!

o Number of butterfly computations completed in a single step = p

= 2", since no processor need ever be idle; thus, number of steps
= NlogpN _ omen-1
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Figure 4: Storage of the powers of Wy at each stage k

The case m — n = 1 generaies the hypercube. In this case, the
number of steps reduces to simply logo N because all N/2 but-
terflies at each stage can be computed in parallel by the N/2
processors. The OMP architecture, corresponding 1o m = 2n,
requires [N—';'ﬂ—’! steps.

Total number of multiplies = 282N — 9m2am =" with four real
mulliplies (one compler multiply) for each butterfly

Total number of additions = UGN — 3™ =" with siz real
additions (three compler additions) for each butterfly

To decrease the number of complez multiplies and additions, do
not postmultiply in the final stage. The last iteration involves
postmultiplying by W% = 1.

e Communication overhead = O(ﬂ‘i’ffﬂ) = O(m2™~""1), since
a W factor must be copted between each butterfly pair in each
stage.

From the analysis above we see that this fully-scalable
algorithm provides optimal speed-up of O(p). In this case,
the processor utilization is also very good since all processors
work in parallel in all the stages of the FFT computation.
The number of stages under each mode, the number and type
of access modes and the computation time can be specified
in terms of the parameters m and n.

4 Conclusions
From the preceding discussion, it is evident that gener-

alized and scalable algorithms exist for orthogonal shared
memory multiprocessing systems. These algorithms map
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Figure 5: 16-point DIF FFT on MDA(3,4,{0.1,2,3})
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well on to the OMP and the hypercube as well as other MDA
architectures. By using a graph theoretical framework, we
were able to define and analyze two important problems,
namely Matrix Multiplication and the FFT. For latter, we
saw that the algorithm is scalable and optimal: it gives a
speed-up of O(p) for p processors in the system. Also, the
algorithm can be analyzed completely by using the connec-
tivity provided in omega graphs. Omega graphs use the min-
imum number of elements (modes) in the set Q* to guarantee
full coverage and the access modes are disjoint. The oper-
ation of FFT can be accomplished using this minimal set
of modes. However, for matrix multiplication, a different
approach was needed to make the algorithm scalable. To
ensure scalability, we had to go beyond omega graphs and
look for enhanced connectivity in the interconnection net-
work. This gave us an empirical relation m = 2n — (k — 2),
k = 2,4,6,..,m, which was very useful in analyzing the given
algorithm. We also saw that the above relation specified ex-
actly the kind of connectivity needed in the corresponding
orthogonal graph to implement the algorithm. The archi-
tecture is completely specified by the value of k. k access
modes are required for implementing the proposed algorithm
on a particular MDA architecture. Once the value of & is
known, the communications overhead also becomes known.
Although scalable, the algorithm for matrix multiplication is
not optimal. It is optimal for the OMP but as the architec-
ture is scaled further, the processor utilization suffers. This
is probably an indication of an existing trade-off between full
scalability of an algorithm and its optimality. In the OMP,
for example, the known algorithm for matrix multiplication
is optimal but it is not scalable. This trade-off between scal-
ability and optimality has several important implications in
the design of highly parallel computing structures and in
the development of efficient architecture-independent algo-
rithms. We believe that the theory of orthogonal graphs
provides a powerful tool which can be used to define, analyze
and characterize a large class of orthogonal shared-memory
multiprocessing systems.
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