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Abstract :
As networks grow in size and complexity, network managementhas become an

increasingly challenging task. Many protocols have tunable parameters, and opti-
mization is the process of setting these parameters to optimize an objective. In re-
cent years, optimization techniques have been widely applied to network manage-
ment problems, albeit with mixed success. Realizing that optimization problems in
network management are induced by assumptions adopted in protocol design, we
argue that instead of optimizing existing protocols, protocols should be designed
with optimization in mind from the beginning. Using examples from our past re-
search on traffic management, we present principles that guide how changes to ex-
isting protocols and architectures can lead to optimizableprotocols. We also discuss
the trade-offs between making network optimization easierand the overhead these
changes impose.

1 Introduction

Network management is the continuous process of monitoringa network to de-
tect and diagnose problems, and of configuring protocols andmechanisms to fix
problems and optimize performance. Traditionally, network management has been
largely impenetrable to the research community since many of the problems appear
both complex and ill-defined. In the past few years, the research community has
made tremendous progress casting many important network management problems
as optimization problems. Network optimization involves satisfying network man-
agement objectives by setting the tunable parameters that control network behavior.
Solving an optimization problem involves optimizing anobjective functionsubject
to a set ofconstraints. Unfortunately, whileconvexoptimization problems are easier
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to solve, many problems that arise in data networks are nonconvex. Consequently,
they are computationally intractable, with many local optima that are suboptimal.

In this paper, we argue that the difficulty of solving the key optimization prob-
lems is an indication that we may need to revise the underlying protocols, or even the
architectures, that lead to these problem formulations in the first place. We advocate
the design ofoptimizable networks—network architectures and protocols that lead
to easy-to-solve optimization problems and consequently,optimal solutions. Indeed,
the key difference between “network optimization” and “optimizable networks” is
that the former refers to solving a given problem (induced bythe existing proto-
cols and architectures) while the latter involves formulating the “right” problem (by
changing protocols or architectures accordingly).

The changes to protocols and architectures can range from minor extensions to
clean-slate designs. In general, the more freedom we have tomake changes, the eas-
ier it would be to create an optimizable network. On the otherhand, the resulting
improvements in network management must be balanced against other considera-
tions such asscalabilityandextensibility, and must be madejudiciously. To make
design decisions, it is essential to quantify the trade-offbetween making network-
management problems easier by changing the problem statement and the extra over-
head the resulting protocol imposes on the network.

Network optimization has had a particularly large impact inthe area of traffic
management, which controls the flow of traffic through the network. Today, this
spans across congestion control, routing and traffic engineering. In Section 2, we
describe how optimization is used in traffic management today. In Section 3, we
illustratedesign principleswhich we have uncovered through our own research ex-
periences on traffic management. Traffic management is an extremely active area of
research, but we will not address related work in this paper since these examples
are included to serve as illustrations of general principles. In Section 4, we discuss
other aspects of traffic management, such as interdomain routing and active queue
management, where the problems are even more challenging. We also examine the
trade-off between performance achieved and overhead imposed when designing op-
timizable protocols. We conclude and point to future work inSection 5.

2 Traffic Management Today

In this section, we introduce how optimization is used in thecontext of traffic man-
agement inside a single Autonomous System (AS). Traffic management has three
players: users, routers, and operators. In today’s Internet, users run TCP conges-
tion control to adapt their sending rates at the edge of the network based on packet
loss. Congestion control has been reverse engineered to be implicitly solving an
optimization problem, [1, 2, 3]. Inside the network, operators tune parameters in
the existing routing protocols to achieve some network-wide objective in a process
called traffic engineering, see Figure 1.



Design for Optimizability: Traffic Management of a Future Internet 3

parameters
Setting

control

optimization

measurement

Operational network

Routing model

demands
Traffic

configuration
Topology &

Fig. 1 Components of the route optimization framework.

2.1 Traffic Engineering

Symbol Meaning
(i, j) Pair of routers.
x(i, j) Traffic demand betweeni and j .
l A single link.
wl Link weight l .
cl Capacity of linkl .
yl Traffic load on linkl .
f (yl/cl ) Penalty function as a function of link utilization.

r(i, j)
l Portion of the traffic from routeri to router j that traverses the linkl .

Table 1 Summary of notation for Section 2.1.

Inside a single AS, each router is configured with an integer weight on each of its
outgoing links, as shown in Figure 2. The routers flood the link weights throughout
the network and compute shortest paths as the sum of the weights. For example,i
directs traffic tok though the links with weights(2,1,5)Each router uses this infor-
mation to construct a table that drives the forwarding of each IP packet to the next
hop in its path to the destination. These protocols view the network inside an AS
as a graph where each router is a noden∈ N and each directed edge is a linkl ∈ L
between two routers. Each unidirectional link has a fixed capacity cl , as well as a
configurable weightwl . The outcome of the shortest-path computation can be rep-

resented asr(i, j)
l : the proportion of the traffic from routeri to router j that traverses

the link l .
Operators set the link weights in intradomain routing protocols in a process called

traffic engineering. The selection of the link weightswl should depend on the offered
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Fig. 2 Network topology with link weights for shortest path routing.

traffic, as captured by a demand matrix whose entriesx(i, j) represents the rate of traf-
fic entering at routeri that is destined to routerj. The traffic matrix can be computed
based on traffic measurements [4] or may represent explicit subscriptions or reser-
vations from users. Given the traffic demandx(i, j) and link weightswl , the volume

of traffic on each linkl is yl = ∑i, j x
(i, j)r(i, j)

l , the proportion of traffic that traverses
link l summed over all ingress-egress pairs. An objective function can quantify the
“goodness” of a particular setting of the link weights. For traffic engineering, the op-
timization considers a network-wide objective of minimizing∑l f (yl /cl ). The traffic
engineering penalty functionf is a convex, non-decreasing, and twice-differentiable
function that gives an increasingly heavy penalty as link load increases, such as an
exponential function. The problem traffic engineering solves is to set link weights
to minimize∑l f (yl /cl), assumingthe weights are used for shortest-path routing.

Fig. 3 Traffic from Dallas exits via New York City (with a path cost of10) rather than San Fran-
cisco (with a path cost of 11), due to hot-potato routing

So far, we have covered the impact of link weights inside an AS. When a net-
work, such as an Internet Service Provider (ISP) backbone, can reach a destination
through multiple egress points, a routing change inside theAS may change how
traffic leaves the AS. Each router typically selects the closest egress point out of a
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set of egress points which can reach a destination, in terms of the intradomain link
weightswl , in a practice known as early-exit or hot-potato routing [5]. In the exam-
ple in Figure 3, suppose a destination is reachable via egress points in New York
City and San Francisco. Then traffic from Dallas exits via NewYork City rather
than San Francisco since the intradomain path cost from Dallas to New York City is
smaller. If the traffic from Dallas encounters congestion along the downstream path
from New York City in Figure 3, the network operators could tune the link weights
to make the path through SanFrancisco appear more attractive. Controlling where
packets leave the network, and preventing large shifts fromone egress point to an-
other, is an important part of engineering the flow of traffic in the network. Models
can capture the effects of changing the link weights on the intradomain paths and
the egress points, but identifying good settings of the weights is very difficult.

2.2 Pros and Cons of Traffic Management

Traffic management today has several strengths. First, routing depends on a very
small amount of state per linki.e., link weights. In addition, forwarding is done
hop-by-hop, so that each router decides independently how to forward traffic on its
outgoing links. Second, routers only disseminate information when link weights or
topology change. Also, TCP congestion control is based onlyon implicit feedback
of packet loss and delay, rather than explicit messages fromthe network. Third, the
selection of link weights can depend on a wide variety of performance and reliabil-
ity constraints. Fourth, hot-potato routing reduces internal resource usage (by using
the closest egress point), adapts automatically to changesin link weights, and al-
lows routers in the AS to do hop-by-hop forwarding toward theegress point. Last
but not least, the decoupling of congestion control and traffic engineering reduces
complexity through separation of concerns.

On the other hand, today’s protocols also have a few shortcomings. To start with,
optimizing the link weights in shortest-path routing protocols based on the traffic
matrix is NP-hard, even for simplest of objective functions[6]. In practice, local-
search techniques are used for selecting link weights [6]; however, the computation
time is long and, while the solutions are frequently good [6], the deviation from the
optimal solution can be large. Finding link weights which work well for egress point
selection is even more challenging, as this adds even more constraints on how the
weights are set.

There are other limitations to today’s traffic management. The network opera-
tor can onlyindirectly influence how the routers forward traffic, through the setting
of the link weights. Further, traffic engineering is performed assuming that the of-
fered traffic is inelastic. In reality, end hosts adapt theirsending rates to network
congestion, and network operators adapt the routing based on measurements of the
traffic matrix. Although congestion control and routing operate independently, their
decisions are coupled. The joint system is stable, but oftensuboptimal [7]. Further-
more, traffic engineering does not necessarily adapt on a small enough timescale
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to respond to shifts in user demands. In addition to timescale alternatives, there are
also choices as to geographically which part of traffic management work should be
carried out inside the network, and which by the sources. These limitations suggest
that revisiting architectural decisions is a worthy research direction.

3 Design Optimizable Protocols

In this section, we illustrate three design principles through proposed protocols. The
three principles also correspond to the three parts of an optimization problem for-
mulation: objective, variables and constraints. In a generic optimization problem
formulation, the objective is to minimizeg(x) over the variablex, subject to con-
straints onx:

minimize g(x)
subject tox∈ S
variable x

(1)

From optimization theory, it is well established that a local optimum of (1) is also a
global optimum, which can be found inpolynomial timeand often very fast, ifS is
a convex set andg is a convex function. The intuition is as follows: searchingfor an
optimum on a nonconvex set is challenging as it would be difficult to “cross” any
gaps as seen in Figure 4. In addition, a convex objective function is necessary for a
global optimum to exist as seen in Figure 5.

Fig. 4 Convex and nonconvex sets. A convex setS is defined as ifx,y∈ S, thenθx+(1−θ)y∈ S,
for all θ ∈ [0,1].

In other words, a convex optimization problem leads to bothtractabilityandopti-
mality. Due to single-path routing, an artifact of the current system, the constraint set
is not convex for most traffic management problems. In our first example, we tackle
this problem head-on by changing the shape of the constraintset. In our second ex-
ample, we avoid the problem because the particular problem formulation falls under
a special class of integer programming problems. In our third example, we change
the system to allow routing to be per path multi-commodity flow, so that decom-
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Fig. 5 Convex and nonconvex functions. A functiong is a convex function if domain ofg is a
convex set andf (θx+(1−θ)y) ≤ θg(x)+(1−θ)g(y).

position techniques can be applied to derive stable and fast-timescale interaction
between routing and congestion control.

3.1 Changing the Shape of the Constraint Set

Symbol Meaning
(i, j) Pair of routers.
x(i, j) Traffic demand betweeni and j .
l A link.

r(i, j)
l Portion of the traffic from routeri to router j that traverses the linkl .

k A path betweeni and j .

w(i, j)
k Path weight of pathk betweeni and j .

x(i, j)
k Traffic demand betweeni and j , that will be placed on pathk.

Table 2 Summary of notation for Section 3.1.

Some optimization problems involveintegerconstraints, which are not convex,
making them intractable and their solutions suboptimal. Relaxing the integer con-
straint to approximate a convex constraint can lead to a moretractable problem
and a smaller optimality gap. In the original link-weight setting problem where link
weights are set to minimize∑l f (yl /cl), assuming the weights are used for shortest-
path routing, the constraints are nonconvex. The network usually has a single short-

est path fromi to j, resulting inr(i, j)
l = 1 for all links l along the path, andr(i, j)

l = 0
for the remaining links. An OSPF or IS-IS router typically splits traffic evenly along
one or more outgoing links along shortest paths to the destination, allowing for lim-

ited fractional values ofr(i, j)
l , but the constraint set is still highly nonconvex. The

ability to split traffic arbitrarily over multiple paths would make the constraints con-

vex, i.e.,r(i, j)
l ∈ [0,1]. The downside is this approach would sacrifice the simplicity
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of OSPF and IS-IS, where routers compute paths in a distributed fashion based on
link weights alone.

Fig. 6 Routers forwarding traffic with exponentially diminishingproportions of the traffic directed
to the longer paths. Arrows indicate paths that make forwardprogress toward the destination, and
the thickness of these lines indicates the proportion of thetraffic that traverses these edges.

Rather than supporting arbitrary splitting, a recent proposal advocates small ex-
tensions to OSPF and IS-IS to split traffic over multiple paths [8]. Under this pro-
posal, the routers forward traffic on multiple paths, with exponentially diminishing
proportions of the traffic directed to the longer paths, as shown in Figure 6. The
goal is still to minimize∑l f (yl /cl ), but allowing any routing protocol based on link
weights instead of assuming only shortest-path routing.

More formally, given multiple paths between routersi and j, indexed byk, to

keep the protocols simple, the constraint is to havex(i, j)
k /x(i, j), the ratio of traffic

placed on pathk, be computable using only link weight information. At each router
i, the following computation is performed:

x(i, j)
k

x(i, j)
=

e−w
(i, j)
k

∑me−w(i, j)
m

, (2)

wherew(i, j)
k is the sum of the link weights on thekth path between routeri and j.

So as in OSPF and IS-IS today, each router would compute all the path weights for
getting fromi to j, there is just an extra step to compute the splitting ratios.For
example, in Figure 6, consider the two lower paths of costs 8 (i.e., 2+1+5) and 9
(i.e., 2+ 4+ 3), respectively. The path with cost 8 will gete−8/(e−8 + e−9) of the
traffic, and the path with cost 9 will gete−9/(e−8 +e−9) of the traffic.

Under this formulation, both link weights and the flow splitting ratios are vari-
ables. This enlarges the constraint set, and the resulting constraints are much easier
to approximatewith convex constraints. Consequently, the link-weight tuning prob-
lem is tractable, i.e., can be solved much faster than the local search heuristics today.
In addition, the modified protocol is optimal, i.e., makes the most efficient use of
link capacities, and is more robust to small changes in the path costs. The optimality
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result is unique to this particular problem where there is anintersection between the
set of optimal protocols and protocols based on link weights. In general, the opti-
mality gap is reduced by enlarging the constraint set, as seen in a similar proposed
extension to OSPF and IS-IS [9]. Bychanging the constraint set, [8] and [9] retains
the simplicity of link-state routing protocols and hop-by-hop forwarding, while in-
ducing an optimization problem that is both faster to solve and lead to a smaller
optimality gap.

3.2 Adding Variables to Decouple Constraints

Symbol Meaning
(i, j) Ingress-egress pair.
w(i, j) Path cost betweeni and j .
d Destination.

q(i, j)
d Ranking metric for paths betweeni and j .

α (i, j)
d Tunable parameter to support automatic adaptation to topology changes.

β (i, j)
d Tunable parameter to support static ranking of egress points j per ingress routeri.

Table 3 Summary of notation for Section 3.2.

Some optimization problems can involve many tightly-coupled constraints, mak-
ing it difficult to find a feasible solution. Introducing extra variables can decouple
the constraints, and increase the size of the feasible region. As an example, setting
the link weights is highly constrained, since the weights are used to compute both
the forwarding paths between the routers inside the domain and the egress points
where the traffic leaves the domain. Weakening the coupling between intradomain
routing and egress-point selection is the key to simplifying the optimization problem
and improving network performance.

Rather than selecting egress pointsj from ingress routeri based only on the
intradomain path costsw(i, j) (sum of all link weights on the path fromi to j), a

variableq(i, j)
d is introduced for routeri, across all destinationsd and egress points

j. To support flexible policy while adapting automatically tonetwork changes, the

metric q(i, j)
d includes both configurable parameters and values computed directly

from a real-time view of the topology. In particular,q(i, j)
d = α(i, j)

d w(i, j) +β (i, j)
d where

α andβ are configurable values [10]. The first component of the equation supports
automatic adaptation to topology changes, whereas the second represents a static
ranking of egress points per ingress router. Providing separate parameters for each
destination prefix allows even greater flexibility, such as allowing delay-sensitive
traffic to use the closest egress point while preventing unintentional shifts in the
egress points for other traffic.
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Fig. 7 Ingress routerc can reach destination through egressesa andb.

Consider a scenario whereα andβ are tuned to handle failure scenarios. As seen
in Figure 7, the ingress routerc can reach a destination through egress routersa and
b. There are three paths fromc to a with paths costs 9, 11, and 20, respectively, the
path cost fromc to b is 11. The goal is to not switch the traffic from leaving egress
routera if the path with cost of 9 fails, but do switch to egressB if the path with cost
11 fails also. This can be expressed as a set of conditions as in (3):

9αc,a
d + β c,a

d < 10αc,b
d + β c,b

d

11αc,a
d + β c,a

d < 10αc,b
d + β c,b

d

20αc,a
d + β c,a

d > 10αc,b
d + β c,b

d

(3)

One set ofα andβ values to achieve the conditions in (3) isαc,a
d = 1, β c,a

d = 1,

αc,b
d = 1, andβ c,b

d = 0.
In general, the resulting integer multicommodity-flow problem is still nonconvex

and consequently intractable. This problem formulation happens to correspond to a
very special subset of integer programming problems where relaxing the integrality
constraints would still produce integer solutions [11], thus side-stepping the convex-
ity issue. That is, the optimization problem becomes solvable in polynomial time if
we allow an ingress pointi to split traffic destined tod over multiple egress pointse,
rather than forcing all traffic fromi to go to a single egress point; in practice, solving
the relaxed problem produces integer solutions that do, in fact, direct all traffic from
i to d via a single egress pointe. Overall, byincreasing the degrees of freedom, a
management system can set the new parameters under a varietyof constraints that
reflect the operators’ goals for the network [10]. Not only does the network become
easier to optimize, but the performance improves as well, due to the extra flexibility
in controlling where the traffic flows.
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Symbol Meaning
(i, j) Pair of routers.
x(i, j) Traffic demand betweeni and j .
U(x(i, j)) Utility of traffic demand betweeni and j .
l A single link.
cl Capacity of linkl .
r i, j
l Portion of the traffic from routeri to router j that traverses the linkl .

f (∑i, j x
(i, j)r(i, j)

l /cl ) Penalty function as a function of link utilization.
v Weight between utility and penalty functions.
k A path betweeni and j .

x(i, j)
k Traffic demand betweeni and j , that will be placed on pathk.

H(i, j)
l ,k Matrix capturing the available paths betweeni and j .

Table 4 Summary of notation for Section 3.3.

3.3 Combining Objectives to Derive Protocols

In a system, there can be multiple interacting optimizationproblems with different
objectives. Combining the objectives of multiple problemscan allow for a better
solution to the overall problem. In today’s traffic management system, congestion
control and traffic engineering have different objectives.Congestion control tries to
maximize aggregate user utility, and as a result tends to push traffic into the network
so that multiple links are used at capacity. In contrast, traffic engineering uses a link
cost function which heavily penalizes solutions with bottleneck links.

User utilityU(x(i, j)) is a measure of “happiness” of router pair(i, j) as a function
of the total sending ratex(i, j). U is a concave, non-negative, increasing and twice-
differentiable function, e.g., logarithmic function, that can also represent the elastic-
ity of the traffic or determine fairness of resource allocation. As mentioned earlier,
the objective for traffic engineering is a convex function oflink load. The objective
function has two different practical interpretations. First, f can be selected to model
M/M/1 queuing delay and thus the objective is to minimize average queuing delay.
Second, network operators want to penalize solutions with many links at or near
capacity and do not care too much whether a link is 20% loaded or 40% loaded [6].
One way to combine the objectives of traffic engineering and congestion control is
to construct a weighted sum of utility and link cost functions as the overall objective
for traffic management [12], wherev is the weight between the two objectives.

maximize∑i U(x(i, j))−v∑l f (∑i, j x
(i, j)r(i, j)

l /cl)

subject to∑i, j x
(i, j)r(i, j)

l ≤ cl , x � 0.
(4)

In [12], we revisit the division of labor between users, operators and routers. In
this case, we allow for a per path multi-commodity flow solution, hence resulting in
a convex problem, and opens up many standard optimization techniques that derive
distributed and iterative solutions. In its current form, (4) has a non-convex con-
straint set, which can be transformed into a convex set if therouting is allowed to be
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multipath. To capture multipath routing, we introducex(i, j)
k to represent the sending

rate of routeri to router j on thekth path. We also represent available paths by a
matrixH where

H(i, j)
l ,k =

{

1, if pathk of pair (i, j) uses linkl
0, otherwise.

H does not necessarily present all possible paths in the physical topology, but a
subset of paths chosen by operators or the routing protocol.Using the new notation,

the capacity constraint is transformed into∑i, j ,k x(i, j)
k H(i, j)

l ,k ≤ cl , which is convex.

Fig. 8 A high-level view of how the distributed traffic-managementprotocol works.

Decomposition is the process of breaking up a single optimization problem into
multiple ones that can be solved independently. As seen in Figure 8, decomposing
the overall traffic management optimization problem, a distributed protocol is de-
rived that splits traffic over multiple paths, where the splitting proportions depend
on feedback from the links. The links send feedback to the edge routers in the form
of a prices that indicates the local congestion level, based on local link load infor-
mation. Although there are multiple ways to decompose the optimization problem,
they all lead to a similar divions of functions between the routers and the links [12].

By embedding the management objectives in the protocols, the link-cost function
is now automated incorporated by the links themselves as part of computing the
feedback sent to the edge routers, rather than by the network-management system.
As seen in Figure 8, there are no link weights at all in this distributed protocol.
As such, the network-management system merely specifiesU , f andv, instead of
adapting the link weights over time.
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4 Open Challenges in Traffic Management Optimization

The principles introduced in the previous section are a useful first step towards de-
signing optimizable protocols, but are by no means comprehensive. The merits of
proposed optimizable protocols should always be balanced with any extra overhead
in practical implementation and robustness to changing network dynamics. In addi-
tion, the principles introduced in the previous section focuses on intradomain traffic
management, and do not address all the challenges in end-to-end traffic manage-
ment. Finally, when deriving new architectures, the balance between performance
and other factors is even more delicate.

4.1 Performance vs. Overhead Trade-off

Characterizing a network architecture in terms of the tractability of network-management
problems is just one piece of a complex design puzzle. The design of optimizable
networks introduces tension between the ease of network optimizability and the
overhead on network resources. Some of the architectural decisions today make the
resulting protocols simple. For example, protocols which rely on implicit feedback
e.g., TCP congestion control, do not have message passing overhead. Further,hop-
by-hop forwardingdoes not depend on the upstream path, requiring less processing
at the individual routers. It would be desirable to capture such notions of simplicity
mathematically, so we can learn to derive optimizable protocols which retain them.

Our example in Section 3.1 manages to retain the simplicity of hop-by-hop for-
warding while resulting in a tractable optimization problem. In this particular case,
optimality gap was significantly reduced with very little extra overhead. However,
some approaches make the protocol more optimizable at the expense of additional
overhead. For example, adding flexibility in egress-point selection in Section 3.2
introduces more parameters that the network-management system must set. Simi-
larly, revisiting the division of functionalities in Section 3.3 leads to a solution that
requires explicit feedback from the links. Imposing extra overhead on the network
may be acceptable, if the improvement in performance is sufficiently large.

Furthermore, ensuring a completely tractable optimization problem is sometimes
unnecessary. An NP-hard problem may be acceptable, if good heuristics are avail-
able. For striking the right trade-offs in the design of optimizable networks, it is im-
portant to find effective ways to quantify the acceptable amount of deviation from
the optimal solution. There are also well-established, quantitative measures of the
notions of how easily-solvable an optimization is. These quantitative measures can
help determinehow muchthe protocols and architectures need to change to better
support network management.

The protocols today are designed with certain assumptions in mind, e.g., single-
path routing and hop-by-hop forwarding. Some of these assumptions cause the re-
sulting optimization problem to be intractable e.g., single-path routing, while others
do not, e.g., hop-by-hop forwarding. By perturbing the underlying assumptions in
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today’s protocols, we can achieve a different point in the trade-off space of opti-
mality versus simplicity. Therefore, it is worth exploringthe alternatives, even if at
the end the decision is to keep the original protocol and architectures. In order to
choose between protocol designs, the key is to gain a deeper understanding of the
trade-offs. As such, we believe thatdesign for optimizabilitycan be a promising,
new interdisciplinary area between the systems and theory communities.

4.2 End-to-End Traffic Management

Our examples thus far focused on optimization problems in intradomain traffic man-
agement. Routing within a single domain side-steps severalimportant issues that
arise in other aspects of data networking, for several reasons:

• A single domain has the authority to collect measurement data (such as the
traffic and performance statistics) and tune the protocol configuration (such as
the link weights).

• The routing configuration changes on the timescale of hours or days, allowing
ample time to apply more computationally intensive solution techniques.

• The optimization problems consider highly aggregated information, such as
link-level performance statistics or offered load betweenpairs of routers.

When these assumptions do not hold, the resulting optimization problems become
even more complicated, as illustrated by the following two examples.

Optimization in interdomain traffic management:In the Internet, there are often
multiple Autonomous Systems (AS) in the path between the sender and the receiver.
Each AS does not have full view of the topology, only the pathswhich are made vis-
ible to it through the routing-protocol messages exchangedin the Border Gateway
Protocol (BGP). In addition, each AS has a set of private policies that reflect its
business relationships with other ASes. Without full visibility and control, it is diffi-
cult to perform interdomain traffic management. For example, to implement DATE
in the Internet, the ASes would need to agree to provide explicit feedback from the
links to the end hosts or edge routers, and trust that the feedback is an honest re-
flection of network conditions. Extending BGPs to allow for multiple paths would
simplify the underlying optimization problem, but identifying the right incentives
for ASes to deploy a multipath extension to BGP remains an open question.

Optimization in active queue management:A router may apply active queue
management schemes like Random Early Detection [13] to provide TCP senders
with early feedback about impending congestion. RED has many configurable pa-
rameters to be selected by network operators, e.g.,, queue-length thresholds and
maximum drop probability. Unfortunately, predictive models for how the tunable
parameters affect RED’s behavior remain elusive. In addition, the appropriate pa-
rameter values may depend on a number of factors, including the number of active
data transfers and the distribution of round-trip times, which are difficult to mea-
sure on high-speed links. Recent analytic work demonstrates that setting RED pa-
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rameters to stabilize TCP is fundamentally difficult [14]. It is appealing to explore
alternative active-queue management schemes that are easier to optimize, including
self-tuning algorithms that do not require the network-management system to adjust
any parameters.

From these two examples, it is clear that there remains open challenges in end-
to-end traffic management. Outside the context of traffic management, network op-
timization’s role is even less understood. We argue for a principled approach in
tackling these challenges so that, in time, protocol designcan be less of an art and
more of a science.

4.3 Placement of Functionality

The challenges are not just limited to protocols, but extendto architectural decisions
regarding the placement of functionality. Architecturally, the DATE example repre-
sents one extreme where most of computation and coordination is moved into the
distributed protocols that run in the routers. In the context of Figure 1, this means
much of the measurement, control and optimization is pusheddown into the net-
work. One can consider another extreme, where the network-management systems
bear all the responsibility for adapting to changes in network conditions, as in [15].
Both approaches redefine the division of labor between the management system
and the routers, where one moves most of the control into the distributed protocols
and the other has the management systems directly specify how the routers handle
packets.

In some cases, having the management system bear more responsibility would be
a natural choice. For example, if an optimization problem isfundamentally difficult,
consequently leading to distributed solutions that are complicated or suboptimal, or
both. Unlike the routers, a management system has the luxuryof a global view of
network conditions and the ability to run centralized algorithms for computing the
protocol parameters. Today’s traffic engineering uses the centralized approach and
allows operators to tailor the objectives to the administrative goals of the network.
This leads to a more evolvable system, where the objective function and constraints
can differ from one network to another, and change over time.In addition, the op-
erators can capitalize on new advances in techniques for solving the optimization
problems, providing an immediate outlet for promising research results.

The network-management system can apply centralized algorithms based on a
global view of network conditions, at the expense of a slowerresponse based on
coarse-grain measurements. Yet some parts of traffic management, such as detecting
link failures and traffic shifts, must occur in real time. In order to understand which
functions must reside in the routers to enable adaptation ona sufficiently small time-
scale, it is important to quantify the loss in performance due to slower adaptation.
For functions which require fast adaptation, an architecture where end user load
balance across multiple paths would be desirable. For functions that can operate on a
slower timescale, the control of flow distribution can be left to operators. In general,
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determining the appropriate division of labor between the network elements and the
management systems is an avenue for future research.

5 Conclusions and Future Work

In recent years, optimization has played an increasingly important role in network
management. In this paper, we argue that, instead of just trying to optimize existing
protocols, new protocols should be designedfor the ease of optimization. If a set
of architectures and protocols lead to intractable optimization problems for network
management, we argue that, instead of trying to solve these problems by ad hoc
heuristics, we should revisit some of the underlying assumptions in the architectures
and protocols. Such explorations can lead to easier networkoptimization problems
and may provide superior simplicity-optimality tradeoff curves.

Drawing from our own research experiences in traffic management, we propose
three guiding principles for making optimizable protocolswhich correspond to three
aspects of an optimization problem i.e., constraints, variables and objective. First,
changing the constraint set can turn an NP-hard optimization problem into an eas-
ier problem and reduce the optimality gap. Second, increasing degrees of freedom
(by introducing extra parameters) can break tightly coupled constraints. Finally, em-
bedding management objectives in the protocol can lead to alternative architectures.
Still, protocols changes must be made judiciously to balance the gain in performance
with the extra consumption of network resources.

Ultimately, the design of manageable networks raises important architectural
questions about the appropriate division of functionalities between network ele-
ments and the systems that manage them. This paper represents a first step toward
identifying design principles that can guide these architectural decisions. The open
challenges which remain suggest that the design of manageable networks may con-
tinue to be somewhat of an art, but hopefully one that will be guided more and more
by design principles. We believe that providing a new, comprehensive foundation
for the design of manageable networks is an exciting avenue for future research.
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