
Optimizing the “One Big Switch” Abstraction
in Software-Defined Networks

Nanxi Kang, Zhenming Liu, Jennifer Rexford, and David Walker
Computer Science Department, Princeton University

ABSTRACT
Software Defined Networks (SDNs) support diverse net-

work policies by offering direct, network-wide control over
how switches handle traffic. Unfortunately, many controller
platforms force applications to grapple simultaneously with
end-to-end connectivity constraints, routing policy, switch
memory limits, and the hop-by-hop interactions between for-
warding rules. We believe solutions to this complex problem
should be factored in to three distinct parts: (1) high-level
SDN applications should define their end-point connectivity
policy on top of a “one big switch” abstraction; (2) a mid-
level SDN infrastructure layer should decide on the hop-by-
hop routing policy; and (3) a compiler should synthesize an
effective set of forwarding rules that obey the user-defined
policies and adhere to the resource constraints of the un-
derlying hardware. In this paper, we define and implement
our proposed architecture, present efficient rule-placement
algorithms that distribute forwarding policies across general
SDN networks while managing rule-space constraints, and
show how to support dynamic, incremental update of poli-
cies. We evaluate the effectiveness of our algorithms analyt-
ically by providing complexity bounds on their running time
and rule space, as well as empirically, using both synthetic
benchmarks, and real-world firewall and routing policies.

1. INTRODUCTION
Software-Defined Networking (SDN) enables flexi-

ble network policies by allowing controller applications
to install packet-handling rules across a distributed col-
lection of switches. Over the past few years, many ap-
plications (e.g., server load balancing, virtual-machine
migration, and access control) have been built using the
popular OpenFlow API [1]. However, many controller
platforms [2, 3, 4, 5, 6] force applications to manage the
network at the level of individual switches by represent-
ing a high-level policy in terms of the rules installed in
each switch. This forces programmers to reason about
many low-level details, all at the same time, including
the choice of path, the rule-space limits on each switch,
and the hop-by-hop interaction of rules for forwarding,
dropping, modifying, and monitoring packets.

Rule space, in particular, is a scarce commodity

	
	
srcIP	 =	 1.0.0.*	 :	 Drop	
dstIP	 =	 1.1.0.*	 :	 Drop	
...	

...	

...	

...	

...	

...	

Endpoint	 Policy	 Rou/ng	 Policy	

Rule	 Placement	 Algorithm	

Controller

Figure 1: High-level policy and low-level rule placement

on current SDN hardware. Many applications require
rules that match on multiple header fields, with “wild-
cards” for some bits. For example, access-control poli-
cies match on the “five tuple” of source and destina-
tion IP addresses and port numbers and the proto-
col [7], whereas a load balancer may match on source
and destination IP prefixes [8]. These rules are nat-
urally supported using Ternary Content Addressable
Memory (TCAM), which can read all rules in parallel to
identify the matching entries for each packet. However,
TCAM is expensive and power hungry. The merchant-
silicon chipsets in commodity switches typically support
just a few thousand or tens of thousands of entries [9].

Rather than grappling with TCAM sizes, we ar-
gue that SDN application programmers should define
high-level policies and have the controller platform man-
age the placement of rules on switches. We, and more
broadly the community at large [10, 11, 12], have ob-
served that such high-level policies may be specified in
two parts, as shown in Figure 1:
• An endpoint policy: Endpoint policies, like ac-

cess control and load balancing, view the network
as one big switch that hides internal topology de-
tails. The policy specifies which packets to drop,
or to forward to specific egress ports, as well as
any modifications of header fields.
• A routing policy: The routing policy specifies

what paths traffic should follow between the ingress
and egress ports. The routing policy is driven by
traffic-engineering goals, such as minimizing con-
gestion and end-to-end latency.

Expressing these two parts of the policy separately mod-
ularizes the problem and allows, for example, an SDN
client to express an endpoint policy at the highest level
of abstraction while an SDN provider plans the lower-
level routing policy. Given two such specifications, the
controller platform (a compiler) can apply a rule-placement
algorithm to generate switch-level rules that realize both
parts of the policy correctly, while adhering to switch
table-size constraints.

Optimizing the placement of rules is challenging.
Minimizing the number of rules for a single switch is
computationally difficult [13], though effective heuris-
tics exist [14]. Solving the rule-placement problem for
an entire network of switches, given independent end-
point and routing policies, is even harder:
• Given an optimal rule list for the traffic between

two endpoints, we must generate an efficient and
correct layout of rules along the path between them.
• The layout must carefully manage the interactions

between packet modification and packet forward-
ing (which may depend upon the fields modified).
• A network consists of multiple paths that share

switch rule space. Consequently, we must consider
the joint optimization problem across all paths.
• Since network policies evolve dynamically, we must

be able to process changes efficiently, without re-
computing rule placement from scratch.
• We must manage the fact that in each of the pre-

vious tasks, forwarding depends upon packet anal-
ysis over multiple dimensions of header fields.
In this paper, we take on the general challenge of

solving the rule-placement problem. In doing so, we
make a number of important contributions that range
from new algorithm design, to complexity analysis, to
implementation and empirical analysis on both synthetic
and real-world data sets. More specifically, our central
contributions include:
• The design of a novel rule-placement algorithm.

The algorithm has as a key building block an ele-
gant and provably efficient new technique for rule
layout along a linear series of switches.
• The design and analysis of principled heuristics

for controlling the complexity of our algorithm.
These heuristics bring, among other things, the
concept of cost-effective covers from the broader
algorithms literature to bear on rule placement.
• The design of new algorithms for incremental rule

update when either the endpoint or routing policy
change. Such algorithms are a crucial practical
component of any SDN system that requires rapid
response to a changing environment.
• An evaluation of our algorithms in terms of rule

space and running time on both synthetic and real-
world data that validates our algorithm.
In the next section, we formally introduce the op-

timization problem required to implement the one big
switch abstraction. Next, Section 3 presents related
work on optimizing rule space. Section 4 presents our
algorithm and Section 5 addresses the incremental up-
date issues. Section 6 presents experiments involving
both synthetic benchmarks and real-world policies. We
conclude the paper in Section 7. A technical report [15]
presents the missing proofs and additional experiments.

2. OPTIMIZING A BIG SWITCH
A key problem in implementing the one big switch

abstraction is mapping global, high-level policies to an
equivalent, low-level set of rules for each switch in the
network. We call this problem the big switch problem,
and introduce a precise formulation in this section.

Network topology: The network consists of n
switches, each with a set of ports. We refer a port at a
switch as a location (loc). The locations connected to
the outside world are exposed locations. A packet enters
the network from an exposed location called ingress and
leaves at an exposed location called egress.

Packets: A packet (pkt) includes multiple header
fields. Examples of header fields include source IP (src ip)
and destination IP (dst ip). Switches decide how to
handle traffic based on the header fields, and do not
modify any other part of the packet; hence, we equate
a packet with its header fields.

Switches: Each switch has a single, prioritized list
of rules [r1, . . . , rk], where rule ri has a predicate ri.p
and an action ri.a. A predicate is a boolean function
that maps a packet header and a location (pkt, loc) into
{true, false}. A predicate can be represented as a con-
junction of clauses, each of which does prefix or exact
matching on a single field or location. An action could
be either “drop” or “modify and forward”. The “modify
and forward” action specifies how the packet is modi-
fied (if at all) and where the packet is forwarded. Upon
receiving a packet, the switch identifies the highest-
priority rule with a matching predicate, and performs
the associated action. A packet that matches no rules
is dropped by default.

Endpoint policy (E): The endpoint policy oper-
ates over the set of exposed locations as if they were
ports on one big abstract switch. An endpoint pol-
icy is a prioritized list of rules E , [r1, ..., rm], where
m = ‖E‖ is the number of rules. We assume that at the
time a given policy E is in effect, each packet can en-
ter the network through at most one ingress point (e.g.,
the port connected to the sending host, or an Internet
gateway).

Routing policy (R): A routing policy R is a func-
tion R(loc1, loc2,pkt) = si1si2 ...sik , where loc1 denotes
packet ingress, loc2 denotes packet egress. The sequence
si1si2 ...sik is the path through the network. The rout-
ing policy may direct all traffic from loc1 to loc2 over

2

the same path, or split the traffic over multiple paths
based on packet-header fields.

Rule-placement problem: The inputs to the
rule-placement problem are the network topology, the
endpoint policy E, the routing policy R, and the max-
imum number of rules each physical switch can hold.
The output is a list of rules on each switch such that
the network (i) obeys the endpoint policy E, (ii) for-
wards the packets over the paths specified by R, and
(iii) does not exceed the rule space on each switch.

3. RELATED WORK
Prior work on rule-space compression falls into four

main categories, as summarized in Table 1.

Compressing policy on a single switch: These
algorithms reduce the number of rules needed to realize
a policy on a single switch. While orthogonal to our
work, we can leverage these techniques to (i) reduce the
size of the endpoint policy that is input to our rule-
placement algorithm and (ii) further optimize the per-
switch rule-lists output by our algorithm.

Distributing policy over the network perimeter:
These works distribute a centralized firewall policy by
placing rules for packets at their ingress switches [7,
17], or verify that the edge switch configurations real-
ize the firewall policy [18]. These algorithms do not
enforce rule-table constraints on the edge switches, or
place rules on the internal switches; thus, we cannot
directly adopt them to solve our problem.

Distributing policy while changing routing: DI-
FANE [19] and vCRIB [20] leverage all switches in the
network to enforce an endpoint policy. They both di-
rect traffic through intermediate switches that enforce
portions of the policy, deviating from the routing policy
given by users. DIFANE takes a“rule split and caching”
approach that increases the path length for the first
packet of a flow, whereas vCRIB directs all packets of
some flows over longer paths. Instead, we view routing
policy as something the SDN application should con-
trol, based on higher-level goals like traffic engineering.
As such, our algorithms must grapple with optimizing
rule placement while respecting the routing policy.

Distributing policy while respecting the routing:
Similar to our solution, Palette [21] takes both an end-
point policy and routing policy as input, and outputs
a rule placement. However, Palette leads to subopti-
mal solutions for two main reasons. First, Palette has
all network paths fully implement the endpoint policy.
Instead, we only enforce the portion of the endpoint
policy affecting the packets on each path. Second, the
performance of their algorithm depends on the length
of the shortest path (with non-zero traffic) in the net-
work. The algorithm cannot use all available switches
when the shortest path’s length is small, as is the case

3.#Place#rules#along#each#path#

2.#Divide#rule#space#across#paths#

1.#Decompose#the#network#into#paths#

Success

Fail

Figure 2: Overview of the rule placement algorithm

for many real networks. Section 6 experimentally com-
pares Palette with our algorithm. We remark here that
existing packet-classification algorithms [22, 23] could
be viewed as a special case of Palette’s partitioning al-
gorithm. These techniques are related to a module in
our algorithm, but they cannot directly solve the rule-
placement problem. We make further comparisons with
these techniques when we present our algorithm.

4. A “ONE BIG SWITCH” ALGORITHM
This section describes our algorithm, which lever-

ages the following two important observations:

The “path problem” is a building block: Given
a packet pkt entering the network, the function R gives
the route s1,, s` for the packet. We must ensure that
E is correctly applied to pkt along the path. Therefore,
deciding the rule placement for the path s1, ..., s` to
implement E is a basic building block in our algorithm.

The “path problem” is an easier special case of
our problem: We may also interpret the path prob-
lem as a special case of our general problem, where the
network topology degenerates to a path. Thus, algorith-
mically understanding this special case is an important
step towards tackling the general problem.

The high-level idea of our algorithm is to find an
effective way to decompose the general problem into
smaller problems over paths and design efficient heuris-
tics to solve the path problems.

4.1 Algorithm Overview
Figure 2 shows the three main components of our

algorithm:

Decomposition (component 1): Our first step is to
interpret the problem of implementing {E,R} as imple-
menting the routing policy R and a union of endpoint
policies over the paths. We give an example for the
routing policy in Figure 3(a) and the endpoint policy
in Figure 3(b). From these policies, we can infer that
the packets can be partitioned into two groups (see Fig-
ure 3(c)): the ones in D1 (using the path P1 = s1s2s4)
and the ones in D2 (using the path P2 = s1s3s4). We
may separately implement two path-wise endpoint poli-
cies on P1 and P2. By doing so, we decompose the gen-
eral rule-placement problem into smaller sub-problems.
More formally, we can associate path Pi with a flow

3

Type and Examples Switches Rule-space limits Routing policy
Compressing policy on a single switch [14, 16, 13] Single Yes N/A
Distributed policies on edge [7, 17, 18] Edge No Yes
Distributed policies while changing routing [19, 20] All Yes No
Distributed policies while respecting routing [21] Most Yes Yes
Our work All Yes Yes

Table 1: Summary of related works

r1 : (dst ip = 00∗, ingress = H1 : Permit, egress = H2)
r2 : (dst ip = 01∗, ingress = H1 : Permit, egress = H3)

(a) An example endpoint policy E

H1
H2

H3
S1

S2

S3
S4

(b) An example routing policy R

P1 = s1s2s4, D1 = {dst ip = 00∗}
P2 = s1s3s4, D2 = {dst ip = 01∗}

(c) Paths and flow spaces computed from E and R

Figure 3: An example decomposition

space Di (i.e., all packets that use Pi belong to Di)
1

and the projection Ei of the endpoint policy on Di:

Ei(pkt) =

{
E(pkt) if pkt ∈ Di

⊥ otherwise,
(1)

where ⊥ means no operation is performed.

Resource allocation (component 2): The per-path
problems are not independent, since one switch could be
shared by multiple paths (e.g., s4 in Figure 3). Thus,
we must divide the rule space in each switch across the
paths, so that each path has enough space to implement
its part of the endpoint policy. Our algorithm estimates
the resources needed for each path, based on analysis
of the policy’s structure. Then the algorithm translates
the resource demands into linear programming (LP) in-
stances and invokes a standard LP-solver. At the end
of this step, each path-wise endpoint policy knows how
many rules it can use at each switch along its path.

Path algorithm (component 3): Given the rule-
space allocation for each path, the last component gen-
erates a rule placement for each path-wise policy. For
each path, the algorithm efficiently searches for an effi-
cient “cover” of a portion of the rules and “packs” them
into the switch, before moving on to the next switch in
the path. If the estimate of the rule-space requirements
in step 2 was not accurate, the path algorithm may fail
to find a feasible rule placement, requiring us to repeat

1We can associate a dropped packet with the most natural
path it belongs to (e.g.,the path taken by other packets with
the same destination address).

C1=4 C2=4 C3=4

Figure 4: An 3-hop path

the second and third steps in Figure 2.
The rest of this section presents these three com-

ponents from the bottom up. We start with the path
algorithm (component 3), followed by the solution for
general network topologies (components 1 and 2). We
also discuss extensions to the algorithm to enforce end-
point policies as early in a path as possible, to minimize
the overhead of carrying unwanted traffic.

4.2 Placing Rules Along a Path
Along a path, every switch allocates a fixed rule

capacity to the path, as in Figure 4. For a single path
Pi, the routing policy is simple—all packets in the flow
space Di are forwarded along the path. We can enforce
this policy by installing fixed forwarding rules on each
switch to pass packets to the next hop. The endpoint
policy is more complex, specifying different actions for
different packets in the flow space. Along the path, we
need to perform the action (such as drop or modifica-
tion) for each packet exactly once. However, where the
packet is processed (or where the rules are placed), is
constrained by the rule capacity of the switches. There-
fore, the endpoint policy is the one that gives us flexi-
bility to moves rules among multiple switches.

Our goal is to minimize the number of rules needed
to realize the endpoint policy,2 while respecting the
rule-capacity constraints.3 In what follows, we present
a heuristic that recursively covers the rules and packs
groups of rules into switches along the path. This algo-
rithm is computationally efficient and offers good per-
formance. For ease of exposition, we assume the flow
space associated with the path is the full space (contain-
ing all packets) and the endpoint policy matches on the
source and destination IP prefixes (two-dimensional).
A fully general version of the algorithm is presented at

2Since optimizing the rule list for a single switch is NP-
hard [24], we cannot assume an optimal representation of E
is provided as input to our algorithm. Instead, we accept
any prioritized list of two-dimensional rules. In practice,
the application module generating the endpoint policy may
optimize the representation of E.
3There exists a standard reduction between decision prob-
lems and optimization problems [25]. So we will switch be-
tween these two formulations whenever needed.

4

R1 : (src ip = 0∗,dst ip = 00 : Permit)
R2 : (src ip = 01,dst ip = 1∗ : Permit)
R3 : (src ip = ∗,dst ip = 11 : Drop)
R4 : (src ip = 11,dst ip = ∗ : Permit)
R5 : (src ip = 10,dst ip = 0∗ : Permit)
R6 : (src ip = ∗,dst ip = ∗ : Drop)

(a) Prioritized rule list of an access-control policy

00 01 10 11

00

01

10

11

R1

R4

R3

R2

R5

sr
cI

P
dstIP

(b) Rectangular representation of the policy

Figure 5: An example two-dimensional policy

R1

 R4

R3

 R2

R5

q

(a) Cover q

R’4

R3

 R2

(b) Switch s1

R1

 R4
R5

(c) After s1

Figure 6: Processing 2-dim endpoint policy E

the end of this subsection.

4.2.1 Overview of path heuristic
The endpoint policy E can be viewed as a two-

dimensional space where each rule is mapped to a rect-
angle based on the predicate, and higher-priority rect-
angles lie on top of lower-priority rectangles, as shown
in Figure 5.4 Let us consider enforcing the policy on the
path shown in Figure 4. Since a single switch cannot
store all six rules from Figure 5(a), we must divide the
rules across multiple switches. Our algorithm recur-
sively covers a rectangle, packs the overlapping rules
into a switch, and replaces the rectangle region with a
single rule, as shown in Figure 6.

Cover: The “cover” phase selects a rectangle q as
shown in Figure 6(a). The rectangle q overlaps with
rules R2, R3, R4, and R6 (overlapping rules), with R2
and R3 (internal rules) lying completely inside q. We
require that the number of overlapping rules of a rectan-
gle does not exceed the rule capacity of a single switch.

Pack: The intersection of rectangle q and the overlap-
ping rules (see Figure 6(b)) defines actions for packets
inside the rectangle. The intersection can also be viewed
as the projection of the endpoint policy E on q, denoted
as Eq (Figure 7(a)).
By“packing”Eq on the current switch, all packets falling
into q are processed (e.g., dropped or permitted), and
the remaining packets are forwarded to the next switch.
4Rule R6 is intentionally omitted in the figure since it covers
the whole rectangle.

r1 : (q ∧R2.p, R2.a)
r2 : (q ∧R3.p, R3.a)
r3 : (q ∧R4.p, R4.a)
r4 : (q ∧R6.p, R6.a)

(a) Eq

r1 : (q,Fwd)
r2 : (R1.p, R1.a)
r3 : (R4.p, R4.a)
r4 : (R5.p, R5.a)
r6 : (R6.p, R6.a)

(b) New rule list

Figure 7: Example policy

Replace: After packing the projection Eq in a switch,
we rewrite the endpoint policy to avoid re-processing
the packets in q: we first add a rule qFwd = (q,Fwd)
with the highest priority to the policy. The rule qFwd

forwards all the packets falling in q without any mod-
ification. Second, all internal rules inside q (R2 and
R3) can be safely deleted because no packets will ever
match them. The new rewritten endpoint policy and
corresponding rule list are shown in Figure 6(c) and
Figure 7(b).

The cover-pack-and-replace operation is recursively
applied to distribute the rewritten endpoint policy over
the rest of the path. Our heuristic is “greedy”: at each
switch, we repeatedly pack rules as long as there is rule
space available before proceeding to the next switch.
We make two observations about the cover-pack-and-
replace operation:
• Whether a feasible rule placement exists becomes

clear upon reaching the last switch in the path. If
we can fit all remaining rules on the last switch,
then the policy can be successfully implemented;
otherwise, no feasible rule placement exists.
• The total number of installed rules will be no less

than the number of rules in the endpoint policy.
This is primarily because only rules inside the rect-
angle are deleted. A rule that partially overlaps
with the selected rectangle will appear on multiple
switches. Secondly, additional rules (q,Fwd) are
included for every rectangle to avoid re-processing.

4.2.2 Search for candidate rectangles
Building on the basic framework, we explore what

rectangle to select and how to find the rectangle.

Rectangle selection plays a significant role in deter-
mining the efficacy of rule placement. A seemingly nat-
ural approach is to find a predicate q that completely
covers as many rules as possible, allowing us to remove
the most rules from the endpoint policy. However, we
must also consider the cost of duplicating the partially-
overlapping rules. Imagine we have two candidate rect-
angles q1 (with 10 internal rules and 30 overlapping
rules) and q2 (with 5 internal rules and 8 overlapping
rules). While q1 would allow us to delete more rules, q2
makes more effective use of the rule space. Indeed, we
can define the cost-effectiveness of q in a natural way:

utility(q) =
#internal rules− 1

#overlapping rules

If q is selected, all overlapping rules must be installed on

5

R7	 R6	

R5	
R1	

R3	

R2	

(a) Large cover

R7	 R6	

R5	
R1	

R3	

R2	

(b) Small cover

Figure 8: Not using unnecessarily large cover.

the switch, while only the internal rules can be removed
and one extra rule (for qFwd) must be added5.

Top-Down search strategy is used in finding the most
cost-effective rectangle. We start with rectangle (src ip =
∗,dst ip = ∗), and expand the subrectangles (src ip =
0∗,dst ip = ∗), (src ip = 1∗,dst ip = ∗), (src ip =
∗,dst ip = 0∗), and (src ip = ∗,dst ip = 1∗). In the
search procedure, we always shrink the rectangle to
align with rules, as illustrated by the example in Fig-
ure 8. Suppose our algorithm selected the predicate p
in Figure 8(a) (the shadowed one) to cover the rules.
We can shrink the predicate as much as possible, as
long as the set of rules fully covered by p remains un-
changed. Specifically, we may shrink p as illustrated in
Figure 8(b), without impacting the correctness of the
algorithm. Moroever, for any shrinked predicate, two
rules determine the left and right boundaries on the x-
axis, resulting in a total of m2 possible sides along the
x-axis. Similarly, the y-axis has a total of m2 possible
sides, resulting in a total number of relevant predicates
of m4.

Even searchingO(m4) predicates in each pack-cover-
and-replace operation would be impractical for larger
m. To limit the search space, our algorithm avoids
searching too deeply, preferring larger rectangles over
smaller ones. Specifically, let q be a rectangle and q′ be
its subrectangle (q′ is inside q). When both Qq and Qq′

can “fit” into the same switch, packing Qq often helps
reduce the number of repeated rules. In Figure 9, we
can use either the large rectangle in Figure 9(a) or the
two smaller rectangles in Figure 9(b). Using the larger
rectangle allows us to remove R3. Using the two smaller
rectangles forces us to repeat R3, and repeat R1 and R4
one extra time. As such, our algorithm avoids exploring
all of the small rectangles. Formally, we only consider
those rectangles q such that there exists no rectangle q′

which satisfies both of the following two conditions: (i)
q is inside q′ and (ii) Qq′ can be packed in the switch.
We call these q the maximal feasible predicates.

The pseudocode of the full path heuristic is shown
in Figure 10. Note that we could have used an exist-
ing rule-space partitioning algorithm [22, 23, 27, 28]
but they are less effective. The works of [22, 23, 27]
take a top-down approach to recursively cut a cover into

5Cost-effectiveness metrics have been used in other domains
to solve covering problems [26].

R7	

R6	

R5	

R4	
R1	

R3	 R2	

(a) using larger p

R7	

R6	

R5	

R4	
R1	

R3	 R2	

R7	

R6	

R5	

R4	
R1	

R3	 R2	

(b) using smaller rectangles

Figure 9: Only pack maximal rectangle.

Pack-and-Replace-2D(i, E′)

1 Let di ← the remaining capacity of si.
2 Let Q be the set of maximal feasible predicates

with respect to E′ that need ≤ di rules.

3 q ← arg maxq{ |Internal(q,E
′)|−1

‖E′q‖
| q ∈ Q}

4 Append the rules E′q sequentially to the end of
the prioritized list of si.

5 Let R← {r ∈ E′ : r.p is inside q}.
6 E′ ← E′\R
7 E′ ← (q,Fwd) ◦ E′

Compile-rules-2D({s1, ..., s`}, E)

1 E′ ← E
2 for i← 1 to `
3 do Add a default forward rule for all

unmatched packet at si.
4 while si has unused rule space
5 do Pack-and-Replace(i, E′)

Figure 10: Our heuristics for 2-dim chains

smaller ones until each of the cover fits into one switch.
This approach cannot ensure that every switch fully
uses its space6 (See results in Section 6). SmartPC [28]
takes a bottom-up approach to find the covers. But it
searches much less extensively among the set of feasible
covers; they do not use the cost-effectiveness metric to
control the number of repeated rules either.

4.2.3 Generalizing the algorithm
We end this subsection by highlighting a number

of extensions to our algorithm.

Smaller flow space : When the flow space for a path is
not the full space, we can still use the algorithm except
we require that the rectangular covers chosen for the
path reside in the corresponding flow space.

Single dimension: If the endpoint policy depends on
only one header field, this algorithm is near optimal—
the gap between the number of installed rules and the
size of endpoint policy is marginally small. See [15] for
a discussion.

Higher dimensions: Our algorithm works when Q is
a d-dimensional function for a d ≥ 3—by (i) still cutting
the along the two dimensions of source and destination
IP prefix with all rules projected to rectangles, or (ii)

6For example, imagine at some point in their algorithms,
one cover contains C + 1 rules. Since this cannot fit into
one switch, they cut the cover further into two smaller ones.
But after this cut, each of the two subcovers could have only
≈ C/2 rules, wasting nearly 50% of space in each switch.

6

using “hypercube” predicates instead of rectangular and
cutting on all dimensions.

Switch-order independence: Once our algorithm
finishes installing rules on switches, we are able to swap
the contents of any two switches without altering the
behavior of the whole path (the full technical report
gives a proof for this claim). This property plays a key
role when we tackle the general graph problem.

4.3 Decomposition and Allocation
We now describe how we decompose the network

problem into paths and divide rule space over the paths.

4.3.1 Decomposition through cross-product
We start the “decomposition” by finding all τ paths

in the graph P1, P2, ..., Pτ , where path Pi is a chain of
switches si1si2 ...si`i connecting one exposed location to
another. By examining the “cross-product” of endpoint
policy E and routing policy R, we find the flow space
Di for each Pi. Finally, we project the endpoint policy
E on Di to compute the “sub-policy” Ei for Pi. This
generates a collection of path problems: for each path
Pi, the endpoint policy is Ei and the routing policy
directs all packets in Di over path Pi.

Since each packet can enter the network via a sin-
gle ingress location and exit at most one egress location
(Section 2), any two flow spaces Di and Dj are disjoint.
Therefore, we can solve the rule-placement problem for
each path separately. In addition to solving the τ rule-
placement problems, we must ensure that switches cor-
rectly forward traffic along all paths, i.e., the routing
policy is realized. The algorithm achieves this by plac-
ing low-priority default rules on switches. These default
rules enforce“forward any packets in Di to the next hop
in Pi”, such that packets that are not handled by higher-
priority rules traverse the desired path.

4.3.2 Rule allocation through linear programming
Ideally, we would simply solve the rule-placement

problem separately for each path and combine the re-
sults into a complete solution. However, multiple paths
can traverse the same switch and need to share the rule
space. For each path Pi, we need to allocate enough rule
space at each switch in Pi to successfully implement the
endpoint policy Ei, while respecting the capacity con-
straints of the switches. The goal of “allocation” phase
is to find a global rule-space allocation, such that it is
feasible to find rule placements for all paths.

Enumerating all possible rule-space partitions (and
checking the feasibility by running the path heuristic
for each path) would be too computationally expen-
sive. Instead, we capitalize on a key observation from
evaluating our path heuristic: the feasibility of a rule-
space allocation depends primarily on the total amount
of space allocated to a path, rather than the portion

max: ⊥
s.t: ∀i ≤ n :

∑
j≤τ hi,j · xi,j ≤ 1 (C1)

∀j ≤ τ :
∑
i≤n hi,j · xi,j · cj ≥ mj (C2)

Figure 11: Linear program for rule-space allocation

of that space allocated to each switch. That is, if the
path heuristic can find a feasible rule placement for Fig-
ure 4 under the allocation (c1 = 4, c2 = 4, c3 = 4),
then the heuristic is likely to work for the allocation
(c1 = 3, c2 = 4, c3 = 5), since both allocations have
space for 12 rules.

To assess the feasibility of a rule-space allocation
plan, we introduce a threshold value η for the given
path: if the total rule space allocated by the plan is
no less than η (c1 + c2 + c3 ≥ η in the example), then
a feasible rule placement is likely to exist; otherwise,
there is no feasible rule placement. Therefore, our rule-
space allocation plan consists of two steps: (i) estimate
the threshold value η for each path and (ii) compute a
global rule-space allocation plan, which satisfies all of
the constraints on the threshold values.

This strategy is very efficient and avoids exhaus-
tive enumeration of allocation plans. Furthermore, it
allows us to estimate whether any feasible solution ex-
ists without running the path heuristics.

Estimate the necessary rule space per path: Two
factors impact the total rule space needed by a path:
• The size of endpoint policy: The more rules in the

endpoint policy, the more rule space is needed.
• The path length: The number of rectangles grows

with the length of the path, since each switch uses
at least one rectangle.

Since paths have different endpoint policies and lengths,
we estimate the threshold value for the `i-hop path Pi
with endpoint policy Ei. When

∑
j≤`i cij ≥ ηi for a

suitably chosen ηi, a feasible solution is likely to exist.
In practice, we found that ηi grows linearly with ‖Ei‖
and `i. Thus, we set ηi = αi‖Ei‖, where αi is linear in
the length of Pi and can be estimated empirically.

Compute the rule-space allocation: Given the
space estimates, we partition the capacity of each switch
to satisfy the needs of all paths. The decision can
be formulated as a linear programming problem (here-
after LP). Switch si can store ci rules, beyond the rules
needed for the default routing for each path. Let mj

be the estimated total rule space needed by path Pj .
We define {hi,j}i≤n,j≤τ as indicator variables so that
hi,j = 1 if and only if si is on the path Pj . The variables
are {xi,j}i≤n,j≤τ , where xi,j represents the portion of
rules at si allocated to Pj . For example, when c4 = 1000
and x4,3 = 0.4, we need to allocate 1000 × 0.4 = 400
rules at s4 for the path P3. The LP has two types of
constraints (see Figure 11): (i) capacity constraints en-
suring that each switch si allocates no more than 100%

7

of its available space and (ii) path constraints ensuring
that each path Pj has a total space of at least mj .

Our LP does not have an objective function since
we are happy with any assignment that satisfies all the
constraints.7 Moreover, we apply floor functions to
round down the fractional variables, so we never violate
capacity constraints; this causes each path can lose at
most `i rules compared to the optimal solution, where
the path length `i is negligibly small.

Re-execution and correctness of the algorithm:
When the path algorithm fails to find a feasible solution
based on the resource allocation computed by our LP, it
means our threshold estimates are not accurate enough.
In this case, we increase the thresholds for the failed
paths and re-execute the LP and path algorithms and
repeat until we find a feasible solution. In the technical
report, we show the correctness of the algorithm.

4.4 Minimizing Unwanted Traffic
One inevitable cost of distributing the endpoint

policy is that some unwanted packets travel one or more
hops before they are ultimately dropped. For instance,
consider an access-control policy implemented on a chain.
Installing the entire endpoint policy at the ingress switch
would ensure all packets are dropped at the earliest pos-
sible moment. However, this solution does not utilize
the rule space in downstream switches. In its current
form, our algorithm distributes rules over the switches
without regard to where the traffic gets dropped. A sim-
ple extension to our algorithm can minimize the cost of
carrying unwanted packets in the network. Specifically,
we leverage the following two techniques:

Change the LP’s objective to prefer space at the
ingress switches: In our original linear program for-
mulation, we do not set any objective. When we ex-
ecute a standard solver on our LP instance, we could
get a solution that fully uses the space in the “interior
switches,” while leaving unused space at the edge. This
problem becomes more pronounced when the network
has more rule space than the policy needs (i.e., many
feasible solutions exist). When our path algorithm runs
over space allocations that mostly stress the interior
switches, the resulting rule placement would process
most packets deep inside the network. We address this
problem by introducing an objective function in the LP
that prefers a solution that uses space at or near the
first switch on a path. Specifically, let `j be the length
of the path Pj . Our objective is

max:
∑
i≤n

∑
j≤τ

`j − wi,j + 1

`j
hi,jxi,j , (2)

where wi,j is si’s position in Pj . For example, if s4 is
the third hop in P6, then w4,6 = 3.

7This is still equivalent to standard linear programs; see [29].

Leverage the switch-order independence in the
path algorithm: At the path level, we can also lever-
age the switch-order independence property discussed in
Section 4.2.3 to further reduce unwanted traffic. Specif-
ically, notice that in our path algorithm, we sequentially
pack and replace the endpoint policies over the switches.
Thus, in this strategy, more fine-grained rules are pro-
cessed first and the “biggest” rule (covering the largest
amount of flow space) is processed at the end. On the
other hand, the biggest rule is more likely to cover larger
volumes of unwanted traffic. Thus, putting the biggest
rules at or near the ingress will drop unwanted traffic
earlier. This motivates us to reverse the order we place
rules along a chain: here, we shall first pack the most re-
fined rules at the last switch, and progressively pack the
rules in upstream switches, making the ingress switch
responsible for the biggest rules.

5. INCREMENTAL UPDATES
Network policies change over time. Rather than

computing a new rule placement from scratch, we must
update the policy incrementally to minimize the com-
putation time and network disruption. We focus on the
following major practical scenarios for policy updates:

Change of drop or modification actions: The
endpoint policy may change the subset of packets that
are dropped or how they are modified. A typical ex-
ample is updating an access-control list. Here, the flow
space associated with each path does not change.

Change of egress points: The endpoint policy may
change where some packets leave the network (e.g., be-
cause a mobile destination moves). Here, the flow space
changes, but the routing policy remains the same.

Change of routing policy: When the topology
changes, the routing policy also need to be changed.
In this case, the network has some new paths, and the
flow space may change for some existing paths.

The first example is a “planned change,” while the
other two examples may be planned (e.g., virtual-machine
migration or network maintenance) or unplanned (e.g.,
user mobility or link failure). While we must react
quickly to unplanned changes to prevent disruptions,
we can handle planned updates more slowly if needed.
These observations guide our algorithm design, which
has two main components: a “local algorithm” used
when the flow space does not change, and a “global al-
gorithm” used when the flow space does change. 8

5.1 Local Algorithm
When the flowspace remains the same (i.e., all pack-

ets continue to traverse the same paths), a local up-
date algorithm is sufficient. If a path’s policy does not
change, the rule placement for that path does not need

8We can use techniques in [30] to ensure consistent updates.

8

(a) Original placement

R’ R

(b) Final placement

Figure 12: Rule insertion example

Insert-Rule-Path({s1, ..., s`}, R,E)

1 for i← 1 to `
2 do Let Q be the set of predicates covered by si.
3 for every predicate q ∈ Q
4 do if R.p overlaps with q
5 then Install (R.p ∧ q,R.a) on si
6 do if R.p is inside q
7 then return

Figure 13: Procedure for rule insertion

to change, so we do not need to re-execute the path
algorithm presented in Section 4.2. We can always con-
vert an original path-wise endpoint policy into the new
one by applying one of the following three operations
one or more times: (i) insert a new rule, (ii) delete an
existing rule, and (iii) alter an existing rule. Thus, we
need only design an algorithm to handle each of these
operations. Then we may recursively invoke this algo-
rithm to update the policy for the entire path.

Let us focus on rule insertion, i.e., adding a new
rule R to the endpoint policy E and the path P =
s1s2...s`, as shown in Figure 12. Strategies to handle
the other two operations are similar. Recall each switch
si along the path is responsible for some region of flow
space, indicated by predicates. In our algorithm, we
simply walk through each si and see whether R.p over-
laps with the region (R.p is the predicate of rule R).
When an overlap exists, we “sneak in” the projection of
R with respect to the region of si. Otherwise, we do
nothing. Figure 13 illustrates the pseudocode.

5.2 Global Algorithm
When the flowspaces change, our algorithm first

changes the forwarding rules for the affected paths. Then
we must decide the rule placements on these paths to
implement the new policies. This consists of two steps.
First, we run the linear program discussed in Section 4
only on the affected paths to compute the rule-space al-
location (notice that rule spaces assigned to unaffected
paths should be excluded in the LP). Second, we run
the path algorithm for each of the paths using the rule
space assigned by the LP.9

9If the algorithm cannot find an allocation plan leading to

Performance in unplanned changes. When a
switch or link fails, we must execute the global algo-
rithm to find the new rule placement. The global algo-
rithm could be computationally demanding, leading to
undesirable delays.10 To respond more quickly, we can
precompute a backup rule placement for possible fail-
ures and cache the results at the controller. We leave it
as a future work to understand the most efficient way
to implement this precompute-and-cache solution.

6. PERFORMANCE EVALUATION
In this section, we use real and synthetic policies to

evaluate our algorithm in terms of (i) rule-space over-
head, (ii) running time, and (iii) resources consumed by
unwanted traffic.

6.1 Experimental Workloads
Routing policies: We use GT-ITM [31] to gener-

ate 10 synthetic 100-node topologies. Four core switches
are connected to each other, and the other 96 switches
constitute 12 sub-graphs, each connected to one of the
core switches. On average, 53 of these 96 switches lie at
the periphery of the network. We compute the shortest
paths between all pairs of edge switches. The average
path length is 7, and the longest path has 12 hops.

Endpoint policies: We use real firewall configu-
rations from a large university network. There are 13
test cases in total. We take three steps to associate the
rule sets with the topology. First, we infer subnet struc-
tures using the following observation: when the predi-
cate of a rule list is (src ip = q1 ∧ dst ip = q2) (where
q1 and q2 are prefixes), then q1 and q2 should belong
to different subnets. We use this principle to split the
IP address space into subnets such that for any rule in
the ACL, its src ip prefix and dst ip prefix belong to
different subnets. Subnets that do not overlap with any
rules in the ACL are discarded. Second, we attach sub-
nets to edge switches. Third, for any pair of source and
destination subnets, we compute the projection of the
ACL on their prefixes. Then we get the final endpoint
policy E. 4 of the 13 endpoint policies have less than
15,000 rules, and the rest have 20,000–120,000 rules.

In addition, ClassBench [32] is used to generate
synthetic 5-field rule sets to test our path heuristic.
ClassBench gives us 12 test cases, covering three typical
packet-classification applications: five ACLs, five Fire-
walls, and two IP Chains. (IP Chain test cases are the
decision tree formats for security, VPN, and NAT filter
for software-based systems, see [32] for details.)

feasible rule placements for all affected paths, an overall re-
computation must be performed.

10In our experiments, we observe the failure of one important
switch can cause the recomputation for up to 20% of the
paths (see Section 6 for details). The update algorithm may
take up to 5 to 10 seconds when this happens.

9

1"

1.1"

1.2"

1.3"

1.4"

1.5"

ric
h,1
65
"

ric
h,2
44
"

ric
h7
02
"

t47
"
t13
4"

t16
0"

t16
1"

t20
9"

t41
1"

t49
9"

t69
1"

t98
5"

t19
01
"

O
ve
rh
ea
d"
(v
.s
"L
P"
Bo

un
d)

"

(a) Rule-space overhead

0"

1"

2"

3"

4"

5"

6"

7"

8"

rich
%16

5)

rich
%24

4)
rich

702
)

t47
)

t13
4)

t16
0)

t16
1)

t20
9)

t41
1)

t49
9)

t69
1)

t98
5)

t19
01)

Ti
m
e(
se
c)
)

2x)processes)
Single)process)
Linear)Programming)

(b) Computation time (for one and two processes)

Figure 14: The performance of the graph algorithm over different endpoint policies on 100-switch topologies

We evaluate our algorithms using two platforms.
For stand-alone path heuristic, we use RX200 S6 servers
with dual, six-core 3.06 Intel X5675 processors with
48GB ram. To test the algorithm on graphs, we use the
Gurobi Solver to solve linear programs. Unfortunately,
the Gurobi Solver is not supported on the RX200 S6
servers so we use a Macbook with OS X 10.8 with a
2.6 GHz Intel Core i7 processor and 8GB memory for
the general graph algorithms. Our algorithms are im-
plemented in Java and C++ respectively.

6.2 Rule-Space Utilization
Our evaluation of rule-space utilization character-

izes the overhead of the algorithm, defined as the num-
ber of extra rules needed to implement the endpoint
policy E. The overhead comes from two sources:

Decomposition of graph into paths: A single
rule in the endpoint policy may need to appear on multi-
ple paths. For example, a rule (src ip = 1.2.3.4 : Drop)
matches packets with different destinations that follow
different paths; as such, this rule appears in the pro-
jected endpoint policies of multiple paths. Our exper-
iments show that this overhead is very small on real
policies. The average number of extra rules is typically
just twice the number of paths, e.g., in a network with
50 paths and 30k rules in the endpoint policy, the de-
composition leads to approximately 100 extra rules.

Distributing rules over a path: Our path heuris-
tic installs additional rules to distribute the path-wide
endpoint policy. If our heuristic do a good job in se-
lecting rectangles, the number of extra rules should be
small. We mainly focus on understanding this overhead,
by comparing to a lower bound of ‖Ei‖ rules that as-
sumes no overhead for deploying rules along path Pi.
This also corresponds with finding a solution in our lin-
ear program where all αi’s are set to 1.

Our experiments assume all switches have the same

rule capacity. As such, the overhead is defined as C−CL

CL ,
where C is the rule capacity of a single switch, such
that our algorithm produces a feasible rule placement,
and CL is the minimum rule capacity given by the LP,

assuming no overhead is incurred in the path algorithm.

Results: The overhead is typically between 15% and
30%, as shown in Figure 14(a). Even when the overhead
reaches 30%, the overhead is still substantially lower
than in the strawman solution that places all rules at
the first hop [7, 17]—for example, we distribute a policy
of 117.5k rules using 74 switches with 2.7k rules, while
the first-hop approach needs 32 edge switches with 17k
rules. Figure 14(b) shows the running time of our algo-
rithm, broken down into solving the LP and applying
the path heuristic. The LP solver introduces a small
overhead, and the path heuristic is responsible for the
longer delays. Fortunately, the path heuristic can easily
run in parallel, with different threads or processes com-
puting rule placement for different paths. Each pair of
bars in Figure 14(b) compares the running time when
using one vs. two processes. The speed-up is significant,
except for some policies that have one particularly hard
path problem that dominates the running time. The
algorithm is fast enough to run in the background to
periodically reoptimize rule placements for the entire
network, with the incremental algorithm in Section 5
handling changes requiring an immediate response.

Evaluating the path heuristic: We also evaluate
the path heuristic in isolation to better understand its
behavior. These experiments apply the entire endpoint
policy to one path of a given length. Figure 15(a) plots
the rule-space overhead (as a function of path length)
for three representative policies (with the lowest, me-
dian and highest overhead) from the university firewall
data. The median overhead for the 8-hop case is ap-
proximately 5% and the worst case is around 28%. For
all policies, the overhead grows steadily with the length
of the path. To understand the effect of path length, we
compare the results for four and eight switches in the
median case. With eight switches, the number of rules
per switch (991) is reduced by 44% (compared to 1776
for four switches). But, this also means we must search
for smaller rectangles to pack rules into smaller tables.
As each rectangle becomes smaller, a rule in the end-
point policy that no longer “fits” within one rectangle

10

0"

0.05"

0.1"

0.15"

0.2"

0.25"

0.3"

0.35"

1" 2" 3" 4" 5" 6" 7" 8" 9"

O
ve
rh
ea
d(

Path(Length(

(((High(

(((Median(

((((Low(

(a) A large university network data

0"

0.2"

0.4"

0.6"

0.8"

1"

0" 0.2" 0.4" 0.6" 0.8" 1" 1.2" 1.4" 1.6" 1.8"

Pe
rc
en

ta
ge
)

Overhead)

))))2/hop)

))))4/hop)

))))8/hop)

(b) CDF of all test cases
Figure 15: The performance of the path heuristic.

must be split, leading to more extra rules.
Figure 15(b) plots the CDF of the overhead across

both the synthetic and real policies for three different
path lengths. While overhead clearly increases with
path length, the variation across data sets is signifi-
cant. For 8-hop paths, 80% of the policies have less
than 40% overhead, but the worst overhead (from the
ClassBench data) is 155%.11 In this synthetic policy,
rules have wildcards in either the source or destination
IP addresses, causing significant rule overlaps that make
it fundamentally difficult for any algorithm to find good
“covering”rectangles. In general, the overhead increases
if we tune the ClassBench parameters to generate rules
with more overlap. Of the six data sets with the worst
overhead, five are synthetic firewalls from ClassBench;
in general, the real policies have lower overhead.

Profiling tool: We created a profiling tool that an-
alyzes the structure of the endpoint policies to identify
the policies that are fundamentally hard to distribute
over a path. The tool searches for all the rectangular
predicates in the endpoint policy that can possibly be
packed into a single switch. Then, for each predicate
q, the tool analyzes the cost-effectiveness ratio between
the number of internal rules with respect to q and ‖Eq‖.
The largest ratio here correlates well with the perfor-
mance of our algorithm. Our tool can help a network
administrator quickly identify whether distributed rule
placement would be effective for their networks.

11Even for this worst-case example, spreading the rules over
multiple hops allow a network to use switches with less than
one-third the TCAM space than a solution that places all
rules at the ingress switch.

0"

0.2"

0.4"

0.6"

0.8"

1"

0" 0.2" 0.4" 0.6" 0.8" 1"Fr
ac
%o

n(
of
(d
ro
pp

ed
((t
ra
ffi
c(

Frac%on(of(the(path(travelled(

((Small(alpha(
((Big(alpha(

Figure 16: CDF of dropped traffic in the graph

6.3 Minimizing Unwanted Traffic
We next evaluate how well our algorithm handles

unwanted traffic (i.e., packets matching a “drop” rule).
When ingress switches have sufficient rule space, our
LP automatically finds a solution that does not use in-
ternal switches. But, when switches have small rule
tables, some rules must move to interior switches, caus-
ing unwanted packets to consume network bandwidth.
Our goal is to drop these packets as early as possible,
while still obeying the table-size constraints. We sum-
marize our results using a cumulative distribution func-
tion F (·), e.g., F (0.3) = 0.65 means that 65% of the
unwanted packets are dropped before they travel 30%
of the hops along their associated paths.

We evaluate the same test cases in Section 6.2 and
assume the unwanted traffic has a uniform random dis-
tribution over the header fields. Figure 16 shows a typ-
ical result. We run the algorithm using two sets of α
values. When α values are small, we want to leave as
much unused space as possible; when α values are large,
we allow the algorithm to consume more of the avail-
able rule space, allowing the path algorithm to drop un-
wanted packets earlier. In both cases, more than 60%
of unwanted packets are dropped in the first 20% of the
path. When we give the LP more flexibility, the frac-
tion of dropped packets rises to 80%. Overall, we can
see that our algorithm uses rule space efficiently while
dropping unwanted packets quickly.

6.4 Comparison with Palette
We next compare our algorithm with Palette [21],

the work most closely related to ours. Palette’s main
idea is to partition the endpoint policy into small ta-
bles that are placed on switches, such that each path
traverses all tables at least once. Specifically, Palette
consists of two phases. In the first phase (coloring al-
gorithm), the input is the network structure and the
algorithm decides the number of tables (i.e., colors),
namely k, needed. This phase does not need the end-
point policy information. In the second phase (parti-
tioning algorithm), it finds the best way to partition
the endpoint policy into k (possibly overlapping) parts.
This phase does not require the knowledge of the graph.

Here we compare the performance of our work and

11

0"

0.2"

0.4"

0.6"

0.8"

1"

1" 2" 3" 4" 5" 6" 7" 8"

O
ve
rh
ea
d(

Path(Length(

(((Ours(

(((Pale1e(

Figure 17: Comparing our path heuristic to Palette

Palette for both the special case where the network is
a path and the general graph case. When the network
is a path, we only examine the partitioning algorithm
(because the number of partitions here exactly equals to
the size of the path). Figure 17 shows that Palette’s per-
formance is similar to ours when path length is a power
of 2 but is considerably worse for other path lengths.
Moreover, Palette cannot address the scenario where
switches have non-uniform rule capacity.

Next, we examine Palette’s performance for gen-
eral graphs. Specifically, we execute Palette’s coloring
algorithm on the general graph test cases presented in
Section 6.2. The maximum number of partitions found
by their algorithm is four. This means in a test case
where an endpoint policy contains 117k rules, Palette
requires each switch to contain at least 117k/4 ≈ 29k
rules (this assumes no further overhead in their parti-
tioning phase). In contrast, our algorithm produces a
solution requiring only 2.5k rules per switch.

7. CONCLUSION
Our rule-placement algorithm helps raise the level

of abstraction for SDN by shielding programmers from
the details of distributing rules across switches. Our al-
gorithm performs well on real and synthetic workloads,
and has reasonable running time. In our ongoing work,
we are exploring ways to parallelize our algorithm, so we
can handle even larger networks and policies efficiently.

8. REFERENCES
[1] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar,

L. Peterson, J. Rexford, S. Shenker, and J. Turner,
“OpenFlow: Enabling innovation in campus networks,”
SIGCOMM CCR, vol. 38, no. 2, pp. 69–74, 2008.

[2] N. Gude, T. Koponen, J. Pettit, B. Pfaff, M. Casado,
N. McKeown, and S. Shenker, “NOX: Towards an operating
system for networks,” SIGCOMM CCR, vol. 38, no. 3, 2008.

[3] D. Erickson, “The Beacon OpenFlow controller,” in
HotSDN, Aug 2013.

[4] A. Voellmy and P. Hudak, “Nettle: Functional reactive
programming of OpenFlow networks,” in PADL, Jan 2011.

[5] “POX.” http://www.noxrepo.org/pox/about-pox/.
[6] N. Foster, R. Harrison, M. J. Freedman, C. Monsanto,

J. Rexford, A. Story, and D. Walker, “Frenetic: A network
programming language,” in ICFP, Sep 2011.

[7] M. Casado, M. J. Freedman, J. Pettit, J. Luo, N. Gude,
N. McKeown, and S. Shenker, “Rethinking enterprise
network control,” Trans. on Networking, vol. 17, Aug 2009.

[8] R. Wang, D. Butnariu, and J. Rexford, “OpenFlow-based
server load balancing gone wild,” in Hot-ICE, Mar 2011.

[9] B. Stephens, A. Cox, W. Felter, C. Dixon, and J. Carter,
“PAST: Scalable Ethernet for data centers,” in CoNEXT,
Dec 2012.

[10] M. Casado, T. Koponen, R. Ramanathan, and S. Shenker,
“Virtualizing the network forwarding plane,” in PRESTO,
ACM, 2010.

[11] S. Shenker, “The future of networking and the past of
protocols,” Oct 2011. Talk at Open Networking Summit.

[12] C. Monsanto, J. Reich, N. Foster, J. Rexford, and
D. Walker, “Composing software defined networks,” in
NSDI, Apr 2013.

[13] D. L. Applegate, G. Calinescu, D. S. Johnson, H. Karloff,
K. Ligett, and J. Wang, “Compressing rectilinear pictures
and minimizing access control lists,” in ACM-SIAM SODA,
pp. 1066–1075, 2007.

[14] C. R. Meiners, A. X. Liu, and E. Torng, “TCAM Razor: A
systematic approach towards minimizing packet classifiers
in TCAMs,” IEEE/ACM Trans. Netw., vol. 18,
pp. 490–500, Apr 2010.

[15] K. Nanxi, L. Zhenming, R. Jennifer, and W. David, “opt.”
www.cs.princeton.edu/~nkang/tech.pdf.

[16] C. R. Meiners, A. X. Liu, and E. Torng, “Bit weaving: A
non-prefix approach to compressing packet classifiers in
TCAMs,” IEEE/ACM Trans. Netw., vol. 20, pp. 488–500,
Apr 2012.

[17] S. Ioannidis, A. D. Keromytis, S. M. Bellovin, and J. M.
Smith, “Implementing a distributed firewall,” in CCS, (New
York, NY, USA), pp. 190–199, ACM, 2000.

[18] L. Yuan, J. Mai, Z. Su, H. Chen, C.-N. Chuah, and
P. Mohapatra, “FIREMAN: A toolkit for firewall modeling
and analysis.,” in IEEE Symposium on Security and
Privacy, pp. 199–213, 2006.

[19] M. Yu, J. Rexford, M. J. Freedman, and J. Wang, “Scalable
flow-based networking with DIFANE,” in ACM SIGCOMM,
(New York, NY, USA), pp. 351–362, ACM, 2010.

[20] M. Moshref, M. Yu, A. Sharma, and R. Govindan,
“VCRIB: Virtualized rule management in the cloud,” in
NSDI, Apr 2013.

[21] Y. Kanizo, D. Hay, and I. Keslassy, “Palette: Distributing
tables in software-defined networks,” in IEEE Infocom
Mini-conference, Apr 2013.

[22] P. Gupta and N. McKeown, “Packet classification on
multiple fields,” in ACM SIGCOMM, pp. 147–160, 1999.

[23] S. Singh, F. Baboescu, G. Varghese, and J. Wang, “Packet
classification using multidimensional cutting,” in ACM
SIGCOMM, pp. 213–224, 2003.

[24] S. Suri, T. Sandholm, and P. Warkhede, “Compressing
two-dimensional routing tables,” Algorithmica, vol. 35,
no. 4, pp. 287–300, 2003.

[25] S. Arora and B. Barak, Computational Complexity: A
Modern Approach. Cambridge University Press, 2009.

[26] V. Vazirani, Approximation Algorithms. Springer, 2004.
[27] B. Vamanan, G. Voskuilen, and T. N. Vijaykumar,

“EffiCuts: Optimizing packet classification for memory and
throughput,” in ACM SIGCOMM, pp. 207–218, Aug 2010.

[28] Y. Ma and S. Banerjee, “A smart pre-classifier to reduce
power consumption of TCAMs for multi-dimensional packet
classification,” in ACM SIGCOMM, pp. 335–346, Aug 2012.

[29] C. Papadimitriou and K. Steiglitz, Combinatorial
Optimization: Algorithms and Complexity. Dover books on
mathematics, Dover Publications, 1998.

[30] M. Reitblatt, N. Foster, J. Rexford, C. Schlesinger, and
D. Walker, “Abstractions for network update,” in ACM
SIGCOMM, Aug 2012.

[31] K. Calvert, M. B. Doar, A. Nexion, and E. W. Zegura,
“Modeling Internet topology,” IEEE Communications
Magazine, vol. 35, pp. 160–163, 1997.

[32] D. E. Taylor and J. S. Turner, “Classbench: A packet
classification benchmark,” in IEEE INFOCOM, 2004.

12

APPENDIX
A. CORRECTNESS OF PATH HEURISTICS

Let a ·b to denote the composed action by applying
action a before b on a packet. Then,

a · Fwd = a (3)

Fwd · a = a (4)

Lemma A.1. The path heuristics correctly distribute
the endpoint policy.

Proof. We prove the lemma by induction on the
path length. For simplicity, we assume only selecting
one rectangular predicate for each switch.
• Base case: path length ` = 1. In this case, we

install the entire policy on the only switch, so the
heuristics is correct.
• Case: path length ` = k + 1.

Inductive hypothesis: The heuristics correctly dis-
tribute an endpoint policy over a path of length k.
Consider selecting a rectangular predicate q on the
first switch S1. Let E be the original endpoint
policy and E′ be the policy after rewritten. In
the heuristics, Eq is the policy(rules) installed on
switch S1. We use E(pkt), E′(pkt) and Eq(pkt) to
denote the action for packet pkt defined by E, E′

and Eq separately. Therefore,
– pkt ∈ q, E′(pkt) = Fwd andEq(pkt) = E(pkt).
Eq(pkt) · E′(pkt) = E(pkt) · Fwd = E(pkt) by
Equation 3;

– pkt /∈ q, Eq(pkt) = Fwd andE′(pkt) = E(pkt).
Eq(pkt) · E′(pkt) = Fwd · E(pkt) = E(pkt) by
Equation 4;

By IH, the path heuristics implement E′ using the
last k switches. Therefore, it implement E using
all the k + 1 switches.

Let S1, ..., Sn be the ordered switches along a path.
Let Ri(1 ≤ i ≤ n) be the policy(rules) installed on
switch Si.

Corollary A.2. For any packet pkt, there exists
exactly one 1 ≤ k ≤ n, s.t, Sk(pkt) = Q(pkt) and
Sj(pkt) = Fwd (j 6= k).

Proof. Directly proved from the above lemma.

Lemma A.3. Let a1, ..., an be a permutation of 1, 2, .., n.
If the switches are arranged in the order Sa1 , ..., San ,
Ra1 , ..., Ran still implement the endpoint policy Q.

Proof. Consider packet pkt. Let ak be the switch
s.t Rak(pkt) = Q(pkt) in Corollary A.2. By Equation 3
and 4,

Ra1(pkt) · ... ·Rak−1
(pkt) ·Rak(pkt) · ... ·Ran(pkt)

= Fwd · ... · Fwd ·Q(pkt) · ... · Fwd

= Q(pkt)

(a) Tree representation of an access-control policy

r1 : (0001 : Drop) r4 : (0111 : Drop) r7 : (10∗ : Drop)
r2 : (0010 : Drop) r5 : (1000 : Fwd) r8 : (∗ : Fwd)
r3 : (0101 : Drop) r6 : (1111 : Drop)

(b) Prioritized list of rules in a switch

Figure 18: Example one-dimensional policy on a switch

B. ONE-DIMENSIONAL ENDPOINT POLI-
CIES ON A PATH

Along a path, traffic flows in one direction through
a sequence of n switches {s1, s2, ..., sn}, with a link be-
tween si and si+1 for all i = 1, 2, ..., n−1. Since all pack-
ets enter the network at the same location, the network-
wide policy E depends only on the packet headers; as
such, we write E(pkt) instead of E(loc,pkt). In addi-
tion, the routing function R is trivial—all packets ar-
riving at s1 are routed to sn, unless E drops the packet.
Our goal is to find the minimal capacity C for each of
the switch that has a feasible realization of the policy. 12

In this subsection, we consider one-dimensional policies
E — those that match on a single header field, such as
the IP destination prefix.

B.0.1 Pack-and-Replace on a Prefix Tree
For one-dimensional policies, there are known al-

gorithms [24] for computing an optimal list of rules for
a single switch. The function E can be represented as
a prefix-tree on the header field, as shown for an exam-
ple access-control policy in Figure 18(a). Each internal
node corresponds to a prefix, and each leaf node cor-
responds to a fully-specified header value; each prefix
can be interpreted as a predicate. A node can specify
an action (e.g.,forward or drop) for that prefix, as well
as descendants that do not fall under a more-specific
prefix that includes an action. Computing the priori-
tized list of rules involves associating each labeled node
with a predicate (i.e., the prefix) and an action (i.e.,
the node label), and assigning priority based on prefix
length (with longer prefixes having higher priority), as
shown in Figure 18(b). Importantly, one can see that
the resulting rules will always satisfy the nesting prop-
erty. In other words, given a pair of rules, their predi-
cates will either be disjoint or one a strict subset of the

12There exists a standard reduction between decision prob-
lems and optimization problems [25]. So we will switch be-
tween these two formulations whenever needed.

13

(a) Pack operation

(b) Replace operation (without reoptimization)

Figure 19: Pack-and-replace for one-dimensional poli-
cies

other—there will never be a partial overlap. Moreover,
if rules r1 and r2 contain predicates p1 and p2, respec-
tively, and p1 is a strict subset of p2, then r1 must have
higher priority than r2. (Otherwise, r1 would be com-
pletely covered by r2 and would go unused.)

If a single switch cannot store all eight rules in
Figure 18, we must divide the rules across multiple
switches. Our algorithm recursively covers a portion
of the tree, packs the resulting rules into a switch, and
replaces the subtree with a single node, as shown in
Figure 19. In the “pack” phase, we select a subtree
that can “fit” in one switch, as shown in Figure 18(a)
(the subtree inside the rectangle). If the root of this
subtree has no action, the root inherits the action of
its lowest ancestor—in this case, the root of the en-
tire tree (see Figure 19(a)). The resulting rules are
then reoptimized, if possible, before assignment to the
switch . In this example, switch 1 would have a pri-
oritized list of four rules—(1000, Fwd), (1111, Drop),
(10*, Drop) and (1*, Fwd). More generally, we may
pack multiple subtrees into a single switch. To ensure
packets in this subtree are handled correctly at down-
stream switches, we replace the subtree with a single
predicate at the root of the subtree (e.g., a single “F”
node in Figure 19(b)). Then, we can recursively apply
the same pack-and-replace operations on the new tree
to generate the rules for the second switch.

B.1 Distribute one-dimensional policies
To describe our algorithm precisely, we introduce

some notation. Given a switch capacity C, our algo-
rithm decides whether a feasible solution exists. In the
“pack” phase, we refer to the subtree packed in a switch
as the projection Eq of E with respect to a predicate q,
defined as follows:

Eq(pkt) =

{
E(pkt) if q(pkt) = true
⊥ otherwise,

where ⊥ refers to “no-operation”. As we walk through

Pack-and-Replace(i, E′)

1 Let di ← the remaining capacity of si.
2 q ← arg maxq{‖Eq‖ | ‖Eq‖ ≤ di}
3 Append the rules E′q sequentially to the end

of the prioritized list of si.
4 E′ ← E′\E′q
5 E′ ← (q,Fwd) ◦ E′

Compile-rules({s1, ..., sn}, E)

1 E′ ← E
2 for i← 1 to n
3 do
4 Add a default forward rule for all

unmatched packets at si.
5 while si has unused rule space and

E′ is non-trivial
6 do Pack-and-Replace(i, E′)

Figure 20: Path heuristics for one-dimensional policy

each switch deciding what rules to place, we maintain
an intermediate prioritized list E′ = [r′1, ..., r

′
n′] to rep-

resent the set of unprocessed rules that remain. The set
E′ starts as E, shrinks as we move along the chain, and
ends as a trivial function that forwards all packets.

Our algorithm is “greedy” in packing as many large
subtrees as possible, as early in the chain as possible.
At the i-th switch, we recursively perform the “pack-
and-replace”operation, and have a default rule that for-
wards all unmatched packets to the next hop. At each
step, we pack the largest possible subtree, subject to
the switch’s capacity constraint, as shown in the pseu-
docode in Pack-and-Replace in Figure 20. We pack
as many subtrees as possible in a single switch before
proceeding to the next switch, as shown in the inner
while loop in Compile-rules in Figure 20.

Running time. One can see that a straightforward
implementation of our algorithm has time complexity
O(mn logm), where m is the number of rules and n is
the number of switches.

B.2 Performance analysis
We have the following theorem regarding the per-

formance of our one-dimensional algorithm.

Theorem B.1. Consider our path heuristics described
above. We have
• Correctness of the algorithm: the prioritized rules

in the paths correctly implement the policy function
E = [r1, ..., rm].
• Approximation ratio: let C be the minimum ca-

pacity so that our algorithm will return a feasible
solution. Let C∗ be the optimal capacity. We have
C
C∗ ≤ (1 + ε) for any constant ε when m and n are
sufficiently large.

Proof. The first part of the Proposition is proved in

14

Lemma A.1. We shall focus on the second part. Recall
that a lower bound on the optimal capacity C∗ for each
of the switches is m/n. Thus, we need to show that
the capacity C given by our algorithm satisfies C ≤
(1 + ε)m/n, where ε tends to zero when m,n→ +∞.

We need the following Lemma.

Lemma B.2. Let C be the capacity of each switch.
For a switch si, the number of prefixes we can find by
invoking Place-Rule(si, ci, qi, E

′) is at most log2 C.

Proof. (Proof of Lemma B.2) Let q be an arbitrary
prefix. Let q0 be the prefix obtained by appending a 0
at the end of q (e.g.,when q = 010∗, q0 = 0100∗) and q1
be the prefix obtained by appending a 1 at the end of
q. One can see that for any 1-dim policy E,

‖Eq‖ ≥ ‖Eq0‖+ ‖Eq1‖ − 1. (5)

Let us write ci be the size of available space for
si while we are packing subtrees for si. We claim that
when a q in Place-and-Pack is found and packed,
either the size of ci is reduced by at least a half or q = ∗
(i.e.,the prefix represents the whole tree). We use an
existential argument to prove the claim. Let q be an
arbitrary prefix such that ‖E′q‖ > ci while ‖E′q0‖ ≤ ci
and ‖E′q1‖ ≤ ci. Such q always exists unless ‖E′‖ ≤ ci,
in which case we complete our argument. Now because
of ‖E′q‖ > ci and (5), one of ‖E′q0‖ or ‖E′q1‖ must be at
least ci/2. Thus, the subtree we found that is packed
in si has at least ci/2 rules. Therefore, the number of
prefixes we can find before ci = 0 is at most log2 c.

We now continue our analysis by using Lemma B.2.
Let us define Φ be the sum of the total number of rules
deployed in the switch so far and the size of E′, which is
a changing variable over the time and is m at the begin-
ning of our algorithm. When our algorithm terminates,
one can see that (n − 1)C < Φ ≤ n · C (using the fact
that all the switches are full except for the last one),
i.e.,

dΦ
n
e = C (6)

At the point we deploy rules at the i-th switch si, Φ
changes in the following way:
• Φ is incremented by 1 because we install a default

forwarding rule for all unmatched packets.
• Φ is incremented by 2 when we pack a new subtree

in a switch.
Thus, the total increment of Φ at si is at most 2 log2 C+
1. Therefore, at the end, we have

Φ ≤ m+ 2(log2 C) + n.

Together with (6) and the fact that C∗ ≥ m/n, we see
that C ≤ (1 + ε)C∗ for any constant ε (when m and n
are sufficiently large).

Figure 21: The structure of the load balancer network.

C. CASE STUDY: LOAD BALANCER
This section presents a case study for load bal-

ancers. We shall first describe the set up of our network
and the design goal of the load balancer. Then we shall
describe how our algorithm works here. Finally, we will
contrast our algorithm with strawman solutions.

The network and load balancer
In this scenario, we consider a data center that con-

sists of multiple replica servers {R1, R2, ..., Rn} provid-
ing the same servce. Each Rj has a unique IP address
and an integer weight γi that determines the share of re-
quests the replica should handle. A network of switches
is used to connect the servers with the client (See Fig-
ure 21). The clients access the service through a single
gateway switch. Here, we shall also assume that the
distribtuion on the src ip of the incoming packets is
uniform.

The network is a tree and root of the network is the
gateway. The tree consists of of two types of switches.
Those switches that are close to the root are SDN-
enabled switches. Those switches that are closer to the
servers are less expensieve, non-SDN-enabled switches.
Here we consider an example of the tree that consists of
six levels of switches. The first five levels are all SDN-
enabled switches and the switches at the last level are
non-SDN-enabled switches that directly connect with
the servers. Each switch in the first 4 levels contains 4
children. The (SDN-enabled) switches at the 5th level
contains 16 children. Each (non-SDN enabled) switch
at the 5th level directly connects with 16 servers. Thus,
the number of switches at each level is 1, 4, 8, 16, 64,
256, and 4096. The total number of servers is 65536.

Our goal here is to deploy an endpoint policy in the
SDN-enabled switches to implement a load balancer so
that each server Si at the end will approximately pro-
cess γi portion of packets. Here, we use a fairly standard
recursive algorithm to decide the routing policy (see be-
low for details). Finally, one specific constraint we face
here is that the non-SDN enabled switches are less pow-
erful and less flexible to change, thus we require these

15

switches only use destination based routing.

Routing function in load balancer. We now
describe our algorithm for building the routing func-
tion.The routing function is responsible for making sure
each of the server Rj approximately receive γj portion
of traffic. We use a recursive algorithm to decide the
routing function. We explain this idea by demonstrat-
ing how it works at the root level. The root (i.e.,the
gateway) needs to divide the traffic into four ways, each
of which goes to one child of the root. Let M be the
total number of servers (in our example M = 65536).
One can see that the portion of traffic that should go to
the first child is τi ,

∑
1≤i≤M

4
γi. Similarly, the portion

of traffic that should go to the 2nd, 3rd, and 4th chil-
dren are τ2 ,

∑
M
4 ≤i≤

2M
4
γi, τ3 ,

∑
2M
4 ≤i≤

3M
4
γi, and

τ4 ,
∑

3M
4 ≤i≤M

γ4. So the first step of our algorithm

is to deploy rules at the root level so that each child
receives its corresponding portion of traffic.

Next, we can recursively apply the same algorithm
to the children of the root, i.e.,for each child, we run
this algorithm and make sure their children receive the
right portion of traffic. We can continue this recursive
algorithm until the routing policies for each of the in-
ternal nodes.

Using our solution. The subgraph induced by the
SDN-enabled switches corresponds with the big switch
abstraction in our solution. Since the non-SDN enabled
switches can only use destination based routing, our big
switch needs to implement the following two function-
alities: 1. routing: direct the flow to the right switch;
2. modification of destination fields: the dst ip of each
packet needs to be modified to the IP address of the
destination server.

Now, these two functionalities together with the
load balancing algorithm allow us to define E and R.
We may then execute our algorithm to find the rule
placements for each switch. Furthermore, notice that
under this specific setting, the chain subproblems are
all one-dimensional. Thus, the overhead variables αi in
the LP are often set to be very small.

Comparison with strawman solutions. We next
compare our approach with strawman solutions, high-
lighting the fact that our algorithm is able to address
scenarios that cannot be solved with existing solutions.

There are two trivial (strawman) algorithms, rep-
resenting two extreme approaches, to modify dst ip:
• Modify everything at the root (Root-Sol): in this

case, we need a very powerful switch at the root.
• Modify everything at the last hop in the SDN-

enabled switch, i.e.,modify everything at the leaves
of the big switch (Leaf-Sol). In this case, we need
a large number of powerful (but not as powerful as
the one used for Root-Sol) switches.
In practice, we are often in a world that is between

solution
param

rules at a
leaf

rules at a
non-leaf

total rules

total rules ⊥ ⊥ 283380
Leaf-Sol 902 19 217844
Root-Sol 256 218500 284877

β = 1 851 851 290191
β = 2 681 1361 290021
β = 4 487 1945 289997
β = 8 310 2477 289905

Figure 22: The structure of the load balancer network.

these two extremal spectra, e.g.,we have quite a few
powerful switches combined with a large number of less
powerful switches. The powerful switches are not pow-
erful enough to be placed at the root and modify all
the packets. And we do not have a sufficient number of
powerful switches so that every leaf on the big switch
can get one.

One can see that no trivial solution can address the
setting described here while this can be solved by our
algorithm in a straightforward manner.

Results. Here, we assume that are two types of
switches to model we have both powerful and less-powerful
switches. The switches at the leaf and the non-leaf
switches. Notice that there are substantially fewer num-
ber of powerful switches (a total number of 85) than
non-powerful ones (number = 256). We shall assume
that the capacity of the non-leaf switches is β times the
capacity of leaf switches. Next, we also assume that
the servers are heterogeneous. Each server’s processing
power is a uniform random variable from [0, 1] (then we
need to renormalize the processing powers to get the γi
parameters).

We test the outcome of our algorithm for the case
β = 1, 2, 4, and 8. We also compare our solution with
strawman solutions. See Figure 22. The first row in
the table is the total number of rules to represent both
the routing and global policy (i.e.,the cross product of
them). The second and third rows are strawman solu-
tions. The rest of the rows are our solutions. We can see
that we are able to find solutions that simultaneously
install fewer rules at the leaves than those installed from
Leaf-Sol and fewer rules at the non-leaves than those
installed from Root-Sol. Furthermore, the total num-
ber of rules installed from our solution do not change
much. Also, notice that the total number of rules given
by Leaf-Sol is substantially smaller than the rest of
the solutions. This is because we may merge modify
and forward actions at the leaves to reduce the amount
of rules we need.

C.1 Another interpretation
Let m be the total number of rules that are needed

in the cross product between E and R. This number

16

can be computed without knowing the actual capac-
ity of each switch. We notice that regardless how we
variate the parameter β, the actual overhead (in terms
of total number of installed rules, see the last column
in Figure 22) is uniformly small. In fact, after further
evaluation, we notice that the total number of rules de-
ployed to the switches do not change much.

In fact, this observation allows us to apply our al-
gorithm in a second way: suppose that a network ad-
ministrator wants to upgrade non-SDN network into an
SDN and the network needs to implement a load bal-
ancer. Our solution here can guide the administrator to
decide what kind of SDN-enabled switches are needed.
Specifically, so long as total number of rules in all the
SDN-enabled switches are slightly larger than m, we are
able to implement the load balancer.

17

