
Efficient Traffic Splitting on SDN Switches

Nanxi Kang1, Monia Ghobadi2, John Reumann3, Alexander Shraer4, and Jennifer Rexford1

1Princeton University, {nkang, jrex}@cs.princeton.edu
2Microsoft Research, mgh@microsoft.com

3Nofutz Networks, reumann@nofutznetworks.com
4Google, shralex@google.com

ABSTRACT
Networks often need to balance load over multiple back-
end servers—or other components like links, paths, or
middleboxes—offering the same service. For example, a
large cloud provider could easily host tens of thousands of
services, each with dozens or hundreds of backend servers.
Hash-based approaches like Equal-Cost Multi-Path (ECMP)
can achieve a roughly uniform split, or even a weighted
split by repeating the same “next-hop” multiple times. How-
ever, ECMP has low accuracy for approximating arbitrary
weights, scales poorly with many “next-hops,” and expe-
riences significant churn when weights change. Instead, a
Software-Defined Network (SDN) could split traffic more
flexibly by crafting a set of wildcard rules to install in
OpenFlow switches. However, existing SDN-based load-
balancers either send data packets to the controller, or gener-
ate too many rules to approximate the weights. In this paper,
we propose Niagara, an SDN-based load-balancing scheme
where the controller computes an efficient approximation
of the weights for each service, and optimizes the division
of the rule-table space across multiple services. Our exper-
iments demonstrate that Niagara improves traffic-splitting
accuracy by 77% compared to ECMP, while requiring only
19% of the rules used by Weighted-Cost Multi-Path. Niagara
requires 63% fewer rules than previous SDN approaches.

1. INTRODUCTION
Network operators often spread traffic over multiple com-

ponents (such as links, paths, middleboxes, and backend
servers) that offer the same service, to achieve better scal-
ability, reliability, and performance. Managing these dis-
tributed resources effectively requires a good way to balance
the traffic load, even when different components have differ-
ent capacity. Rather than deploy dedicated load-balancing
appliances, modern networks increasingly rely on the un-
derlying switches to split load across the replicas [1–9]. For
example, server load-balancing systems [4, 6] use hardware
switches to spread client requests over multiple software
load balancers (SLBs), which in turn direct requests to back-
end servers. For each service (or flow aggregate), the switch

maps each flow to a particular SLB (or next-hop). A large
cloud provider could easily host tens of thousands of ser-
vices, with tens or even hundreds of SLBs.

Equal-Cost Multi-Path (ECMP) [10, 11], the most widely
used mechanism [1, 2, 4, 6], can split a flow aggregate
(typically a destination prefix) uniformly over a group of
next-hops based on the hash of the packet-header fields.
Unequal-Cost Multi-Path (UCMP) or Weighted-Cost Multi-
Path (WCMP) [3] handles an uneven weight distribution by
repeating the same next-hop multiple times in an ECMP
group. However, representing arbitrary weights is expensive
(e.g., due to a large number of rules); UCMP and WCMP
can only offer a small number of distinct weight distribu-
tions. Furthermore, using a hash function leads to unneces-
sary traffic shifts during updates; when a next-hop is added
or removed in ECMP, any hash function shifts at least 25%
to 50% of the flow space to a different next-hop [11]. Fi-
nally, ECMP hash functions (and the map from hash values
to next-hops) are often proprietary, making it difficult for
network operators to know which traffic uses which compo-
nents, complicating network troubleshooting and analysis.

The emergence of open interfaces to SDN switches [12,
13] suggests an attractive alternative, where a controller
programs the switch rule table to satisfy a load-balancing
goal [5, 14–16]. The rule tables (e.g., TCAM) in commod-
ity hardware switches are optimized for high-speed packet-
header matching, making them a great fit for distributing
traffic by IP addresses and TCP/UDP port numbers. The
controller can also query the traffic counters for each rule
to track shifts in the offered load over time. The simplest
SDN-based solution [14, 17] directs the first packet of each
request to the controller, which reactively installs an exact-
match (microflow) rule on the switch. A more efficient ap-
proach [5, 15, 16] proactively installs wildcard rules that di-
rect packets matching the same header patterns (e.g., the last
few bits of the source IP address) to the same next-hop.

Achieving an accurate and scalable traffic split is chal-
lenging. Commodity switches have small rule tables, with
thousands or small tens of thousands of rules [18, 19]. Pre-
vious solutions [5] do not use the rule-table space efficiently

and can only handle a few dozens flow aggregates with sev-
eral next-hops, while modern networks often require split-
ting tens of thousands of aggregates over dozens or hun-
dreds of next-hops. This paper presents Niagara, an efficient
traffic-splitting algorithm that computes OpenFlow rules that
minimize traffic imbalance (i.e., the fraction of traffic sent
to the “wrong” next-hop, based on the weights), subject to
rule-table constraints. Niagara scales to tens of thousands of
aggregates and hundreds of next-hops with a small imbal-
ance. After a brief discussion of motivation and related work
in the next section (§2), we present the traffic-splitting opti-
mization problem and a high-level overview of Niagara (§3).
This paper makes the following contributions:

Accurate traffic-splitting with limited wildcard rules:
Niagara approximates load-balancing weights accurately.
For each aggregate, Niagara can flexibly trade off accuracy
for fewer rules by truncating the approximation (§4).

Efficient sharing of rule-table space across services:
Niagara packs rules for multiple flow aggregates into a single
table, and allows sharing of rules across multiple aggregates
with similar weights (§5).

Minimizing churn during updates: Given an update, Ni-
agara computes incremental changes to the rules to minimize
churn (i.e., the fraction of traffic shuffled to a different next-
hop) and traffic imbalance. (§6).

We implement the Niagara OpenFlow controller and de-
ploy the controller (i) in a physical testbed with a hardware
Pica8 switch interconnecting four hosts (for realistic exper-
iments) and (ii) in Mininet [20] with Open vSwitches and
a configurable number of hosts (for experiments scaling the
size of the system). We evaluate the performance of Niagara
through extensive simulation (§7) and validate the simula-
tion results up to the limit of the hardware testbed. Experi-
ments demonstrate that Niagara reduces imbalance by 77%
compared to ECMP with only 19% of the rules of WCMP.
Niagara uses 63% less rule space than previous SDN solu-
tions, while achieving the same imbalance. We recently con-
ducted a live demonstration of Niagara at an SDN-based In-
ternet eXchange Point (IXP) in New Zealand [21].

2. TRAFFIC SPLITTING BACKGROUND

2.1 The Case for Efficient Traffic Splitting
Hardware switches are widely used to spread traffic over

equivalent components. For example, popular data center
topologies [1,2] offer many equal-length paths that switches
can use to increase bisection bandwidth. Similarly, modern
load balancers rely on switches to distribute user requests
over servers [4–6] or middlebox appliances [7–9].

Requirements of traffic split. An efficient traffic-
splitting scheme should be accurate and scalable, and min-
imize churn during updates. In server load balancing, each
SLB runs on commodity servers that can handle a limited
number of requests. An inaccurate traffic split can easily

overload an SLB, thus incurring long latency and drops for
client requests.

Furthermore, traffic splitting is applied to a variety of set-
tings. Cloud providers host up to tens of thousands of flow
aggregates (i.e., hosted services) which are split over a small
tens of next-hops (i.e., SLBs); multi-pathing routing requires
an ingress switch to split hundreds of flow aggregates (i.e.,
IP prefixes) each over a handful of paths (i.e., next-hops) to
an egress switch. A flexible scheme should adapt to handle
heterogeneity in the numbers of flow aggregates and next-
hops while achieving reasonable accuracy.

Finally, failures or changes in capacity can lead to new
weights for splitting a flow aggregate over the next-hops;
transitioning to a new weight distribution is not free. In load
balancing, the update inevitably shuffles flow space among
SLBs (i.e., churn) and requires extra operations for consis-
tent handling of TCP connections already in progress [4, 9,
22,23]. An adaptive scheme should update the split with lim-
ited overhead.

Weighted split. Flow aggregates can have very different
weight distributions. Here, we use load balancing as an ex-
ample to illustrate (i) weighted distribution of requests for
a service, (ii) distinct weight distributions for different ser-
vices, and (iii) weight changes over time.

Weighted distributions. Some SLBs are running on more
powerful machines making them capable of processing more
requests than others (Figure 1(a)). In addition, some SLBs
may be geographically closer to more of the backend servers
(e.g., in the same rack or podset), leading some SLBs to han-
dle more requests than others (Figure 1(b)).

Distinct distributions. Popular services may have more
server replicas in the data center; some service may have
a larger deployment in certain racks (Figure 1(c)). These all
result in dissimilar numbers of servers for different services
at the same SLB and the heterogeneous weight distributions
for these services.

Weight changes. Weights are subject to changes of deploy-
ment plan and server status (at the timescale of management
decisions, i.e., in minutes or hours). Popular services may
be gradually rolled out at new servers; maintenance or fail-
ure may bring down active servers.

2.2 Related Work
Hash-based approaches. The most common traffic-

splitting scheme is ECMP, which assumes equal split over
a group of next-hops (e.g., SLBs). ECMP partitions the flow
space into equal-sized hash-buckets that each correspond to
a next-hop. Packets are hashed on three, or five, or more
header fields. Figure 2 shows an example that divides the re-
quests for service 63.12.82.42 over two next-hops 17.12.11.1
and 17.12.12.1. ECMP creates a group (id = 1) by installing
two rules in the multipathing table. These two rules map
hash value 0 and 1 to 17.12.11.1 and 17.12.12.1, respec-
tively. Then ECMP installs an entry in the forwarding table
to direct requests of 63.12.82.42 to this group.

2

�
�
�

�JAOR<M@
�J<?��<G<I>@MN

�
�
�

�
�
�

�@MQ@MN

�RDO>C

�
�
�

�JAOR<M@
�J<?��<G<I>@MN

�
�
�

�@MQ@MN

�RDO>C

�
�
�

�JAOR<M@
�J<?��<G<I>@MN

�
�
�

�@MQ@MN

�RDO>C

(a) Some SLBs are more powerful (b) SLBs handle different servers

�
�
�

�JAOR<M@
�J<?��<G<I>@MN

�
�
�

�
�
�

�@MQ@MN

�RDO>C

�
�
�

�JAOR<M@
�J<?��<G<I>@MN

�
�
�

�@MQ@MN

�RDO>C

�
�
�

�JAOR<M@
�J<?��<G<I>@MN

�
�
�

�@MQ@MN

�RDO>C

(c) Services require different split

Figure 1: Weighted server load balancing examples.

DIP (service VIP) Next-hops (SLBs)

17.12.11.1 17.12.12.1 17.12.13.1

63.12.28.42 1
2

1
2 0

63.12.28.34 1
6

1
3

1
2

(a) Weights for load balancing two services.

Match Action
DIP Group id

63.12.28.42 1
63.12.28.34 2

=⇒

Match Action
group id hash value next-hop

1 0 17.12.11.1
1 1 17.12.12.1
2 0 17.12.11.1
2 1 17.12.12.1
2 2 17.12.12.1
2 3 17.12.13.1
2 4 17.12.13.1
2 5 17.12.13.1

(b) The forwarding table (left) directs packets to an ECMP group;
the multipath table (right) forwards packets based on the ECMP
group and the hash value.

Figure 2: Hash-based approaches for load balancing.

UCMP and WCMP [3] handle unequal split by repeating
next-hops in an ECMP group. UCMP achieves (1

6 ,
1
3 ,

1
2) split

for service 63.12.28.34 with six rules (Figure 2(b)). Given
the constrained size of the multipath table (i.e., TCAM),
WCMP [3] approximates the desired split with less rules.
For example, (1

6 ,
1
3 ,

1
2) can be approximated with (1

4 ,
1
4 ,

1
2),

which takes four rules by only repeating the last-hop twice.
The hash-based approaches incur several drawbacks.
Accuracy and Scalability. While ECMP only handles

equal weights, the accuracy and scalability of UCMP and
WCMP is restricted by the size of multipath table, typically
numbering in a small hundreds or thousands on commod-
ity switches [3]. UCMP and WCMP are infeasible when the
number of flow aggregates exceed the table size. Given a 8-
weight distribution (i.e., 8 SLBs), WCMP takes 74 rules on
average and 288 rules in the worst case. In other words, with
4,000 rules, WCMP can only handle up to 4000/74 ≈ 54 ser-
vices, which is too small for load balancing in data centers.

Churn. Updating an ECMP group unnecessarily shuffles
packets among next-hops.When a next-hop is removed from
a N-member group (or a next-hop is added to an (N − 1)-
member group), at least 1

4 +
1

4N of the flow space are shuffled
to different next-hops [11], while the minimum churn is 1

N .
Visibility. In ECMP, hash functions and mappings from

hash values to next-hops are proprietary, preventing effective

Match Action
DIP SIP Next-hop

63.12.28.42 ∗0 17.12.11.1
63.12.28.42 ∗ 17.12.12.1
63.12.28.34 ∗00100 17.12.11.1
63.12.28.34 ∗000 17.12.11.1
63.12.28.34 ∗0 17.12.12.1
63.12.28.34 ∗ 17.12.13.1
(a) Load balancing two services.

Match Action
DIP Tag

63.12.28.34 1
63.12.28.53 1
63.12.28.27 1
63.12.28.42 2
63.12.28.43 2

=⇒

Match Action
Tag SIP Next-hop
1 ∗0 17.12.11.1
1 ∗ 17.12.12.1
2 ∗00100 17.12.11.1
2 ∗000 17.12.11.1
2 ∗0 17.12.12.1
2 ∗ 17.12.13.1

(b) Grouping and load balancing five services.
Figure 3: Example wildcard rules for load balancing.

analysis of forwarding behaviors. Network operators have to
examine all next-hops when debugging a flow. Furthermore,
making this information public does not make the problem
much easier. Recently proposed debugging and verification
frameworks [24,25] rely on the assumption that consecutive
chunks of flow space are given the same actions to reduce
their complexity. ECMP deviates from this assumption by
pseudo-randomly casting flows to next-hops.

SDN-based approaches. SDN supports programming
rule-tables in switches, enabling finer-grained control and
more accurate splitting. Unlike hash-based approaches, the
programmable rule table offers full visibility into how pack-
ets are forwarded. A simple solution [14, 17] is to direct
the first packet of each client request to a controller, which
then installs rules for forwarding the remaining packets of
the connection. This approach incurs extra delay for the first
packet of each flow, and controller load and hardware rule-
table capacity quickly become bottlenecks. A more scalable
alternative is to proactively install coarse-grained rules that
direct a consecutive chunk of flows to a common next-hop. A
preliminary exploration of using wildcard rules is discussed
in [5]. Niagara follows the same high-level approach, but
presents more sophisticated algorithms for optimizing rule-
table size, while also addressing churn under updates. We
discuss [5] in detail in §4.1.

3. NIAGARA OVERVIEW

3

Variable Definition
N Number of aggregates (v = 1, . . . ,N)
M Number of next-hops (j = 1, . . . ,M)
C Hardware switch rule-table capacity

wv j Target weight for aggregate v, next-hop j
tv Traffic volume for aggregate v
e Error tolerance |w′v j−wv j| ≤ e

w′v j Actual weight for aggregate v, next-hop j
cv Hardware rule-table space for aggregate v

Table 1: Table of notation, with inputs listed first.
Niagara generates wildcard rules to split the traffic within

the constrained rule-table size. Incoming traffic is grouped
into flow aggregates, each of which is divided over the same
set of next-hops according to a weight distribution. In the
load balancing example, incoming packets are grouped by
their destination IPs (i.e., services). Traffic of each service
is divided over next-hops (i.e., SLBs) according to their
weights. Figure 3(a) shows an example of wildcard rules
generated by Niagara for load balancing. Each rule matches
on destination IP to identify the service and source IP to for-
ward chunks of packets to the same SLBs. Packets are for-
warded based on the first matching rule. In addition to wild-
card rules, Niagara leverages the metadata tags supported by
latest chip-sets [13] and generates tagging rules to group ser-
vices of similar weight distributions, thus further reducing
the number of rules (Figure 3(b)).

In this section, we formulate the optimization problem for
computing wildcard rules in the switch and outline the five
main components of our algorithm. For easy exposition of
the rule generation algorithm, we use suffixes of source IP
address and assume a proportional split of the traffic over
suffixes (e.g., ∗0 stands for 50% traffic). We relax this as-
sumption in §4.1.2.

3.1 Rule Optimization Problem Formulation
The algorithm computes the rules in the switch, given the

per-aggregate weights and the switch rule-table capacity. A
hardware switch should approximate the target division of
traffic over the next-hops accurately. The misdirected traffic
may introduce congestion over downstream links and over-
load on next-hops. As such, an important challenge is to min-
imize the imbalance—the fraction of traffic that routes to the
“wrong” next-hops.

The weights of each aggregate vary due to differences in
resource allocation (e.g., bandwidth), next-hop failures, and
planned maintenance. Each aggregate v has non-negative
weights {wv j} for splitting traffic over the M next-hops j =
1,2, . . . ,M, where ∑ j wv j = 1. (Table 1 summarizes the nota-
tion.) The traffic split is not always exact, since matching on
header bits inherently discretizes portions of traffic. In prac-
tice, splitting traffic exactly is not necessary, and aggregates
can tolerate a given error bound e (usually in [0.001,0.01]),
where the actual split is w′v j such that |w′v j−wv j| ≤ e. Ideally,
the hardware switch could achieve w′v j with wildcard rules.
But small rule-table sizes thwart this, and instead, we settle
for the lesser goal of approximating the weights as well as
possible, given a limited rule capacity C at the switch.

To approximate the weights, we solve an optimization
problem that allocates cv rules to each aggregate v to achieve
weights {w′v j} (i.e., cv = numrules({w′v j})). Aggregate v has
traffic volume tv, where some aggregates contribute more
traffic than others. We define the total imbalance as the sum
of over-approximated weights. The goal is to minimize the
total traffic imbalance, while approximating the weights:

minimize ∑v(tv×∑ j E(w′v j−wv j,e)) s.t.
w′v j ≥ 0 ∀v, j
∑ j w′v j = 1 ∀v
cv = numrules({w′v j}) ∀v
∑v cv ≤C

where E(x,e) =
{

x if x > e
0 if x≤ e

given the weights {wv j}, traffic volumes {tv}, rule-table ca-
pacity C, and error tolerance e as inputs.

3.2 Overview of Optimization Algorithm
Our solution to the optimization problem introduces five

main contributions, starting with the following three ideas:
Approximating weights for a single aggregate (§4.1):

Given weights {wv j} for aggregate v and error tolerance e,
we compute the approximated weights {w′v j} and the asso-
ciated rules for each aggregate. The algorithm expands each
weight wv j in terms of powers of two (e.g., 1

6 ≈
1
8 +

1
32) that

can be approximated using wildcard rules.
Truncating the approximation to use fewer rules

(§4.2): Given the above results, we can truncate the approxi-
mation and fit a subset of associated rules into the rule table.
This results in a tradeoff curve of traffic imbalance versus
the number of rules.

Packing multiple aggregates into a single table (§5.1):
We allocate rules to aggregates based on their tradeoff curves
to minimize the total traffic imbalance. In each step of the
packing algorithm, we allocate one more rule to the aggre-
gate that achieve the highest ratio of the benefit (the reduc-
tion in traffic imbalance) to the cost (number of rules), until
the hardware table is full with a total of C =∑v cv rules. Con-
sequently, more rules are allocated to aggregates with larger
traffic volume and easy-to-approximate weights.

Together, these three parts allow us to make effective use
of a small rule table to divide traffic over next-hops.

Thousands of aggregates with dozens of next-hops can
easily overwhelm the small wildcard rule table (i.e., TCAM)
in today’s hardware switches. Fortunately, today’s hardware
switches have multiple table stages. For example, the popu-
lar Broadcom chipset [13] has a table that can match on des-
tination IP prefix and set a metadata tag that can be matched
(along with the five-tuple) in the subsequent TCAM. Niagara
can capitalize on this table to map an aggregate to a tag—
or, more generally, multiple aggregates to the same tag. Our
fourth algorithmic innovation uses this table:

Sharing rules across aggregates with similar weights
(§5.2): We associate a tag with a group of aggregates with
similar weights. We use k-means clustering to identify the

4

¦
¦»

¦»» ¦»¼
¦¼

� � � � � � � �

¦¼» ¦¼¼

�

�
� �
� � �

�
� �

� � � �
� �

� �

�
� �

� � � �

�
� �

� � � �

(a) Suffix allocation

Pattern Action
∗000 fwd to 1
∗100 fwd to 2
∗10 fwd to 2
∗1 fwd to 3

(b) Naive approach

Pattern Action Priority
∗000 fwd to 1 high
∗0 fwd to 2 low
∗1 fwd to 3 low

(c) Use subtraction and priority

Figure 4: Naive and subtraction-based rule generation
for weights { 1

6 ,
1
3 ,

1
2} and approximation { 1

8 ,
3
8 ,

4
8}.

groups, and then generate one set of rules for each group.
Furthermore, we create a set of default rules of low priority
in TCAM, which are shared by all groups.

Transitioning to new weights (§6): In practice, weights
change over time, forcing Niagara to compute incremental
changes to the rules to control the churn.

4. OPTIMIZING A SINGLE AGGREGATE
We begin with generating rules to approximate the weight

distribution {wv j} of a single aggregate v within error toler-
ance e. We then extend the method to account for constrained
rule-table capacity C.

4.1 Approximate: Binary Weight Expansion
Naive approach to generating wildcard rules. A possi-

ble method to approximate the weights [5] is to pick a fixed
suffix length k and round every weight to the closest multi-
ple of 2−k such that the approximated weights still sum to 1.
For example by fixing k = 3, weights wv1 =

1
6 , wv2 =

1
3 , and

wv3 =
1
2 are approximated by w′v1 =

1
8 , w′v2 =

3
8 , and w′v3 =

4
8 .

The visualized suffix tree is presented in Figure 4(a). To
generate the corresponding wildcard rules, an approximate
weight b ∗ 2−k is represented by b k-bit rules. In practice,
allocating similar suffix patterns to the same weight may en-
able combining some of the rules, hence reducing the num-
ber of rules. The corresponding wildcard rules are listed in
Figure 4(b).

Shortcomings of the naive solution. The naive approach
always expresses b as the “sums” of power of two (for ex-
ample 3

8 is expressed as 2
8 + 1

8) and only generates non-
overlapping rules. In contrast, our algorithm allows subtrac-
tion as well as longest-match rule priority. In the above ex-
ample, 3

8 can be expressed as 4
8 −

1
8 to achieve the same ap-

proximation with one less rule (Figure 4(c)). The generated
rules overlap and the longest-matching rule is given higher
priority: ∗000 is matched first and “steals” 1

8 of the traffic
from rule ∗0.

The power of subtractive terms and rule priority. Our
algorithm approximates weights using a series of positive
and negative power-of-two terms. We compute the approx-
imation w′v j = ∑k x jk for each weight wv j subject to |w′v j −
wv j| ≤ e. Each term x jk = b jk ·2−a jk , where b jk ∈ {−1,+1}
and a jk is a non-negative integer. For example, wv2 = 1

3 is
approximated using three terms as w′v2 =

1
2 −

1
8 −

1
32 . As we

explain later, each term x jk is mapped to a suffix matching
pattern. In what follows, we show how to compute the ap-
proximations and how to generate the rules.

4.1.1 Approximate the weights
We start with an initial approximation where the biggest

weight is 1 and the other weights are 0. The initial approxi-
mation for wv = (1

6 ,
1
3 ,

1
2) is w′v = (0,0,1) (Figure 5(a)). The

errors, namely the difference between the w′v and wv, are
(− 1

6 ,−
1
3 ,

1
2). wv1,wv2 are under-approximated , while wv3 is

over-approximated.
We use error tolerance e = 0.02 for the example. The

initial approximation is not good enough; wv2 is the most
under-approximated weight with an error − 1

3 . To reduce
its error, we add one power-of-two term to w′v2. At the
same time, this term must be subtracted from another over-
approximated weight to keep the sum unchanged. We move
a power-of-two term from wv3 to wv2.

We decide the value of the term based on the errors of both
weights. We pick the value that offers the biggest reduction
in errors. The current errors of wv2 and wv3 are− 1

3 and 1
2 . Let

the power-of-two term be x, then the new errors are − 1
3 + x

and 1
2 − x. Hence, the reduction is

4 = |− 1
3
|+ |1

2
|− |− 1

3
+ x|− |1

2
− x|

= 2× (min(
1
3
,x)+min(

1
2
,x)− x)

The function is plotted as red line in Figure 6. When x = 1, 1
2

and 1
4 , the reduction is − 1

3 ,
2
3 and 1

2 respectively. In fact,
Equation 1 is a concave function, which reaches its maxi-
mum value when x ∈ [1

3 ,
1
2]. We choose 1

2 be the value of
the term. In a more general case, where multiple values give
the maximum reduction, we break the tie by choosing the
biggest term. After this operation, the new approximation
becomes (0, 1

2 ,1−
1
2) with errors (− 1

6 ,
1
6 ,0).

We repeat the same operations to reduce the biggest
under-approximation and over-approximation errors itera-
tively. In the example, wv3 is perfectly approximated (the
error is 0). We only move terms from wv2 to wv1. Two terms
1
8 ,

1
32 are moved until all the errors are within tolerance.

Eventually, each weight is approximated with an expansion
of power-of-two terms (Figure 5(a)).

We make three observations about this process. First,
the errors are non-increasing, as each time we reduce the
biggest errors. Second, the chosen power-of-two terms are
non-increasing, because the terms with the maximum 4 al-
ways lie between two errors (Figure 6). For a term that gives

5

Iteration w′v1 w′v2 w′v3

0 0 0 1

1 0 1
2 1− 1

2

2 1
8

1
2−

1
8 1− 1

2

3 1
8 +

1
32

1
2 −

1
8−

1
32 1− 1

2
(a) Approximation iterations

Pattern Action Corresponding terms

∗00100 fwd to 1 1
32 in w′v1 and − 1

32 in w′v2

∗000 fwd to 1 1
8 in w′v1 and − 1

8 in w′v2

∗0 fwd to 2 1
2 in w′v2 and − 1

2 in w′v3

∗ fwd to 3 1 in w′v3

(b) Wildcard rules
Figure 5: Wildcard rules to approximate (1

6 ,
1
3 ,

1
2)

the best 4 in the current iteration, only smaller terms may
have a bigger reduction in the next iteration1. Finally, the
reduction 4 is non-increasing, as Equation 1 is monotonic
with both errors and the chosen power-of-two term. In other
words, we gain diminishing return on4 for the term-moving
operation, as we are getting closer to the error tolerance.

4.1.2 Generate rules based on approximations
Given the approximation w′v, we generate rules by map-

ping the power-of-two terms to nodes of a suffix tree. Each
node in the tree represents a 2−k fraction of traffic, where k
is the node’s depth (or, equivalently, the suffix length). Fig-
ure 7 visualizes the rule-generation steps for our example
from Figure 5(a) with wv1 =

1
6 , wv2 =

1
3 , and wv3 =

1
2 . When

a term is mapped to a node, we explicitly assign a color to
the node. Initially, the root node is colored with the biggest
weight to represent the initial approximation (Figure 7(a)).
Color j means that the node belongs to w′v j. Each uncolored
node implicitly inherits the color of its closest ancestor. We
use dark color for explicitly colored nodes and light color for
the unassigned nodes.

We process the terms in the order that they are added to
the expansions (i.e., 1

2 , 1
8 , 1

32). Then, one by one, the terms
are mapped to nodes as follows. Let x be the term under con-
sideration, which is moved from weight wvb to wva. We map
it to a node representing x fraction of traffic with color b.
The node is then re-colored to a. In the example, we map 1

2
to node ∗0 and color the node with wv2 (Figure 7(b)). Sub-
sequently, 1

8 ,
1
32 are mapped to ∗000,∗00100, which are col-

ored to wv1 (Figure 7(c) (d)).
Once all terms have been processed, rules are generated

based on the explicitly colored nodes. Figure 5(b) shows the
rules corresponding to the final colored tree in Figure 7(d).

Approximate weights with non-power-of-two terms.
We discuss the case that each suffix pattern may not match a
power-of-two fraction of traffic. For example, there may be
more packets matching ∗0 than those matching ∗1. Niagara’s

1A term may be picked in multiple consecutive iterations.

-1

-0.5

 0

 0.5

 1

 0.125 0.25 0.5 1

R
ed

u
ct

io
n

Term values

Max reduction in [1/3,1/2]

Max reduction at 1/6

Errors: -1/3, 1/2

Errors: 1/6, -1/6

Figure 6:4 plots with different errors.
¦

¦»

¦»» ¦»¼

¦¼
�

�

� �

� � � �

�
� �

� � � �

¦¼» ¦¼¼

¦
¦»

¦»» ¦»¼

¦¼
�

�

� �

� � � �

�
� �

� � � �

¦¼» ¦¼¼

¦
¦»

¦»» ¦»¼

¦¼
�

�

� �

� � � �

�
� �

� � � �

¦¼» ¦¼¼

¦
¦»

¦»» ¦»¼

¦¼
�

�

� �

� � � �

�
� �

� � � �

¦¼» ¦¼¼

� �

� �

(a)

¦
¦»

¦»» ¦»¼

¦¼
�

�

� �

� � � �

�
� �

� � � �

¦¼» ¦¼¼

¦
¦»

¦»» ¦»¼

¦¼
�

�

� �

� � � �

�
� �

� � � �

¦¼» ¦¼¼

¦
¦»

¦»» ¦»¼

¦¼
�

�

� �

� � � �

�
� �

� � � �

¦¼» ¦¼¼

¦
¦»

¦»» ¦»¼

¦¼
�

�

� �

� � � �

�
� �

� � � �

¦¼» ¦¼¼

� �

� �(b)

¦
¦»

¦»» ¦»¼

¦¼
�

�

� �

� � � �

�
� �

� � � �

¦¼» ¦¼¼

¦
¦»

¦»» ¦»¼

¦¼
�

�

� �

� � � �

�
� �

� � � �

¦¼» ¦¼¼

¦
¦»

¦»» ¦»¼

¦¼
�

�

� �

� � � �

�
� �

� � � �

¦¼» ¦¼¼

¦
¦»

¦»» ¦»¼

¦¼
�

�

� �

� � � �

�
� �

� � � �

¦¼» ¦¼¼

� �

� �

(c)

¦
¦»

¦»» ¦»¼

¦¼
�

�

� �

� � � �

�
� �

� � � �

¦¼» ¦¼¼

¦
¦»

¦»» ¦»¼

¦¼
�

�

� �

� � � �

�
� �

� � � �

¦¼» ¦¼¼

¦
¦»

¦»» ¦»¼

¦¼
�

�

� �

� � � �

�
� �

� � � �

¦¼» ¦¼¼

¦
¦»

¦»» ¦»¼

¦¼
�

�

� �

� � � �

�
� �

� � � �

¦¼» ¦¼¼

� �

� �
(d)

Figure 7: Generate rules using a suffix tree.
algorithm can be extended to handle the unevenness, once
the fractions of traffic for suffixes are measured [26,27]. We
still refine the approximation iteratively. In each iteration, a
suffix (i.e., a term) is transferred from an over-approximated
weight to an under-approximated weight to maximize the
reduction of errors. The only difference is that the candi-
date values of this term are no longer powers of two, but all
possible fractions denoted by suffixes belonging to the over-
approximated weight. We use the concaveness of Equation 1
to guide our search for the best term value. Instead of brute-
force enumeration, we can scan all candidate values in de-
creasing order, and stop when4 starts decreasing.

4.2 Truncate: Fit Rules in Hardware Table
Given the restricted rule-table size, some generated rules

might not fit in the hardware. Therefore, we truncate rules to
meet the capacity of rule table. We refer to the switch rules
as PH . PH achieves a coarse-grained approximation of the
weights while numrules(PH) stays within the rule-table size
C. We capture the total over-approximation error as imbal-
ance, i.e., tv ×∑ j E(wH

v j −wv j,e) where tv is the expected
traffic volume for aggregate v and wH

v j is the approximation
of weight wv j given by PH .

We pick the C lower-priority rules from the rule-set gener-
ated in §4.1 as PH . For example, when C = 3 the rules in Fig-
ure 5(b) are truncated into PH containing the last three rules.
Since rules are generated with decreasing 4 values, which
are also the reduction in imbalance, the C lowest-priority
rules give the overall biggest reduction of imbalance.

Stairstep plot. Figure 8 shows the imbalance as a func-
tion of C. Each point in the plot (r, imb) can be viewed as a

6

,PEDODQFH� ������
��������������3¶�������������
�������������IZG�WR��
���������������IZG�WR��
����������������IZG�WR��

Figure 8: Stairstep curve (imbalance v.s. #rules) for Ag-
gregate v with weights wv = { 1

6 ,
1
3 ,

1
2} and tv = 1.

cost for rule space r, and the corresponding gain in reducing
imbalance imb. This curve helps us determine the gain an ag-
gregate can have from a certain number of allocated switch
rules, which is used in packing rules for multiple aggregates
into the same switch table (§5.1).

5. CROSS AGGREGATES OPTIMIZATION
In this section, we generate rules for multiple aggregates

using two main techniques: (1) packing multiple sets of rules
(each corresponding to a single aggregate) into one rule table
and (2) sharing the same set of rules among aggregates.

5.1 Pack: Divide Rules Across Aggregates
The stairstep plot in § 4.2 presents the tradeoff between

the number of rules allocated to an aggregate and the result-
ing imbalance. When dividing rule-table space across mul-
tiple aggregates, we use their stairstep plots to determine
which aggregates should have more rules, to minimize the
total traffic imbalance. Figure 9 shows the weight distribu-
tions, traffic volumes and stairsteps of two aggregates.

To allocate rules, we greedily sweep through the stairsteps
of aggregates in steps. In each sweeping step, we give one
more rule to the aggregate with largest per-step gain by step-
ping down one unit along its stairstep. The allocation repeats
until the table is full.

We illustrate the steps through an example of packing two
aggregates v1 and v2 using five rules (Figure 9). We begin
with allocating each aggregate one rule, resulting in a total
imbalance of 50% (27.5%+ 22.5%). Then, we decide how
to allocate the remaining three rules. Note that v1’s per-step
gain is 18.33% (27.5%− 9.17%), which means that giving
one more rule to v1 would reduce its imbalance from 27.5%
to 9.17%, while v2’s gain is 11.25% (22.5%−11.25%). We
therefore give the third rule to v1 and move one step down
along its curve. The per-step gain of v1 becomes 6.88%
(9.17%− 2.29%). Using the same approach, we give both
the fourth and fifth rules to v2, because its per-step gains
(22.5%− 11.25% = 11.25% and 11.25%− 0% = 11.25%)
are greater than v1’s. Therefore, v1 and v2 are given two
and three rules, respectively, and the total imbalance is
9.17% (9.17%+ 0%). The resulting rule-set is a combina-
tion of rules denoted by point (2,9.17%) in v1’s stairstep
and (3,0%) in v2’s.

A natural consequence of our packing method is that ag-

Aggregate Weights Traffic Volume

v1 w11 =
1
6 ,w12 =

1
3 ,w13 =

1
2 t1 = 0.55

v2 w21 =
1
4 ,w22 =

1
4 ,w23 =

1
2 t2 = 0.45

(a) Weights and traffic volume of v1 and v2.

3DFNLQJ�UHVXOWV�IRU�������
WDEOH�FDSDFLW\�&� ��

$JJUHJDWH�9�����UXOHV
$JJUHJDWH�9�����UXOHV
WRWDO�LPEDODQFH� ������

(b) Packing v1 and v2 based on stairsteps.
Figure 9: An example of packing multiple aggregates.

gregates with heavy traffic volume and easy-to-approximate
weights are allocated more rules. Our evaluation (§7)
demonstrates that this way of handling “heavy hitters” leads
to significant gains.

5.2 Share: Same Rules for Many Aggregates
In practice, a switch may split thousands of aggregates.

Given the small TCAM in today’s hardware switches, we
may not always be able to allocate even one rule to each ag-
gregate. Thus, we are interested in sharing rules among mul-
tiple aggregates. We employ sharing on different levels, cre-
ating three types of rules (with decreasing priority): (1) rules
specific to a single aggregate (§4); (2) rules shared among a
group of aggregates (§5.2.2), and (3) rules shared among all
aggregates, called default rules (§5.2.1).2

5.2.1 Default rules shared by all aggregates
Default rules have the lowest priority and are shared by

all aggregates. There are many ways to create default rules,
including approximating a certain weight distribution using
algorithm in §4. Here we focus on the simplest and most nat-
ural one—uniform default rules that divide the traffic equally
among next-hops.

Assuming there are M next-hops where 2k ≤ M < 2k+1,
we construct 2k default rules matching suffix patterns of
length k and distributing traffic evenly among the first 2k

next-hops. 3 These rules provide an initial approximation
wE of the target weight distribution: wE

i = 2−k for i ≤ 2k

and wE
i = 0 otherwise, which can then be improved using

more-specific per-aggregate rules.
We revisit the example (1

6 ,
1
3 ,

1
2). The initial approxima-

tion wE = (1
2 ,

1
2 ,0). wv1 =

1
6 is over-approximated with error

1
3 ; wv3 =

1
2 is under-approximated with error− 1

2 ; we move 1
2

from wv1 to wv3. The rest operations are similar to §4.1. Fig-
ure 10(a) shows the corresponding suffix tree. Initially, the

2Default rules do not require extra grouping table.
3When M is the power of two, the uniform default rules gives an
equivalent split to ECMP.

7

� � � � � � � �

�

�
� �
� � �

�
� �

� � � �
� �

� �

�
� �

� � � �

�
� �

� � � �

(a) Initial (left) and final (right) suffix trees for w′v1 = 1
2 −

1
2 + 1

8 +
1
32 , w′v2 =

1
2 −

1
8 −

1
32 , w′v3 =

1
2 (pool).

Rules Pattern Action
Rules for aggregate v ∗00101 fwd to 1

∗001 fwd to 1
∗0 fwd to 3

Shared default rules ∗0 fwd to 1
∗1 fwd to 2

(b) Rules that approximate v.

Figure 10: Generate rules for { 1
6 ,

1
3 ,

1
2} given default rules

tree is colored according to the uniform default rules. Next,
we refine the approximation and obtain terms 1

2 , 1
8 , 1

32 and
the final rules (Figure 10(b)). The total number of rules is
five, compared to four rules without using default rules (Fig-
ure 5(b)). However, only three of the five rules are “private”
to aggregate v, as the two default rules are shared among all
aggregates. This illustrates that default rules may not save
space for one (or even several) aggregates, but will usually
bring significant table space savings when the number of ag-
gregates is large (§7).

5.2.2 Grouping aggregates with similar weights
To further save the table space, we group aggregates and

tag aggregates in each group with the same identifier.
We use k-means clustering to group aggregates with sim-

ilar weights. The centroid of each group is computed as the
average weight vector of its member aggregates; to prioritize
“heavy” aggregates, the average is weighted using tv (the ex-
pected traffic volume of aggregate v). We begin by selecting
the top-k aggregates with highest traffic volume as the ini-
tial centroid of the groups (the choice of k depends on the
available rule table space). Then, we assign every aggregate
to the group whose centroid vector is closest to the aggre-
gate’s target weight vector (using Euclidean distance). After
assignment, we re-calculate group centroids. The procedure
is repeated until the overall distance improvement is below a
chosen threshold (e.g., 0.01% in our evaluation).

Putting it all together. Niagara’s full algorithm first (i)
groups similar aggregates, then (ii) creates one set of default
rules (e.g., uniform rules) that serve as the initial approxi-
mation for all the groups, (iii) generates per-group stairstep
curves, and finally (iv) packs groups into a rule table.

6. GRACEFUL RULE UPDATE
Weights change over time, due to next-hop failures,

rolling out of new services and maintenance. When the

weights for an aggregate change, Niagara computes new
rules while minimizing (i) churn due to the difference be-
tween old and new weights and (ii) traffic imbalance due
to inaccuracies of approximation. Niagara has two update
strategies, depending on the frequency of weight changes.
When weights change frequently, Niagara minimizes churn
by incrementally computing new rules from the old rules
(§6.1). When weights change infrequently, Niagara mini-
mizes traffic imbalance by computing the new set of rules
from scratch and installs them in stages to limit churn (§6.2).

6.1 Compute New Rules Incrementally
When weights change, Niagara computes new rules to ap-

proximate the updated weights. New rules not only deter-
mine the new imbalance, but also the traffic churn during
the transition. We use an example of changing weights from
{ 1

6 ,
1
3 ,

1
2} to { 1

2 ,
1
3 ,

1
6} to illustrate the computation of new

rules. Initial rules are given in Table 5(b) and the correspond-
ing suffix tree in Figure 7(d). In this example, any solution
must shuffle at least 1

3 of the flow space (assuming a negli-
gible error tolerance e), namely the minimal churn is 1

3 .
Minimize imbalance (recompute rules from scratch).

A strawman approach to handle weight updates is to com-
pute new rules from scratch. In our example, this means
that action “fwd to 1” in Table 5(b) become “fwd to 3” and
vice versa. This approach minimizes the traffic imbalance by
making the best use of rule-table space. However, it incurs
two drawbacks. First, it leads to heavy churn, since recol-
oring 1

2 + 1
8 + 1

32 fraction of the suffix tree in Figure 7(d)
means that nearly 2

3 of traffic will be shuffled among next-
hops. Second, it requires significant updates to hardware,
which slow down the update process. As a result, this ap-
proach does not work well when weights change frequently.

Minimize churn (keep rules unchanged). An alterna-
tive strawman is to keep the switch rules “as is”. This ap-
proach minimizes churn but results in significant imbalance
and overloads on next-hops. In the example, both the churn
and the new imbalance are roughly 1

3 .
Strike a balance (incremental rule update). The above

two approaches illustrate two extremes in computing the
new rules. Niagara intelligently explores the tradeoff be-
tween churn and imbalance by iterating over the solution
space, varying the number of old rules kept. In the exam-
ple, keeping two old rules (∗000 fwd to 1, and ∗0 fwd
to 2) leads to the rule-set shown in Figure 11(a) and the
suffix tree in Figure 11(c). The imbalance is 1

32 , the same
with computation from scratch; the churn is 1

32 +
3
8 , which

is slightly higher than the minimum churn 1
3 , as suffixes

∗00100,∗011,∗11 are re-colored to 1.

6.2 Bound Churn with Multi-stage Updates
Incurring churn during updates is inevitable. Depending

on the deployment, this traffic churn might not be tolerable.
Niagara is able to bound the churn by dividing the update
process into multiple stages. Given a threshold on accept-

8

Pattern Action
∗00100 fwd to 3
∗001 fwd to 3
∗000 fwd to 1
∗0 fwd to 2
∗ fwd to 1

(a) Target rules.

Pattern Action
∗00100 fwd to 1
∗000 fwd to 1
∗11 fwd to 1
∗0 fwd to 2
∗ fwd to 3

(b) Intermediate rules.

�
�

� �

� � � �

�
� �

� � � �

� �

� �

�
� �

� � � �

�
� �

� � � �

� �

� �

�

(c) Suffix tree corresp. to (a).

�
�

� �

� � � �

�
� �

� � � �

� �

� �

�
� �

� � � �

�
� �

� � � �

� �

� �

�

(d) Suffix tree corresp. to (b).

Figure 11: Rule-sets (and corresponding suffix trees) in-
stalled during the transition from { 1

6 ,
1
3 ,

1
2} to { 1

2 ,
1
3 ,

1
6}.

able churn, Niagara finds a sequence of intermediate rule-
sets such that the churn generated by transitioning from one
stage to the next is always under the threshold.

Continuing the example in §6.1, we limit maximum ac-
ceptable churn to 1

4 . The churn for the direct transition from
the old rules to the new rules is 1

32 +
3
8 , exceeding the thresh-

old. Hence, we need to find an intermediate stage so that both
the transition from the old rules to the intermediate rules and
from the intermediate rules to the new rules do not exceed
the threshold.

To compute the intermediate rules, we pick the pattern
∗11, which is the maximal fraction of the suffix tree that
can be recolored within the churn threshold. The interme-
diate tree (Figure 11(d)) is obtained by replacing the subtree
∗11 of the old one (Figure 7(d)) with the new one’s (Fig-
ure 11(c)). The intermediate rules are computed accordingly.
Then, transitioning from the intermediate suffix-tree in Fig-
ure 11(d) to the one in Figure 11(c) recolors only 1

32 + 1
8

(< 1
4) of the flow space and therefore we can transition di-

rectly to the rules in Figure 11(a) after the intermediate stage.
We note that performing a multi-stage update naturally

results in lengthy update process for aggregates with fre-
quent weight changes. To mitigate this, Niagara may rate
limit their update frequency.

7. EVALUATION
In this section, we evaluate the rule-generation algorithm

and incremental update.
Weight distribution. The weights of an aggregate de-

pend on various factors such as capacity of next-hops and
deployment plans. To reflect this variability, we use three
different distribution models to generate weights: Gaussian,
Bimodal Gaussian, and Pick Next-hop. Weights of an ag-
gregate v are drawn from these models and normalized so
that ∑ j wv j = 1. (1) For Gaussian distribution, weights are
chosen from N(4,1). Since σ (= 1) is small, the generated
weights are close to uniform. It models a setting where an

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0 500 1000 1500 2000 2500 3000 3500 4000

T
o

ta
l

im
b

a
la

n
ce

#Rules

100 aggregates, 256 weights

500 aggregates, 64 weights

10k aggregates, 16 weights

Figure 12: Performance under different configuration.

aggregate should be equally split over next-hops. (2) For Bi-
modal Gaussian distribution, each weight is chosen either
from N(4,1) or N(16,1), with equal probability. The gener-
ated weights are non-uniform, but aggregates exhibit certain
similarity. It models a setting where some next-hops should
receive more traffic of an aggregate than others. (3) For Pick
Next-hop distribution over M next-hops, we pick a subset
of next-hops uniformly at random for one aggregate. Then
for those next-hops, we draw the weights from the Bimodal
Gaussian distribution. The weights for unchosen next-hops
are zero. The generated weights are non-uniform, making it
hard to group aggregates. This distribution models a setting
where different aggregates should be split over different sub-
sets of next-hops.

Traffic distribution. We use (1) uniform traffic distribu-
tion and (2) skewed Zipf traffic distribution where the k-th
most popular aggregate contributes 1/k fraction of the total
traffic. The traffic volume is normalized so that ∑v tv = 1.

Imbalance calculation. We calculate imbalance as

∑
v
(tv×∑

j
E(w′v j−wv j,0))

instead of ∑v(tv×∑ j E(w′v j−wv j,e)) to avoid the impact of
error tolerance e. A total imbalance of 5% to 10% is con-
sidered low, depending on the number of next-hops. We use
e = 0.001 in computing stairsteps of aggregates to terminate
the approximation iterations (§4).

7.1 Rule-Generation Algorithms
All-in-one. Our algorithm scales well under different

number of aggregates (N) and number of weights (M). We
choose three configurations: (1) N = 100,M = 256 models
a powerful switch that distributes traffic over its hundreds of
outgoing links (or paths); (2) N = 500,M = 64 models an
enterprise-level load balancer that spreads incoming traffic
over a small set of servers; and (3) N = 10,000,M = 16 mod-
els a cloud-scale load balancer that splits requests for tens of
thousands of services over the next stage of software load
balancers, which in turn direct requests to backends servers
behind them [4].

Figure 12 presents the performance of Niagara given Bi-
modal Gaussian weight distribution and skewed traffic dis-
tribution. With 4,000 rules, Niagara achieves an imbalance

9

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 50 100 150 200 250 300

F
ra

ct
io

n
 o

f
w

ei
g
h

ts

#Rules

Niagara

Naive Approach

WCMP

(a) Comparing rule-generation algorithms

 0

 10

 20

 30

 40

 50

 60

 70

 80

 10 15 20 25 30

#
R

u
le

s

#Weights
(b) The range of #rules with varied #weights

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 5 10 15 20 25

I
m

b
a
la

n
c
e

#Rules

Worst case

Median case

(c) Stairstep plots for median and worst cases

Figure 13: Approximating a single aggregate.

of 6.7%, 8% and 10.8% and a maximum over-approximation
error 4 of 0.004, 0.0015 and 0.0006 for the three configura-
tions respectively. The leftmost point on the curve denotes
how uniform default rules approximate the weights, i.e.,
ECMP. ECMP gives roughly 30% imbalance for all cases;
the over-approximation error even reaches 0.02. WCMP is
infeasible for any of them. Niagara improves the imbalance
by 64% to 77%.

These three cases, despite different number of aggregates
and next-hops, show up similar performance. This is mainly
because Niagara takes almost a linear number of rules to ap-
proximate a given number of weights within the error toler-
ance. In other words, the number of rules needed to reach
the same imbalance is roughly linear in terms of N ×M
without grouping, or G×M with grouping where G is the
number of groups. In the plot, we use G = 50,150 and
500 for N = 100,500 and 10,000 respectively, so G×M =
12800,9600 and 8000. In addition, as the weight distribu-
tions over a smaller number of next-hops are inherently more
similar, grouping techniques helps optimize imbalance fur-
ther. These reasons explain why N = 10,000,M = 16 case
performs best.

In what follows, we focus on the case of 10,000 aggre-
gates with 16 weights and analyze the contribution of each
technique, namely approximating a single aggregate, pack-
ing multiple aggregates, sharing default rules among aggre-
gates and grouping.

Approximating a single aggregate. We first examine the
number of rules needed to approximate the target weights of
a single aggregate. We randomly generate 100,000 distinct
sets of weights (8 weights per aggregate). In Figure 13(a),
we compare three strategies (§4.1.1): WCMP, which re-
peats next-hop entries in ECMP to approximate weights;
Naive approach, which rounds weights to nearest multiples
of powers of two; Niagara, which uses expansions of power-
of-two terms to approximate weights. WCMP performs the
worst and needs as many as 288 rules to reach the error tol-
erance. The median is 74. It highly depends on the values
of weights. In our experiment, a slightly change of weights
(e.g., 0.1 to 0.11) cause a dramatic change in number of

4max j ∑v E(w′v j−wv j,0)

rules. Naive approach performs slightly better with median
38 rules, but still uses too many rules (61 in the worst case)
and too much variation. In comparison, Niagara generated
the fewest rules (a median of 14) with small variation. Nia-
gara takes only 19% of the rules used by WCMP and 37%
by the naive approach. The reduction demonstrates the effec-
tiveness of using both power-of-two terms and rule priority.

We then repeat the same experiment with a different num-
ber of weights M and compare the number of rules (Fig-
ure 13(b)). Each marker denotes the median, while verti-
cal bars indicate the minimum and maximum number of
rules. Our algorithm performs steadily well under different
M values: the number of rules increases linearly, suggesting
a roughly constant number of rules per weight.

To evaluate our “truncating” technique (§4.2), we use two
sets of 8 weights, corresponding to the median and maxi-
mum number of rules in Figure 13(b) (14 and 23 rules, re-
spectively), and plot their stairstep curves in Figure 13(c).
We observe that given 14 rules, the imbalance of the ‘worst
case’ weight vector is very small (2%). It suggests that we
can get quite close to the target weights, even if C is signifi-
cantly smaller than the number of rules needed to reach the
error tolerance.

Packing multiple aggregates. Moving on to multiple ag-
gregates, we first evaluate packing (§5.1) assuming aggre-
gates do not share any rules. Each aggregate therefore gets at
least one rule. In the experiment, we generate weights from
Gaussian model (16 weights per aggregate). Figure 14(a)
shows the total imbalance achieved by packing, as a function
of rule-table size. The leftmost point on each curve shows the
imbalance when every aggregate is given exactly one rule. In
all cases, initial imbalance is close to 90%. With Niagara, the
imbalance drops linearly for uniform traffic and nearly expo-
nentially for skewed traffic. This is because our packing al-
gorithm prioritizes “heavy” aggregates in rule allocation. By
allocating more rules to popular aggregates, we minimize
traffic imbalance. For example, packing 100 aggregates with
skewed traffic, our algorithm achieves a total imbalance of
1.2% using 2,000 rules. We observed similar results for Bi-
modal Gaussian and Pick Next-hop weight distributions.

Sharing default rules. Sharing default rules offers a fur-
ther improvement because (i) we no longer need to give each

10

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 500 1000 1500 2000 2500 3000 3500 4000

T
o
ta

l
im

b
a
la

n
ce

#Rules

500 aggregates, Uniform traffic

500 aggregates, Skewed traffic

100 aggregates, Uniform traffic

100 aggregates, Skewed traffic

(a) Packing without default rules

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 500 1000 1500 2000 2500 3000 3500 4000

T
o
ta

l
im

b
a
la

n
ce

#Rules

16 weights, w/o default rules

8 weights, w/o default rules

8 weights, with default rules

16 weights, with default rules

(b) Performance of sharing default rules

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 500 1000 1500 2000 2500 3000 3500 4000

T
o
ta

l
im

b
a
la

n
ce

#Rules

500 aggregates, Pick Next-hop

500 aggregates, Bimodel

500 aggregates, Gaussian

(c) Comparing different models

Figure 14: Packing and sharing default rules (16 weights per aggregate).

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 500 1000 1500 2000 2500 3000 3500 4000

T
o
ta

l
im

b
a
la

n
ce

#Rules

No grouping, Uniform traffic
500 groups, Uniform traffic

No grouping, Skewed traffic
500 groups, Skewed traffic

(a) Performance of grouping

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 500 1000 1500 2000 2500 3000 3500 4000

T
o
ta

l
im

b
a
la

n
ce

#Rules

100 groups

300 groups

500 groups

(b) Different number of groups

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0 500 1000 1500 2000 2500 3000 3500 4000

T
o
ta

l
im

b
a
la

n
ce

#Rules

10k aggregates, Pick Next-hop

10k aggregates, Bimodel

10k aggregates, Gaussian

(c) Grouping aggregates of different models

Figure 15: Grouping 10,000 aggregates.

aggregate at least one rule during packing and can allocate
more rules to heavy aggregates and (ii) default rules pro-
vide a good initial approximation and reduce the number of
“private” rules for each aggregate. We use uniform default
rules in our experiments. Figure 14(b) compares packing 500
aggregates of Gaussian weight distribution, with and with-
out default rules. Using shared default rules achieves a sig-
nificant reduction in imbalance. The imbalance is reduced
from 23.8% to 1.4% for uniform traffic, when C = 2,000
and M = 16. Moreover, sharing default rules performs bet-
ter for bigger M values and Gaussian model, as the abso-
lute weights are smaller and closer to uniform. Figure 14(c)
compares the performance of sharing default rules for ag-
gregates of different weight distribution models. We achieve
the smallest imbalance for Gaussian distribution. Yet, even
for Pick Next-hop, the imbalance is 3.3% with 4,000 rules.

Grouping similar aggregates. Our grouping technique
(§5.2.2) groups aggregates with similar weight vectors to-
gether. Among the weight distributions, Pick Next-hop is
the hardest one to group. Figure 15(a) presents the result
of packing 10,000 aggregates (16 weights per aggregate)
of Pick Next-hop model. We cannot pack these aggregates
without grouping (there are fewer available rules than ag-
gregates, and all aggregates are equally important). Uniform
default rules are not a good initial approximation either (56%
initial imbalance). Given 4,000 rules, the imbalance still ex-
ceeds 50%. However, with grouping, the imbalance drops to
24.8% and 11.2% with 4,000 rules.

We examine how the number of aggregate groups affects

imbalance. We notice that there is a tradeoff between group-
ing accuracy and approximation accuracy: when the aggre-
gates are classified into more groups, the distance between
each aggregate’s target weight vector and the centroid vec-
tor of its group is reduced, making the grouping more accu-
rate. However, the approximation is less accurate for a bigger
number of groups.

Figure 15(b) illustrates this tradeoff comparing the imbal-
ance with 100, 300, and 500 groups. When there are less
than 500 rules, classifying the aggregates into 100 groups
performs best, because it is easier to pack 100 groups and
the centroids of groups still give a reasonable approxima-
tion for aggregates. For larger rule-table sizes, using more
groups becomes advantageous, since the distance between
each aggregate and its group’s centroid, which ‘represents’
the aggregate during packing, decreases. For example, given
1,500 rules, 300-group outperforms 100-group.

We compare the effectiveness of grouping for different
weight models (Figure 15(c)). For a given number of rules,
we classify the aggregates into 100, 300, or 500 groups
(picking the option which yields the smallest imbalance).
With very few rules, the algorithm achieves a reasonably
small imbalance. With 4,000 rules, we reach 2.8% and 6.7%
imbalance for the Gaussian and Bimodal Gaussian models
respectively, and 11.1% imbalance for Pick Next-hop, which
is much tougher to group. In contrast, ECMP incurs imbal-
ance of 9.6%,29.1% and 53.2%.

Time. We recorded the running time of the algorithm 5

5The algorithm assumes that terms can be non-power-of-two.

11

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

P
er

ce
n

ta
g
e

Churn

Minimum churn

Incremental Update

Compute from scratch

(a) Comparing rule update approaches

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

P
er

ce
n

ta
g
e

Churn

Minimum churn

Insertion (1% imbalance)

Removal (1% imbalance)

(b) Tradeoff imbalance for lower churn

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

C
h

u
rn

#Weights(N)

ECMP hash

Minimum churn

Niagara

(c) Comparing Niagara with ECMP

Figure 16: Incremental Update.
on a Ubuntu server with Intel Xeon E5620 CPU (2.4 GHz,
4 core, Model 44, 12 MB cache). Our implementation is
single threaded and written in C++. It takes less than 10ms
to compute the stairstep curves for a 16-weight distribution
(e = 0.001). The time of packing grows linearly with the
number of aggregates and is dominated by the computation
of stairsteps, which can be easily parallelized. For grouping,
k-means clustering takes at most 8 sec. to complete, depend-
ing on traffic and weight distributions. Skewed traffic and
similar weight distributions lead to faster convergence of the
clustering results and fewer iterations.

7.2 Incremental Update
We evaluate Niagara’s incremental rule computation.

Given the old weights for an aggregate, we randomly clear
one non-zero weight and renormalize the rest to obtain the
new weights, or vice versa (called “removal” and “inser-
tion”). We examine the churn and imbalance of the update.

Effect of keeping old rules. We first compare Niagara
with computing from scratch under the same error tolerance
(e = 0.001). A re-computation results in minimum number
of rules, but incur huge churn. In contrast, Niagara’s update
algorithm may lead to extra rules as it keeps some old rules
to reduce churn (§6.1). To quantify the effects, we run Nia-
gara against insertion update on 5,000 sets of 16 weights.
For each set of weights, Niagara choose the rules which
minimize the churn without exceeding the number of rules
needed by the re-computation. Figure 16(a) plots the CDF of
the churn among 5,000 sets of weights from Bimodal distri-
bution. The incremental update approach (blue) dramatically
reduce the churn; it incurs 20% churn for 50% of the test
cases, where the recomputation (black) incurs about 70%
churn for the same portion. This suggests that the old rules
serve as a good initial approximation for the new weights,
thus saving extra rules. We observe similar effect for other
weight distributions as well.

Trade imbalance for lower churn. Although Niagara al-
ready offers a fairly small amount of churn with minimum
number of rules, yet we inevitably miss those rules sets of
bigger sizes that gives smaller churn. Truncating those rule
sets gives low churn, but leads to increase in imbalance. We
plot the improved CDFs of churn in Figure 16(b), when a

maximum imbalance of 1% is allowed. The CDF for inser-
tion is much better than the curves in Figure 16(a) and al-
most coincides with the curve of minimum churn. This sug-
gests that a small tradeoff in imbalance will greatly reduce
the churn. Removal update performs slightly worse than in-
sertion, because the old rules related to the cleared weights
need to be removed and result in increased churn.

Compare with ECMP and WCMP. The theoretical
lower bound of churn for ECMP is 1

4 + 1
4N for removing

one member from a N-sized group (or adding one mem-
ber to (N−1)-sized group), where the minimum churn is 1

N .
The churn for WCMP depends on the number of operations
on ECMP groups. To compare ECMP and Niagara, we use
uniform weight distribution, e.g., N weights of 1

N . For each
N value, Niagara choose the rules that gives the minimum
churn, while i) staying within the number of rules needed by
a re-computation and ii) incurring less than 1% imbalance.
Figure 16(c) presents the comparison of Niagara and ECMP.
The blue line with diamonds shows Niagara’s performance
for insertion update. It closely follows the curve of minimum
churn; the fluctuation in performance (e.g., N = 24,28) is
due to the differences in approximating 1

N . Niagara gives a
much smaller churn than ECMP for N ≥ 5. When N = 32,
Niagara reduces the churn by 87.5% compared to ECMP.

Time. Given a typical rule-set of 30 rules for 16 weights,
if we enumerate the number of lower-priority rules kept in
the new rule-set, the incremental computation takes about
30×10ms = 300ms to complete, which is in the same order
of magnitude as rule insertion and modification on switches
(3.3ms to 18ms [28, 29]). It is sufficient for updates on the
timescale of management tasks. For planned updates, we can
also pre-compute the new rule-set in advance.

8. CONCLUSION
Niagara advances the state-of-the-art in traffic splitting on

switches by demonstrating a new approach that programs the
hardware rule table to closely approximate the desired load
distribution, trading off accuracy for table capacity. Experi-
ments demonstrate that Niagara effectively utilizes a typical
4,000 rule switch chip to split 10,000 aggregates resulting in
6.7% imbalance, while ECMP incurs an imbalance of 30%
and WCMP cannot even reach this scale.

12

9. REFERENCES

[1] A. Greenberg, J. R. Hamilton, N. Jain, S. Kandula,
C. Kim, P. Lahiri, D. A. Maltz, P. Patel, and
S. Sengupta, “VL2: A Scalable and Flexible Data
Center Network,” ACM SIGCOMM, 2009.

[2] M. Al-Fares, A. Loukissas, and A. Vahdat, “A
scalable, commodity data center network
architecture,” ACM SIGCOMM, 2008.

[3] J. Zhou, M. Tewari, M. Zhu, A. Kabbani,
L. Poutievski, A. Singh, and A. Vahdat, “WCMP:
Weighted cost multipathing for improved fairness in
data centers,” ACM EuroSys, 2014.

[4] P. Patel, D. Bansal, L. Yuan, A. Murthy, A. Greenberg,
D. A. Maltz, R. Kern, H. Kumar, M. Zikos, H. Wu,
C. Kim, and N. Karri, “Ananta: Cloud scale load
balancing,” in ACM SIGCOMM, 2013.

[5] R. Wang, D. Butnariu, and J. Rexford,
“OpenFlow-based server load balancing gone wild,” in
USENIX Hot-ICE, 2011.

[6] R. Gandhi, H. Liu, Y. Hu, G. Lu, J. Padhye, L. Yuan,
and M. Zhang, “Duet: Cloud scale load balancing with
hardware and software,” in ACM SIGCOMM, 2014.

[7] J. W. Anderson, R. Braud, R. Kapoor, G. Porter, and
A. Vahdat, “xOMB: Extensible Open Middleboxes
with Commodity Servers,” ACM ANCS, 2012.

[8] A. Gember, A. Akella, A. Anand, T. Benson, and
R. Grandl, “Stratos: Virtual Middleboxes as
First-Class Entities,” Tech. Rep. TR1771, University
of Wisconsin-Madison, 2012.

[9] S. Rajagopalan, D. Williams, H. Jamjoom, and
A. Warfield, “Split/merge: System support for elastic
execution in virtual middleboxes,” in Usenix NSDI,
2013.

[10] D. Thaler and C. Hopps, “Multipath Issues in Unicast
and Multicast Next-Hop Selection.” RFC 2991, Nov.
2000.

[11] C. Hopps, “Analysis of an Equal-Cost Multi-Path
Algorithm.” RFC 2992, Nov. 2000.

[12] N. McKeown, T. Anderson, H. Balakrishnan,
G. Parulkar, L. Peterson, J. Rexford, S. Shenker, and
J. Turner, “OpenFlow: Enabling innovation in campus
networks,” ACM SIGCOMM CCR, 2008.

[13] Broadcom, “High capacity StrataXGS Trident II
Ethernet switch series.”
http://www.broadcom.com/products/

Switching/Data-Center/BCM56850-Series.
[14] N. Handigol, M. Flajslik, S. Seetharaman, R. Johari,

and N. McKeown, “Aster*x: Load-balancing as a
network primitive,” in ACLD, 2010.

[15] FlowScale. http:
//www.openflowhub.org/display/FlowScale.

[16] SciPass.
http://globalnoc.iu.edu/sdn/scipass.html.

[17] M. Bredel, Z. Bozakov, A. Barczyk, and H. Newman,
“Flow-based load balancing in multipathed layer-2

networks using openflow and multipath-tcp,”
HotSDN, 2014.

[18] M. Appelman and M. D. Boer, “Performance analysis
of OpenFlow hardware,” tech. rep., University of
Amsterdam, Feb. 2012. http://www.delaat.net/
rp/2011-2012/p18/report.pdf.

[19] D. Y. Huang, K. Yocum, and A. C. Snoeren,
“High-fidelity switch models for software-defined
network emulation,” in ACM SIGCOMM, HotSDN,
2013.

[20] B. Lantz, B. Heller, and N. McKeown, “A network in a
laptop: Rapid prototyping for software-defined
networks,” in HotNets, ACM, 2010.

[21] “GLIF 2014 demos.”
http://www.glif.is/meetings/2014/demos.

[22] M. Reitblatt, N. Foster, J. Rexford, C. Schlesinger, and
D. Walker, “Abstractions for network update,” in ACM
SIGCOMM, 2012.

[23] A. R. Curtis, J. C. Mogul, J. Tourrilhes,
P. Yalagandula, P. Sharma, and S. Banerjee,
“DevoFlow: Scaling flow management for
high-performance networks,” in ACM SIGCOMM,
2011.

[24] A. Khurshid, X. Zou, W. Zhou, M. Caesar, and P. B.
Godfrey, “Veriflow: Verifying network-wide invariants
in real time,” USENIX NSDI, 2013.

[25] P. Kazemian, G. Varghese, and N. McKeown, “Header
space analysis: Static checking for networks,”
USENIX NSDI, 2012.

[26] M. Moshref, M. Yu, R. Govindan, and A. Vahdat,
“Dream: dynamic resource allocation for
software-defined measurement,” in SIGCOMM, 2014.

[27] M. Yu, L. Jose, and R. Miao, “Software defined traffic
measurement with opensketch.,” in NSDI, 2013.

[28] A. Lazaris, D. Tahara, X. Huang, E. Li, A. Voellmy,
Y. R. Yang, and M. Yu, “Tango: Simplifying sdn
control with automatic switch property inference,
abstraction, and optimization,” in CoNEXT, 2014.

[29] X. Jin, H. H. Liu, R. Gandhi, S. Kandula, R. Mahajan,
M. Zhang, J. Rexford, and R. Wattenhofer, “Dynamic
scheduling of network updates,” in ACM SIGCOMM,
2014.

13

