
NetReview: Detecting when interdomain routing goes wrong

Andreas Haeberlen Ioannis Avramopoulos Jennifer Rexford Peter Druschel

Abstract
Despite many attempts to fix it, the Internet’s interdo-
main routing system remains vulnerable to configuration
errors, buggy software, flaky equipment, protocol oscil-
lation, and intentional attacks. Unlike most existing so-
lutions that prevent specific routing problems, our goal
is to detect problems automatically and to identify the
offending party. Fault detection is effective for a larger
class of faults than fault prevention and is easier to de-
ploy incrementally.

To show that fault detection is useful and practical, we
present the design of NetReview, a fault detection sys-
tem for BGP. NetReview records BGP routing messages
in a tamper-evident log, and it enables ISPs to check
each other’s log against a high-level description of the
expected behavior, such as a peering agreement or a set
of best practices. At the same time, NetReview respects
the ISPs’ privacy and allows them to protect sensitive in-
formation. We have implemented and evaluated a pro-
totype of NetReview; our results show that NetReview
catches common Internet routing problems, and that its
resource requirements are modest.

1 Introduction

Global Internet connectivity is the result of a competitive
cooperation of tens of thousands of Autonomous Sys-
tems (ASes) using the Border Gateway Protocol (BGP).
Unfortunately, interdomain routing is plagued with many
serious problems: BGP is hard to manage, and BGP mis-
configurations and software bugs can create severe net-
work disruptions [5, 20]. Equipment failures in one AS
that cause route flapping can trigger excessive routing an-
nouncements in ASes many hops away [30]. The inad-
vertent configuration of conflicting routing policies in a
collection of ASes can lead to persistent oscillation [11].
An adversary that controls a BGP-speaking router can in-
tentionally ‘hijack’ another AS’s address block in order
to discard the data packets, snoop on the traffic, imper-
sonate the legitimate destination, or send spam [21,22].

Many (but not all) of these problems are rooted in the
absence of a mechanism to verify routing information.
BGP essentially allows anyone to announce any route,
whether that route actually exists or not. Hence, there
has been a lot of work on securing BGP. However, most
of this work focuses onfault prevention, that is, mask-
ing routing problems by suppressing invalid route an-
nouncements. This approach is effective against many
common problems, but it cannot prevent other, equally
common faults; for example, an ISP might fail to an-
nounce a route because of an incorrect export filter. Ex-
isting security extensions to BGP, such as S-BGP [18]
and soBGP [29], are not effective against such faults.
Moreover, existing fault prevention systems require sig-
nificant buy-in before they can yield much benefit and
they require an Internet-wide public-key infrastructure
(PKI); for these and other reasons, prevention systems
have not yet achieved widespread deployment.

In this paper, we take a different and complementary
approach, namelyfault detection. If we cannot prevent
every routing problem, why not at least ensure that each
problem is detected and linked to the ISP that caused it?
Fault detection is easy to deploy incrementally: it does
not require a central PKI or cryptography on the criti-
cal path, and it yields benefits even when the deployment
consists of just a few ISPs (or even a single ISP). More-
over, if we accept the possibility of some delay between
the occurrence of a fault and its detection, we can catch a
very general class of faults, including router and link fail-
ures, software bugs, misconfigurations, policy violations,
and even attacks by hackers or spammers. In particular,
we can detect faults that would be difficult or impossible
to prevent, e.g., when a faulty or misconfigured router
fails to propagate certain routes.

Fault detection has two main benefits. The first (and
most obvious) benefit is that ISPs are automatically in-
formed about routing problems and their causes, which
enables them to respond quickly. Thus, ISPs no longer
have to rely on monitoring heuristics or customer com-
plaints to find out about problems, which increases cus-

1



tomer satisfaction and enables ISPs to swiftly respond
even to minor problems. Also, ISPs no longer need to
diagnose faults manually, and they obtain a ‘safety net’
that enables them to respond to unexpected problems.

The second, more indirect benefit of fault detection is
that it makes an ISP’s reliability transparent. Today, ISPs
may have little to gain from pushing reliability beyond
a certain point, since customers cannot easily attribute
a given routing problem to a particular ISP. Fault de-
tection is an opportunity for reliable ISPs to showcase
their good performance and to distinguish themselves
from the competition, which could help them attract new
customers. In the long term, this could even result in a
market for reliability, in which customers could directly
compare the routing performance of potential providers.

At first, fault detection may appear to be a simple mat-
ter of keeping logs and inspecting them (perhaps even
manually) for routing problems. However, the problem
is complicated by several unique aspects of the inter-
domain routing system. First, detecting certain types
of faults requires that ISPs share information, because
the fault cannot be detected based on one ISP’s view
of the network alone. However, ISPs wish to minimize
the amount of information they release to their competi-
tors. Thus, a detection system must balance its detection
power against the scope of the information ISPs need to
release. Second, the amount of log data collected is so
vast that manual inspection is out of the question, except
in the most egregious cases. Third, the logs may be in-
complete or even incorrect, not least because the routing
system is often attacked by hackers who may try to ma-
nipulate records in order to cover their tracks. Finally, if
the information about faults is to be used as a measure of
reliability, we must avoid both false positives and false
negatives, which rules out heuristic solutions.

To demonstrate that fault detection is viable, we
present NetReview, a system that implements fault de-
tection for BGP. NetReview reliably and automatically
detects routing problems while respecting the ISPs’ pri-
vacy. NetReview also provides strong guarantees: it does
not produce false positives or false negatives even when
under attack by a Byzantine adversary. Using a prototype
implementation of NetReview, we show that its resource
requirements are modest, and that it is effective against
common Internet routing problems.

Existing work on securing interdomain routing has
proved difficult to deploy. A natural question to ask is
whether a fault detection system would be hampered by
similar problems. To address this question, we show that
NetReview can overcome common deployment hurdles:
it can work with existing router hardware, it does not re-
quire a global PKI, it can be deployed incrementally and
it offers immediate benefits to early adopters.

The rest of this paper is structured as follows. In Sec-
tion 2, we begin by giving some background on BGP, and
we discuss the specific challenges of BGP fault detec-
tion. In Section 3, we present the design of NetReview,
followed by a feasibility study in Section 4, which shows
that fault detection is practical. In Section 5, we present
solutions to various practical problems, and we point
out incentives for deployment. In Section 6, we de-
scribe some advanced features that could be added to
NetReview. Section 7 discusses related work, and Sec-
tion 8 concludes this paper.

2 Background

2.1 Interdomain routing with BGP

The Internet consists of independent administrative en-
tities calledautonomous systems (ASes). An AS usu-
ally corresponds to a network run by an Internet Service
Provider (ISP), although some large ISPs have multiple
ASes. Each AS is assigned a uniqueAS number (ASN);
in 2008, about 40,000 ASNs were in active use. In ad-
dition, each AS owns a set of IP addresses, which it can
assign to its hosts and routers. Usually, ASes use large
contiguous sets of addresses that share a commonprefix;
for example, the prefix128.42.0.0/16 covers all IP
addresses whose first two octets are 128 and 42.

To exchange routing information with each other, all
ASes use theBorder Gateway Protocol[23]. Each AS
designates some of its routers asBGP speakers, which
are then connected to BGP speakers in adjacent ASes.
When a BGP speaker learns of a route to a new prefix, it
canannouncethat route to its peers in adjacent ASes; if
the route becomes unavailable later, it mustwithdrawthe
announcement. BGP is a path-vector protocol, that is,
each announcement contains the sequence of ASes that
the route traverses in an attribute calledAS PATH.

BGP specifies a mechanism for exchanging routing in-
formation. The decision which routes to use and whether
or not to announce them to peers is made independently
by each AS using its ownpolicy; for example, an AS
might prefer short routes to reduce latency. Some as-
pects of the policy are determined by an AS’s business
relationships; for example, an AS might agree to act as
theproviderof another AS and offer its customer a route
to every prefix it can reach. Adjacent ASes usually sign
a peering agreement, which specifies the obligations of
each peer.

2.2 What is a BGP fault?

The specification of BGP in RFC 4271 specifies a mes-
sage format and a few basic rules; everything else is
left to the implementation and the policies of an AS.

2



Therefore, we use a very generic definition of a BGP
fault. Suppose we have a complete message traceMa

of all BGP messages a given ASa has sent or received
over time (both internally and to/from its peers). Then
we simply assume that there is a deterministic function
Fa(Ma, t), and we say that ASa is faultyat timet if and
only if Fa(Ma, t) = true, otherwise we say that ASa is
correctat timet.1

How can such a functionFa be defined? There are
several sources of information that can be used for this
purpose (of course, several sources can be combined):

• RFC 4271: The AS is faulty if it violates the BGP
specification, e.g., by sending a malformed mes-
sage, or by announcing a path that contains a loop.

• ASN and prefix assignment: The AS is faulty if
it uses a foreign AS number, or if it announces a
prefix it does not own.

• BGP best practices:The AS is faulty if it does not
follow current best practices, e.g., by failing to ag-
gregate prefixes correctly.

• Peering agreements:The AS is faulty if it does not
honor the peering agreements it has negotiated with
its peers, e.g., by failing to export its customers’
routes, or by choosing a route through an AS it has
promised to avoid.

• Connectivity: The AS fails to offer routes to certain
prefixes, e.g., because an internal link or equipment
failure has caused a partition.

• Internal goals: The AS is faulty if its routers fail to
achieve some goal the AS has set for itself, e.g., by
choosing an expensive route over a cheaper one due
to a configuration error.

Note that our definition does not say who definesFa

and who evaluates it; we will address these challenges
later in this paper. Also, our definition doesnot imply
that there is a unique correct message trace for each AS.
For example, if an AS is offered multiple routes to a
given prefix and its policy does not prefer any route in
particular, it can choose any route.

According to our definition, each fault is local to a sin-
gle AS. Thus, if a faulty ASa exports a bad route to a
neighborb, b doesnotbecome faulty for propagating the
route – except if propagating the route constitutes a fault
according to its own functionFb. A special case occurs
when a link between two neighboring ASes fails. Since
the link is shared by two ASes, we cannot attribute this
event to an individual AS, so we attribute it to the link
(or the pair of ASes) instead.

1A similar definition can be used for router-level faults. We focus on
AS-level faults because they are more general. Note thatFa is specific
to ASa; a different ASb could have a different functionFb.

2.3 Challenges in BGP fault detection

A simple strawman implementation of fault detection
works as follows. Every ISP enables full logging on all
their routers and periodically uploads the logs to a central
server, together with a description of their peering agree-
ments and internal goals. Because the central server has
full information, it can reconstruct the message traceMa

for each ASa, and it can evaluateFa for any (past) point
in time. This solves the fault detection problem because
the central server can eventually detectany BGP fault,
no matter how complex it is.

However, there are several reasons why this strawman
solution would not work in practice. We use them to ex-
plain the challenges that a practical BGP fault detection
system must address:

• Privacy: The strawman’s logs contain sensitive in-
formation that ISPs would not agree to reveal to a
third party, such as their routing policy and internal
topology. A practical system must protect the ISPs’
business secrets while retaining its detection power.

• Reliability: The information in the strawman’s logs
is not necessarily accurate: routers can malfunction,
and hackers can tamper with the logs to conceal an
attack. A practical system must ensure that no faults
go undetected, even when under attack.

• Automation: Collecting and processing the vast
amounts of trace data could prove expensive. A
practical system must be able to efficiently check
this data without manual intervention.

• Decentralization: It is unlikely that ISPs around
the world would accept and trust a single fault de-
tector entity. A practical system must not introduce
any new trusted entities or require ISPs to coordi-
nate with ISPs they do not already cooperate with.

• Deployability: The strawman assumes global de-
ployment. A practical system must have a clear
deployment path, with immediate benefits for early
adopters and a migration path for legacy equipment.

3 NetReview

To demonstrate that the above challenges can be ad-
dressed in a practical system, we now present the design
of a detection system calledNetReview. For clarity of
presentation, we initially assume that NetReview is de-
ployed universally, and that the allocation of ASNs and
IP prefixes to ASes is certified by a trusted certification
authority (CA). In Section 5, we describe solutions for
partial and incremental deployment, and we show how
NetReview can be used without a CA.

3



AS 1 AS 2

AS 3

AS 4

Internal router

Recorded Not recorded

BGP speaker Tamper-evident logs

Figure 1: System model. Each BGP speaker main-
tains a tamper-evident log of the BGP messages it ex-
changes with other ASes. Internal routing messages are
not recorded.

3.1 Overview

At a high level, each BGP speaker maintains a log of all
the BGP messages it sends and receives (Figure 1). In
addition, each AS states a set ofrules that describe the
best practices, routing policies, etc. that the AS adopts
(the union of these rules specifyFa and thus define what
constitutes a fault). Both the logs and the rules are then
made available to certain other ASes, who canauditthem
to check whether the rules have been followed. If a rule
was broken, at least one auditor is guaranteed to detect
this, and it will obtainverifiable evidenceof the fault,
which it can then use to convince third parties.

NetReview only records BGP messages that are ex-
changed with other ASes, but no internal routing mes-
sages. Thus, the log only contains information that an
AS would reveal to other ASes anyway; the ISP’s pro-
prietary information, such as its internal topology, is not
revealed. In addition, each ISP is free to decide which
rules it wants to reveal to each auditor. For example, an
ISP might choose to reveal its best-practice rules to ev-
eryone, and, in addition, it might reveal to each of its
business partners a set of rules that describes its policy
towards that partner. This is safe because the partner al-
ready knows that aspect of the policy from the peering
agreement.

NetReview uses cryptographic endorsements to detect
if routing messages are not logged correctly. The log it-
self is tamper-evident, that is, it can detect if log entries
are modified after the fact. Thus, NetReview can guaran-
tee that log corruption – due to software bugs or hardware
malfunctions – cannot cause faults to go undetected. This
guarantee holds even in the presence of Byzantine faults,
e.g., when hackers or spammers attempt to cover up the
traces of an attack.

NetReview includes a simple specification language
for writing rules. The resulting rules can be checked ef-
ficiently; we show that a commodity workstation is suf-
ficient to audit several ASes in real time.

NetReview is designed to leverage existing trust and
business relationships betweenneighboringASes. We
consider two ASes to be neighbors if they are connected
by a direct link.

3.2 Assumptions and guarantees

NetReview’s design relies on the following assumptions:

1. Each AS has at least one diligent neighbor.By
diligent, we mean that this neighbor regularly audits
the AS and collects evidence. This is a reasonable
assumption because ASes have a natural interest in
learning about routing problems of their neighbors.

2. Each AS is willing to publish a list of its neigh-
bors. Knowing the nature of the business relation-
ships is not necessary, just the fact that two ASes
are connected. This is a reasonable assumption, be-
cause the information can already be determined us-
ing tools like traceroute or RouteViews [25].

3. Each AS can eventually send control messages to
any other AS. This property holds for the Internet
because the AS graph is connected, and because any
link failures are repaired in a timely fashion (that is,
within at most days).

4. No attacker can invert the hash function or
break cryptographic keys. This is a common as-
sumption for protocols that rely on cryptography.

NetReview focuses on detectingobservablefaults,
that is, faults that causally affect at least one non-faulty
AS. This restriction is inevitable because we cannot ex-
pect faulty routers to help with fault detection. An exam-
ple of an unobservable fault would be two faulty routers
sending bad routing updates to each other, but neither of
them logging the messages or forwarding the endorse-
ments to the other’s neighbors. Such a fault cannot be
detected as long as it does not affect a correct AS.

Under the above assumptions, NetReview guarantees
that a) any observable fault is eventually detected and
irrefutably linked to a faulty AS, and that b) no valid ev-
idence is ever generated against a non-faulty AS.

3.3 Maintaining tamper-evident logs

In NetReview, each border router maintains a log of all
routing messages it has sent to, or received from, a router
in another AS. In addition, the logs contain periodic
checkpoints of the BGP routing tables, as well as a hash

4



of each rule the AS has adopted. This additional infor-
mation is needed for auditing and will be discussed in
Sections 3.8 and 3.10, respectively.

Like the logs of an accountability system [13], Net-
Review’s logs aretamper-evident. This means that a
router either records all message exchanges in its log and
does not lie about the contents of the log, or it is possible
to detect that the router is faulty. Note that, since our goal
is fault detection, we do not need to prevent faulty routers
from tampering with their logs – tampering is clear evi-
dence of a fault, so it is sufficient that we can detect it.
Specifically, NetReview detects if a router (i) records a
message it did not send or receive, (ii) omits a message
it did send or receive, (iii) changes an existing log entry,
or (iv) keeps multiple logs or a branched log.

Operation: Each log is structured as a hash chain, i.e.,
every entry is associated with a hash value that covers the
entry itself and, transitively, all the previous entries. To
explain the protocol for logging message exchanges, we
use the example of two routers, Alice and Bob. When-
ever Alice sends a messagem to Bob, Alice first appends
a SEND(m) entry to her log and then attaches anen-
dorsementto m, which is a signed statement that Alice
has logged the transmission ofm. The endorsement in-
cludes the associated log entry’s hash value and is signed
with Alice’s cryptographic key. This has two purposes:
first, it convinces Bob, and any auditors of Bob’s log, that
the message is authentic, which rules out (i). Second, it
serves as evidence that aSEND(m) entry must appear
in Alice’s log, which addresses (ii) and, because of the
hash chain, (iii). When the messagem arrives, Bob ap-
pends aRECV(m) entry to his log and then returns an
acknowledgment to Alice, which includes an endorse-
ment for theRECV(m) entry. At this point, both Alice
and Bob have obtained evidence that the other side has
properly recorded the message in their log.

What if Alice or Bob log the message at first but mod-
ify or remove it later? When Bob receives the endorse-
ment from Alice, he detaches it from the message and
forwards it to Alice’s neighbors. Thus, Alice’s neighbors
eventually learn of all log entries that Alice endorsed.
Each neighbor periodically inspects Alice’s log to check
whether these entries actually appear. If an endorsement
is properly signed but the corresponding entry is missing,
then Alice must have tampered with the log, maintained
multiple logs or a log with multiple branches, and the
endorsement is a signed confession. This addresses (iv).

Protocol support: NetReview extends BGP with sup-
port for endorsements and acknowledgments. To limit
the crypto overhead during bursts of updates, it also in-
troduces a new composite message that allows multiple
updates to be covered by a single endorsement (and thus
by a single signature). We call this protocol variantBGP
with acknowledgments, or BGP-A.

Log truncation: Routers require some storage for
keeping the log. This storage does not have to be in the
router itself – it could be on a separate blade, or on an-
other computer – but capacity is limited, and log entries
cannot be stored indefinitely. Therefore we allow routers
to discard entries that are older than some timeTmax,
e.g., one year. Since the log contains periodic snapshots
of the routing tables, discarding old entries does not de-
stroy information about long-lived routes.

For routers to agree whenTmax has elapsed, clocks
must be loosely synchronized, e.g., within a few hours.
NetReview enforces this by checking the timestamps on
the endorsements. If a router’s clock is not set properly,
its messages will not be accepted by the adjacent routers.

If a log entry were not audited at least once during
its lifetime, some faults could remain undetected. How-
ever, the typical audit period can be expected to be much
shorter than the lifetime of log entries because ASes are
likely to be interested in timely fault detection.

3.4 Auditing

To ensure that no fault goes undetected, the logs of each
AS must be inspected regularly. In principle, any AS
may audit the log of any other AS; however, each AS is
expected to audit at least the logs of its neighbors from
time to time. Neighbors have a natural incentive to learn
about each other’s routing problems, and because of their
existing business relationships, they are in a good posi-
tion to take action if a problem is discovered. Also, re-
call our assumption that each AS has at least one diligent
neighbor; this ensures that each log entry is properly in-
spected at least once.

To inspect an intervalI := [t1, t2] of a target’s log, the
auditor proceeds as follows:

1. If the auditor is not a neighbor of the target, it asks
the target’s neighbors for endorsements from inter-
val I.

2. The auditor asks each of the target’s border routers
for a set of rules2 and a signed segment of its log
that covers intervalI.

3. The auditor checks whether the following properties
hold for the set of logs it has obtained:

• Consistency:All endorsements match an en-
try in one of the logs.

• Conformance: The sequence of messages in
each log conforms to BGP-A.

• Compliance: The target has followed each of
the rules it has revealed.

2In Section 3.10, we describe how the auditor can verify that the
rules are genuine.

5



3.5 Extracting evidence

When an auditor discovers an intervalI ′ := [t′
1
, t′

2
] ⊆ I

during which one of the above properties does not hold,
it extracts the corresponding log segment, starting at the
most recent snapshot. Then it removes all entries that
are not essential for checking (such as additional snap-
shots), as well as any parts of the first snapshot that are
not needed to replay this particular segment. The result
is a compact data structure that irrefutably ties the fault
to the cryptographic key of the responsible AS, and thus
(via the certificate) to its principal. This data can be used
as evidence of the fault, and a third party can verify it
independently.

Once an auditor has obtained evidence, it notifies the
local administrator, who can use the evidence in sev-
eral ways. For example, if a best-practice rule has been
violated, the auditor can choose to make the evidence
publicly available; thus, it is possible to evaluate an
ISP’s performance by asking its neighbors for evidence
of faults. If a private rule was broken, the evidence can
be used to convince an arbitrator or a judge. Notice that
evidence contains the plain text of the rule that was vio-
lated, so it is as sensitive as the rule itself.

3.6 Consistency and conformance checks

The consistency check detects if the target AS has tam-
pered with its log. Recall that each BGP-A message or
acknowledgment contains a signed endorsement that is
linked to a specific log entry, and thus to a specific point
in the hash chain. If the target has returned a valid log
segment, it will be consistent with all the endorsements;
otherwise the log segment and the mismatched endorse-
ment constitute a proof of misbehavior. Since neighbors
collect each other’s endorsements, and since we assume
that each AS has at least one diligent neighbor, we know
that any forged, omitted, or modified log entry is eventu-
ally detected by at least one neighbor.

The purpose of the conformance check is to detect if
the target has deviated from the BGP-A protocol. This
is a purely syntactic check that does not considerwhich
routes were announced, but ratherhow they were an-
nounced. For example, NetReview checks whether each
message was well-formed and whether sessions were
opened with the proper handshake before announce-
ments were sent.

If the target AS passes the consistency and confor-
mance checks, the auditor is convinced that the log ac-
curately reflects the target’s BGP traffic. The remaining
check is designed to detect routing problems.

3.7 Extracting the routing state

The previous two checks are performed on logs from in-
dividual border routers of an AS. However, many routing
problems arise because of inconsistencies between mul-
tiple routers. Therefore, the auditor must perform the
compliance check based on the ‘global’ routing state of
the AS, which it obtains by merging the logs from the
individual routers.

NetReview models the ‘global’ routing state of an AS
as follows. At any given point in time, the AS has a set of
peering points with neighboring ASes, and for each peer-
ing point there are two routing information bases (RIBs):
theoutRIBcontains routes that the AS has announced to
its neighbor, and theinRIBcontains routes that the neigh-
bor has offered to the AS. Since BGP does not permit the
announcement of multiple alternative routes, each RIB
can contain at most one route for each prefix.

To see how the target’s routing state evolved over time,
the auditor starts by loading the oldest checkpoint from
each log, which contains a snapshot of the RIBs. Then
it repeatedly picks the unprocessed message entry with
the earliest timestamp across all logs, and it applies the
updates in the message to the correspondingpair of RIBs.
Thus, it obtains a sequence of routing statesS(ti), where
ti indicates the time of the message that triggered the
change. Note that eachS(ti) contains a pair of RIBs for
each router or peering point; it isnot a ‘global’ RIB for
the entire AS.

3.8 Compliance check

The compliance check detects if the target has broken
any of its rules. We have developed a simple specifi-
cation language that ASes can use to formulate rules.
In this language, a rule is written as a predicate on an
individual routing stateS(ti). For example, the rule

∀c∀r∈outRIB(18, c) :
(prefix(r)∈P ) ⇒(123∈communities(r))

stipulates that, when a router belongs to a prefix from
the setP and is announced to AS 18 over any peering
pointc, it must be tagged with the community123.

The language includes three features we believe to be
key for BGP fault detection. First, the language isdeclar-
ativeand refers to a high-level property, rather than to a
specific algorithm for choosing routes. This makes rules
easier to write and debug than, say, router configura-
tion files. Moreover, many properties can be specified
as rule templates that only require a few AS-specific pa-
rameters. A number of common templates are already
included with NetReview.

Second, rules arepartial specifications of the expected
behavior. The above example only describes what should
happen to routes that are announced to AS 18 and whose

6



prefix is inP , but it does not say anything about the other
routes. Thus, an AS can reveal a rule without revealing
its entire routing policy. Also, we can vary the strength
and number of rules and thus control how restrictive the
checking should be.

Finally, rules aretime-local, that is, they depend only
on a small number of past and future states. This is pos-
sible because interdomain routing is essentially memo-
ryless: whether or not a route is exported depends solely
on which routes arecurrently available; it is irrelevant
whether a route was available earlier, or will become
available later.3 This improves efficiency considerably,
since NetReview only needs to remember a small num-
ber of routing states at any given time.

Even though our specification language is very sim-
ple, we have found that it is sufficient to describe many
of the routing problems that have been reported in the
literature, including origin misconfigurations [20], incor-
rect use of communities [20], incorrect extensions of im-
ported routes [24], route deaggregation, redistribution at-
tacks, and inconsistent path lengths [6].

3.9 Interval operators

Why do some rules have to depend on future or past
states at all? The reason is that, due to propagation de-
lays and clock skew, RIBs from different routers may be
slightly out of sync. Hence, there can be short intervals
during which a route appears in an inRIB but in none of
the outRIBs, or vice versa. To an auditor, this might look
like a transient rule violation.

To avoid false positives in this case, we must introduce
a bit of leeway. NetReview’s specification language con-
tains two timing-related operators. Both operators take
an intervalI = [t − α, t + β] as an argument, wheret
is an instant in time andα, β specify how far the inter-
val extends into the past and into the future, respectively.
Theunion operatorreturns all routes that have been ad-
vertised at some point inI, and theintersection operator
returns all routes that have been advertised continuously
during I. This allows us to mask transient inconsisten-
cies. For example, we might stipulate that a route may
only be exported if a prefix of that route was available
within two seconds of the current time, or that a route
must be exported to some neighbor if it has been avail-
able for at least five seconds. We limitα andβ to 60 sec-
onds each; thus, the auditor must remember at most two
minutes’ worth of past or future states.

If a rule contains interval operators, it can miss actual
transient faults that exist for less thanα+β seconds. The
interval needs to be no larger than the maximum propa-

3A notable exception is age-based tie breaking. We handle this by
including the age of each route in the RIBs.

gation delay plus the maximum clock skew among the
routers of an AS, so this is not a serious limitation.

3.10 Rule commitment and access control

For the compliance check, the auditor must know which
rules should hold for the target during the audited inter-
val. Also, if a rule is violated, the auditor should obtain
evidence that the rule existed at the time of the fault.
The easiest way to accomplish both would be to sim-
ply record the rules in the tamper-evident log. However,
since the logs are public and may be audited by anyone,
this would reveal proprietary information about the tar-
get’s routing policies.

Instead, we only require that ASescommit to their
rules by logging a hash valueH(si, ri) for each of their
rulesri. si is a 128-bit salt, which makes it difficult for
an inquisitive auditor to learn sensitive information by
checking for well-known rules, or to run a dictionary at-
tack. On the other hand, if an auditor knowsri andsi a
priori (perhaps from a peering agreement it shares with
that AS, or because the AS has revealed them earlier), it
can easily check whether the corresponding hash value is
present. If not, it can use the log as evidence and file a
complaint against the AS for breaking the contract.

Why would an AS commit to any rules at all, and why
would it reveal a rule to an auditor? For example, ASes
can use NetReview to enforce provisions from their peer-
ing contracts. The parties could agree to a set of rules and
add them to their respective logs; they would then reveal
these rules to each other, but not to anyone else. Or an
AS could adopt a set of best-practice rules to highlight its
good performance, and reveal these rules to everyone.

4 Feasibility study

In this section, our goal is to demonstrate that NetReview
(and, more generally, the fault detection approach) is
practical. Using a prototype implementation of Net-
Review, we answer the following high-level questions:

• Are NetReview’s rules expressive enough to de-
scribe common routing problems?

• How much storage and bandwidth is needed to
maintain the tamper-evident logs?

• Is fault detection feasible at Internet scale?

4.1 Experimental setup

Our NetReview prototype implements the basic system
we have described so far, plus the additional techniques
described later in Section 5, which enable NetReview to
operate without a CA, in a partial deployment and with

7



No origin misconfi-
guration

∀a∀c∀r ∈ outRIB(a, c,∩[t− 40, t]) : (|aspath(r)|= 1 ∧ prefix(r) ∈ ownPrefixes) ∨ (∃a
′∃c

′∃r
′ ∈

inRIB(a′
, c

′
,∪[t−40, t+5]): prefix(r)=prefix(r′)∧startsWith(r, r′)∧(∀n∈r−r

′:n ∈ ownPrefixes))
Export customer
routes

∀a∈ customers∀c∀r∈ inRIB(a, c): ((∀n∈ aspath(r): n = a)⇒∀a
′ ∈ (peers∪ providers) ∀c

′∃r
′ ∈

outRIB(a′
, c

′
,∪[t − 15, t + 15]): prefix(r) = prefix(r′) ∧ endsWith(r, r′))

Honor no-advertise
community

∀a∀c∀r ∈ inRIB (a, c,∩[t − 5, t]) : NO ADVERTISE ∈ communities(r) ⇒ (¬∃a
′∃c

′∃r
′ ∈

outRIB(a′
, c

′): prefix(r) = prefix(r′) ∧ getElement(aspath(r), 1) = a)

Consistent path
length

∀a ∈ (customers∪ peers)∀c∀c
′ : (c = c

′) ∨ (∀r ∈ outRIB(a, c,∩[t − 5, t]) ∃r
′ ∈ outRIB(a, c

′) :
prefix(r) = prefix(r′) ∧ |as path(r)| = |aspath(r′)|)

Backup link ∀a ∈ backups∀a
′ ∈ (customers∪ peers) ∀c ∀r ∈ outRIB(a′

, c) : (|as path(r)| > 1 ∧
getElement(aspath(r), 1) = a)⇒(¬∃a

′′ ∈ providers∃c
′∃r ∈ inRIB(a′′

, c
′
,∩[t − 5, t]))

Table 1: Rules we checked in our experiments. Each rule is explained in Section 4.2. The variablesa, a′ are for AS
numbers,c, c′ are for connections, andr, r′ are for routes. inRIB(a, c) and outRIB(a, c) stand for the sets of routes
imported and exported, respectively, to ASa over connectionc; they can be combined with an interval operator.3

T
ie

r 
1

T
ie

r 
2

S
tu

bs

Internet

AS 2

AS 1

AS 3

AS 4 AS 5 AS 6

AS 7 AS 8 AS 9 AS 10

Customer-provider link Peer link Router

Backup

Figure 2: AS topology in our experiments. AS 2 receives
updates from an Internet BGP trace.

existing routers. These techniques add some overhead to
our results, so the overhead of the basic algorithm would
be lower than what we report here.

For our experiments, we set up a synthetic network of
35 Zebra BGP daemons [9], which form a topology of
10 ASes (Figure 2). Our network contains a mix of AS
types, ranging from large tier-1 ASes to small stub ASes,
as well as both customer/provider and peering relation-
ships. This diversity allowed us to implement and check
a variety of different routing policies. Note that AS 8 and
AS 5 have two separate connections, which will become
important later.

For each AS, we configured a default routing policy
that satisfies the Gao-Rexford conditions [8]. If a route
is imported from a customer, it is exported to all neigh-
bors; otherwise (if the route is from a peer or provider),
it is exported only to customers. In some of our experi-
ments, we vary this policy by injecting configuration er-
rors or imposing additional constraints. Internally, each
AS uses a full-mesh iBGP topology. We did not set up
route reflectors because NetReview is oblivious to iBGP
anyway.

Compared to the Internet, our test network is much
smaller, less dynamic, and contains only a few prefixes.
To compensate for this, we injected routing updates from
an Internet BGP trace into AS 2, thereby creating condi-
tions as if our network was part of the global Internet.
We used a 15-minute trace from RouteViews [25], which
was collected from a Zebra router at Equinix in Ashburn,
VA, on January 27, 2008. The collecting router peers
with eleven other ASes. The trace contains 15,141 up-
dates from these neighbors, and the corresponding RIB
snapshot contains 243,198 unique prefixes. Thus, AS 2
behaved as if it were connected to the Internet in Ash-
burn, VA, and it exported a realistic set of prefixes to the
other ASes. This allowed us to get realistic estimates
for many performance metrics, e.g. how quickly the logs
grow and how much time is required for checking.

NetReview’s overhead depends in part on the number
of neighbors an AS has. Unless otherwise noted, the
numbers we report are for AS 5. Since 92% of Internet
ASes have degree five or less, our results are representa-
tive of all but the largest Internet ISPs.

4.2 Rules we checked

In our experiments, we used NetReview to enforce five
rules, which are shown in Table 1. In plain English, these
rules say the following:

• No origin misconfiguration: An AS may only ex-
port a route if it owns the corresponding IP prefix,
or if the exported route is an extension of another
route that the AS is currently importing (motivated
by [20]).

• Export customer routes: If an AS imports a direct
route from one of its customers, it must export that
route to its peers and providers.

• Honor no-advertise community: An AS must
honor the NOADVERTISE community; it may not
re-export a route that is tagged with this community.

8



• Consistent path length: When exporting a route
to a customer or a peer, an AS must advertise
AS PATHs of the same length over all connections
(motivated by [6]).

• Backup link: An AS may only export a route via a
backup path if its direct links become unavailable.

We chose these five rules because they detect real
problems that have been reported in the Internet [6, 20,
24], and because they demonstrate the different types of
conditions NetReview can verify (of course, each rule
could be varied and customized in a number of ways).
Note that the first two rules are very powerful; together,
they can find almost all of the routing problems that
were studied in [20]. In particular, the first rule covers
AS PATH manipulations, which are the main focus of
secure routing systems like S-BGP (it actually goes be-
yond S-BGP in that it can also check for timely route
withdrawal). The last three rules catch routing problems
that would be difficult to find without a detection system,
since they can only be detected by combining informa-
tion from several routers and/or ASes.

4.3 Functionality check

We begin with a simple functionality check to show that
the prototype is fully functional and works as expected.
Recall that NetReview’s design precludes false positives
and false negatives if each AS is audited regularly.

We ran a series of six trials. In the first trial, we
used the correct configuration for each AS. In the fol-
lowing five trials, we made a configuration change in a
NetReview-enabled AS at some point during the exper-
iment that caused one of the five rules to be violated.
After each trial, we audited all the logs.

As expected, NetReview did not report any problems
during the first trial. In each of the other trials, it re-
ported the fault we had injected. The output also in-
cluded the time interval in which the fault appeared, as
well as the variable assignments (prefixes, AS numbers
etc.) for which the corresponding rule did not hold. This
is valuable for administrators because it shows not only
where the fault occurred (in the audited AS) but also for
which prefix the exported paths did not have the same
length,whichconnections were affected, etc.

4.4 Processing power

BGP-A speakers and monitors must generate and ver-
ify cryptographic signatures. The necessary processing
time is a function of the number of messages they send

3The interval sizes we use are worst-case values for a mirroring
monitor (mainly due to MRAI timers). Much smaller intervalswould
suffice if the monitor is attached via port replicators or BMP[26].

 0

 5

 10

 15

 20

 25

 30

No origin
misconfig

Export
routes

Honor
community

Consistent
length

Backup
link

P
ro

ce
ss

in
g 

tim
e 

(m
s)

Figure 3: Average processing time required to check a
rule over one second of log data (the error bars show the
5th and the 95th percentile). The speed is sufficient for
checking multiple ASes in real time.

and receive. In our experiment, the monitor in AS 5
sent 1,973 BGP-A messages and received 1,579 during
the 15-minute period. Since all messages are acknowl-
edged, this required 3,552 signatures to be generated and
an equal number to be validated, on average 3.9 signa-
tures and validations per second. On a 3 GHz Pentium 4,
a 1024-bit RSA signature can be generated and verified
in less than 3.5ms.

Routing updates often arrive in bursts. Unlike BGP
messages, BGP-A messages can contain updates for
multiple different routes, which explains why the num-
ber of messages is much lower than the number of rout-
ing changes in our BGP trace. As a result, if a router is
restarted and receives full routing tables from its neigh-
bors, it only needs to check one signature per routing
table. This is in contrast to S-BGP [18], which needs to
check a signature for every single route.

Auditors must extract the routing state from the logs
and check it against the specified rules. Rules can be
evaluated independently for each prefix, which enables
an important optimization: we only evaluate rules over
prefixes that have changed,5 which yields a considerable
speedup. It would take more time to check rules that
depend on a large number of different prefixes, but we
are not aware of any useful rules that have this property.

In our experiments, we found that the processing time
was dominated by rule checking, which in turn depends
on the number of routing changes as well as the com-
plexity of the rules. Figure 3 shows the average time
required to check a one-second log segment against each
of our five rules.6 Our 15-minute log required 11,371
such checks, which took 41.5 seconds on a Pentium-4
workstation.

In practice, the checking time would also depend on
the number and complexity of the rules the target AS is

5Or when the value of an interval operator changes. This increases
the number of checks by a small factor.

6The variance is high because some one-second intervals contain
many updates, while others contain none at all.

9



revealing to the auditor. There is little published infor-
mation about the policies used by commercial ASes, so
we cannot say how large a ‘typical’ set of rules would be.
We already included a generic policy rule (rule #2) in our
set, which may be sufficient for small ASes. Even if we
assume that a typical set contains 20 rules (four times
the size of our set), an AS with five neighbors would still
only need a single workstation to perform real-time au-
diting. If an AS has more neighbors, it can spread the
load across multiple machines, since rule checking can
be trivially parallelized.

4.5 Storage space

BGP-A speakers require storage for checkpoints, the
tamper-evident log, and for the certificates that bind each
key to the identity of an AS. An X.509 certificate with
1024-bit RSA keys is about 1kB. With web-of-trust sig-
nature chains (described in Section 5.1) and a typical AS-
path length of four, we arrive at 5kB per certificate; thus,
a database with certificates for 40,000 ASes would re-
quire approximately 195 MB.

The size of a checkpoint is dominated by the RIBs;
it depends on the number of prefixes and connections.
One RIB with 244,000 prefixes and a 90-second history
takes about 9.0 MB, so a complete checkpoint for an
AS with five neighbors would take about 45 MB. If the
AS records one checkpoint every minute and keeps all
checkpoints for one day, plus one checkpoint for each
day of the last year, it would require about 81 GB.

In our experiment, the log grew at a rate of about
335 kB per minute (without checkpoints). Hence, we
estimate that one year’s worth of log data would take
about 176 GB. The log size is also a function of the num-
ber of connections and the frequency of routing changes.
Since it mostly contains routing updates, its growth rate
is roughly proportional to the amount of BGP traffic an
AS generates. Recall that the numbers we report are for
an AS with five neighbors; if an AS has more neighbors
(and thus more connections), its storage requirements are
higher. For the largest ASes (UUNet has 2,652 neigh-
bors), on the order of a hundred Terabytes of storage may
be necessary to store the log for a year. However, the log
would be distributed over thousands of routers.

Auditors require no permanent storage; however, it
makes sense for them to cache a recent checkpoint for
each AS they are auditing, so they do not have to down-
load one repeatedly.

4.6 Message overhead

BGP-A speakers generate traffic for maintaining BGP-A
sessions, for exchanging endorsements and for respond-
ing to audits. We look at each type of traffic in turn.

In terms of traffic, BGP sessions and BGP-A sessions
are quite similar. If 1024-bit keys are used, a BGP-A
message and its acknowledgment have 359 header bytes,
while a BGP message only has 16. On the other hand,
a BGP-A message can advertise many different routes,
while a BGP message can only advertise one. In our
experiment, AS 5 generated an average of 133 kB of
BGP-A traffic per minute.

Upon receiving a message or an acknowledgment, a
BGP-A speaker detaches the endorsement and forwards
it to the sender’s neighbors. With 1024-bit keys, the size
of an endorsement is 156 bytes; in our experiment, AS 5
sent 1.36 MB of endorsements over the 15-minute pe-
riod. However, endorsements are also collected from
messages read during an audit, so the required traffic
is quadratic in the number of neighbors. This can be
a problem for large ASes (e.g. UUNet). Therefore, en-
dorsements from large ASes should be sent to only a sub-
set of its neighbors. This does not affect NetReview’s
guarantees as long as the subsets used by all neighbors
intersect in at least one diligent neighbor.

In our experiment, all audits were incremental; the au-
ditor transferred a full checkpoint once and then retrieved
only the log entries that were added since the last audit.
In the limit, the required traffic is the size of the log times
the number of auditors, plus some overhead for headers.

In total, an AS with five neighbors would generate
about 259 kbps of BGP-A traffic, including routing up-
dates, authenticators and auditing. This corresponds to
half the bandwidth of a typical DSL upstream, which is
insignificant compared to the amount of traffic ISPs rou-
tinely handle.

4.7 Summary

Our experiments show that NetReview’s simple rules are
sufficient to describe common, nontrivial routing prob-
lems. NetReview’s resource requirements are moderate:
in a moderately-sized AS with five neighbors, routers
must sign less than four messages per second on aver-
age, a single hard disk is sufficient to keep one year’s
worth of log data, and the total traffic is less than the ca-
pacity of a single broadband upstream link. Finally, we
have demonstrated that fault detection is feasible at In-
ternet update rates. By running the NetReview software
on a single workstation, an ISP can already audit dozens
of neighboring ASes in real time.

5 Practical challenges

In the previous two sections, we have shown that it is fea-
sible to build a fault detection system with strong guar-
antees, and that its resource requirements are moderate.
The goal of this section is to show how NetReview deals

10



with the various practical problems that have hampered
the deployment of previous solutions. In particular, we
will show that NetReview can operate without a CA, that
it can be effective in a partial deployment, that it can
initially be deployed without upgrading any routers, and
that it offers incentives for incremental deployment.

5.1 NetReview without a CA

Despite many proposals, deploying a global CA for the
Internet has so far not found acceptance [15]. NetReview
can use such a CA if it exists, but it does not require it.
In the absence of a CA, we need to find replacements for
two services that a CA provides: associating each key
pair with a real-world identity, and certifying ownership
of AS numbers and IP prefixes.

We solve this problem using a web-of-trust approach
that is inspired by [28, 29]. Each AS initially generates
a key pair and creates a self-signed certificate. Then it
sends the certificate to its immediate neighbors, who ap-
pend their own endorsement and forward it on to their
neighbors, etc. The overhead for flooding certificates is
not a concern, because the AS topology changes at a low
rate.

Each AS obtains a database of all certificates, each
with a chain of endorsements that corresponds to the
shortest path between the local AS and the AS repre-
sented by a given certificate. Can these certificates be
trusted? We can safely assume that each AS knows the
true identity of the neighbor attached to each of its physi-
cal links. Moreover, a trustworthy AS would not endorse
a certificate from a neighbor unless it reflects the neigh-
bor’s correct identity. Thus, if we assume that trustwor-
thy ASes establish links (and thus business relationships)
only with other trustworthy ASes, then a node can (tran-
sitively) trust every certificate that is endorsed by one of
its neighbors.

In addition, we require each AS to log a public pledge
that specifies its current ASN and prefix ownerships.
ASes extract this pledge during audits and compare it to
their database; if there is any change, they flood it to all
other ASes. Thus, NetReview can detect if two ASes
claim ownership of the same ASN or of overlapping pre-
fixes, and it provides each with evidence of the other’s
claim. The conflict can then be resolved through existing
mechanisms, e.g., by a mediator or a judge.

5.2 Partial deployment

It would be unrealistic to expect that all ASes adopt Net-
Review, much less that all ASes install the system at the
same time. Therefore, NetReview must be able to work
in a partial deployment, i.e., it must be able to interact
with non-participants via BGP.

By default, BGP-A speakers and monitors record only
BGP-A messages in their logs, and auditors use only
BGP-A messages to reconstruct the routing information.
However, legacy neighbors have no components that
speak BGP-A. If we simply omitted all routes imported
from or exported to these neighbors, the information in
the log might not be sufficient to evaluate many interest-
ing conditions. For example, if an AS acts as a provider
for another AS, it may be required to export routes for all
prefixes it knows about, even if the corresponding route
is through a non-participant. Therefore, if an AS has
legacy neighbors, its BGP-A speakers and monitors ad-
ditionally record all the (unsigned) BGP messages they
exchange with these neighbors.

Why keep this information in the secure record if
a faulty participant AS can simply record whatever it
wants? There are two reasons. First, even if an AS lies
about the routes it is importing or exporting via BGP, it
must lieconsistentlyto avoid detection by the auditors.
For example, if the AS claims to have imported a certain
route via BGP, it must re-export that route to each partici-
pating neighbor if required by its peering agreement, and
it cannot export different versions to different neighbors.

Second, logging BGP messages enables an interme-
diate level of participation in NetReview. If a non-
participant AS is a neighbor of a participant AS, it can
act as an auditor and compare its neighbor’s log to the
BGP messages it actually sent, without fully deploying
fault detection itself. All it needs is the NetReview au-
ditor software and a current snapshot of its own BGP ta-
bles. If it finds a discrepancy, it can investigate it by con-
tacting the participant AS. This option could encourage
neighbors of participant ASes to ‘try out’ fault detection.

Partial deployment requires an addition to the web-of-
trust technique we proposed in Section 5.1. As long as
the deployment is contiguous in the AS graph (which is
likely if tier-1 ASes join first), the technique works as
described. When a second ‘island’ of participants arises,
at least one member of each island must exchange cryp-
tographic credentials out-of-band. These members are
then considered NetReview neighbors (even though they
do not share a physical link); they forward certificates
from their respective islands, collect endorsements for
each other, and periodically audit each other’s log.

5.3 Using existing routers

Requiring ISPs to upgrade or replace their routers to
deploy NetReview would present a significant hurdle.
Therefore, it is useful to have an intermediate solution
that works with existing, unmodified routers. Our solu-
tion is to run the NetReview software on ordinary work-
stations, which we callmonitors. The monitors speak
both BGP and BGP-A; they observe all BGP traffic inci-

11



dent at the AS’s existing routers and maintain BGP-A
sessions to any monitors (or native BGP-A speakers
where available) in adjacent ASes. The monitors also
maintain tamper-evident logs and perform all crypto-
graphic operations. Thus, the existing routers need not
be modified.

There are two ways to configure a monitor [24]. A
proxyingmonitor interposes on all BGP connections of
its local AS. When it receives a BGP message from a
local border router, it sends an equivalent BGP-A mes-
sage to the remote BGP-A speaker (or monitor) and
vice versa. Amirroring monitor snoops on the exist-
ing control connections, e.g., using a port replicator, the
BGP monitoring protocol [26], or additional BGP ses-
sions. Whenever it sees an outgoing message on the
legacy BGP connection, it sends a BGP-A message with
the same information over a separate connection to the
neighbor’s BGP-A speaker or monitor.

Mirroring monitors are safer because the routers do
not depend on them. If a monitor fails, the routers can
still send or receive routing updates via BGP and nor-
mal operation is not affected. On the other hand, mirror-
ing monitors allow inconsistencies between the updates
sent via BGP and BGP-A. Consider a case where a mis-
configured or faulty router advertises some route A to its
monitor and a different route B to the adjacent AS. The
monitor would record route A in the tamper-evident log,
and the AS could not be held accountable for route B.

To address this case, mirroring monitors maintain
a third RIB for each connection, which we will call
inRIB-BGP. The inRIB contains the routes advertised
via BGP-A as before, while the inRIB-BGP contains the
routes received over the monitor’s BGP sessions. Nor-
mally, the two are identical, whereas the scenario de-
scribed earlier would manifest itself as an inconsistency
between inRIB and inRIB-BGP in two adjacent ASes.
Thus, an inconsistency cannot go undetected; however,
an auditor cannot decide whether an inconsistency be-
tween inRIB and inRIB-BGP is caused by the audited AS
or by its neighbor, and therefore must suspect both. Be-
cause BGP neighbors have a business relationship, they
can be expected to swiftly sort out a demonstrated incon-
sistency between their advertised routes.

5.4 Incentives for deployment

If fault detection is to be deployed incrementally in the
current Internet, we need good arguments to persuade
ISPs to adopt it. Here, we present two arguments we
believe to be compelling: ISPs can use fault detection as
a distinguishing feature to attract more customers, and
they can use it for root-cause analysis in theentire Inter-
net, even in non-participating ASes.

Market forces: The first adopters of NetReview are
likely to be large ISPs, such as tier-1 and tier-2 ASes,
who tend to adopt new routing technology and best prac-
tices early. As a result, their routing performance is of-
ten excellent. These ASes can demonstrate their excel-
lent performance by offering fault detection as a value-
added service to their customers and thus distinguish
themselves from the competition.

Once fault detection is on the market, competitors
are encouraged to measure up by offering the service
themselves. Thus, small islands of participants emerge.
Now, consider the situation of an AS that is surrounded
by a perimeter of participant ASes. Such an AS can
trace any routing problem to a participating neighbor or,
if the cause is outside the perimeter, to an AS on the
fringe. This creates an incentive for ASes to be inside
the perimeter, and thus causes the islands to expand and
the gaps between them to shrink.

Note that NetReview can use this path because, unlike
secure routing protocols like S-BGP, it is effective even
in a small deployment of just a few ASes.

Root-cause analysis:As an additional benefit, partic-
ipant ASes can use the fault detection system to diagnose
faultseven if the cause is in a non-participating AS. Since
non-participants do not sign messages, do not maintain
tamper-evident logs, and do not reveal any rules, we can-
not guarantee that the diagnosis will always be accurate,
and we cannot detect certain types of faults, such as pol-
icy violations. However, even an approximate diagnosis
enables the AS to respond more effectively to faults.

Since non-participants do not have tamper-evident
logs, we cannot directly apply auditing to find faults.
Instead, we can use the participants’ logs as a giant
BGP looking glass that provides information about BGP
updates from many vantage points. There are several
proposed systems that can use this data to diagnose
faults [7,10,17,27]. In fact, NetReview provides more in-
formation than existing systems need because it records
a history of past states; this could be used to develop even
more powerful systems.

The above techniques return acandidate set– a set of
ASes that could have caused the fault. As the number
vantage points rises, the precision increases, so the size
of a typical candidate set decreases. Based on simulation
results, we estimate that, if the0.1% ASes with the high-
est degree deployed NetReview, the size of the candidate
set would already be half the size of the AS path. Once
the deployment reaches15%, the set would almost al-
ways contain a single AS. Hence, even though root-cause
analysis handles a smaller set of faults than NetReview,
it can provide an incentive for initial deployment.

12



6 Future work

In this section, we describe some advanced features that
could be added to NetReview.

6.1 Simultaneously inspecting several ASes

Normally, NetReview inspects one log at a time, which
is sufficient to detect protocol violations and policy vi-
olations. However, NetReview cannot detect problem-
atic interactionsbetween the policies of multiple ASes
that way. An example is bad gadgets [11], which only
arise when the routing policies of several ASes conflict
in a circular fashion. To detect bad gadgets, NetReview
would have to inspect the logs of multiple ASes simulta-
neously.

Technically, it is not difficult to fetch the logs from
multiple ASes and to evaluate rules over multiple RIBs.
However, routing policies are typically pair-wise confi-
dential; thus, the check would have to be performed by a
mutually trusted auditor. An alternative method to detect
such policy conflicts, proposed in [12], is to have ASes
annotate BGP advertisements with ahistory in a manner
that preserves the privacy of the routing policies. Be-
cause NetReview records and publishes histories of BGP
advertisements as part of its regular operation, this tech-
nique can be readily applied.

6.2 Detecting data-plane inconsistencies

In this paper, we have focused on providing fault de-
tection for thecontrol plane– the BGP announcements
ASes send to each other. However, an AS could conceiv-
ably advertise one path in BGP and forward data pack-
ets on another, whether inadvertently or as part of an at-
tack. NetReview already provides two mechanisms that
can detect inconsistencies between the control and data
planes: (i) it offers authoritative information about the
route advertisement in the control plane, and (ii) it estab-
lishes the secure log that could also record observations
about the data plane.

For example, suppose AS B advertises route “B C”
to AS A but instead forwards A’s traffic to AS D. If D
passively monitors the traffic received from B, D can ob-
serve that A’s packets are misrouted. D can add this ob-
servation to its log, and any auditors can thus obtain evi-
dence of a data-plane inconsistency between B and D.

6.3 Internal audits

NetReview provides fault detection for BGP inter-
domain routing. It does not record any intra-domain rout-
ing messages in the tamper-evident log because these

could reveal confidential information, such as the AS’s
internal topology.

However, NetReview could easily be adapted to cover
intra-domain routing using a separate, private record.
ASes could then perform internal audits to discover mis-
configurations or compromised routers in their internal
network, even when these routers have not (yet) caused a
routing problem that would be visible to a neighbor.

7 Related Work

Detection: Anomaly detection techniques [14,17,19,31]
use the BGP routing updates from one or more vantage
points to build ade factoregistry of the AS topology and
prefix ownership. They raise an alarm upon receiving up-
dates that disagree with the registry. Root-cause analysis
(RCA) algorithms analyze BGP update messages from
multiple vantage points to identify the AS(es) responsi-
ble for a routing change [3, 4, 7]. In RCA, each vantage
point identifies a set of suspect ASes, then the sets are
correlated to determine the potential culprit(s). The ac-
curacy of RCA depends on the number and location of
the vantage points. Unlike both RCA and anomaly de-
tection, NetReview produces no false positives or false
negatives, and it is not vulnerable to compromised ASes.
In addition, NetReview can detect a larger class of faults,
and it produces evidence to convince a third party.

AudIt [2] can determine which ASes are losing or de-
laying packets on the data plane. However, AudIt can
only reveal the symptoms of a malfunctioning control
plane, whereas control-plane fault detection can perform
diagnosis.

Prevention: Secure routing protocols [16, 18, 28, 29]
can ensure that (i) a route advertisement originates from
the legitimate origin AS and that (ii) the AS-path of a
route advertisement has not been modified or forged. On
the one hand, secure routing protocols can prevent cer-
tain types of faults, whereas NetReview can only detect
them; on the other hand, NetReview covers a larger class
of faults, including policy violations (such as a faulty AS
redistributing routes from one upstream provider to an-
other), it can localize faults, and it provides incentives
to avoid them. Perhaps more importantly, secure routing
protocols do not provide appreciable benefits until many
(if not all) ASes have adopted them, which explains in
part why they have not yet been deployed, whereas Net-
Review is effective even in small deployments

N-BGP [24] uses trusted hardware to enforce a BGP
‘safety specification’ for individual routers. Unlike N-
BGP, NetReview does not require trusted hardware and it
produces evidence of faults that can be verified by third
parties. Moreover, NetReview is designed to check an
entire AS’s operation, not only against a safety specifica-

13



tion but also against the AS’s routing policy as specified
in its peering agreements.

AIP [1] is a clean-slate redesign of IP that, among
other things, would greatly simplify the deployment of
a secure routing protocol. However, even if AIP were to
replace IP entirely, it would be subject to the limitations
of secure routing protocols described above.

Accountability: NetReview’s tamper-evident log is
based on the log in PeerReview [13], a general account-
ability framework for distributed systems. However,
NetReview goes beyond PeerReview, which is based on
assumptions that do not hold in interdomain routing. For
example, PeerReview requires a certificate authority, it
cannot operate in a partial deployment, it cannot protect
the business secrets of ISPs, and it detects neither pol-
icy violations nor any other condition that involves more
than one router.

8 Conclusion

In this paper, we have presented the design, implemen-
tation, and evaluation of NetReview, a fault detection
system for interdomain routing. NetReview reliably de-
tects incorrect behavior and links it to the responsible
AS, while also enabling well-behaved ASes to prove
they have adhered to the protocol and their routing poli-
cies. NetReview’s correctness checks can detect and di-
agnose a wide variety of problems in BGP, including
faulty equipment, buggy software, policy violations, and
malicious attacks, making it an appealing alternative to
point solutions to any one of these problems. NetReview
does not require changes to the underlying routers and
is effective even in partial deployments. We believe that
a fault detection system like NetReview can play an im-
portant role in improving the reliability, stability, and se-
curity of the interdomain routing.

References
[1] D. Andersen, H. Balakrishnan, N. Feamster, T. Koponen,

D. Moon, and S. Shenker. Accountable Internet protocol (AIP).
In Proceedings of SIGCOMM, Aug 2008.

[2] K. Argyraki, P. Maniatis, O. Irzak, S. Ashish, and S. Shenker.
Loss and delay accountability for the Internet. InProc. IEEE
International Conference on Network Protocols, Oct. 2007.

[3] M. Caesar, L. Subramanian, and R. H. Katz. A case for an Internet
health monitoring system. InProc. USENIX Workshop on Hot
Topics in System Dependability, Jun. 2005.

[4] J. Chandrashekar, Z.-L. Zhang, and H. Peterson. Fixing BGP, one
AS at a time. InProc. ACM SIGCOMM Network Troubleshooting
Workshop, 2004.

[5] N. Feamster and H. Balakrishnan. Detecting BGP configuration
faults with static analysis. InProceedings of NSDI’05, May 2005.

[6] N. Feamster, Z. M. Mao, and J. Rexford. BorderGuard: Detecting
cold potatoes from peers. InProc. Internet Measurement Confer-
ence, Oct 2004.

[7] A. Feldmann, O. Maennel, Z. Mao, A. Berger, and B. Maggs.
Locating Internet routing instabilities. InProc. ACM SIGCOMM,
Aug.-Sept. 2004.

[8] L. Gao and J. Rexford. Stable Internet routing without global
coordination.IEEE/ACM Transactions on Networking, 9(6):681–
692, Dec 2001.

[9] GNU Zebra.http://www.zebra.org/.

[10] G. Goodell, W. Aiello, T. Griffin, J. Ioannidis, P. McDaniel, and
A. Rubin. Working around BGP: An incremental approach to
improving security and accuracy of interdomain routing. InProc.
Network and Distributed Systems Security, Feb 2003.

[11] T. G. Griffin, F. B. Shepherd, and G. Wilfong. The stable paths
problem and interdomain routing.IEEE/ACM Transactions on
Networking, 10(2):232–243, April 2002.

[12] T. G. Griffin and G. Wilfong. A safe path vector protocol.In
Proc. INFOCOM, Mar. 2000.

[13] A. Haeberlen, P. Kuznetsov, and P. Druschel. PeerReview: Prac-
tical accountability for distributed systems. InProc. Symposium
on Operating Systems Principles, Oct 2007.

[14] X. Hu and Z. M. Mao. Accurate real-time identification ofIP pre-
fix hijacking. InProc. IEEE Symposium on Security and Privacy,
May 2007.

[15] Y.-C. Hu, D. McGrew, A. Perrig, B. Weis, and D. Wendlandt.
(R)evolutionary bootstrapping of a global PKI for securingBGP.
In Proc. HotNets Workshop, Nov 2006.

[16] Y.-C. Hu, A. Perrig, and M. Sirbu. SPV: Secure path vector rout-
ing for securing BGP. InProc. ACM SIGCOMM, 2004.

[17] J. Karlin, S. Forrest, and J. Rexford. Autonomous security for
autonomous systems.Computer Networks, special issue on Com-
plex Computer and Communication Networks, Oct 2008.

[18] S. Kent, C. Lynn, and K. Seo. Secure border gateway protocol
(S-BGP).IEEE JSAC, 18(4):582–592, Apr 2000.

[19] M. Lad, D. Massey, D. Pei, Y. Wu, B. Zhang, and L. Zhang.
PHAS: A prefix hijack alert system. InProc. USENIX Security
Symposium, Aug. 2006.

[20] R. Mahajan, D. Wetherall, and T. Anderson. Understanding BGP
misconfiguration. InProc. ACM SIGCOMM, Sep 2002.

[21] O. Nordstroem and C. Dovrolis. Beware of BGP attacks.ACM
Computer Communications Review (CCR), Apr 2004.

[22] A. Ramachandran and N. Feamster. Understanding the network-
level behavior of spammers. InProc. ACM SIGCOMM, Sep
2006.

[23] Y. Rekhter, T. Li, and S. Hares. A border gateway protocol 4
(BGP-4). RFC 4271, Jan 2006.

[24] P. Reynolds, O. Kennedy, E. G. Sirer, and F. B. Schneider. Se-
curing BGP using external security monitors. Technical Report
TR-2006-2065, Cornell University, Computing and Information
Science, Dec 2006.

[25] RouteViews project. http://www.routeviews.org/.

[26] J. Scudder. BGP monitoring protocol, Aug 2005. ExpiredInter-
net Draft, draft-scudder-bmp-00.

[27] R. Teixeira and J. Rexford. A measurement framework forpin-
pointing routing changes. InProc. ACM SIGCOMM Network
Troubleshooting Workshop, Sep 2004.

[28] T. Wan, E. Kranakis, and P. C. van Oorschot. Pretty secure BGP
(psBGP). InProc. Network and Distributed System Security Sym-
posium, Feb 2005.

[29] R. White. Securing BGP through secure origin BGP.Internet
Protocol Journal, 6(3), 2003.

[30] J. Wu, Z. M. Mao, J. Rexford, and J. Wang. Finding a needlein
a haystack: Pinpointing significant BGP routing changes in an IP
network. InProcessings of NSDI’05, May 2005.

[31] C. Zheng, L. Ji, D. Pei, J. Wang, and P. Francis. A light-weight
distributed scheme for detecting IP prefix hijacks in real-time. In
Proc. ACM SIGCOMM, Aug. 2007.

14


