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ABSTRACT
Traditionally, Internet Service Providers (ISPs) make profit by pro-
viding Internet connectivity, while content providers (CPs) play the
more lucrative role of delivering content to users. As network con-
nectivity is increasingly a commodity, ISPs have a strong incen-
tive to offer content to their subscribers by deploying their own
content distribution infrastructure. Providing content services in a
provider network presents new opportunities for coordination be-
tweenserver selection(to match servers with subscribers) andtraf-
fic engineering(to select efficient routes for the traffic). In this
work, we utilize a mathematical framework to show that separating
server selection and traffic engineering leads to a sub-optimal equi-
librium, even when the CP is given accurate and timely information
about network conditions. Leveraging ideas from cooperative game
theory, we propose that the system implements a Nash bargaining
solution that significantly improves the fairness and efficiency of
the joint system. This study is another step toward a systematic
understanding of the interactions between those who generate and
distribute content and those who provide and operate networks.

Categories and Subject Descriptors
C.4 [Performance of Systems]: [Performance attributes]

General Terms
Design, Economics, Performance

1. INTRODUCTION
Traditionally, Internet Service Providers (ISPs) and content providers

(CPs) are independent entities. ISPs only provide connectivity, or
the bandwidth “pipes” to transport content. As in most transporta-
tion businesses, connectivity and bandwidth become commodities
and ISPs find their profit margin getting increasingly diminished [11].
At the same time, content providers generate revenue by utilizing
existing connectivity to deliver content to ISPs’ customers, who
are also consumers of the transported content. This motivates ISPs
to host and distribute content to their customers using their own
infrastructure. Content can be enterprise-oriented like web-based
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Figure 1: The interaction between traffic engineering (TE) and
server selection (SS).

services, or residential-based like triple play as in AT&T’s U-Verse
[1] and Verizon’s FiOS [16] deployments. Provisioning connectiv-
ity and content services like IPTV in a provider network is becom-
ing a trend and presents new challenges to the architecturaldesign
of an ISP’s network.

If an ISP were to take advantage of its own network and provide
content to their customers, it needs to build a content distribution
infrastructure. In practice, many content providers replicate content
over a number of strategically placed servers, and direct requests
to different servers to balance load and to decrease response time.
Typical examples include YouTube, and content distribution net-
works like Akamai. Such an architecture offloads both the central
server which generates the content and the network if, for exam-
ple, the connections use short and lightly-loaded paths. Because of
these merits and popularity, it turns out to be a promising architec-
ture should an ISP distribute content over its network. By looking
into these legacy systems, it also allows us to discover tussles be-
tween content distribution and network management today.

Nowadays, both the ISPs and the CPs try to optimize their per-
formance. An ISP solves thetraffic engineering(TE) problem, i.e.,
picking routes for the offered traffic, often to minimize thechance
of having congestion in the network, so that the traffic experiences
low packet drops and low latency, and that the network can grace-
fully absorb flash crowds. The CP solves theserver selection(SS)
problem, i.e., determining which servers direct traffic to each client.
Usually there is enough aggregate server capacity to meet user re-
quests, so the goal of SS is often to minimize network delay, so as
to reduce user waiting time and to increase throughput. TE and SS
interact because TE affects the routes that carry the CP’s traffic, and
SS affects the offered load seen by the network. This interaction is
illustrated by Figure 1.

Note that the two optimization problems happen on different
timescales. The ISP runs traffic engineering at the timescale of
hours, while the CP runs dynamic server selection at the timescale
of content delivery decision, usually seconds or minutes. One can



assume that SS has reached its steady state before TE recomputes
routing, and that the TE routing change is instantaneous. The de-
grees of freedom are also “mirror-image” of each other: the ISP
controls route selection, which is constant in the SS problem, while
the CP controls server selection and therefore the CP’s traffic, which
is the constant parameter in the TE problem.

The goals of TE and SS are similar, because low link congestion
usually means low end-to-end delay, and vice versa. But theyare
not the same, because (i) TE might penalize high utilizationbefore
queueing delay becomes significant in order to leave as much room
as possible to accommodate changes in traffic, and (ii) CP consid-
ers both propagation delay and queueing delay so it may choose
a moderately-congested short path over a lightly-loaded long path.
So there could be a tradeoff between the traffic-engineeringob-
jective and the server-selection objective. When the TE problem
and the SS problem are solved separately, they can be modeledas
playing a game where they will likely settle in a Nash equilibrium,
which may not be optimal. When an ISP runs a content distribution
service, it has the option of doing a joint design of TE and SS so
that a global optimum can be achieved.

In this paper we study how an ISP should change the way it man-
ages traffic to accommodate the CP, regardless of whether they are
the same business entity or not. We consider three scenarioswith
increasing amount of cooperation between traffic engineering and
server selection:

1. Model I, current practice: TE measures traffic and SS mea-
sures path delay. TE ignores the fact that traffic is variable
and can be affected by its routing decisions, and CP has no
information on the topology or routing, and therefore has no
means of predicting the effect of its own actions.

2. Model II, sharing information (network providing more
information to the CP): There are in general four types of
information that can be shared: (i) physical topology infor-
mation, e.g., P4PWG [18], (ii) connectivity information, e.g.,
routing in the ISP network, (iii) dynamic properties of links,
e.g., link weight, background traffic, congestion level, (iv)
dynamic properties of nodes, e.g., bandwidth and processing
power that can be shared by the node. Our work focuses on
type (ii) information, and studies whether it helps improve
the performance of both parties.

3. Model III, sharing control: (joint design of SS and TE):
A joint design can guarantee to provide a Pareto-optimal so-
lution for the whole system. In particular, we study theNash
Bargaining Solution[10], which is Pareto optimal and can
adjust to varying network conditions automatically.

The rest of the paper is organized as follows. Section 2 reviews
the standard traffic-engineering model. Section 3 gives twomodels
for the CP’s server selection. The first is modeled by selfish rout-
ing and achieves Wardrop equilibrium; the second is modeledby
optimal routing and is an improvement over the first. Section4
studies the interaction between TE and SS by allowing them to
play a game and reach a Nash equilibrium. We show the perfor-
mance of Nash equilibria and compare them to the Pareto optimal
curve. Section 5 discusses how to jointly optimize traffic engineer-
ing and server selection and we propose that the system implement
the Nash Bargaining Solution. Section 6 presents related work. Fi-
nally, Section 7 concludes the paper and discusses our future work.

2. NETWORK MODEL AND TE
In this section we describe the network model and formulate the

optimization problem that TE solves. We also start introducing the

notation used in this paper. Note that the models in this section sim-
ply follow well-established formulations, and hence are not novel.

Consider a network represented by graphG = (N,E), whereN
denotes the set of nodes andE denotes the set of directed physi-
cal links. A node can be a router, a host, or a server. A flow is
from any node to any node:v = (a,b) wherea,b ∈ N. Let xv or
xa,b denote the rate of flowv. Note that we use both notations in-
terchangeably in the remainder of this paper. Flows are carried by
end-to-end paths consisting of some links. LetW = {wpl} be the
routing matrix, i.e.,wpl = 1 if link l is on pathp, andwpl = 0 oth-
erwise. We do not limit the number of paths soW can includeall
possible paths. Alternatively, one can find out which paths actually
carry traffic, and makeW smaller by pruning the unused paths. The
capacity of a linkl ∈ E is cl > 0.

Given some traffic demand, traffic engineering changes routing
in order to minimize network congestion. In practice, network op-
erators control routing either by changing OSPF link weights [4]
or by setting up MPLS paths [2]. In this paper we use the multi-
commodity flow solution to route traffic, because a) it is optimal,
i.e., it gives the routing with minimum congestion and can provide
a benchmark for all TE schemes, and b) it can be realized by rout-
ing protocols that use MPLS tunneling, or as recently shown,dis-
tributedly by a link-state routing protocol with hop-by-hop packet
forwarding [19]. Formally, letf v

l ∈ [0,1] denote the proportion of
traffic of flow v that traverses linkl . To realize the multi-commodity
flow solution in a network, it can be interpreted as having a number
of paths for each flow and splitting the flow among the paths. Let
F = { f v

l } be the flow matrix, let the path matrixW include all the
active paths, and letH = {hvp} be the splitting matrix, i.e.,hvp is
the fraction of flowv that traverses pathp. Then we haveF = HW.

Let yl denote the total traffic traversing linkl , and we haveyl =
∑v xv · f v

l . A standard model for congestion cost is to use a convex
increasing function of the link load, represented byg(y,c). The
exact shape of the functiong(·) is not important in this work, and
we use the same piecewise linear cost function as in [4].

Now traffic engineering can be formulated as the following opti-
mization problem:
TE(xv,cl ):

minimize TE = ∑
l

g(yl ,cl ) (1)

subject to ∑
i:l=(i, j)

f v
l − ∑

i:l=( j,i)

f v
l = I j=b, ∀v = (a,b), j 6= a

yl = ∑
v

xv · f v
l , ∀l

0≤ f v
l ≤ 1, ∀v, l

variables f v
l

whereI j=b is an indicator function which equals 1 ifj = b and 0
otherwise.

Since the cost functiong(·) is convex and the constraints are lin-
ear, the TE problem (1) is a convex optimization problem. This
implies that a local optimum is also a global optimum, and can
be computed efficiently through standard algorithms such asthe
primal-dual interior point algorithm.

Even though traffic engineering measures the total traffic and as-
sumes that it is fixed, the two different types of traffic, CP’sand
background, are modeled differently. LetS⊂ N denote the set of
CP’s servers which store the same content and letT ⊂ N denote
the set of users who want to receive content from the servers.A
usert ∈ T wants to download content (such as streaming video) at
rateMt . Since every server has a copy of this content, the user can
download it from any server. In fact, it can even download from



multiple servers at the same time. With coordination, the user can
receive different substreams from different servers so that its total
receiving rate is satisfied. Letxs,t denote the traffic rate from server
s to usert, then we must have

∑
s∈S

xs,t ≥ Mt .

We assume background traffic is normal unicast between the users
and use(i, j), i, j /∈ S, to denote the source and destination. Letxi, j
denote the rate of the background flow from nodei to node j .

3. CONTENT PROVIDER MODEL AND SS
Once the users’ demand rates are satisfied, one of the major goals

in server selection is to minimize delay. Delay is an important met-
ric in applications like live video streaming, which is becoming
prevalent on the Internet today. We model server selection such
that the average user-perceived delay is minimized, and this model
can be directly extended to other objectives such as minimizing
maximum user delay.

Let dp denote the delay of pathp, which includes propagation
and queueing delay. The queueing delay of a link is an increasing
function of the total traffic on the link, which includes boththe
CP’s traffic and background traffic. The CP wants to minimize the
content traffic delay experienced by its users. We can model this by
minimizing the average user delay, i.e., the sum of end-to-end user
delay weighted by the proportion of its traffic.

To optimize user experience, the CP solves the following opti-
mization problem
SS(Mt ,dp):

minimize SS= ∑
v=(s,t)

xv∑
p

Hvpdp/∑
t

Mt (2)

subject to ∑
s∈S

xs,t ≥ Mt , ∀t

xs,t ≥ 0, ∀s,t

variables xs,t

We consider two different cases: when CP has no explicit in-
formation from the network and optimizes based on measured de-
lay, and when the CP has complete network information so it can
achieve optimal server selection. They correspond to the SSmodel
in our model I and model II, respectively. Note that Model I doesn’t
give the optimal solution in general, while model II achieves the
optimum.

3.1 SS Based on Measured Delay
In current practice, the CP has no access to the ISP’s information,

such as routing matrix, topology, link latency, etc. Hence,it can-
not solve (2) directly, and must infer network conditions through
measurements. One piece of information directly availableto the
CP is the end-to-end delay from a server to an end user. Exam-
ples of server selection based on end-to-end information include
content distribution networks like Akamai, which selects servers
mainly based on delay [15]. In practice, the CP usually assigns a
user to the nearest server, where the notion of closeness refers to
network delay. We can think of dynamic server selection as a vari-
ant of selfish routing [13] [12]. For instance, the CP measures the
delay from all available servers to a user, and updates the traffic rate
xs,t accordingly. Intuitively, the rate is increased if a servershows
better performance, i.e., lower delay than the expectationover all
servers, and decreased otherwise. Note that this is actually a greedy
algorithm, which is not optimal in general. One can view thisas a

baseline of how well a CP can do without extra effort to infer more
about the network. The benefits of such inferences will be bounded
by the optimal solution (2).

In fact, server selection based on measured delay as above will
reach aWardrop equilibrium[17]. Intuitively, at the equilibrium
point, any server should have the same delay to an end user, ifthe
service rate is non-zero, and such delay should be smaller than that
of servers with zero rate. It turns out that the equilibrium point can
be viewed as the solution to a global convex optimization problem,
as studied in [13].

In this work, we leverage reinforcement learning, i.e., Q-learning
[8], to simulate how the CP selects servers adaptively. Basically,
it is a distributed solution that drives the decision to the Wardrop
equilibrium. Though it is not directly optimizing the objective
function of (2), it is a distributed algorithm that is easilyimple-
mentable and resembles the solution of many content providers to-
day [15]. Readers can refer to the technical report [7] for more
details.

3.2 Optimal SS with Complete Information
Now envision that CPs are able to obtain information from the

ISP, for instance, by performing more accurate measurementand
applying better inference algorithms, to improve the end user ex-
perience. In the best case, the CP is able to obtain the complete
information about the network, i.e., routing matrix and link latency.
Such situation is characterized by problem (2), which is theoptimal
performance the CP can achieve without further cooperationwith
the ISP.

Recall that the objective in (2) is the average user perceived de-
lay. Let ŷl denote the aggregate CP’s traffic on linkl , then we can
rewrite the objective by summing over all links

SS= ∑
l

ŷl ·dl = ∑
v=(s,t)

xv∑
l

f v
l ·dl

We havedl = pl + ql , wherepl is the constant propagation delay,
andql is the queuing delay. Queueing delayql is a function of the
loadyl on link l , which includes both CP’s and background traffic.
One common approximation is to use the M/M/1 queueing delay:

ql =
1

cl −yl
, yl < cl

Because this function has a singularity point atyl = cl , which does
not work well with standard optimization solvers, we relax the con-
dition yl < cl and replace the segmentyl > 0.99cl with a linear
function matching the slope atyl = 0.99cl .

While the optimal SS allows a distributed solution, we solve(2)
centrally in our numerical simulation, since we are more interested
in the performance improvement brought by cooperation. A prac-
tical server selection protocol is therefore not within thescope of
our discussion here.

4. TE-SS INTERACTIONS
In this section, we explore the interaction between the ISP and

the CP when they are operated independently without a coordinated
design. We study the interplay in a game-theoretic framework, and
evaluate its behavior and efficiency via simulation.

4.1 TE-SS game
To model the interplay between TE and SS, we start with a two-

player non-cooperative Nash game. The CP and the ISP are the two
players. The ISP’s decision variable is the routing variable f , and
the CP’s decision variable is server-user traffic rates{xs,t}s∈S,t∈T .



Their utility functions can be viewed as the negative of the objec-
tives in (2) and (1), respectively. Consider the CP and the ISP take
turns to optimize their own networks, given the decision variable of
the other player. More specifically,

f (i+1) = argmin
f

TE(x(i)
s,t ) (3)

x(i+1)
s,t = argmin

xs,t

SS( f (i+1)) (4)

Next we explore the interaction under the two SS models dis-
cussed earlier, and evaluate the issue of stability and efficiency. In
particular, we seek to answer the following questions. First, does
there exist a Nash equilibrium? Second, does the trajectoryof iter-
ative optimization of TE and SS lead to Nash equilibrium? Third,
what is the stable operating region of the system and how is the per-
formance tradeoff reflected on the Pareto curve? Last, how much
efficiency does the system lose due to lack of coordination?

4.2 Pareto optimality
To measure efficiency in a system with multiple objectives, one

needs to explore the operating region of the system. In particular,
the Pareto surface characterizes the tradeoffs of conflicting goals.
One way to trace the tradeoff curve is to optimize a weighted sum
of the two objectives:

minimize TE+α ·SS (5)

variables f ∈ F , xs,t ∈ Xcp

Hereα ≥ 0 is a scalar representing the relative weight of the two
objectives.F andXcp are the domains for the variables:

F = {0≤ f v
l ≤ 1, ∀v, l : ∑

i:l=(i, j)

f v
l − ∑

i:l=( j,i)

f v
l = I j=b,

∀v = (a,b), j 6= a}

Xcp = {xs,t ≥ 0, ∀s∈ S,t ∈ T : ∑
s∈S(t)

xs,t ≥ Mt ,and∀t}

If we vary α and solve each problem (5), we obtain thePareto
curve, i.e., the points on this curve are such that we cannot decrease
one objective further without increasing the other objective. Later,
we will discuss how to weigh the tradeoffs between two objectives
and choose a good system operating point.

4.3 Simulation
In this section, we use a simple example to demonstrate the per-

formance of different strategies when operating a content delivery
network and a physical network together. First, we show the per-
formance tradeoff of competing objectives in the system, observing
the efficiency loss due to the lack of coordination. We then show
the performance gains of cooperation between the ISP and theCP.
By presenting this toy example, we hope to convey some engineer-
ing implications to the system designer who is running a network
with a substantial amount of self-adaptive content traffic.
Simulation setup: The topology of the toy network is depicted
in Figure 2. The network consists of four nodes, in whichS=
{1,2},T = {3}, and eight directed physical links connecting these
nodes in a ring. These links have uniform capacities and propaga-
tion delays. Two server nodes, node 1 and node 2, can both serve
user node 3. There is a background traffic flow from node 4 to node
3. The CP decides how to split load between server node 1 and 2.
Traffic engineering decides routing in the network. In this example,
every flow has two routes, either clockwise or counter-clockwise on
the ring. The background traffic demand isx4,3, and the CP’s user
demand isM3. We vary these parameters in our simulations.

1

CP  traffic

Background  traffic

2

3

4

Figure 2: Topology of a toy network to show performancecom-
parisons.
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Figure 3: Interplay of TE and SS: trajectory of convergence.

First, we explore the convergence property of the interaction be-
tween TE and SS. We show theSSobjective, i.e., the average delay,
as SS and TE are optimized iteratively. Users’ traffic demandis set
asM3 = 3, and the background traffic isx4,3 = 1. We vary the link
capacity such that the network is under low, medium, high load, i.e.,
cl = 6,3,2.5, so the bottleneck link utilization is 33%,66%,80%,
respectively. We start with random routing configurationf and ran-
dom CP decision variablexs,t . We show the Nash equilibrium when
the CP has incomplete information, i.e., Wardrop equilibrium, and
when the CP has complete information. Results are shown in Fig-
ure 3(a).

All curves become flat as the number of iterations increases,
which indicates the reach of Nash equilibrium. But the convergence
speed may be different. When the network is under low utilization,
the interplay quickly reaches equilibrium, since there is less con-
flict between minimizing congestion and delay. When the network
is operating at high load, there is more oscillation, which means
that SS and TE’s goals are conflicting with each other.

The Pareto curve is computed using methods introduced in (5),
and illustrated in two-dimensional space(TE,SS), as shown in Fig-
ure 3(b). Two Nash equilibria, when the CP optimizes with incom-
plete and complete information, are also indicated on the figure.
Note that when the CP leverages the complete information to op-
timize (2), it is able to achieve lower delay, but at the expense of
higher TE cost. Though it is not obvious which operating point is
better, both equilibria are away from the Pareto curve, which shows
there is room for performance improvement for both parties.

5. A JOINT DESIGN
In this section, motivated by the need for a joint TE and SS de-

sign, we propose the Nash bargaining solution to reduce the perfor-
mance gap observed above.
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5.1 Nash bargaining solution
An ISP that provides content services in its own network can

jointly optimize traffic engineering goals (minimum congestion)
and CP’s goals (minimum user delay). However, solving (5) for
eachα and adaptively tuningα in a trial-and-error fashion may
be problematic. First, it is hard to weigh the tradeoffs between
one objective and the other, and tell which one is more important.
Secondly, one needs to repeatedly tune the parameterα and solve
an optimization problem every time, to see whether the resulting
performance is satisfactory. The reconfiguration cost may be pro-
hibitively high for some live content applications. Third,tuning
α to explore a broad region of system operating points is com-
putationally expensive. Usually, exploring a large set ofα only
produces a small operating region.

From the perspective of economics, a joint design paradigm is
also helpful to network providers and content providers whowish
to cooperate, which leads to a win-win situation. But they may pre-
fer to keep their functionalities independent, without revealing too
much information to each other. Since both want to receive asmuch
benefit as possible, they need to resolve the conflicting goals. In-
tuitively, one who makes a greater contribution to the collaboration
should be able to receive more benefits. Otherwise, he may choose
not to cooperate at all. Hence, we borrow the notion ofNash bar-
gaining solution[10] [3] in cooperative game theory. The solution
concept guides the system designer in choosing anefficientandfair
operating point without much effort to exploreα inefficiently.

Let (TE0,SS0) be a constant, which we call thedisagreement
point. One can view the disagreement point as the baseline to co-
operate, namely, without a joint design, it is the operatingpoint
they would end up with. The Nash bargaining solution optimizes
the product of performance improvements of the two players:

maximize (TE0−TE)(SS0−SS) (6)

variable f ∈ F ,xcp ∈ Xcp

One can view the Nash equilibrium of interplay without coordi-
nation as the disagreement point, since it is the status quo before
cooperation is suggested.

The choice of Nash bargaining solution is not accidental. Ithas
the following properties that are essential to a system designer’s
consideration.

• Pareto optimality. A NBS is pareto optimal, therefore ensur-
ing efficiency.

• Symmetry. The two players should get equal share of the
gains by cooperation, if two players have symmetric problem
definition, i.e., disagreement point, feasible objective region.

• Expected utility axiom. The Nash bargaining solution is in-
variant under affine transformations. For instance, suppose
(TE∗,SS∗) is the Nash bargaining solution when a feasible
point is(TE,SS), with (TE0,SS0) as the disagreement point.
If the disagreement point is shifted and scaled to(α1TE0 +
β1,α2SS0+β2), and the feasible point is transformed to(α1TE+
β1,α2SS+ β2), the new Nash bargaining solution becomes
(α1TE∗ +β1,α2SS∗ +β2). This axiom suggests that the ex-
pected performance under all network conditions is still a
Nash bargaining solution.

• Independence of irrelevant alternatives. This means that adding
extra constraints in the feasible operating region does not
change the solution, as long as the solution itself is feasible.

Note that Nash bargaining solution is the only solution thatsatisfies
the above four axioms [10].

In practice, one can also propose other disagreement pointsas
the starting point, which can be thought of as the minimum per-
formance requirement. Here, we use the Nash equilibrium point
as the disagreement, since it is known to both the ISP and the CP
based on their empirical observation. In addition, we use itas a
benchmark to evaluate how much performance improvement can
be gained compared to the legacy systems.

5.2 Performance evaluation
We use simulation on the same topology in Figure 2 to demon-

strate the performance gains of the Nash bargaining solution and
its engineering implications. We evaluate two Nash bargaining so-
lutions. Nash bargaining solution I is the optimal solutionof (6)
using the Nash equilibrium when CP operates with incompletein-
formation as the disagreement point, and Nash bargaining solution
II when CP operates with complete information.

We evaluate performance improvement through two sets of sim-
ulations. In the first case, we fix the total amount of traffic, and vary
the percentage of CP’s trafficθ from 1% to 100%. Four operating
points, namely, two Nash equilibria and two Nash bargainingsolu-
tions are depicted. The results are shown in Figure 4(a). We make
a few observations. Whenθ ≤ 40%, the four operating points are



CP no change CP change
ISP no change current practice partial collaboration

ISP change partial collaboration joint system design

Table 1: To cooperate or not: possible strategies for content
provider (CP) and network provider (ISP)

close to each other, which suggests that the legacy system isdo-
ing fine under low load. However, whenθ ≥ 50%, the efficiency
gap begins to grow. Current practice, i.e., when CP operateswith
incomplete information, results in the worst performance,as indi-
cated by the top curve. The Nash bargaining solution II, as indi-
cated by the bottom curve, produces the best outcome for bothTE
and SS. The gap between these two curves shows the performance
improvement for the CP.

We have shown that the efficiency loss is nontrivial when the net-
work is highly loaded with CP’s traffic. One way for ISP to handle
the increasing amount of adaptive traffic is to upgrade the network
capacities. To demonstrate this, we fix the amount of background
traffic and CP’s traffic, i.e.,x4,3 = 0.5,M3 = 3.5 where the content
traffic is dominating, and vary the link capacity provisioning, i.e.,
the ratio of capacity and traffic rate on the bottleneck link.In Fig-
ure 4 (b)(c), we show the efficiency loss under different levels of
network utilization. Note that even if we double the capacity pro-
visioning, a constant performance gap still exists, independent of
how good the overall performance is.

6. RELATED WORK
In [12], the authors show that selfish routing is close to opti-

mal in Internet-like environments, while our work exploreshow
strategic content distribution interacts with traffic engineering. Re-
cently, Nash bargaining solution is used to solve an inter-domain
ISP peering problem in [14]. [6] studies the problem of load balanc-
ing through overlay routing, and how to alleviate race conditions
among multiple co-existing overlays. Resource allocationat inter-
AS level is explored in [9], in which the economics of ISPs’ rev-
enue maximization are formulated as a Nash game. These pieces of
work studied the interaction between ISPs or CPs themselves, but
did not look into the intrinsic tussle between two parties.

The need for cooperation between content providers and network
providers is raising much discussion in both the research commu-
nity and the industry. [5] leverages price theory to reconcile the
tussle between peer-assisted content distribution and ISP’s resource
management. [18] proposes a communication portal between ISPs
and P2P applications so that both parties gain from cooperation.
These pieces of work represent the approach of sharing informa-
tion on one of the four possibilities as we discussed in Section 1.
The possibility of sharing control is unfortunately neglected.

7. CONCLUSION AND FUTURE WORK
We study the interplay between content distribution and traffic

engineering. Though the problem has long existed, the dramati-
cally increasing amount of content-centric traffic, i.e., CDNs and
P2P traffic, makes it more significant than ever. With the strong
motivation for ISPs to provide content services, they are faced with
the problem of a joint system design. This work sheds light onto
possible cooperations between CPs and ISPs.

This paper serves as a starting point of our future work in bet-
ter understanding the evolution of ISPs and CPs. Traditionally,
ISPs provide and operate the pipes, while content providersdis-
tribute contents over the pipes, e.g., through CDN or P2P. Interms

of both what control can be jointly designed and what informa-
tion can be shared between ISPs and CPs, there are four general
categories as summarized in Table 1. In the top left corner isthe
current practice, which may be an undesirable Nash equilibrium.
In the bottom right corner is the benchmark where the two par-
ties work together, which is one of the subjects studied in this
paper. In the top right corner is the case where CPs share infor-
mation or adapt control with ISPs, and in the bottom left corner
is the case of content-aware networking. To move along either
direction when the two parties remain separate business entities
would require unilaterally-actionable, backward-compatible, and
incrementally-deployable migration paths that are yet to be discov-
ered.
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