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ABSTRACT

Traditionally, Internet Service Providers (ISPs) makefiptry pro-
viding Internet connectivity, while content providers & PBlay the
more lucrative role of delivering content to users. As nekaaon-
nectivity is increasingly a commodity, ISPs have a strongeim
tive to offer content to their subscribers by deploying thavn
content distribution infrastructure. Providing conteetvces in a
provider network presents new opportunities for coordamabe-
tweenserver selectioffto match servers with subscribers) araf-

fic engineering(to select efficient routes for the traffic). In this
work, we utilize a mathematical framework to show that safag
server selection and traffic engineering leads to a subrapequi-
librium, even when the CP is given accurate and timely infafon
about network conditions. Leveraging ideas from coopezatame
theory, we propose that the system implements a Nash bargain
solution that significantly improves the fairness and edficy of
the joint system. This study is another step toward a systema
understanding of the interactions between those who genenal
distribute content and those who provide and operate nkswor

Categories and Subject Descriptors
C.4 [Performance of Systemg [Performance attributes]

General Terms
Design, Economics, Performance

1. INTRODUCTION

Traditionally, Internet Service Providers (ISPs) and eahproviders

(CPs) are independent entities. ISPs only provide conriggtor

the bandwidth “pipes” to transport content. As in most tpamta-
tion businesses, connectivity and bandwidth become coritiaed
and ISPs find their profit margin getting increasingly dirsiréd [11].
At the same time, content providers generate revenue hyingl
existing connectivity to deliver content to ISPs’ customjenho

are also consumers of the transported content. This mesivePs

to host and distribute content to their customers using th&h
infrastructure. Content can be enterprise-oriented lik®Wased
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Figure 1: The interaction between traffic engineering (TE) and
server selection (SS).

services, or residential-based like triple play as in AT&U-Verse
[1] and Verizon’s FiOS [16] deployments. Provisioning ceativ-
ity and content services like IPTV in a provider network isd-
ing a trend and presents new challenges to the architectesain
of an ISP’s network.

If an ISP were to take advantage of its own network and provide
content to their customers, it needs to build a contentidigion
infrastructure. In practice, many content providers egié content
over a number of strategically placed servers, and direpiagts
to different servers to balance load and to decrease respions.
Typical examples include YouTube, and content distributiet-
works like Akamai. Such an architecture offloads both thereén
server which generates the content and the network if, famex
ple, the connections use short and lightly-loaded pathsase of
these merits and popularity, it turns out to be a promisimtyiéec-
ture should an ISP distribute content over its network. Bykiog
into these legacy systems, it also allows us to discovetesidre-
tween content distribution and network management today.

Nowadays, both the ISPs and the CPs try to optimize their per-
formance. An ISP solves theaffic engineerind TE) problem, i.e.,
picking routes for the offered traffic, often to minimize ttlgance
of having congestion in the network, so that the traffic eiqeres
low packet drops and low latency, and that the network cacegra
fully absorb flash crowds. The CP solves gwver selectioifSS)
problem, i.e., determining which servers direct trafficacteclient.
Usually there is enough aggregate server capacity to meetras
quests, so the goal of SS is often to minimize network delagss
to reduce user waiting time and to increase throughput. TESS
interact because TE affects the routes that carry the GEffrand
SS affects the offered load seen by the network. This intieracs
illustrated by Figure 1.

Note that the two optimization problems happen on different
timescales. The ISP runs traffic engineering at the timeschl
hours, while the CP runs dynamic server selection at thestiaie
of content delivery decision, usually seconds or minutese €an



assume that SS has reached its steady state before TE rdéesmpu notation used in this paper. Note that the models in this@estim-

routing, and that the TE routing change is instantaneous. dei ply follow well-established formulations, and hence aremavel.
grees of freedom are also “mirror-image” of each other: ®BE | Consider a network represented by gr&pk- (N, E), whereN
controls route selection, which is constant in the SS prabiehile denotes the set of nodes aRddenotes the set of directed physi-
the CP controls server selection and therefore the CPfgtrahich cal links. A node can be a router, a host, or a server. A flow is
is the constant parameter in the TE problem. from any node to any node: = (a,b) wherea,b € N. Let xy or

The goals of TE and SS are similar, because low link congestio x5 p denote the rate of flow. Note that we use both notations in-
usually means low end-to-end delay, and vice versa. Butdéiney  terchangeably in the remainder of this paper. Flows aréechhy
not the same, because (i) TE might penalize high utilizatieiore end-to-end paths consisting of some links. Yt {wy } be the
gueueing delay becomes significant in order to leave as noach r routing matrix, i.e.wp = 1 if link | is on pathp, andwp = 0 oth-
as possible to accommodate changes in traffic, and (ii) CBidon  erwise. We do not limit the number of paths\8bcan includeall
ers both propagation delay and queueing delay so it may ehoos possible paths. Alternatively, one can find out which pattaally

a moderately-congested short path over a lightly-loaded fmath. carry traffic, and make/ smaller by pruning the unused paths. The
So there could be a tradeoff between the traffic-engineesing capacity of alind e Eis¢ > 0.

jective and the server-selection objective. When the Thlpra Given some traffic demand, traffic engineering changesrrguti
and the SS problem are solved separately, they can be maakeled in order to minimize network congestion. In practice, netwap-
playing a game where they will likely settle in a Nash equilim, erators control routing either by changing OSPF link wesgfd

which may not be optimal. When an ISP runs a content distohut ~ or by setting up MPLS paths [2]. In this paper we use the multi-
service, it has the option of doing a joint design of TE and 8S s commaodity flow solution to route traffic, because a) it is oy,
that a global optimum can be achieved. i.e., it gives the routing with minimum congestion and caoviate
In this paper we study how an ISP should change the way it man- a benchmark for all TE schemes, and b) it can be realized ky rou
ages traffic to accommodate the CP, regardless of whetheathe ing protocols that use MPLS tunneling, or as recently shaiist,
the same business entity or not. We consider three scenaitivs tributedly by a link-state routing protocol with hop-byhpacket
increasing amount of cooperation between traffic engingeaind forwarding [19]. Formally, letf)’ € [0,1] denote the proportion of
server selection: traffic of flow vthat traverses link To realize the multi-commodity
flow solution in a network, it can be interpreted as having miper
of paths for each flow and splitting the flow among the pathg. Le
F = {1’} be the flow matrix, let the path matri/ include all the
active paths, and led = {hyp} be the splitting matrix, i.ehyp is
the fraction of flowv that traverses path. Then we havé& = HW.
Lety, denote the total traffic traversing linkand we haveg, =
2. Model Il, sharing information (network providing more SvXv- f’. A standard model for congestion cost is to use a convex
information to the CP): There are in general four types of increasing function of the link load, representeddiy,c). The
information that can be shared: (i) physical topology infor exact shape of the functiay(-) is not important in this work, and
mation, e.g., P4PWG [18], (ii) connectivity informationge we use the same piecewise linear cost function as in [4].
routing in the ISP network, (iii) dynamic properties of Ik Now traffic engineering can be formulated as the following-op
e.g., link weight, background traffic, congestion leve¥) (i mization problem:
dynamic properties of nodes, e.g., bandwidth and proogssin  TE(xy,¢):
power that can be shared by the node. Our work focuses on
type (i) information, and studies whether it helps improve ~ minimize ~ TE= ZQ(WCI) (1)
fY

1. Modell, current practice: TE measures traffic and SS mea-
sures path delay. TE ignores the fact that traffic is variable
and can be affected by its routing decisions, and CP has no
information on the topology or routing, and therefore has no
means of predicting the effect of its own actions.

the performance of both parties.
subject to - z f'=lj—p, W=(a,b),j#a

3. Model lll, sharing control: (joint design of SS and TE): i450.0) i15i)

A joint design can guarantee to provide a Pareto-optimal so-

lution for the whole system. In particular, we study ash Y= ZXV' fi', vl
Bargaining Solution10], which is Pareto optimal and can v

: ; . : 0< fy <1, Wl
adjust to varying network conditions automatically. A

i \
The rest of the paper is organized as follows. Section 2wevie variables )

the standard traffic-engineering model. Section 3 givestwdels

for the CP’s server selection. The first is modeled by selfish-r

ing and achieves Wardrop equilibrium; the second is modejed
optimal routing and is an improvement over the first. Sectlon
studies the interaction between TE and SS by allowing them to
play a game and reach a Nash equilibrium. We show the perfor-
mance of Nash equilibria and compare them to the Pareto aptim
curve. Section 5 discusses how to jointly optimize traffigiaaer-

ing and server selection and we propose that the systemrimeple

the Nash Bargaining Solution. Section 6 presents relatel.viFk-
nally, Section 7 concludes the paper and discusses ouefunk.

wherelj_p, is an indicator function which equals 1 jif= b and 0
otherwise.

Since the cost functiog(-) is convex and the constraints are lin-
ear, the TE problem (1) is a convex optimization problem. sThi
implies that a local optimum is also a global optimum, and can
be computed efficiently through standard algorithms sucthes
primal-dual interior point algorithm.

Even though traffic engineering measures the total trafficaan
sumes that it is fixed, the two different types of traffic, Carsl
background, are modeled differently. L2t N denote the set of
CP’s servers which store the same content and letN denote
the set of users who want to receive content from the senvers.
2. NETWORK MODEL AND TE usert € T wants to download content (such as streaming video) at

In this section we describe the network model and formula¢ée t  rateM;. Since every server has a copy of this content, the user can
optimization problem that TE solves. We also start intradgche download it from any server. In fact, it can even downloadrfro



multiple servers at the same time. With coordination, ther gan
receive different substreams from different servers sbitbdotal
receiving rate is satisfied. Lgf; denote the traffic rate from server
sto usert, then we must have

sts,t > M.
se

We assume background traffic is normal unicast between #rs us
and usdi, j), i, ¢ S to denote the source and destination. gt
denote the rate of the background flow from notenodej.

3. CONTENT PROVIDER MODEL AND SS

Once the users’ demand rates are satisfied, one of the mailsr go
in server selection is to minimize delay. Delay is an impatrtaet-
ric in applications like live video streaming, which is betag
prevalent on the Internet today. We model server selectioh s
that the average user-perceived delay is minimized, asdibiel
can be directly extended to other objectives such as miimgniz
maximum user delay.

Let dp denote the delay of path, which includes propagation
and queueing delay. The queueing delay of a link is an inargas
function of the total traffic on the link, which includes batihe
CPrs traffic and background traffic. The CP wants to minimize t
content traffic delay experienced by its users. We can mbdeby
minimizing the average user delay, i.e., the sum of enditbteser
delay weighted by the proportion of its traffic.

To optimize user experience, the CP solves the following- opt
mization problem

SSM,dp):
minimize SS= z x\,Zvadp/ZMt )
v=(st) P
subject to 25X57t > M, Vit
se
Xst > 0, Vst
variables Xt

We consider two different cases: when CP has no explicit in-
formation from the network and optimizes based on measuged d
lay, and when the CP has complete network information sonit ca
achieve optimal server selection. They correspond to the&sl
in our model | and model II, respectively. Note that Model édn’t
give the optimal solution in general, while model Il achiewbe
optimum.

3.1 SS Based on Measured Delay

In current practice, the CP has no access to the ISP’s infmma
such as routing matrix, topology, link latency, etc. Hertean-
not solve (2) directly, and must infer network conditionsotiigh
measurements. One piece of information directly availabldne
CP is the end-to-end delay from a server to an end user. Exam-
ples of server selection based on end-to-end informatioludie
content distribution networks like Akamai, which selectsvers
mainly based on delay [15]. In practice, the CP usually ass&y
user to the nearest server, where the notion of closeness rtef
network delay. We can think of dynamic server selection aara v
ant of selfish routing [13] [12]. For instance, the CP meastine
delay from all available servers to a user, and updatesdffetrate
Xst accordingly. Intuitively, the rate is increased if a serskows
better performance, i.e., lower delay than the expectatian all
servers, and decreased otherwise. Note that this is gactugieedy
algorithm, which is not optimal in general. One can view tssa

baseline of how well a CP can do without extra effort to inferen
about the network. The benefits of such inferences will bentled
by the optimal solution (2).

In fact, server selection based on measured delay as abtve wi
reach aWardrop equilibrium[17]. Intuitively, at the equilibrium
point, any server should have the same delay to an end usiee, if
service rate is non-zero, and such delay should be smadierttiat
of servers with zero rate. It turns out that the equilibriuomnp can
be viewed as the solution to a global convex optimizatiorb e,
as studied in [13].

In this work, we leverage reinforcement learning, i.e. g@rhing
[8], to simulate how the CP selects servers adaptively. dadgj
it is a distributed solution that drives the decision to thartivop
equilibrium. Though it is not directly optimizing the objee
function of (2), it is a distributed algorithm that is easityple-
mentable and resembles the solution of many content pn®/ide
day [15]. Readers can refer to the technical report [7] foreno
details.

3.2 Optimal SS with Complete Information

Now envision that CPs are able to obtain information from the
ISP, for instance, by performing more accurate measurearaht
applying better inference algorithms, to improve the enet @x-
perience. In the best case, the CP is able to obtain the ctample
information about the network, i.e., routing matrix andliatency.
Such situation is characterized by problem (2), which isojbtémal
performance the CP can achieve without further cooperatitim
the ISP.

Recall that the objective in (2) is the average user perdeiee
lay. Lety, denote the aggregate CP’s traffic on linkhen we can
rewrite the objective by summing over all links

Ss=Sf-d= Y xYfd
ZI | v:%t)vz| |

We haved, = p| + ¢, wherep, is the constant propagation delay,
andq; is the queuing delay. Queueing delgyis a function of the

loady; on link |, which includes both CP’s and background traffic.
One common approximation is to use the M/M/1 queueing delay:

a Y <q

G-y
Because this function has a singularity poinyjat ¢, which does
not work well with standard optimization solvers, we relag ton-
dition y; < ¢ and replace the segmeyt > 0.99¢; with a linear
function matching the slope gt = 0.99%,.

While the optimal SS allows a distributed solution, we sq®e
centrally in our numerical simulation, since we are moreriested
in the performance improvement brought by cooperation. a&cpr
tical server selection protocol is therefore not within Huepe of
our discussion here.

4. TE-SS INTERACTIONS

In this section, we explore the interaction between the ISP a
the CP when they are operated independently without a auetet
design. We study the interplay in a game-theoretic framleyamd
evaluate its behavior and efficiency via simulation.

4.1 TE-SS game

To model the interplay between TE and SS, we start with a two-
player non-cooperative Nash game. The CP and the ISP anedhe t
players. The ISP’s decision variable is the routing vagdhland
the CP’s decision variable is server-user traffic rgbteg }scstet-



Their utility functions can be viewed as the negative of thgeo-
tives in (2) and (1), respectively. Consider the CP and tietéke
turns to optimize their own networks, given the decisionalale of
the other player. More specifically,

(i

£(i+2) argmin TE(XY) ©)
f :
x{ Y argmin S f(+1) 4)

Xst

Next we explore the interaction under the two SS models dis-
cussed earlier, and evaluate the issue of stability andeaffig. In
particular, we seek to answer the following questions. tFifses
there exist a Nash equilibrium? Second, does the trajectatsgr-
ative optimization of TE and SS lead to Nash equilibrium?r@hi
what is the stable operating region of the system and hoveipeh
formance tradeoff reflected on the Pareto curve? Last, hoshrr
efficiency does the system lose due to lack of coordination?

4.2 Pareto optimality

To measure efficiency in a system with multiple objective® ¢
needs to explore the operating region of the system. Inqugeati,
the Pareto surface characterizes the tradeoffs of confiigoals.
One way to trace the tradeoff curve is to optimize a weighted <

CP delay

----» Background traffic
» CP traffic

Figure 2: Topology of a toy network to show performancecom-
parisons.
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of the two objectives:

TE+a-SS
fef, Xsit G%&;p

minimize
variables

®)

Herea > 0 is a scalar representing the relative weight of the two
objectives.# and Z¢, are the domains for the variables:

,y@\ = {0 S flv S l7 VV,I . ; f|v7 ; flv = |j:b7
=0, i1=(j,i)
W= (ab), ] #a}
Zep = {X%t>0,VseSteT: z Xst > M, andvt}

seSt)

If we vary o and solve each problem (5), we obtain fPareto
curve i.e., the points on this curve are such that we cannot deerea
one objective further without increasing the other objexti_ater,
we will discuss how to weigh the tradeoffs between two olijest
and choose a good system operating point.

4.3 Simulation

In this section, we use a simple example to demonstrate the pe
formance of different strategies when operating a contelivety
network and a physical network together. First, we show #re p
formance tradeoff of competing objectives in the systersgoling
the efficiency loss due to the lack of coordination. We themsh
the performance gains of cooperation between the ISP andRhe
By presenting this toy example, we hope to convey some eagine
ing implications to the system designer who is running a ngtw
with a substantial amount of self-adaptive content traffic.
Simulation setup The topology of the toy network is depicted
in Figure 2. The network consists of four nodes, in whigh-
{1,2}, T = {3}, and eight directed physical links connecting these
nodes in a ring. These links have uniform capacities andamap
tion delays. Two server nodes, node 1 and node 2, can bota serv
user node 3. There is a background traffic flow from node 4 t@nod
3. The CP decides how to split load between server node 1 and 2.
Traffic engineering decides routing in the network. In thisraple,
every flow has two routes, either clockwise or counter-cldsk on
the ring. The background traffic demandkigs, and the CP’s user
demand idM3. We vary these parameters in our simulations.

(a) convergence of interplay

5 10 15

iteration

20 25 30 9 9.2 9.6 9.8

9.4
TE cost

(b) comparison of strategies

Figure 3: Interplay of TE and SS: trajectory of convergence.

First, we explore the convergence property of the intevadbie-
tween TE and SS. We show tB&objective, i.e., the average delay,
as SS and TE are optimized iteratively. Users’ traffic demarset
asM3 = 3, and the background trafficxg 3 = 1. We vary the link
capacity such that the network is under low, medium, higt,loa.,
¢ = 6,3,2.5, so the bottleneck link utilization is 33%6% 80%,
respectively. We start with random routing configuratfoand ran-
dom CP decision variabb. We show the Nash equilibrium when
the CP has incomplete information, i.e., Wardrop equilibrj and
when the CP has complete information. Results are showrgin Fi
ure 3(a).

All curves become flat as the number of iterations increases,
which indicates the reach of Nash equilibrium. But the copeace
speed may be different. When the network is under low utitbra
the interplay quickly reaches equilibrium, since thereefssl con-
flict between minimizing congestion and delay. When the peftw
is operating at high load, there is more oscillation, whichams
that SS and TE’s goals are conflicting with each other.

The Pareto curve is computed using methods introduced jn (5)
and illustrated in two-dimensional spadeE, SS, as shown in Fig-
ure 3(b). Two Nash equilibria, when the CP optimizes wittoime
plete and complete information, are also indicated on therdig
Note that when the CP leverages the complete informatiorpio o
timize (2), it is able to achieve lower delay, but at the exgeeof
higher TE cost. Though it is not obvious which operating p&n
better, both equilibria are away from the Pareto curve, twblmows
there is room for performance improvement for both parties.

5. A JOINT DESIGN

In this section, motivated by the need for a joint TE and SS de-
sign, we propose the Nash bargaining solution to reducedtferp
mance gap observed above.
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5.1 Nash bargaining solution

An ISP that provides content services in its own network can
jointly optimize traffic engineering goals (minimum conties)
and CP’s goals (minimum user delay). However, solving (5) fo
eacha and adaptively tuningr in a trial-and-error fashion may
be problematic. First, it is hard to weigh the tradeoffs kesw
one objective and the other, and tell which one is more inapdrt
Secondly, one needs to repeatedly tune the pararaesed solve
an optimization problem every time, to see whether the tiesul
performance is satisfactory. The reconfiguration cost neapro-
hibitively high for some live content applications. Thirdining
a to explore a broad region of system operating points is com-
putationally expensive. Usually, exploring a large setobnly
produces a small operating region.

From the perspective of economics, a joint design paradgm i
also helpful to network providers and content providers wiigh
to cooperate, which leads to a win-win situation. But they ime-
fer to keep their functionalities independent, withoutaaing too
much information to each other. Since both want to receiveuwch
benefit as possible, they need to resolve the conflictingsgdat
tuitively, one who makes a greater contribution to the duilation
should be able to receive more benefits. Otherwise, he maseho
not to cooperate at all. Hence, we borrow the notiolNagh bar-
gaining solution[10] [3] in cooperative game theory. The solution
concept guides the system designer in choosingfficientandfair
operating point without much effort to exploceinefficiently.

Let (TEp,S9) be a constant, which we call ttdisagreement
point One can view the disagreement point as the baseline to co-
operate, namely, without a joint design, it is the operapoint
they would end up with. The Nash bargaining solution optégiz
the product of performance improvements of the two players:

maximize  (TEy—TE)(S$—S9 (6)
variable  f e€.Z xp€ Zep

One can view the Nash equilibrium of interplay without caerd
nation as the disagreement point, since it is the status gfaréo
cooperation is suggested.

The choice of Nash bargaining solution is not accidentahalt
the following properties that are essential to a systemgdesis
consideration.

e Pareto optimality A NBS is pareto optimal, therefore ensur-
ing efficiency.

0
capacity (%)

120 140

capacity (%)

180

(c) varyitng thetwork capacity provisioning

ameters undr the same total traffic demand

e Symmetry The two players should get equal share of the
gains by cooperation, if two players have symmetric problem
definition, i.e., disagreement point, feasible objectegion.

e Expected utility axiomThe Nash bargaining solution is in-
variant under affine transformations. For instance, suppos
(TE*,SS) is the Nash bargaining solution when a feasible
pointis(TE,S9, with (T Ey,S9) as the disagreement point.
If the disagreement point is shifted and scaleddeT Ey +
B1, 0259+ B2), and the feasible pointis transformedta TE+
B1,02SS+ B2), the new Nash bargaining solution becomes
(a1 TE* + B1,02SS + B2). This axiom suggests that the ex-
pected performance under all network conditions is still a
Nash bargaining solution.

e Independence of irrelevant alternativéhis means that adding
extra constraints in the feasible operating region does not
change the solution, as long as the solution itself is féasib

Note that Nash bargaining solution is the only solution Hadisfies
the above four axioms [10].

In practice, one can also propose other disagreement pasnts
the starting point, which can be thought of as the minimum per
formance requirement. Here, we use the Nash equilibriumtpoi
as the disagreement, since it is known to both the ISP andfhe C
based on their empirical observation. In addition, we usesita
benchmark to evaluate how much performance improvement can
be gained compared to the legacy systems.

5.2 Performance evaluation

We use simulation on the same topology in Figure 2 to demon-
strate the performance gains of the Nash bargaining salatiol
its engineering implications. We evaluate two Nash baiggiso-
lutions. Nash bargaining solution | is the optimal solutimin(6)
using the Nash equilibrium when CP operates with incomptete
formation as the disagreement point, and Nash bargainingj@o
Il when CP operates with complete information.

We evaluate performance improvement through two sets of sim
ulations. In the first case, we fix the total amount of traffie] sary
the percentage of CP’s traffg from 1% to 100%. Four operating
points, namely, two Nash equilibria and two Nash bargaisilg-
tions are depicted. The results are shown in Figure 4(a). Alem
a few observations. Whef < 40%, the four operating points are



CP no change
current practice
partial collaboration

CP change
partial collaboration
joint system design

ISP no change
ISP change

Table 1: To cooperate or not: possible strategies for conten
provider (CP) and network provider (ISP)

close to each other, which suggests that the legacy syste is
ing fine under low load. However, wheh> 50%, the efficiency
gap begins to grow. Current practice, i.e., when CP opewitbs
incomplete information, results in the worst performaresjndi-
cated by the top curve. The Nash bargaining solution Il, d& in
cated by the bottom curve, produces the best outcome forToth

and SS. The gap between these two curves shows the perfa@manc

improvement for the CP.

We have shown that the efficiency loss is nontrivial when te n
work is highly loaded with CP’s traffic. One way for ISP to h&nd
the increasing amount of adaptive traffic is to upgrade thweaork
capacities. To demonstrate this, we fix the amount of backgto
traffic and CP's traffic, i.ex4 3 = 0.5,M3 = 3.5 where the content
traffic is dominating, and vary the link capacity provisiog, i.e.,
the ratio of capacity and traffic rate on the bottleneck lilmkFig-
ure 4 (b)(c), we show the efficiency loss under different levd
network utilization. Note that even if we double the capagpito-
visioning, a constant performance gap still exists, indepet of
how good the overall performance is.

6. RELATED WORK

In [12], the authors show that selfish routing is close to-opti
mal in Internet-like environments, while our work exploresw
strategic content distribution interacts with traffic emegring. Re-
cently, Nash bargaining solution is used to solve an intenain
ISP peering problem in [14]. [6] studies the problem of loathic-
ing through overlay routing, and how to alleviate race ctiods
among multiple co-existing overlays. Resource allocasibimter-
AS level is explored in [9], in which the economics of ISPs/+e
enue maximization are formulated as a Nash game. Thesespitce
work studied the interaction between ISPs or CPs themsdbus
did not look into the intrinsic tussle between two parties.

The need for cooperation between content providers anconletw
providers is raising much discussion in both the researaimnue-
nity and the industry. [5] leverages price theory to reclenthe
tussle between peer-assisted content distribution ard t&urce
management. [18] proposes a communication portal betwi&ea |
and P2P applications so that both parties gain from codparat
These pieces of work represent the approach of sharingnafor
tion on one of the four possibilities as we discussed in $acti
The possibility of sharing control is unfortunately negést

7. CONCLUSION AND FUTURE WORK

We study the interplay between content distribution antficra
engineering. Though the problem has long existed, the drama
cally increasing amount of content-centric traffic, i.eDNX& and
P2P traffic, makes it more significant than ever. With thergro
motivation for ISPs to provide content services, they acedawith
the problem of a joint system design. This work sheds lighbon
possible cooperations between CPs and ISPs.

This paper serves as a starting point of our future work in bet
ter understanding the evolution of ISPs and CPs. Tradifygna
ISPs provide and operate the pipes, while content providesrs
tribute contents over the pipes, e.g., through CDN or P2ferins

of both what control can be jointly designed and what informa
tion can be shared between ISPs and CPs, there are four genera
categories as summarized in Table 1. In the top left corndres
current practice, which may be an undesirable Nash equitibr

In the bottom right corner is the benchmark where the two par-
ties work together, which is one of the subjects studied ia th
paper. In the top right corner is the case where CPs share info
mation or adapt control with ISPs, and in the bottom left eorn
is the case of content-aware networking. To move along reithe
direction when the two parties remain separate businessesnt
would require unilaterally-actionable, backward-conitgat and
incrementally-deployable migration paths that are yeetdiscov-
ered.
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