
Network-Wide Heavy Hitter Detection with
Commodity Switches

Rob Harrison, Qizhe Cai, Arpit Gupta, and Jennifer Rexford
Princeton University

ABSTRACT
Many network monitoring tasks identify subsets of traffic
that stand out, e.g., top-k flows for a particular statistic. A
Protocol Independent Switch Architecture (PISA) switch can
identify these “heavy hitter” flows directly in the data plane,
by aggregating traffic statistics across packets and compar-
ing against a threshold. However, network operators often
want to identify interesting traffic on a network-wide basis.
To bridge the gap between line-rate monitoring and network-
wide visibility, we present a distributed heavy-hitter detec-
tion scheme for networks modeled as one-big switch. We use
adaptive thresholds to perform efficient threshold monitor-
ing directly in the data plane. We implement our system us-
ing the P4 language, and evaluate it using real-world packet
traces. We demonstrate that our solution can accurately de-
tect network-wide heavy hitters with up to 70% savings in
communication overhead compared to an existing approach
with a provable upper bound.

1 INTRODUCTION
Network operators often need to identify outliers in network
traffic, to detect attacks or diagnose performance problems.
A common way to detect unusual traffic is to perform “heavy
hitter” detection that identifies the top-k flows (or flows ex-
ceeding a pre-determined threshold), according to some met-
ric. For example, network operators often track destinations
receiving traffic from a large number of distinct sources with
high-precision in order to detect and mitigate DDoS attacks
or TCP incast [4] in real time. In traditional networks, this
heavy-hitter detection relies on analyzing packet samples
or flow logs [5, 6]. Programmable switches open up new
possibilities for aggregating traffic statistics and identifying
large flows directly in the data plane [17, 18, 24, 27]. These

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
SOSR ’18, March 28–29, 2018, Los Angeles, CA, USA
© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5664-0/18/03. . . $15.00
https://doi.org/10.1145/3185467.3185476

2 10 20 30 40 50
Sampling Rate (1/x)

0

20

40

60

Re
ca

ll (
%

)

5m Interval
60s Interval
10s Interval

Figure 1: This graph shows the recall for detecting heavy-hitters
between two major ISPs [12] with different monitoring intervals. Even
under high sampling rates, recall quickly diminishes and worsens as
the monitoring interval decreases.

solutions use approximate data structures, that bound mem-
ory and processing overhead in exchange for some loss in
accuracy, in order to deal with the limited resources available
on the switches.
While prior work has focused on heavy-hitter detection

at a single switch, network operators often need to track the
network-wide heavy hitters. For example, port scanners [15]
and superspreaders [27] could go undetected if the traffic is
monitored only at one location. Detecting the heavy hitters
separately at each switch and then combining the results is
not sufficient. Large flows can easily fall “under the radar”
at multiple locations but still have sizable total volume. Ap-
plying a lower detection threshold at each switch reduces
the chance of missing large flows, at the expense of higher
communication overhead to report counts to a central coor-
dinator.

Additionally, networks that forward high traffic volumes
often resort to sampling 1/x packets, where x is operator-
defined based on the needs of the specific network. However,
sampling can result in substantially reduced accuracy on
small time scales [21], even when traffic volumes are high. In
Figure 1, we show the impact sampling has on accuracy while
performing heavy-hitter detection on a link between two
major ISPs [12] processing approximately 1 GBps of traffic.
Even with high sampling rates, recall is quite low on short
time intervals and it quickly diminishes as sampling rates
decrease. In modern datacenter networks where switches

https://doi.org/10.1145/3185467.3185476

SOSR ’18, March 28–29, 2018, Los Angeles, CA, USA Rob Harrison, Qizhe Cai, Arpit Gupta, and Jennifer Rexford

commonly sample one packet out of 1,000–30,000 [25], we
need new, network-wide techniques that are both efficient
and accurate for real-time monitoring.
Detecting network-wide heavy hitters is an instance of

the continuous distributed monitoring (CDM) problem [7].
In this model, each of n sites sees a stream of observations
(packets), and each observation (packet) is observed at pre-
cisely one site. These sites work with a central coordinator
to compute some (commutative and associative) function
over the global set of observations. The objective is to min-
imize the communication cost between the observers and
the coordinator, while continuously computing the function
in real time. For network-wide heavy hitters, we want to
determine which flows exceed the threshold (τ) for a given
statistic of interest. Previous work proved an upper bound
O (n logτ/n) on the communications overhead between the
n observers and a single coordinator [9, 10] which we will
call the CMY (Cormode–Muthukrishnan–Yi) upper bound.
This approach relies on setting per-site thresholds (e.g., τ/n),
and alerting the coordinator when these thresholds are vio-
lated. Other approaches that relax accuracy constraints or
behave non-deterministically can also improve upon this
upper bound [7, 26] but we will focus on the deterministic,
error-free case.
Unfortunately, these theoretical results have not led to

practical solutions for computing network-wide heavy hit-
ters [7]. In real networks, the coordinator is capable of general-
purpose computations, but the individual sites (switches)
have a more restrictive computational model. For example,
switches cannot iterate over arrays of values and typically
support only simple arithmetic and bitwise operations. Also,
the existing CDM work does not adapt to natural differences
in the portions of the traffic that enter (or leave) the net-
work at different locations. In practice, the traffic from a
single source IP address typically enters the network at a
limited number of sites, such as from a finite list of peering
routers [23] or from fixed positions in a data center rack for
east-west traffic. Similarly, the traffic to a unique destination
IP address or prefix usually leaves the network at just a few
locations. This spatial locality of network traffic provides op-
portunities to reduce the overhead of detecting heavy hitters
if the coordinator can efficiently adapt monitoring thresholds
to the actual volumes of traffic experienced.

In this paper, we propose a communication-efficientmethod
for identifying network-wide heavy hitters using Protocol
Independent Switch Architecture (PISA) switches [2, 3]. In-
spired by prior work on distributed rate limiting [22], we
apply adaptive thresholds to adjust to skews in the traffic
volumes across different edge switches. Each switch identi-
fies which traffic to report to the coordinator, using different
local thresholds for different monitored keys. The coordinator

Coordinator

Ci,k Ti,k Cj,k Tj,k

Reports Reports

Polls

Packets

Figure 2: CDM Dynamics. Each switch stores a count (Ci,k) and a
threshold (Ti,k). Indices (i,k) refer to switch i and key k , respectively.
Unless otherwise specified, k is the standard flow five-tuple.

combines the reports across the switches to aggregate sta-
tistics and identifies the heavy hitters. Also, the coordinator
selectively polls switches for additional counts and updates
the local thresholds for relevant keys to reduce overhead. We
prototype our solution using the P4 [2] language and com-
pile to the Barefoot Tofino chipset [20]. Experiments with
ISP backbone traces [12] show that our method substantially
reduces the number of messages exchanged between the
switches and centralized controller while maintaining 100%
precision and recall.

2 NETWORK-WIDE HEAVY HITTERS
Rather than focusing on detecting heavy hitters with high
memory efficiency, our approach focuses on reducing the
overall communication overhead between the switches and
the coordinator. Our network-wide algorithm counts the
traffic entering the network at each edge switch, and applies
local, per-key thresholds to trigger reports to a central co-
ordinator. The coordinator adapts these thresholds to the
prevailing traffic to reduce the total number of reports.

2.1 Distributed, Adaptive Thresholds
Edge switches count incoming traffic across packets with the
same key k , such as a source IP address, source-destination
pair, or five-tuple. Each edge switch i maintains a count
(Ci,k) and a threshold (Ti,k) for each key k , as shown in
Figure 2. The switch computes the counts, and the central
coordinator sets the thresholds. When the local count for a
key reaches or exceeds its local threshold, the switch sends
the coordinator a report with the key and the count, which
triggers the controller to HandleReport(i,Ci,k) as shown
in Algorithm 1.
The coordinator combines the counts for the same key

across reports from multiple switches. Since switches only
send reports after the count for a key equals or exceeds its
local threshold, the coordinator has incomplete information
about the true global count. A switch i that has not sent
a report for key k could have a count, at most, just under

Network-Wide Heavy Hitter Detection with Commodity Switches SOSR ’18, March 28–29, 2018, Los Angeles, CA, USA

Ti,k , which allows the coordinator to make a conservative
estimate of the global count. The controller computes this es-
timate (Estimate(k)) by aggregating the counts (Ci,k) from
switches that sent reports and assuming a count equal to one
less than the local threshold, i.e., Ci,k = Ti,k − 1, for the non-
reporting switches. If the estimated total equals or exceeds
the global threshold for the key (TG (k)), the coordinator polls
all of the switches whose local thresholds are greater than
zero to learn their current counts and produce a more accu-
rate estimate. If the total calculated after polling equals or
exceeds the global threshold, then the coordinator reports
key k as a heavy hitter with the count

∑
i Ci,k .

The coordinator adapts the per-key local thresholds based
on past reports. Each local threshold starts as a fraction
of the global threshold and the number of sites, i.e., Ti,k =
TG (k)/n, and is then recomputed by the coordinator based on
subsequent reports. Algorithm 1 describes the actions taken
by the coordinator after receiving a Report(i,Ci,k). Inspired
by distributed rate limiting [22], the coordinator adapts the
local thresholds based on the exponentially weighted moving
average (EWMA) of the local and global counts. We use

Algorithm 1: Adaptive Local Thresholds: Controller
Input: N switches, Global Threshold TG (k), Count Ci,k ,
Output: Heavy Hitter Set (H), Local Threshold Ti,k
Func HandleReport(i,Ci,k):

ReportedCi,k ← Ci,k

if Estimate (k) ≥ TG (k)
if GlobalPoll(k) ≥ TG (k)

H ← H ∪ {k }

Reset_Threshold (k)

Func Estimate(k):
return∑N

i=1 (ReportedCi,k ≥ Ti,k ?ReportedCi,k : Ti,k − 1)

Func Reset_Threshold(k):
foreach i ∈ N do

f rac ←
(1 − α) × EWMAi,k + α × ReportedCi,k∑N
j=1 (1 − α) × EWMAj,k + α × ReportedCj,k

Ti,k ← f rac × (TG (k) −
∑N

j=1 ReportedCj,k) +

ReportedCi,k

Func GlobalPoll(k):
Total ← 0
foreach i ∈ N do

if Ti,k > 0
Total ← Total + Poll (i,k)

return Total

the EWMA to reflect the intuition that if a particular key
was a heavy-hitter in the past, it is likely to be a heavy
hitter in the future. We, therefore, adjust local thresholds
(Reset_Threshold(k)) to reflect each site’s fraction of the
global EWMA for a particular key. This adjustment ensures
that switches which observe the majority of the traffic for
a given key apply a higher local threshold. By tuning these
local thresholds based on the local and global EWMA, we
further reduce the communication overhead between the
switches and the coordinator.

2.2 Implementation
Switches can maintain the per-key state (local counts and
thresholds) using a hash table. In the simplest case, the switch
would keep per-key state in registers, storing the current
count Ci,k and threshold Ti,k for each key k . Upon receiving
a packet, the data plane hashes the key to identify the cor-
responding register entry and updates the associated count
(e.g., a count of bytes or packets). If the local count equals or
exceeds the local threshold, the switch generates a report to
the coordinator.

Prototype. Our prototype of the data plane algorithm
consists of approximately 200 lines of P4 code to monitor
per-key counts with adaptive thresholds. We allocate two
registers (hash tables) to store the count and the threshold
for each key. The maximum number of entries that can be
stored in registers across all stages of a particular PISA tar-
get determines the maximum number of keys that can be
monitored in the data plane. When a packet arrives, match-
action tables determine if it corresponds to a monitored key
and, if so, looks up the current count and threshold in each
register. Alternatively, the threshold could also be stored as
a parameter to a match-action table entry. Depending on
the cost of updating match-action table entries or the avail-
ability of register memory in different data plane targets,
one could choose whichever implementation is appropriate
for that target and forwarding logic. The switch generates
a report for the coordinator by cloning the original packet
that triggered the report and embedding the count into the
clone. All of this logic can be performed in as few as seven
logical match-action tables using P4 and such a small pro-
gram could easily run alongside sophisticated forwarding
logic with the resources available on targets like Tofino [20].
However, the precise amount of memory used on the switch
depends on the aggregation level of the monitored keys (e.g.,
five-tuple flow or single IP), the timescale of monitoring, and
the distribution of keys in the underlying network traffic.

2.3 Memory Efficiency Considerations
While maintaining per-key state is expensive from a memory
perspective, Section 3 shows that, in practice, we can store

SOSR ’18, March 28–29, 2018, Los Angeles, CA, USA Rob Harrison, Qizhe Cai, Arpit Gupta, and Jennifer Rexford

0.5 0.75 0.95 0.99 1.0
Affinity Probability

0

50

100

M
ess

ag
es

(×
 10

00
) CMY Upper Bound

Adaptive Thresholds

Figure 3: Communication overhead is reduced even when the
sources’ affinity for a preferred ingress switch is low.

per-key state for a realistic query, based on real-world traffic
traces. Our system identifies heavy hitters on a rolling time
window (W), at the conclusion of which the counters for each
key are reset. In our experiments, we choose a value ofW that
keeps the number of keys per windowmanageable. However,
nothing about our approach prevents us from employing
space-saving algorithms and data structures [8, 24] if the
memory constraints were prohibitive or we wanted to use
much longer time windows. In Section 4, we will discuss how
compact data structures can actually enhance our system
beyond the base algorithm.

3 EVALUATION
In this section, we quantify the reduction in the communi-
cation overhead using our algorithm. We first describe the
experimental setup in Section 3.1 and then quantify the per-
formance of our solution using the CMY bound described by
Cormode et al. [7, 9, 10] as the baseline. We then quantify
how sensitive our results are to various experimental param-
eters in Section 3.2. Our evaluation shows that our algorithm
improves upon the CMY upper bound for the countdown
problem [7] by up to 70%. We omit an explicit experiment
to evaluate accuracy because both algorithms achieve 100%
precision and recall.

3.1 Experimental Setup
To quantify the performance of our approach, we used CAIDA’s
anonymized Internet traces from 2016 [12]. These traces con-
sist of all the traffic traversing a single OC-192 link between
Seattle and Chicago within a major ISP’s backbone network.
Each minute of the trace consists of approximately 64million
packets. For our experiments, we consider all IPv4 packets
for analysis using a rolling time window ofW = 6 seconds.
On average, 6 million packets are processed in each window
which consists of approximately 300,000 flows and 250,0000

200 400 600 800 1000
Threshold

0

100

200

300

M
ess

ag
es

(×
 10

00
) CMY Upper Bound

Adaptive Thresholds

Figure 4: As the global threshold increases, the fraction of overall
traffic that constitute heavy hitters decreases, reducing the communi-
cation overhead.

Thresholds 200 400 600 800 1000
Message Reduction (%) 66.1 68.7 71.3 67.7 70.8

Table 1: Communication reduction over the CMY upper bound
is not affected as the threshold increases.

unique source and destination pairs. For calculating EWMA,
we used a smoothing factor, α = 0.8 for all our experiments.
This factor must satisfy 0 < α < 1 where smaller values of α
react to changes in the average slower than larger values do.
We simulate a one-big-switch network consisting of n

edge nodes (switches). In order to model spatial locality of
network traffic using data from a point-to-point link, we asso-
ciate packets from the trace with a given ingress switch based
on a hash of the source IP address. For each source IP address,
we assign an affinity for a specific ingress switch with prob-
ability p. Packets from a given source IP are, therefore, pro-
cessed at a “preferred” switchwith probabilityp and at l other
switches with probability (1 − p)/(l − 1) where n, l ≥ 2. On
this distribution of traffic, we run a simple heavy hitter query
to determine which flows (based on the standard five-tuple of
source/destination IP address, source/destination port, and
transport protocol) send a number of packets greater than
a global threshold (TG) during a rolling time window (W).
Unless otherwise specified, we set n = 4, l = 2, p = 0.95, and
TG = 600 for our experiments.

3.2 Communication Overhead
We now use these traces to demonstrate how our approach
reduces the communication overhead on continuous dis-
tributed monitoring for detecting heavy hitters. We com-
pare the performance of our algorithm to an implementation
based on the countdown problem for threshold monitor-
ing [7]. This monitoring approach proceeds in a fixed se-
quence of rounds where each round reduces the per-site

Network-Wide Heavy Hitter Detection with Commodity Switches SOSR ’18, March 28–29, 2018, Los Angeles, CA, USA

2 4 8 12 16 20
Number of Sites

0

200

400

600

M
ess

ag
es

(×
 10

00
) CMY Upper Bound

Adaptive Thresholds

Figure 5: As the number of sites increases, the communication over-
head increases due to the additional nodes communicating with the
coordinator.

Number of Sites 2 4 8 12 16 20
Message Reduction(%) 70.0 71.1 64.0 48.0 39.2 32.4

Table 2: Communication reduction over the CMY upper bound
lessens as the number of sites increases.

threshold exponentially until it reaches 1. We quantify the
communication overhead in terms of median number of mes-
sages per window interval. To demonstrate the sensitivity of
the communication reduction with respect to various param-
eters, we ran experiments varying one of four key parame-
ters: affinity probability (p), global threshold (TG), number
of sites (n), and smoothing factor (α); for each experiment.

3.2.1 Sensitivity to Site Affinity. In this experiment, we
compare the performance of our algorithm to the CMY up-
per bound for the countdown problem while varying the
affinity for a given ingress switch. Figure 3 shows how the
performance, quantified as the number of messages sent
over time, varies as we increase the site affinity probability
from p = {0.5, 0.75, 0.95, 0.99, 1.0}. Here, an affinity proba-
bility of p = 0.5 implies that a packet will be processed by
the preferred site with probability 0.5 and p = 1.0 implies
that a packet will only be processed at the preferred site. We
see that our approach substantially reduces the number of
messages exchanged between the sites and the controller re-
gardless of the sources’ affinity for a particular ingress switch.
We do see a substantial drop between p = 0.99 to p = 1.0 be-
cause whenp = 1.0 a given source always enters the network
at the same location. The problem of determining network-
wide heavy hitters has been reduced to determining which
keys are heavy on each edge switch, which substantially
reduces communication overhead.

3.2.2 Sensitivity to Threshold. In this experiment, we com-
pare the performance of our algorithm for different threshold

6 12 18 24 30 36 42 48 54 60
Time (sec)

200

400

600

M
ess

ag
es

(×
 10

00
) α = 0.2

α = 0.4
α = 0.6
α = 0.8
α = 0.99

Figure 6: As alpha increases, the algorithm is able to more quickly
adapt to changes in the traffic distribution which results in lower
communication overhead.

(TG) values with the CMY upper bound for the countdown
problem. Figure 4 shows how the performance, quantified as
the total number of messages sent over the entire experiment
duration (60 sec), varies as we increase the global threshold.
The total number of messages decreases as the threshold
value increases because the total number of heavy hitters
necessarily decreases with the larger thresholds. However,
the increase in threshold has little impact on the performance
of our algorithm compared to the CMY bound. Table 1 shows
that our solution incurs 70% less communication overhead
for TG = 1000, which corresponds to a top-k=700 for this
data set and query.

3.2.3 Sensitivity to Number of Sites. In this experiment,
we compare the performance of our algorithm with the CMY
upper bound for the countdown problem as the number of
sites (n) increases. Figure 5 shows how the performance,
quantified as the total number of messages sent over the
entire experiment duration, varies as we increase the number
of sites. We observe that as the number of sites increases,
our communication overhead increases as a result of the
increased cost to globally poll all sites. However, Table 2
shows that our solution still reduces the communication
overhead by 70–30% for up to n = 20.

3.2.4 Sensitivity to Traffic Changes. In real-world net-
works, changes to traffic patterns and distributions are a
regular occurrence due to planned changes as well as failures.
In Figure 6, we examine how well our algorithm responds
to changes in traffic patterns. At time t = 30s , we change
the set of ingress switches for all keys and evaluate how our
algorithm performs for various choices of the smoothing
factor (α). For all values of α , we see a sharp increase in
the communication overhead after a disruption followed by
a brief period of adjustment, depending on the value of α .
The single, abrupt change in this experiment fails to account

SOSR ’18, March 28–29, 2018, Los Angeles, CA, USA Rob Harrison, Qizhe Cai, Arpit Gupta, and Jennifer Rexford

for the variety of traffic dynamics one might experience in
a production network and selecting the best value of α de-
pends on those specific conditions. For example, selecting a
large α might perform worse in a network that experiences
frequent, but brief, transient changes because it would fre-
quently “over-correct” the thresholds for these brief changes.

4 FUTUREWORK
While our evaluation demonstrated that our algorithm sub-
stantially reduces the communication overhead for detecting
heavy hitters, our approach can be improved in at least two
ways: (1) by reducing the amount of state switches must
store in the data plane, and (2) supporting distinct counts.
Memory-Efficient Heavy-Hitters Storing per-key state
to support adaptive thresholds has high memory overhead,
so using a compact data structure, like a sketch, would be
more memory-efficient. To reduce the space requirements,
the data plane could maintain a count-min sketch [8] to
estimate the counts for all keys, and then only store counts
and thresholds for keys with counts above some minimum
size that would qualify them as a potential heavy hitter.
Heavy Distinct Counts For simplicity of presentation, we
have described count-based heavy hitters for the majority of
this paper. However, adaptive, per-key thresholds can be used
with any heavy-hitter statistic when the function applied is
both commutative and associative, e.g., count, sum, max, etc.
However, these techniques are not effective when computing
distinct counts, such as the number of unique sources contact-
ing a given destination. Fortunately, we can again leverage an
approximate algorithm known as HyperLogLog [11] to solve
this problem. This algorithm takes advantage of randomiza-
tion in order to approximate distinct counts in a distributed
fashion that can be merged by a central coordinator.
5 RELATEDWORK
Our work lies at the intersection of several areas in the data-
base, theory, and the networking research communities.

Frequent and Top-k Item Detection Calculating fre-
quent and top-k items over data streams has been well-
studied. However, much of this work has focused on theoret-
ical bounds and reducing the space [8] required to calculate
these statistics. Several systems [13, 17, 18, 24, 27] make use
of these compact data structures to perform heavy hitter
detection on a single switch. Our work is orthogonal to these
approaches that reduce the memory overhead on a single
device; instead, we focus on reducing the communication
overhead required to perform network-wide heavy hitter
detection.

Distributed Detection Jain et al. [14] make the case
for using local thresholds to monitor a global property, but
they focus on the design considerations for such solutions
rather than a specific system. Our work demonstrates an

actual prototype that uses adaptive, local thresholds inspired
by distributed rate limiting [22] and calculated with local
and global estimates. The problem of calculating frequent
and top-k items over distributed data streams has also been
well-studied. These works shift their focus from reducing
memory overhead to reducing the communication overhead
in the distributed context [1, 9, 10, 16]. However, these ap-
proaches ignore the impact of key distribution in the dis-
tributed streams. Our work focuses on exploiting the spatial
locality of network traffic to improve upon these previous
results.

6 CONCLUSION
Detecting heavy-hitters is an indispensable tool in manag-
ing and defending modern networks. We designed an effi-
cient algorithm and implemented a prototype for detecting
network-wide heavy-hitters with commodity switches. Our
evaluation with real-world traffic traces demonstrates that by
dynamically adapting per-key thresholds, we can reduce the
communication overhead required to detect network-wide
heavy hitters without compromising accuracy.
As richer network traces become available from multi-

switch networks, we can further explore the efficacy of this
method for detecting network-wide heavy-hitters. Simulat-
ing any multi-switch traffic dynamics with the available data
would have been inherently synthetic. With additional data,
we could better explore how the reactiveness of the EWMA
to short-term fluctuations affects the overall communications
overhead. We could also improve our approach by starting
with local thresholds learned from historical training data,
given the availability of such data.
Detecting network-wide heavy hitters in networks mod-

eled by one big switch is also one component of a more
general network telemetry system. Recent work combines
the flexible processing of PISA switches and stream proces-
sors to perform query-based network telemetry, but only
on a single switch [13]. We foresee adapting our work to
detect network-wide heavy hitters along network paths [19]
as well as on one big switch for inclusion in such a general
network telemetry system.

ACKNOWLEDGMENTS
We would like to thank our anonymous reviewers and our
shepherd, Petr Lapukhov, for their thoughtful feedback. We
would also like to thank Shir Landau-Feibish and Mina Tah-
masbi Arashloo for their helpful suggestions and discussions.

REFERENCES
[1] Brian Babcock and Chris Olston. 2003. Distributed Top-k Monitoring.

In ACM SIGMOD International Conference on Management of Data.
ACM, 28–39.

Network-Wide Heavy Hitter Detection with Commodity Switches SOSR ’18, March 28–29, 2018, Los Angeles, CA, USA

[2] Pat Bosshart, Dan Daly, Glen Gibb, Martin Izzard, Nick McKeown,
Jennifer Rexford, Cole Schlesinger, Dan Talayco, Amin Vahdat, George
Varghese, and David Walker. 2014. P4: Programming Protocol-
independent Packet Processors. ACM SIGCOMM Computer Communi-
cation Review 44, 3 (2014), 87–95.

[3] Pat Bosshart, Glen Gibb, Hun-Seok Kim, George Varghese, Nick McK-
eown, Martin Izzard, Fernando Mujica, and Mark Horowitz. 2013. For-
warding Metamorphosis: Fast Programmable Match-action Processing
in Hardware for SDN. In ACM SIGCOMM. ACM, New York, NY, USA,
99–110.

[4] Yanpei Chen, Rean Griffith, Junda Liu, Randy H. Katz, and Anthony D.
Joseph. 2009. Understanding TCP Incast Throughput Collapse in
Datacenter Networks. In ACM SIGCOMM Workshop on Research on
Enterprise Networking. ACM, New York, NY, USA, 73–82.

[5] Benoit Claise. 2004. Cisco Systems NetFlow Services Export Version 9.
RFC 3954. RFC Editor. http://www.rfc-editor.org/rfc/rfc3954.txt

[6] Benoit Claise. 2008. Specification of the IP Flow Information Export
(IPFIX) Protocol for the Exchange of IP Traffic Flow Information. RFC
5101. RFC Editor. http://www.rfc-editor.org/rfc/rfc5101.txt

[7] Graham Cormode. 2011. Continuous Distributed Monitoring: A Short
Survey. In International Workshop on Algorithms and Models for Dis-
tributed Event Processing. ACM, 1–10.

[8] Graham Cormode and Shan Muthukrishnan. 2005. An improved data
stream summary: the count-min sketch and its applications. Journal
of Algorithms 55, 1 (2005), 58–75.

[9] Graham Cormode, S Muthukrishnan, and Ke Yi. 2011. Algorithms for
distributed functional monitoring. ACM Transactions on Algorithms
(TALG) 7, 2 (2011), 21.

[10] Graham Cormode, S Muthukrishnan, Ke Yi, and Qin Zhang. 2010. Op-
timal Sampling From Distributed Streams. In ACM SIGMOD-SIGACT-
SIGART Symposium on Principles of Database Systems. ACM, 77–86.

[11] Philippe Flajolet and G Nigel Martin. 1985. Probabilistic counting
algorithms for data base applications. J. Comput. System Sci. 31, 2
(1985), 182–209.

[12] Center for Applied Internet Data Analysis. 2018 (accessed November
1, 2017). The CAIDA UCSD Anonymized Internet Traces 2016. http:
//www.caida.org/data/passive/passive_2016_dataset.xml

[13] Arpit Gupta, Rob Harrison, Ankita Pawar, Rüdiger Birkner, Marco
Canini, Nick Feamster, Jennifer Rexford, and Walter Willinger.
2017. Sonata: Query-Driven Network Telemetry. arXiv preprint
arXiv:1705.01049 (2017).

[14] Ankur Jain, JosephMHellerstein, Sylvia Ratnasamy, andDavidWether-
all. 2004. A Wakeup Call for Internet Monitoring Systems: The Case
for Distributed Triggers. In HotNets-III.

[15] Jaeyeon Jung, Vern Paxson, Arthur W Berger, and Hari Balakrishnan.
2004. Fast portscan detection using sequential hypothesis testing. In
IEEE Symposium on Security and Privacy. IEEE, 211–225.

[16] Ram Keralapura, Graham Cormode, and Jeyashankher Ramamirtham.
2006. Communication-efficient distributed monitoring of thresholded
counts. In ACM SIGMOD International Conference on Management of
Data. ACM, 289–300.

[17] Yuliang Li, RuiMiao, Changhoon Kim, andMinlan Yu. 2016. FlowRadar:
A Better NetFlow for Data Centers. In Usenix NSDI. 311–324.

[18] Zaoxing Liu, Antonis Manousis, Gregory Vorsanger, Vyas Sekar, and
Vladimir Braverman. 2016. One Sketch to Rule Them All: Rethinking
Network Flow Monitoring with UnivMon. In ACM SIGCOMM. ACM,
101–114.

[19] Srinivas Narayana, Mina Tahmasbi, Jennifer Rexford, and David
Walker. 2016. Compiling Path Queries. In Usenix NSDI. 207–222.

[20] Barefoot Networks. 2018 (accessed November 1, 2017). Barefoot Tofino.
https://www.barefootnetworks.com/products/brief-tofino/

[21] Peter Phaal and Sonia Panchen. 2003 (accessed February 14, 2018).
Packet Sampling Basics. http://www.sflow.org/packetSamplingBasics/
index.htm

[22] Barath Raghavan, Kashi Vishwanath, Sriram Ramabhadran, Kenneth
Yocum, and Alex C. Snoeren. 2007. Cloud Control with Distributed
Rate Limiting. In ACM SIGCOMM. ACM, New York, NY, USA, 337–348.

[23] Brandon Schlinker, Hyojeong Kim, Timothy Cui, Ethan Katz-Bassett,
Harsha V Madhyastha, Italo Cunha, James Quinn, Saif Hasan, Petr
Lapukhov, and Hongyi Zeng. 2017. Engineering Egress with Edge
Fabric: Steering Oceans of Content to the World. In ACM SIGCOMM.
ACM, 418–431.

[24] Vibhaalakshmi Sivaraman, Srinivas Narayana, Ori Rottenstreich, S
Muthukrishnan, and Jennifer Rexford. 2017. Heavy-Hitter Detection
Entirely in the Data Plane. In ACM SOSR. ACM, 164–176.

[25] Cisco Systems. 2017 (accessed February 25, 2018). Cisco Nexus
3600 NX-OS System Management Configuration Guide. https:
//www.cisco.com/c/en/us/td/docs/switches/datacenter/nexus3000/
sw/system_mgmt/503_U4_1/b_3k_System_Mgmt_Config_503_u4_1/
b_3k_System_Mgmt_Config_503_u4_1_chapter_010010.pdf

[26] Ke Yi and Qin Zhang. 2013. Optimal tracking of distributed heavy
hitters and quantiles. Algorithmica 65, 1 (2013), 206–223.

[27] Minlan Yu, Lavanya Jose, and Rui Miao. 2013. Software Defined Traffic
Measurement with OpenSketch. In Usenix NSDI, Vol. 13. 29–42.

http://www.rfc-editor.org/rfc/rfc3954.txt
http://www.rfc-editor.org/rfc/rfc5101.txt
http://www.caida.org/data/passive/passive_2016_dataset.xml
http://www.caida.org/data/passive/passive_2016_dataset.xml
https://www.barefootnetworks.com/products/brief-tofino/
http://www.sflow.org/packetSamplingBasics/index.htm
http://www.sflow.org/packetSamplingBasics/index.htm
https://www.cisco.com/c/en/us/td/docs/switches/datacenter/nexus3000/sw/system_mgmt/503_U4_1/b_3k_System_Mgmt_Config_503_u4_1/b_3k_System_Mgmt_Config_503_u4_1_chapter_010010.pdf
https://www.cisco.com/c/en/us/td/docs/switches/datacenter/nexus3000/sw/system_mgmt/503_U4_1/b_3k_System_Mgmt_Config_503_u4_1/b_3k_System_Mgmt_Config_503_u4_1_chapter_010010.pdf
https://www.cisco.com/c/en/us/td/docs/switches/datacenter/nexus3000/sw/system_mgmt/503_U4_1/b_3k_System_Mgmt_Config_503_u4_1/b_3k_System_Mgmt_Config_503_u4_1_chapter_010010.pdf
https://www.cisco.com/c/en/us/td/docs/switches/datacenter/nexus3000/sw/system_mgmt/503_U4_1/b_3k_System_Mgmt_Config_503_u4_1/b_3k_System_Mgmt_Config_503_u4_1_chapter_010010.pdf

	Abstract
	1 Introduction
	2 Network-Wide Heavy Hitters
	2.1 Distributed, Adaptive Thresholds
	2.2 Implementation
	2.3 Memory Efficiency Considerations

	3 Evaluation
	3.1 Experimental Setup
	3.2 Communication Overhead

	4 Future Work
	5 Related Work
	6 Conclusion
	References

