
Network-Wide Heavy Hitter Detection with
Commodity Switches

Rob Harrison
Princeton University

Qizhe Cai
Princeton University

Arpit Gupta
Princeton University

Jennifer Rexford
Princeton University

ABSTRACT
Many network monitoring tasks identify subsets of traffic
that stand out, e.g., top-k flows for a particular statistic. A
Protocol Independent Switch Architecture (PISA) switch can
identify these “heavy hitter” flows directly in the data plane,
by aggregating traffic statistics across packets and compar-
ing against a threshold. However, network operators often
want to identify interesting traffic on a network-wide basis.
To bridge the gap between line-rate monitoring and network-
wide visibility, we present a distributed heavy-hitter detec-
tion scheme for networks modeled as one-big switch. We
use adaptive thresholds and approximate data structures to
perform threshold monitoring and distinct counting directly
in the data plane. We implement our system using the P4
language and Barefoot’s Tofino hardware switch, and evalu-
ate it using real-world packet traces. We demonstrate that
our solution can accurately detect network-wide statistics
with up to 75% savings in communication overhead.

1 INTRODUCTION
Network operators often need to identify outliers in network
traffic, to detect attacks or diagnose performance problems.
A common way to detect unusual traffic is to perform “heavy
hitter” detection to identify the top-k flows (or flows exceed-
ing a pre-determined threshold), according to some metric.
For example, network operators may want to know the top
source-destination pairs by traffic volume, or the destina-
tions receiving traffic from a large number of distinct sources.
In traditional networks, heavy-hitter detection relies on an-
alyzing packet samples or flow logs [4, 5]. Programmable
switches open up new possibilities for aggregating traffic
statistics and identifying large flows directly in the data
plane [17, 18, 22, 26]. Since switches have limited resources,
these techniques often involve approximate data structures,
such as sketches, that bound memory, and processing over-
head in exchange for some loss in accuracy.

SOSR’18, March 2018, Los Angeles, CA USA
2018. ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/10.1145/nnnnnnn.nnnnnnn

These existing works focus on heavy-hitter detection at
a single switch. However, network operators often need to
track the network-wide heavy hitters. For example, port scan-
ners [15] and superspreaders [26] could go undetected if
the traffic is monitored at a single location. Detecting the
heavy hitters separately at each switch, and combining the
results, is not sufficient. Large flows can easily fall “under
the radar” at multiple locations but still, have sizeable total
volume. Applying a lower detection threshold at each switch
reduces the chance of missing large flows, at the expense
of higher communication overhead (to report counts to a
central coordinator). Instead, we need new, network-wide
techniques that are both efficient and accurate.
Detecting network-wide heavy hitters is an example of

the continuous distributed monitoring (CDM) problem [6].
In this model, each of n sites sees a stream of observations
(packets), and each observation (packet) is observed at pre-
cisely one site. These sites work with a central coordinator
to compute some (commutative and associative) function
over the global set of observations. The objective is to min-
imize the communication cost between the observers and
the coordinator, while continuously computing the function
in real time. For network-wide heavy hitters, we want to
determine which flows exceed the threshold (τ) for a given
statistic of interest. Previous work proved an upper bound
O(n logτ/n) on the communications overhead between the
n observers and a single coordinator [8, 9] which we will
call the CMY upper bound. These approaches rely on setting
per-site thresholds (e.g., τ/n), and alerting the coordinator
when these thresholds are violated. Other approaches that
relax accuracy constraints or behave non-deterministically
can also improve upon this upper bound [6, 25] but we will
focus on the deterministic, error-free case.
Unfortunately, these theoretical results have not led to

practical solutions for computing network-wide heavy hit-
ters [6]. In our setting, the coordinator is capable of general-
purpose computations, but the individual sites (switches)
have a more restrictive computational model. For example,
switches cannot iterate over arrays of values and typically
support only simple arithmetic and bitwise operations. Also,

https://doi.org/10.1145/nnnnnnn.nnnnnnn

SOSR’18, March 2018, Los Angeles, CA USA Rob Harrison, Qizhe Cai, Arpit Gupta, and Jennifer Rexford

the existing CDM work does not adapt to natural differences
in the portions of the traffic that enter (or leave) the network
at different locations. In practice, the traffic from a single
source IP address typically enters the network at a limited
number of sites. Similarly, the traffic to a unique destination
IP address or prefix usually leaves the network at just a few
locations. The spatial locality of the traffic provides oppor-
tunities to reduce the overhead of detecting heavy hitters if
the coordinator can efficiently adapt to the actual volumes
of traffic.

In this paper, we propose a communication-efficient way
to identify network-wide heavy hitters using Protocol Inde-
pendent Switch Architecture (PISA) switches [2, 3]. Inspired
by prior work on distributed rate limiting [20], we apply
adaptive thresholds to adapt to skews in the traffic volumes
across different edge switches. Each switch identifies which
traffic to report to the coordinator, using different local thresh-
olds for different monitored keys. The coordinator combines
the reports across the switches to aggregate statistics and
identifies the heavy hitters. Also, the coordinator selectively
polls switches for additional counts (to increase accuracy)
and updates the local thresholds for the relevant keys (to re-
duce overhead). We prototype our solution using the P4 [2]
language, for both the heavy-hitter and the heavy-distinct
problems and compile to the Barefoot Tofino chipset [23]. Ex-
periments with ISP backbone traces [24] show that adaptive
thresholding achieves a substantial reduction in the com-
munication overhead quantified as the number of messages
exchanged between the switches and the centralized con-
troller.

2 NETWORK-WIDE HEAVY HITTERS
Rather than focusing on detecting heavy hitters with high
memory efficiency, our approach focuses on reducing the
overall communication overhead between the switches and
the coordinator. Our network-wide algorithm counts the
traffic entering the network at each edge switch, and applies
local, per-key thresholds to trigger reports to a central co-
ordinator. The coordinator adapts these thresholds to the
prevailing traffic to reduce the total number of reports.

2.1 Distributed, Adaptive Thresholds
The edge switches count incoming traffic across packets
with the same key k , such as the source IP address, source-
destination pair, or five-tuple. Each edge switch i has a count
(Ci,k) and a threshold (Ti,k) for each key k , as shown in
Figure 1. The switch computes the counts, and the central
coordinator sets the thresholds. When the local count for a
key exceeds its local threshold, the switch sends the coor-
dinator a report with the key and the count, which triggers

Coordinator

Ci,k Ti,k Cj,k Tj,k

Reports Reports

Polls

Packets

Figure 1: CDM Dynamics. Each switch stores a count (Ci,k) and a
threshold (Ti,k). Indices (i,k) refer to switch i and key k , respectively.
Unless otherwise specified, k is the flow five-tuple.

the controller to HandleReport(i,Ci,k) as shown in Algo-
rithm 1.
The coordinator combines the counts for the same key

across reports from multiple switches. Since switches only
send reports upon exceeding their local thresholds, the co-
ordinator has incomplete information. A switch i that has
not sent a report for key k could have a count just under
Ti,k , allowing the coordinator to make a conservative esti-
mate (Estimation(k)) of the total traffic by aggregating the
counts Ci,k for switches i that sent reports and the thresh-
olds Ti,k for the remaining switches. If the estimated total
exceeds the global threshold TG , the coordinator polls all of
the switches to learn their current counts, to produce a more
accurate estimate. If the total exceeds the global threshold,

Algorithm 1: Adaptive Local Thresholds: Controller
Input: N switches, Global Threshold TG , Count Ci,k ,
Output: Heavy Hitter Set (H)
Func HandleReport(i,Ci,k):

ReportedCi,k ← Ci,k

if Estimation (k) > TG
if GlobalPoll(k) > TG

H ← H ∪ {k}

Reset_Threshold (k)

Func Estimation(k):
return∑N

i=1 (ReportedCi,k > Ti,k ?ReportedCi,k : Ti,k)

Func Reset_Threshold(k):
foreach i ∈ N do

f rac ←
(1 − α) ∗ EWMAi,k + α ∗ ReportCi,k + 1∑N
j=1 (1 − α) ∗ EWMAj,k + α ∗ ReportCj,k + 1

Ti,k ← f rac∗(TG−
∑N

j=1 ReportCj,k)+ReportCi,k

Network-Wide Heavy Hitter Detection with Commodity Switches SOSR’18, March 2018, Los Angeles, CA USA

the coordinator reports keyk as a heavy hitter with the count∑
i Ci,k .
The coordinator adapts the per-flow local thresholds based

on past reports. Each local threshold begins at Ti,k = TG/n,
and then is recomputed by the coordinator based on past
reports. Algorithm 1 describes the actions taken by the co-
ordinator after receiving a Report(i,Ci,k). Inspired by dis-
tributed rate limiting [20], the coordinator adapts the local
thresholds based on the exponentially weighted moving av-
erage (EWMA) of the local counts. We use the EWMA to
reflect the intuition that if a particular key was a heavy-hitter
in the past, it is likely to be a heavy hitter in the future. We,
therefore, adjust local thresholds to reflect a site’s share of
the global EWMA for a particular key. This adjustment en-
sures that switches which observe the majority of the traffic
for a given key apply a higher local threshold. By tuning
these local thresholds based on the local and global EWMA,
we further reduce the communication overhead between the
switches and the coordinator.

2.2 Local Counts and Threshold Checks
The switches can maintain the per-key state (local counts
and thresholds) using a hash table. In the simplest case, the
switch could keep per-key state in registers, storing the cur-
rent count Ci,k and threshold Ti,k for each key k . Upon re-
ceiving a packet, the data plane hashes the key to identify
the appropriate register and updates the associated count
(e.g., a count of bytes or packets). If the count exceeds the
threshold, the switch generates a report to the coordinator.

Implementation Our prototype of the switch data struc-
tures consists of fewer than 200 lines of P4 code to monitor
per-key counts with adaptive thresholds in the data plane.
We allocate two registers (hash tables) to store the count and
the threshold for each key. The maximum number of entries
per register determines the maximum number of keys that
can be monitored in the data plane. When a packet arrives,
match-action tables determine if it contains a monitored key
and, if so, looks up the current count and threshold in each
register. The switch generates a report for the coordinator if
the count exceeds the threshold. Alternatively, the thresh-
olds can also be stored as a parameter in a match-action table
entry. Depending on the cost of updating match-action table
entries or availability of register memory in different data
plane targets, one can choose whichever implementation is
appropriate for that target and forwarding logic. To generate
a local report in the data plane, the switch clones the original
packet, modifies it to send to the coordinator and embeds the
count into that clone. Our implementation uses less than 2%
of available SRAM on the Tofino target [23] and could easily
co-exist with complex forwarding logic in the remaining
switch memory.

0.5 0.75 0.95 0.99 1.0
Affinity Probability

0

5

10

15

20

M
ess

ag
es

(×
 10

00
)

CMY Upper Bound Adaptive Thresholds

Figure 2: Communication overhead decreases as a packet’s affinity
for a single ingress switch increases.

2.3 Memory Efficiency Considerations
While maintaining per-key state is expensive from a memory
perspective, Section 3 shows that, in practice, we can store
per-key state for a realistic query and based on real-world
traffic traces. Our system determines heavy hitters for a
rolling time window (W). In our experiments, we choose a
value ofW =5 seconds which keeps the number of keys per
window manageable. However, nothing about our approach
prevents us from employing space saving algorithms and
data structures [7, 22] if the memory constraints became
prohibitive or we wanted to use much longer time windows.
In Section 4, we will discuss how compact data structures
can enhance our system beyond this base algorithm.

3 EVALUATION
In this section, we quantify the reduction in the communi-
cation overhead using our algorithm. We first describe the
experimental setup in Section 3.1 and then quantify the per-
formance of our solution using the CMY bound described
by Cormode et al. [6, 8, 9] as the baseline. We then quantify
how the affinity for ingress switch affects the communica-
tion overhead of the solution in Section 3.2. Our evaluation
shows that our algorithm improves upon the CMY upper
bound for the countdown problem [6] by 8-75%. We also
show how sensitive the reduction in the communication
overhead is for different threshold values and number of
edge sites (switches) in the network.

3.1 Experimental Setup
To quantify the performance of our approach, we used CAIDA’s
anonymized Internet traces from 2016 [24]. These traces con-
sist of all the traffic traversing a single 10 Gbps link between
Seattle and Chicago within a major ISP’s backbone network.
Each minute of the trace consists of approximately 640 mil-
lion packets. For our experiments, we only considered UDP

SOSR’18, March 2018, Los Angeles, CA USA Rob Harrison, Qizhe Cai, Arpit Gupta, and Jennifer Rexford

200 400 600 800 1000
Threshold

0

10

20

30

40

M
ess

ag
es

(×
 10

00
) CMY Upper Bound

Adaptive Thresholds

Figure 3: As the global threshold increases, the fraction of overall
traffic that constitute heavy hitters decreases, reducing the communi-
cation overhead.

Thresholds 200 400 600 800 1000
Performance Gains (%) 33.0 38.2 42.6 38.9 38.7

Table 1: Performance gains over theCMYupper bound
are not affected as the threshold increases.

packets for the analysis and used a rolling time window of
W = 5 seconds which results in processing approximately
one million packets per window interval. For estimating the
moving window average calculations, we used the weight
factor, α = 0.8 for all our experiments.
We simulate a one-big-switch network consisting of n

edge nodes (switches). In order to model the spatial locality
of the network traffic and to map the traffic from a single
link onto the several switches, we associate packets from
the trace with a given ingress switch based on a hash of
the source IP address. For each source IP address, we assign
an affinity for a specific ingress switch with probability p.
Packets from a given source IP are, therefore, processed at
the other (n− 1) switches with probability (1−p)/(n− 1). On
this distribution of traffic, we run a simple heavy hitter query
to determine which source IP, destination IP pairs send a
number of packets greater than a threshold (TG) during a
rolling time window (W). Unless otherwise specified, we use
n = 4, p = 0.95, and TG = 600 for our experiments.

3.2 Communication Overhead
We now use realistic traces to demonstrate how our ap-
proach reduces the communication overhead on continu-
ous distributed monitoring for detecting heavy hitters. We
compare the performance of our algorithm to an implemen-
tation based on the countdown problem for threshold mon-
itoring [6]. We quantify the communication overhead in
terms of median number of messages per window interval.

2 4 8 12 16 20
Number of Sites

0

20

40

60

M
ess

ag
es

(×
 10

00
) CMY Upper Bound

Adaptive Thresholds

Figure 4: As the number of sites increases, the communication over-
head increases due to the additional nodes communicating with the
coordinator.

Number of Sites 2 4 8 12 16 20
Performance Gains(%) 75.0 65.1 55.4 47.3 48.9 39.5

Table 2: Performance gains over theCMYupper bound
reduce as the number of sites increases.

To demonstrate the sensitivity of the performance improve-
ment with respect to various parameters, we ran experiments
varying three key parameters: (1) site affinity probability (p),
(2) threshold (TG), and (3) number of sites (n); for each ex-
periment.

3.2.1 Sensitivity to Site Affinity. In this experiment, we
compare the performance of our algorithm to the CMY up-
per bound for the countdown problem while varying the
affinity for a given ingress switch. Figure 2 shows how the
performance, quantified as the number of messages sent
over time, varies as we increase the site affinity probability
from p = {0.5, 0.75, 0.95, 0.99, 1.0}. Here, an affinity proba-
bility of p = 0.5 implies that a packet will be processed by
the preferred site determined by its source IP address with
probability 0.5 and p = 1.0 implies that packet will only be
processed at the preferred site. As the affinity for a given site
increases, i.e., as p increases, the performance of our algo-
rithm that leverages this affinity improves significantly. We
observe that up to 60% reduction is possible for p = 1.0. The
reduction increases substantially from p = 0.99 to p = 1.0 be-
cause whenp = 1.0 a given source always enters the network
at the same location. The problem of determining network-
wide heavy hitters has been reduced to determining which
keys are heavy on each edge switch, which substantially
reduces communication overhead.

3.2.2 Sensitivity to Threshold. In this experiment, we com-
pare the performance of our algorithm for different threshold
(TG) values with the CMY upper bound for the countdown

Network-Wide Heavy Hitter Detection with Commodity Switches SOSR’18, March 2018, Los Angeles, CA USA

problem. Figure 3 shows how the performance, quantified
as the total number of messages sent over the entire experi-
ment duration, varies as we increase the threshold value. The
total number of messages decreases as the threshold value
increases because the total number of heavy hitters neces-
sarily decreases with the larger thresholds. However, the
increase in threshold has little impact on the performance of
our algorithm compared to the CMY bound. Table 1 shows
that our solution incurs 33% less communication overhead
forTG = 600, which corresponds to a top-k=100 for this data
set and query.

3.2.3 Sensitivity to Number of Sites. In this experiment,
we compare the performance of our algorithm with the CMY
upper bound for the countdown problem as the number of
sites (n) increases. Figure 4 shows how the performance,
quantified as the total number of messages sent over the
entire experiment duration, varies as we increase the number
of sites. We observe that the increase in number of sites has a
small impact on the performance of our algorithm compared
to the CMY bound. Table 2 shows that our solution incurs
around 40% less communication overhead for n = 20.

4 COMPACT DATA STRUCTURES
While our evaluation demonstrated that our algorithm sub-
stantially reduces the communication overhead for detecting
heavy hitters, our approach can be improved in at least two
ways: (1) by reducing the amount of state switches must
store in the data plane, and (2) supporting distinct counts.

4.1 Memory-Efficient Heavy-Hitters
Storing per-key state to support adaptive thresholds has high
memory overhead, so using a compact data structure, like
a sketch, would be more memory-efficient. To reduce the
space requirements, the data plane can keep a count-min
sketch [7] to estimate the counts for all keys, and then only
store counts and thresholds for keys with counts above some
minimize size. A count-min sketch applies d hash functions
on a key to calculate indices into an equal number of arrays.
At those indices, the count-min sketch stores the count of
the key. Since these counts are subject to hash collisions,
each individual count is an overestimation of the true count,
but the minimum of the the d counts will be an estimate of
the true count within bounded error.
When an arriving packet matches an tracked key in the

table, the switch updates the associated count and compares
it to the threshold. When an arriving packet does not match
a tracked key, the switch updates the count-min sketch and
selectively creates a new entry in the table if the sketch
shows that the count has exceeded some minimum thresh-
old. Given that our approach from Section 2 has focused on

providing exact counts, we would need to carefully choose
minimum thresholds that bound the inaccuracy incurred
using sketches.

4.2 Heavy Distinct Counts
For simplicity of presentation, we have described count-
based heavy hitters for the majority of this paper. However,
adaptive, per-key thresholds can be used with any heavy-
hitter statistic when the function applied is both commu-
tative and associative, e.g., count, sum, max, etc. However,
these techniques are not effective when computing distinct
counts, such as the number of unique sources contacting a
given destination.

Destinations with distinct source counts exceeding a local
threshold can be identified at distributed locations, but deter-
mining whether these switches see different sources or not
is more challenging. Consider the case where a destination
receives traffic from distinct sources s1, s2 at one switch and
distinct sources s1, s3 at another switch. Both switches would
report two distinct flows, but globally, there are three. Once
the switch summarizes the distinct element set into a count,
it cannot be combined with any other summary with any
fidelity. Therefore, no threshold on the number of distinct
flows could be evaluated locally at a switch.
Fortunately, we can again leverage an approximate algo-

rithm known as HyperLogLog [11] to solve this problem.
The count distinct problem is equivalent to the set cardinal-
ity problem; for this problem there exists an approximate
solution that also performs with high accuracy [10, 11]. This
algorithm can also be performed at distributed sites and later
merged without any loss of accuracy. The key intuition be-
hind this algorithm is that by storing a maximum value based
on random inputs, a good estimate of the size of a set can
be derived. These maximum values are stored inm buckets;
when merging two estimates together, keeping the maxi-
mum value from each of them buckets will produce a new
estimate based on both previous estimates. Therefore, we
can use this algorithm to generate local estimates, compare
them against local thresholds, and merge the results at the
controller just as with deterministic counts.
Implementation Implementing the HyperLogLog algo-
rithm in the data plane is much more challenging than im-
plementing adaptive thresholds due to the complexity of the
algorithm. To implement the HyperLogLog algorithm, we
require m registers to store a count. For each set that we
want to estimate the cardinality of, i.e., count distinctly, we
compute a hash value (h) of that item and break it into two
components: an index i of p bits and a count c of leading
zeros in the remaining |h | − p bits. The maximum of c and
the value stored in the ith register is written back to that
register. The harmonic mean of the values stored in thesem

SOSR’18, March 2018, Los Angeles, CA USA Rob Harrison, Qizhe Cai, Arpit Gupta, and Jennifer Rexford

registers determines the estimate. Our implementation that
uses adaptive thresholds and the HyperLogLog algorithm
is less than 1600 lines of P4 code and uses less than 15% of
available SRAM on the hardware target.

5 RELATEDWORK
Our work lies at the intersection of several areas in the data-
base, theory, and the networking research communities.

Frequent and Top-k Item Detection Calculating fre-
quent and top-k items over data streams has been well-
studied. However, much of this work has focused on the-
oretical bounds and reducing the space [7] required to cal-
culate these statistics. Several systems [12, 17, 18, 22, 26]
make use of these compact data structures to perform heavy
hitter detection on a single switch. Our work is orthogonal
to these approaches that reduce the memory overhead on
single devices; instead, we focus on reducing the communi-
cation overhead required to perform network-wide heavy
hitter detection.

Distributed Detection Jain et al. [14] make the case for
using local triggers to monitor a global property, but they
focus on the design considerations for such solutions rather
than a specific system. Our work demonstrates an actual
prototype that uses adaptive, local thresholds inspired by
distributed rate limiting [20] and calculated using local and
global estimates. The problem of calculating frequent and
top-k items over distributed data streams has also been well-
studied. These works shift their focus from reducing memory
overhead to reducing the communication overhead in the
distributed context [1, 8, 9, 16]. However, these approaches ig-
nore the impact of key distribution in the distributed streams.
Our work focuses on exploiting the spatial locality of net-
work traffic to improve upon these previous results.

Set Cardinality The set cardinality–also known as count
distinct–problem has experienced a similar path of explo-
ration. Heule et al. [13] improved upon the original Hyper-
LogLog (HLL) algorithm [11] for effectively estimating set
cardinality over streaming data in one pass. Sharma et al. [21]
demonstrated that the HLL algorithm could be implemented
on certain PISA switches using the Cavium Xpliant hard-
ware target. We implement the HLL on the Barefoot Tofino
hardware switch [23] which runs at line rate. Our work
also focuses on using HLL, in conjunction with our adap-
tive thresholds mechanism, to detect network-wide heavy
distincts.

6 CONCLUSION AND FUTUREWORK
Detecting heavy-hitters is an indispensable tool in manag-
ing and defending modern networks. We designed an effi-
cient algorithm and implemented a real prototype for detect-
ing network-wide heavy-hitters with commodity switches.

Our evaluation with real-world traffic traces demonstrates
that by leveraging the spatial locality of network traffic, we
can reduce the communication overhead required to detect
network-wide heavy hitters without compromising accuracy.
As richer network traces become available from multi-

switch networks, we can further explore the efficacy of this
method for detecting network-wide heavy-hitters. Simulat-
ing any multi-switch traffic dynamics with the available data
would have been inherently synthetic. With better data, we
could explore how reactiveness of the EWMA to short-term
fluctuations affects the overall communications overhead.
We could also improve our approach by starting with local
thresholds learned from historical training data, given the
availability of such data.
Detecting network-wide heavy hitters in networks mod-

eled by one big switch is also one component of a more
general network telemetry system. Recent work combines
the flexible processing of PISA switches and stream proces-
sors to perform query-based network telemetry, but only
on a single switch [12]. We foresee adapting our work to
detect network-wide heavy hitters along network paths [19]
as well as on one big switch for inclusion in such a network
telemetry system.

REFERENCES
[1] Brian Babcock and Chris Olston. 2003. Distributed top-k monitoring.

In Proceedings of the 2003 ACM SIGMOD international conference on
Management of data. ACM, 28–39.

[2] Pat Bosshart, Dan Daly, Glen Gibb, Martin Izzard, Nick McKeown,
Jennifer Rexford, Cole Schlesinger, Dan Talayco, Amin Vahdat, George
Varghese, and David Walker. 2014. P4: Programming Protocol-
independent Packet Processors. ACM SIGCOMM Computer Communi-
cation Review 44, 3 (2014), 87–95.

[3] Pat Bosshart, Glen Gibb, Hun-Seok Kim, George Varghese, Nick McK-
eown, Martin Izzard, Fernando Mujica, and Mark Horowitz. 2013. For-
warding Metamorphosis: Fast Programmable Match-Action Processing
in Hardware for SDN. In ACM SIGCOMM.

[4] B Claise. [n. d.]. RFC 5101: Specification of the IP Flow Information
Export (IPFIX) Protocol for the Exchange of IP Traffic Flow Information,
2008. ([n. d.]).

[5] Benoit Claise. 2004. Cisco systems netflow services export version 9.
(2004).

[6] Graham Cormode. 2011. Continuous distributed monitoring: a short
survey. In Proceedings of the First International Workshop on Algorithms
and Models for Distributed Event Processing. ACM, 1–10.

[7] Graham Cormode and Shan Muthukrishnan. 2005. An improved data
stream summary: the count-min sketch and its applications. Journal
of Algorithms 55, 1 (2005), 58–75.

[8] Graham Cormode, S Muthukrishnan, and Ke Yi. 2011. Algorithms for
distributed functional monitoring. ACM Transactions on Algorithms
(TALG) 7, 2 (2011), 21.

[9] Graham Cormode, S Muthukrishnan, Ke Yi, and Qin Zhang. 2010. Op-
timal sampling from distributed streams. In Proceedings of the twenty-
ninth ACM SIGMOD-SIGACT-SIGART symposium on Principles of data-
base systems. ACM, 77–86.

Network-Wide Heavy Hitter Detection with Commodity Switches SOSR’18, March 2018, Los Angeles, CA USA

[10] Philippe Flajolet, Éric Fusy, Olivier Gandouet, and Frédéric Meunier.
2007. Hyperloglog: the analysis of a near-optimal cardinality estima-
tion algorithm. In AofA: Analysis of Algorithms. Discrete Mathematics
and Theoretical Computer Science, 137–156.

[11] Philippe Flajolet and G Nigel Martin. 1985. Probabilistic counting
algorithms for data base applications. Journal of computer and system
sciences 31, 2 (1985), 182–209.

[12] Arpit Gupta, Rob Harrison, Ankita Pawar, Rüdiger Birkner, Marco
Canini, Nick Feamster, Jennifer Rexford, and Walter Willinger.
2017. Sonata: Query-Driven Network Telemetry. arXiv preprint
arXiv:1705.01049 (2017).

[13] StefanHeule,Marc Nunkesser, andAlexanderHall. 2013. HyperLogLog
in practice: algorithmic engineering of a state of the art cardinality es-
timation algorithm. In Proceedings of the 16th International Conference
on Extending Database Technology. ACM, 683–692.

[14] Ankur Jain, JosephMHellerstein, Sylvia Ratnasamy, andDavidWether-
all. 2004. A wakeup call for internet monitoring systems: The case for
distributed triggers. In Proceedings of HotNets-III.

[15] Jaeyeon Jung, Vern Paxson, Arthur W Berger, and Hari Balakrishnan.
2004. Fast portscan detection using sequential hypothesis testing. In
IEEE Symposium on Security and Privacy. IEEE, 211–225.

[16] Ram Keralapura, Graham Cormode, and Jeyashankher Ramamirtham.
2006. Communication-efficient distributed monitoring of thresholded
counts. In Proceedings of the 2006 ACMSIGMOD international conference
on Management of data. ACM, 289–300.

[17] Yuliang Li, RuiMiao, Changhoon Kim, andMinlan Yu. 2016. FlowRadar:
A Better NetFlow for Data Centers.. In NSDI. 311–324.

[18] Zaoxing Liu, Antonis Manousis, Gregory Vorsanger, Vyas Sekar, and
Vladimir Braverman. 2016. One sketch to rule them all: Rethinking
network flow monitoring with univmon. In Proceedings of the 2016
conference on ACM SIGCOMM 2016 Conference. ACM, 101–114.

[19] Srinivas Narayana, Mina Tahmasbi, Jennifer Rexford, and David
Walker. 2016. Compiling Path Queries.. In NSDI. 207–222.

[20] Barath Raghavan, Kashi Vishwanath, Sriram Ramabhadran, Kenneth
Yocum, and Alex C. Snoeren. 2007. Cloud Control with Distributed
Rate Limiting. In Proceedings of the 2007 Conference on Applications,
Technologies, Architectures, and Protocols for Computer Communications
(SIGCOMM ’07). ACM, New York, NY, USA, 337–348. https://doi.org/
10.1145/1282380.1282419

[21] Naveen Kr Sharma, Antoine Kaufmann, Thomas E Anderson, Arvind
Krishnamurthy, Jacob Nelson, and Simon Peter. 2017. Evaluating the
Power of Flexible Packet Processing for Network Resource Allocation..
In NSDI. 67–82.

[22] Vibhaalakshmi Sivaraman, Srinivas Narayana, Ori Rottenstreich, S
Muthukrishnan, and Jennifer Rexford. 2016. Smoking Out the Heavy-
Hitter Flows with HashPipe. arXiv preprint arXiv:1611.04825 (2016).

[23] url [n. d.]. Barefoot’s Tofino. https://www.barefootnetworks.com/
technology/. ([n. d.]).

[24] url 2017. The CAIDA UCSD Anonymized Internet Traces 2016. http:
//www.caida.org/data/passive/passive_2016_dataset.xml. (jun 2017).

[25] Ke Yi and Qin Zhang. 2013. Optimal tracking of distributed heavy
hitters and quantiles. Algorithmica 65, 1 (2013), 206–223.

[26] Minlan Yu, Lavanya Jose, and Rui Miao. 2013. Software Defined Traffic
Measurement with OpenSketch.. In NSDI, Vol. 13. 29–42.

https://doi.org/10.1145/1282380.1282419
https://doi.org/10.1145/1282380.1282419
https://www.barefootnetworks.com/technology/
https://www.barefootnetworks.com/technology/
http://www.caida.org/data/passive/passive_2016_dataset.xml
http://www.caida.org/data/passive/passive_2016_dataset.xml

	Abstract
	1 Introduction
	2 Network-Wide Heavy Hitters
	2.1 Distributed, Adaptive Thresholds
	2.2 Local Counts and Threshold Checks
	2.3 Memory Efficiency Considerations

	3 Evaluation
	3.1 Experimental Setup
	3.2 Communication Overhead

	4 Compact Data Structures
	4.1 Memory-Efficient Heavy-Hitters
	4.2 Heavy Distinct Counts

	5 Related Work
	6 Conclusion and Future Work
	References

