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Abstract—To better support interactive applications, individual
network operators are decreasing the timers that affect BGP
convergence, leading to greater diversity in the timer settings
across the Internet. While decreasing timers is intended to im-
prove routing convergence, we show that, ironically, the resulting
timer heterogeneity can make routing convergence substantially
worse. We examine the widely-used Min Route Advertisement
Interval (MRAI) timer that rate-limits update messages to reduce
router overhead. We show that, while routing systems with
homogeneous MRAI timers have linear convergence time, diverse
MRAIs can cause exponential increases in both the number
of BGP messages and the convergence time (as measured in
“activations”). We prove tight upper bounds on these metrics
in terms of MRAI timer diversity in general dispute-wheel-free
networks and economically sensible (Gao-Rexford) settings. We
also demonstrate significant impacts on the data plane: blackholes
sometimes last throughout the route-convergence process, and
forwarding changes, at best, are only polynomially less frequent
than routing changes. We show that these problems vanish in
contiguous regions of the Internet with homogeneous MRAIs
or with next-hop-based routing policies, suggesting practical
strategies for mitigating the problem, especially when all routers
are administered by one institution.

I. INTRODUCTION

The Border Gateway Protocol (BGP) [1], the Internet’s in-
terdomain routing protocol, reacts slowly to topology changes.
After a failure, BGP routing messages propagate through a
network of tens of thousands of Autonomous Systems (ASes)
that must update their routing tables and start forwarding
traffic along new paths. In the meantime, data packets are
lost, delayed, or delivered out of order. A growing body of
anecdotal accounts and measurement studies [2]–[4] show
that BGP convergence is too slow for interactive applications
like VoIP, multi-player games, and financial transactions. In
an effort to reduce convergence time, router vendors and
network operators are reducing the timers that control the BGP
convergence process.

A. Reducing the MRAI Timer

By limiting the rate of update messages between BGP
neighbors, the Minimum Route Advertisement Interval
(MRAI) timer plays a critical role in BGP convergence. The
MRAI timer trades off convergence speed against bad be-
havior during convergence—transient routing and forwarding
changes, as well as high overhead on the routers. Although
the BGP RFC recommends a default timer of 30 seconds [1],
router vendors and the IETF alike are moving toward lowering

or removing this recommendation entirely [5], [6]. Early
simulation work [7] supports these decisions, suggesting that
smaller timers may indeed reduce convergence time.

In this paper, we consider what could potentially happen
if the proposed MRAI “improvements” get incrementally
deployed, and uncover a problem. We show that the worst-
case convergence time of the network may not get better
until lower MRAI settings are universally deployed, while the
network’s behavior during convergence may get exponentially
worse. That is, incrementally-deployed changes to MRAI, and
especially the complete deregulation thereof, can be destruc-
tive to both sides of the tradeoff that MRAI addresses—both to
convergence time and to behavior during convergence. Based
on our results, we advocate a more careful deployment of
MRAI changes.

Studying convergence time only makes sense if the rout-
ing system converges in the first place. This property, BGP
safety, has been studied in depth over the past decade [8]–
[14]. Yet, oscillations rarely happen in practice, most likely
because real BGP policies are constrained by the business
and performance objectives. If we consider all networks that
converge eventually, the worst-case convergence time looks
hopeless—some BGP systems require exponential time to
converge [12]. Instead, we focus on “reasonable” networks,
constrained by the well-studied “No-Dispute-Wheel” (NDW)
condition [10] or by the economic Gao-Rexford conditions
(GR) [11]. We study convergence as a function of the number
of nodes (in NDW networks) or the depth of the customer-
provider hierarchy (in GR networks).

B. Example of Exponential Update Messages

Most analysis of convergence (e.g. [15], [16]) assumes
routing changes happen in fair phases, where each BGP
participant updates its routing state (i.e., “activates”) at least
once. Under the NDW and GR constraints, BGP converges
after at most a linear number of phases [15], [16]. Yet,
a network can also experience exponentially many routing
changes [17], [18]. Both properties are evident in Figure 1,
a variation on a construction in [17]. Each node Xi has 2i

possible routes to destination d. Node Xi’s preferences are
indicated by the binary number “spelled out” by the labels
on the edges, read from left to right with higher numbers
preferred over lower ones. For example, X3 prefers the path
X3X2X1 over the paths X3Y2X2X1 and X3Y2X2Y1X1. With
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Φ - waiting to announce route, due to MRAI
Fig. 1. Sawtooth Gadget: exponential path exploration within a linear number
of fair phases

these preferences, the Xi nodes converge on paths using only
the “1” edges.

In this example, a failure can lead to an exponential number
of messages during convergence. Suppose that the nodes start
in the stable state, with the Xi routing through “1” edges and
each Yi routing through its neighbor Xi. Now, suppose the
leftmost “1” edge fails. The sole stable configuration after this
failure has Xi using “1” edges all the way to X1. However,
with the given activation pattern, an exponential amount of
path exploration will occur before convergence, as X4 explores
all nine routes from “1111” to “0111” in decreasing order.
Meanwhile, the nodes activating least frequently, X1 and Y1,
need activate only once, making the system converge in a
single fair phase — well below the linear upper bound.

The exponential path exploration is enabled by a partic-
ular timing pattern, with nodes Xi and Yi activating more
frequently for higher i. In Figure 1, and in the rest of the
paper, darker nodes activate more slowly, and lighter nodes
activate faster. This timing is precisely a distinction in MRAIs,
with darker nodes having slower MRAIs than lighter nodes.
With the MRAI timers for Xi and Yi set to twice as long as
those for Xi+1 and Yi+1, extending the above pattern ensures
that Xn will explore 2n−1 paths before convergence. Both
here and throughout, we defer the formal inductive proofs of
counter-example behavior to the full version of the paper.

C. Modeling Heterogeneous MRAI Settings

As the recommended MRAI values change, the deployment
will naturally proceed incrementally. Some AS will change
immediately to a range of lower MRAI settings, while other
ASes continue using the current default configuration. The
uncoordinated deployment will lead to much more heteroge-
neous MRAI values. We study BGP convergence behavior as
a function of two coarse parameters of MRAI heterogeneity:

• Disparity: The ratio r between the highest and lowest
MRAI values in use.

• Diversity: The number v of different MRAI settings in
use.

To evaluate the impact of MRAI disparity and diversity,
we consider the following measures of convergence after a
network event:

• Convergence time: The time until the BGP system is
stable (T̂ ).

• Routing updates: The maximum number of routing
updates sent along a particular edge (r̂), and the number
of updates sent system-wide (R̂).

• Forwarding changes: The global number of forwarding
changes (F̂ ), as a measure of the impact on data traffic.

To set the stage for our results, Section II briefly reviews
our model of BGP, directly borrowed from [15] (a somewhat
simplified version of the more detailed queue-based model of
[10]), and augments it with MRAI timers. In Section III, we
show the relationship between both disparity and diversity of
MRAIs and convergence behavior. In particular, we show that
convergence time may not improve as long as the slowest
MRAIs don’t change. Section IV extends these results to for-
warding behavior. In Section V, we discuss possible strategies
to mitigate these problems and other implications of this work,
as well as the limitations of our results and open questions.

II. BGP MODEL & NOTATION

To model BGP dynamics, we start with the simple BGP
model and notation used in [15]. We model the Internet as
a graph G = (N,L) of routers as nodes, interconnected by
physical communication links, and independently treat the
problem of routing to any particular destination d. Router i
has a set P i of possible simple paths to d, and a preference
function λi that has no ties between paths with different next
hops. It may also have import and export policies specifying
which routes can be imported from, and exported to, which
neighbor.

The key change is the introduction of timing, with a per-
neighbor, per-destination MRAI timer ti assigned to each
node. This contrasts both the arbitrary, adversarial asyn-
chronous activations measured in terms of fair phases, as in
[15], and a uniform global timing, as in [16], [19].

The MRAI timer constrains announcement events: If a node
i has changed its route selection, and this change will be
reflected in an update to its neighbor j (i.e., the new route
is non-empty and exportable to j), i sends a corresponding
announcement to j just after ti seconds elapse since the last
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announcement to j, or immediately, if the last announcement
to j was more than ti seconds ago. Route changes triggering
withdrawals (i drops the route itself, or picks a route that it
will not export to j) always result in immediate withdrawal
announcements to j. We use t∗ to denote the slowest MRAI in
the system, t∗ = maxi ti, and t∗ to denote the fastest MRAI,
t∗ = mini ti.

Since we aim to study the convergence of a network after
some specific event, it is reasonable to assume that, at the time
of the initial event, all the MRAI timers have had time to expire
since the previous oscillation, and thus the first updated route
that any node wants to announce gets announced immediately.
We call this the clean phase model, in contrast to the more
general dirty phase model where, at the time of the initial
event, some nodes may still be in mid-MRAI delay, due to
having recently announced something before the event. A dirty
phase model may also be helpful in studying per-neighbor
MRAIs, discussed in Section V. Almost everywhere below,
we use, implicitly, the stronger of the two models: all but one
of our counter-example results demonstrate bad behavior even
under the clean phase restriction; all the positive results (upper
bounds on convergence) work even in the more general, dirty
phase model.

The MRAI heterogeneity measures we study are:

• Disparity: r = t∗/t∗, and
• Diversity: v = |

⋃
i{ti}|

For the selection events, we use the approach of [16]. As-
sume that, once node i has received any particular combination
of updates that changes its preferred route, it would notice this,
select the route, and be ready to export it, all within some short
span of time, si. Throughout the paper, we assume that si is
non-zero. That is, if a node has been waiting to send an update
to a neighbor due to an MRAI timer, and the timer expires
right as the node receives a new update, the first, soon-to-be-
outdated, announcement is still sent out since the node has
yet to process the new update. On the other hand, we assume
that si is fast enough to treat it as negligible relative to the
ti settings, since modern routers can process updates far more
quickly than the typical MRAI values of 5 and 30 seconds
frequently in use today.

As established in [15], the above model, captures the
relevant features of BGP for studying convergence, while
abstracting away some of the details of lower-level processing
of update messages as modeled by the well-known Simple
Path Vector Protocol model of [10]. In terms of convergence,
the only impact of disregarding the lower-level details, and
effectively setting si = ε is that we discard the possibility
of the router’s internal processing taking so long that it
meanwhile has a chance to send out spurious updates that
don’t correspond to the best route currently available to it.
These are outsider our scope here and are treated in depth in
[20].

III. SLOW ROUTING CONVERGENCE

A. MRAI disparity and convergence

We first consider routing convergence when the fastest
MRAIs are much faster than the slowest ones, yielding a high
MRAI disparity r. We start with what appear like crude upper
bounds directly derived from [15], and then use a delicate
combination of some previously known BGP gadgets and
some new constructions to show that these bounds are actually
tight.

In [15]’s terminology, each “fair phase” takes at most
maxi si + ti ≈ t∗ time. Any node i that, at the start of the
phase, is about to change its route selection will do so within
si after the start, and will announce it within ti after that. Any
other node may as well be “activated” at the beginning of the
phase, both for selection and for announcement, and nothing
will happen there.

These bounds follow directly:
Corollary 1 (from 4.2 and 4.3 of [15]): NDW systems

converge in T̂ = O(nt∗) = O(nrt∗) time. Each edge (i, j)
will see at most O(nrt∗/ti) ≤ O(nr) updates in that time,
ensuring r̂ = O(nr) and thus at most R̂ = O(nmr) routing
updates sent system-wide. Since node i can receive new
information only O(nr) times from each of its neighbors,
it would only have O(nr deg(i)) opportunities to change
its forwarding, yielding F̂ = O(nr

∑
deg(i)) = O(nmr).

By parallel arguments for GR networks, T̂ = O(αrt∗),
r̂ = O(αr), R̂ = O(αmr), and F̂ = O(αmr).

These bounds appear crude. The time bound derives from,
effectively, just assuming that everyone’s MRAI is as slow
as the slowest one. The behavior during convergence bounds
derive effectively from assuming that almost everyone’s MRAI
is as fast as the fastest one, and the maximum possible number
of control and data plane events happens in the time allowed
by the time bound.

Surprisingly, we find that these bounds are asymptotically
tight. This establishes that the worst-case convergence duration
in the network won’t improve until even the slowest MRAI is
sped up, while the number of control and data plane events
can indeed be amplified linearly by a large disparity between
the fastest and slowest nodes. Formally:

Theorem 2: In NDW networks with n nodes and m edges,
in the worst case, T̂ = Θ(nrt∗), r̂ = Θ(nr), R̂ = Θ(nmr),
and F̂ = Θ(nmr). In GR networks with α levels and m
edges, the same bounds apply: T̂ = Θ(αrt∗), r̂ = Θ(αr),
R̂ = Θ(αmr), and F̂ = Θ(αmr). The worst-case behaviors
for all of these can occur in the same network.

Proof sketch: With the upper bounds already established
above, we can demonstrate a family of GR networks parame-
terized by (1) α or n, and (2) m = Ω(n) that match all of the
bounds simultaneously. Consider the “Christmas tree” gadget
shown in Figure 2. The node set contains the destination d
and 4 other groups of nodes:

• a “trunk” of m/4n nodes Tj ; and the remaining n−m/4n
nodes split equally into 5 groups of k:

• a “base” group of k pairs of nodes Si and Ri,
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• a “stump” group of k pairs of left and right nodes Xi

and Yi, and
• a “branches” group of k nodes Bi.

The poor behavior of this system arises from the interaction
between the “base” and the “stump” groups.

The “base” group uses a synchronous variation on the
Sawtooth Gadget of Fig. 1. It guarantees that, after e fails,
Θ(nt∗) time passes until all Si’s confirm that they can only
route through e′. At it∗ seconds after e fails, Si+1 will
announce that it can only route through e′, and then Si+2

announces a route through Ri+1 leading to e, right as Ri+1

announces to it that Ri+1, too, is now routing through e′. The
MRAI of Si+2 will then require another t∗ interval until the
news spreads further right.

In the “stump” group, isomorphic to the Sawtooth Gadget
of Figure 1 with its disparate MRAIs, the Xi’s prefer any route
through e over any route through e′, and within each category
prefer to go through the fewest Si’s, and, for each fixed Si, use
the same lexicographical ordering as in the Sawtooth Gadget.
Each time a new base node announces that it now routes
via e′, the stump performs the full pattern of the Sawtooth
Gadget. The fastest nodes, at the top, make Θ(r) forwarding
changes, and send Θ(r) announcements out, for every one
announcement that the “stump” receives from the “base”.

The base thus ensures that Θ(n) phases will happen, and,
crucially, that each phase will involve the worst possible
behavior in the stump, yielding Θ(kr) = Θ(nr) messages on,
e.g., edge (Xk−1, Xk), and Xk performs Θ(nr) forwarding
changes. The “branches” group yields a tight bound on the
global count of routing updates and forwarding changes (R̂
and F̂ ) in sparse graphs, and the trunk lets us parameterize F̂
and R̂ by m.
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Fig. 3. A “Chain” gadget yields worst-case behavior with MRAI diversity
v, shown here for v = 4, n/v = 4.

With the arrows set to point from providers to customers,
this network obeys the Gao-Rexford constraints, with α =
Θ(n), yielding the matching Gao-Rexford bounds, too.

B. MRAI diversity and convergence

The construction of the previous section notably requires a
broad variety of values for the MRAI timer. Both the IETF and
major router vendors could potentially maintain the status quo
and keep the number of different MRAI values in common
use relatively small, via recommendations and standardized
default settings, respectively. We now establish that this is
indeed advisable, to ensure good worst-case behavior under
convergence. That is, we show that the number of control
and data plane updates during convergence can skyrocket
exponentially as a function of MRAI diversity v (the number
of different MRAI values in use):

Theorem 3: In an NDW network with n nodes that use v ≤
n/2 distinct MRAI values among them, the number of control
and data plane updates (F̂ and R̂) can be (n/v)Ω(v). If the
network is Gao-Rexford, with α levels and v ≤ α/2, F̂ and
R̂ can be (α/v)Ω(v). For higher diversity, v ≥ n/2 in NDW
networks and v ≥ α/2 in GR networks, the behavior remains
exponential, with F̂ and R̂ both bounded by 2Ω(n) for NDW
and 2Ω(α) for GR.

Proof sketch: The diversity-based lower bounds are
achieved by the “Chain” gadget in Fig. 3, which amalgamates
the Sawtooth Gadget and the synchronous behavior of the
Christmas Tree gadget’s base in a different way, by replacing
each “tooth” of the Sawtooth Gadget with a copy of the “base”.
Now, each “link” of the chain, like the “base” above, shares
MRAI value ti and spends n/v “ticks” of the ti timer to count
down its “digit” from n/v to 0. With ti being n/v times
slower than ti+1, this lets the preference functions produce
exponential path exploration by simulating counting down v-
digit numbers in base n/v rather than base 2,

The fastest node, Xv , will receive (n/v)v routing updates,
each of which will trigger a forwarding change; the routing and
forwarding events at this node will asymptotically dominate
the global sum over such events, ensuring that F̂ and R̂ are
both (n/v)Ω(v), and, since α = n here, (α/v)Ω(v).

In the degenerate case of almost unique MRAIs, v > n/2,
or if v > α/2 in a GR network, using the chain gadget for
v = n/2, and adding miniscule noise to some of the ti’s will
not change the performance of the system while keeping the
Ω(2n) and Ω(2α) bounds.
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Can R̂ and F̂ get even worse than this with diverse MRAIs?
We show that the above example is fairly tight. That is,
NDW networks with MRAI diversity v won’t get substantially
asymptotically worse:

Theorem 4: In any NDW network with v distinct MRAIs,
the number of routing updates and forwarding changes is no
worse than (n/v1/3)O(v).

Let us first split the nodes into “groups” G1, . . . , Gv by
distinct MRAI value, in order, so that G1 are the nodes with
the fastest MRAI, Gv are those with the slowest, etc. For
each i, we consider what happens in the interval between two
adjacent announcements by any “slow” nodes, defined, relative
to i, as the set Hi = {d}∪

⋃v
j=i+1 Gj . We call such an interval

of time an i + 1-interval. From the viewpoint of the nodes in
all of the “fast” nodes, defined as the set G1,i =

⋃i
j=1 Gj , the

slow nodes have announced a particular route before the i+1-
interval, and don’t announce anything again for the rest of the
i + 1-interval, as if that route is “fixed” as a stable selection.

Lemma 3.1: Within an i + 1-interval, routing changes can
happen for at most |G1,i| i-fair phases, defined as sequences
where each node in G1,i selects and announces to each
neighbor at least once.

Proof of lemma: The proof requires “steinerizing” the
inductive argument of [15]. Their result was an induction
that grew a routing tree from the destination. Here, we will
consider any subsets of nodes with “fixed” routes, and have the
induction grow a forest of route prefixes from the slow nodes,
whose announced but possibly outdated routes are effectively
arbitrary route suffixes steadily available for use by fast nodes.

Inductively, suppose some strict subset of fast nodes ∅ ⊆
S ⊂ G1,i is “steady”, i.e. (1) each s ∈ S has picked a route
that follows only other steady nodes to a slow node (i.e. a route
that starts with s, s1, s2, . . . , sk, z, with sj ∈ S and z ∈ Hi),
and (2) this route is consistent with the choices of all the
steady nodes that appear before the first slow node on the
path (i.e., for all j, sj also picks sj , . . . , sk, z), and with the
route announced by the first slow node z.

Given a set of steady and slow nodes and their selected
routes, we say that a route v1, v2, . . . , vl = d that starts at
any fast node has a consistent fast prefix if it is consistent
with the routes selected by its first slow node and any steady
nodes that come before it (if, for all k < j, vk 6∈ Hi, and
vj ∈ S∪Hi, then vj must have selected vj , . . . , vl). Note that,
by construction, up until the first slow node, steady nodes may
only be followed by other steady nodes.

Pick an arbitrary fast, non-steady node v1 ∈ G1,i \ S. Let
P 1 = (v1 = v1

1 , v1
2 , . . . , d) be v1’s highest-preferred path

among all paths that have a consistent fast prefix, with v1
j being

the first slow or steady node on that path. Let v2 = v1
j−1, and

consider its most preferred path with a consistent fast suffix.
Continue this process until reaching the sequence of vjs first
loops, producing the first pair va = vb, for b < a. The loop is
guaranteed to happen since the node set is finite. If a > b+1,
the loop has 2 or more nodes. Consider then each step in the
resulting loop of vj’s. The suffix of P j that starts at vj+1 is
available to vj+1, and has an (empty) consistent fast prefix,

but vj+1 prefers a different path P j+1. These suffixes thus
form the spoke paths of a dispute wheel, with the matching
prefixes forming the rims, violating the NDW condition.

Thus, a = b + 1, that is, there is a node va which, with all
the nodes in S∪Hi having selected their paths, most prefers a
path that goes directly to a node in S∪Hi, and has a consistent
fast prefix, thus allowing us to add va to S to complete the
induction.

Proof of Theorem 4: Denote by mi the number of edges
with an endpoint in Gi, ensuring

∑
i mi ≤ 2m; we disregard

the degenerate case of mi = 0. The global bounds ensure
at most n fair phases before convergence, so the slowest
nodes, those in Gv , will each make at most n = |G1,v|
announcements on each of their edges, yielding at most
mv · |G1,v| + 1 v-intervals. Within each i + 1-interval, at
most mi · |G1,i| announcements by the Gi nodes will yield
at most that many, plus 1 i-intervals. For v ≥ 2, by induction,
the number of route announcements, upper bounded by the
number of 1-intervals, is:

R̂ ≤
v∏

i=1

(1 + mi|G1,i|) ≤ (n + 1)v
v∏

i=1

mi

≤ (n + 1)v

(
2m

v

)v

≤
( n

v1/3

)O(v)

For the remaining case of v = 1, the claim comes directly
from Corollary 1.

What about convergence behavior in diverse Gao-Rexford
networks? In completely homogeneous networks, with v =
r = 1, Corollary 1 guarantees that R̂ = O(αm). This
is sensible: it represents an average load of O(α) routing
messages on any given edge (in regard to routes to any
given destination d), a very moderate bound. However, with
more diversity, just carrying over the proof from Theorem 4
yields a bound of R̂ ≤ (αm/v)O(v). This threatens to disrupt
one of the most optimistic previous bounds known on BGP
convergence. Could it be that, with any amount of diversity,
Gao-Rexford networks can have average control-plane traffic
per edge, per-destination scale with m, not just with α as in
Theorem 3? BGP is already infamous for scaling linearly with
the number of destination prefixes, but such a scenario would
create a threat of superlinear control-plane load growth as the
network scales. Or is there a tighter upper bound that prevents
this?

The following result gives some concrete cause for worry,
at least in the so-called dirty phase model (defined in Section
II):

Theorem 5: For a fixed α and v, there are Gao-Rexford
networks of arbitrary size n where per-edge average number of
routing messages until convergence can scale as nΩ(min{α,v}),
when converging in response to a network event occurring
while some MRAI timers are still running.

Proof sketch: The counter-example is the Sharktooth
gadget in Fig. 4, with a fixed number, k = min{2α−2, v−1},
of “tooth columns” (k = 3 above), all of which grow linearly
with n grows. Let ti = ti+1 · n/k. If, when the leftmost 1
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Fig. 4. Sharktooth gadget: per-edge average number of routing messages
scales with n in a dirty phase setting.

edge fails, each tooth column has its teeth’s timers spread out
evenly, with the MRAI of tooth j in column i expiring in
jti/k seconds, we can show that all possible routes ending in
the 1 edge will be explored, while the MRAIs remain “evenly
out of phase”.

The dirty phase model is admittedly not as strong for
modeling the response to a single event, since it requires
some recent previous event to have set the MRAI timers
in motion. On the other hand, it is more reasonable in the
setting of per-edge MRAIs, addressed in Section V. Also,
no upper-bound techniques we have found thus far succeed
at differentiating worst-case dirty-phase behavior from worst-
case clean-phase behavior, further indicating that this problem
may indeed extend to clean-phase counterexamples. We leave
this question as one of the important open problems of this
work.

Lastly, in our discussion of MRAI diversity, we have thus
far omitted its impact on convergence time. In a sense,
convergence time, too, grows “exponentially” with v: the
Chain gadget has T̂ = t∗ · (n/v)Ω(v). But the exponential
dependence on v in terms of the fastest MRAI is not as relevant
to the practical concern of incrementally deploying speedups
of MRAIs. As a function of “unimproved”, slowest MRAIs,
convergence time is still linear with no exponential dependence
on v. Thus, the conclusion here is that, with incrementally
deployed diversification of MRAIs, convergence time won’t
necessarily get better, while the other side of the MRAI
tradeoff, control- and data-plane activity, can get exponentially
worse.

C. From artificial gadgets to real networks

There is no doubt that the gadgets above are not typical
network designs. As with any worst-case analysis, we need
to consider whether the worst case behavior is limited to
artificial situations, with “reasonable” networks exhibiting
none of the worst-case problems. Since our goal is to capture
the asymptotic worst-case problems that may arise as the
network evolves, we should not fix our attention on a particular
measured network graph, or a particular synthetic network
model, and we must instead consider what properties all
realistic networks, current and future, are expected to have.

The most prominent potential culprit for the “artificiality”
of both of the above gadgets is the “counting in k-ary”
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Fig. 5. Weights for the Christmas Tree and Chain gadgets.

preference function required for the combinatorial path ex-
ploration. But, it turns out, this exotic-sounding preference
function is isomorphic to a number of rather reasonable BGP
preferences, involving each node optimizing a quantity similar
to weighted shortest path over some globally-known measure.
As discussed in [21], this family of “semi-ring” preference
functions can correspond to a number of relevant network
phenomena: optimizing expected latency, optimizing packet
loss rates, etc. Formally:

Theorem 6: The local preferences of all nodes in the Christ-
mas Tree and Chain gadgets as shown in Theorems 2 and 3 are
identical to an environment where each node’s local preference
over paths optimize a combination of per-edge quantities that
form a semi-ring.

Proof sketch: The relevant weights are shown in Figure
5 (unspecified weights are zero). These can be thought of
as, e.g., per-edge latencies, the sum of which each node tries
to optimize, but this construction is also isomorphic to other
policies that optimize over semi-rings. See [21] for a wide
range of common examples.

Even though the preference functions are reasonable, there
are other atypical features that enable the exponential path
exploration: the paths explored contain many hops and the
preference function is very “fine-grained”, i.e. some nodes
make very fine distinctions among a very large set of options.
However, neither of these features prevents exponentially bad
dependence on v:

Theorem 7: Even a GR network with only a constant num-
ber of allowed paths, all of constant length can produce an
exponential number of routing updates and forwarding changes
as a function of v before convergence, in terms of both n and
α. That is, F̂ and R̂ are both lower bounded by 2Ω(v), where
v = Θ(n) = Θ(α).

Proof sketch: We form the Braid gadget (shown in Figure
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Fig. 6. A “Braid” gadget for v = 4. Each node has only 4 permitted paths,
all of length 3, but the network can still generate exponential control and data
plane activity.

6) by linking v copies of a cross-like subnetwork into a chain.
For each permitted path at node Xi (and Yi), its next-hop is
either Xi−1 or Yi−1, its “next-next-hop” is either Xi−2 or
Yi−2, and its final hop is to the destination, for a total of 4
permitted paths, all of length 3. With the arrows set to point
from, e.g., providers to customers, the gadget obeys the Gao-
Rexford constraints, with α = Θ(n). To accommodate the
update sequences we describe below, each pair (Xi, Yi) has a
different MRAI timer value, and thus v = Θ(n) = Θ(α).

The exponential number of routing updates and forwarding
changes that can occur in the Braid gadget are the result of a
particular sequence of updates that exploits an “amplification”
property of the network. More precisely, there is a sequence of
updates at each pair of nodes (Xi, Yi) such that, whenever the
sequence occurs, it causes the sequence of updates for the pair
(Xi+1, Yi+1) to occur twice consecutively, resulting in 2Ω(v)

total updates throughout the network. Moreover, each update
actually changes some node’s next-hop, so both control and
data plane activity are exponential in v. The Sawtooth and
Chain gadgets each have a similar amplification property, but
in those gadgets the sequence of updates could be described
by the incrementing of a k-ary number. The situation for the
Braid gadget is more complicated, and is best described by
introducing some specialized terminology.

We say that Xi is using a straight path if the next-hop
of its current path is Xi−1, and say it is using a cross path
if the next-hop is Yi−1. We define straight and cross paths
for Yi similarly. A braid is a sequence of updates at a pair of
nodes (Xi, Yi) such that the path types for these nodes change
according to the following pattern:

Time Path type
step Xi Yi

t1 straight straight
t2 cross straight
t3 cross cross
t4 cross straight
t5 straight straight

These path changes, visualized, resemble the braiding of
a rope or ponytail. The key to the proof is establishing the
following fact: It is possible to assign preference functions to
each node so that, whenever a braid occurs at the pair (Xi, Yi),
it generates a sequence of update messages which cause a braid
to occur twice consecutively at the pair (Xi+1, Yi+1).

There is one important complication that we have not
addressed: The pair (X2, Y2) have no braids occurring “down-
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LL′
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Fig. 7. The “Frog Eyes” gadget

stream” from their position, so to complete the gadget, we
must insert a subnetwork at the rightmost end of the gadget,
between the pair (X1, Y1) and the destination d, that causes
a single braid to occur at (X2, Y2) upon the failure of some
link to the destination. However, in the interests of a cleaner
diagram, and because it adds little to the understanding of the
gadget, the description of this subnetwork has been omitted.

IV. SLOW FORWARDING CONVERGENCE

A. Long-lasting blackholes

Forwarding changes can have a substantial impact on the
system by causing out-of-order packet delivery, and sometimes
introducing transient packet drops. However, the worst-case
scenario for the data plane while the system is converging in
response to a network event is far worse:

Theorem 8: After a network change, even in a Gao-Rexford
network, even if no node ever becomes physically discon-
nected from d, there exists a network which may still forward
a node’s traffic to a black hole for the entire worst possible
duration of control-plane convergence, Θ(nrt∗).

Proof sketch: The gadget in Fig. 7 is actually more
general. It allows us to transform any gadget G like the ones
above1, and create black holes that last as long as the worst-
case control-plane convergence in G does.

Arrows point from providers to customers, and edges with-
out arrows are peer arrows, in the Gao-Rexford sense [11]. G
permits a path from L′ to L and from R′ to R that follows
provider-to-customer links only. Thus, at first, L′ and R′ route
through their copies of G, and down through L and R, then
through C. If the (C,D) link goes down, L and R no longer
have a customer route, and prefer to take the peer route to
R′ and L′ respectively, over their provider routes via P or d.
After that, L′ and R′ will perform whatever path exploration
G creates before exhausting their options for customer routes,
and switching to a provider-learned route, which they do not
export over their peer links to R and L, forcing the latter to
take a provider route. For as long as G’s path exploration is
ongoing, L forwards packets to R′, R′, via G, to R, R to L′,
and L′, via G, to L, creating a black hole.

1Specifically, any Gao-Rexford compliant gadget where (1) worst-case
control-plane convergence explores paths of provider-to-customer links only,
and (2) the worst-case behavior happens in response to a change in the last
hop, with the new option last hop less preferred than any option involving
the previous last hop.
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Inserting the “Christmas Tree base” pattern for G, for
instance, yields a blackhole lasting for Θ(nrt∗) = Θ(αrt∗)
time.

B. Forwarding plane never much better than control plane

Recall that a routing update implies that a node has
changed its path, while a forwarding change implies something
stronger: a node has actually switched its next-hop. Since only
forwarding changes impact the data plane, exponential lower
bounds on the number of routing updates in a network are not
necessarily cause for concern. However, all of the exponential
bounds in the previous sections applied to both routing updates
and forwarding changes. Was this a coincidence, or indicative
of a general phenomenon? The next theorem shows that
the number of routing updates and forwarding changes are
indeed tightly related, and can never be exponentially far
apart; specifically, they are always within a factor of n2 of
each other. Thus any exponential characterization of control
plane convergence (a bound on R̂) also exponentially bounds
forwarding plane convergence (F̂ ), and vice-versa.

Theorem 9: In a network with n nodes, F̂ ≤ R̂ ≤ n2F̂ .
Proof: Since a routing update occurs whenever there is a

forwarding change, we immediately have F̂ ≤ R̂. Now define
a frozen phase to be any sequence of routing updates in which
no node changes its next-hop. We will prove that no node can
change paths more than n times during a frozen phase. Since
there are n nodes, this implies the theorem.

Fix a frozen phase, and consider a node v1. Let F be the
longest acyclic path (v1, v2, · · · , vk) such that vi+1 is the next-
hop of vi during the phase, for all i. So F is (a prefix of) the
forwarding path of packets that originate at v1. Because F is
acyclic, the length of F is at most n. Define the agreement
length of F to be the length of the longest prefix F ′ of F such
that the path used by each node v on F ′ is a suffix of some
common path P . For example, after the first time v1 changes
paths during the phase, since we know v1 and v2 do not change
their next-hops during the phase, the agreement length of F
will be at least 2. In general, every time v1 changes paths
during the phase, the agreement length of F increases by at
least 1. And the agreement length of F cannot exceed n.

C. Restricted policies do not help

One approach to limiting forwarding changes is to place
global restrictions on the policies that nodes can use to select
and filter routes, even beyond what is needed to ensure BGP
safety. One commonly studied type of restriction is to demand
that each node use a next-hop import policy, i.e. each node’s
preference for a path depends only on the path’s next-hop.
In limited cases, this can help: During instabilities in which
there are only path announcements, and if all nodes have a
next-hop import policy, the number of forwarding changes is
upper bounded by a polynomial in n [22].

However, during instabilities in which there are path with-
drawals, the situation is essentially hopeless: There can be
exponentially many forwarding changes even if every node
uses a shortest-path-first rule [17] to select routes. In fact, we

can extend this result to the case where every node uses a
next-hop import policy. The proof, which is omitted for lack
of space, is another example of our “amplification” technique
for leveraging MRAI diversity to construct exponentially long
update sequences, but applied to the “Trapezoid” gadget
described in [17].

V. DISCUSSION

Mitigation recommendations: The results above clearly
show that network-wide consistency in MRAIs significantly
improves the worst-case guarantees we can make about BGP
convergence. We believe that our theoretical worst-case ex-
amples are worth considering as a practical matter. This
is not because we expect these structures to appear verbatim
in practice, but because they may suggest plausible patterns
in the network that could substantially degrade performance,
even if the real network never approaches the true worst
case. To that extent, we believe it worthwhile to evaluate
the counterexamples in detailed simulation to measure the
likelihood of the worst-case chain of events. Also, we have
yet to identify network properties that curtail bad convergence,
and are characteristic of the real Internet, but not our coun-
terexamples. The search for such properties would benefit from
examining worst-case examples, with an eye to evaluating the
realism of proposed properties via measurement studies.

We agree that the status quo of MRAI defaults is untenable,
since the current default values are clearly large enough to
cause substantial convergence delays. The deployment of any
MRAI changes will necessarily be incremental, but, in light of
Theorems 4 and 5, we recommend updating the recommended
MRAI default, rather than de-standardizing it completely. If
router vendors and operators do not substantially deviate from
the new recommended default, the difference in worst-case
convergence behavior may be like the difference between,
e.g., quadratic scaling of path exploration versus exponential
scaling, or perhaps, even more dramatically, the difference
between BGP message loads scaling as a function of customer-
provider hierachy height (≈ 5), versus scaling linearly or
worse as a function of the network size (≈ 40000).

More practical is the question of MRAI settings within
a single autonomous system, or multiple ASes run by the
same institution. In regard to convergence, the iBGP route
reflector hierarchy effectively mirrors the behavior of Gao-
Rexford eBGP systems [13], [14], so we fully expect that the
same bounds would apply to route information propagating
through an iBGP system with route reflectors. But a single
AS, unlike the IETF, can indeed enforce homogeneous timer
settings by “flag day” changes within its network, and our
results are thus a strong and practical recommendation that
any single AS update its MRAI settings homogeneously.

We have thus far cast the motivations in terms of default
MRAI settings. Anecdotal accounts from operators suggest
that, indeed, most operators do not alter the vendor-specified
default timer settings, and the small number of popular router
vendors thus roughly upper-bounds the diversity of timer
settings. We thus leave open the consequently relevant question
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of what can happen to convergence if a just a small fraction
of individual router operators change the timers, while the
vast majority of the network retains the defaults. Conversely,
also open is whether a small group of routers or ISPs
can collaboratively set their timings to improve network-
wide behavior, assuming the collaborators are in positions of
influence in the network (e.g., some or all Tier 1s).

Limitations: Our analysis pertains to MRAI timers as rec-
ommended in the RFC [1]: a separate timer for announcements
about each destination prefix over each BGP session with
a neighbor. In practice, many implementations only permit
cruder MRAI timers, which apply to any announcements
sent to a particular next hop. This means that the routing
convergence processes for two different destinations are no
longer independent, with slow convergence for one destina-
tion producing MRAI delays for all the others. The single-
destination, dirty-phase model, as used in Theorem 5 is a solid
starting point for analyzing how two destinations’ convergence
processes may interfere with each other in the worst case. But
it’s entirely possible that even more dire worst case behavior
will arise from fully general interactions between convergence
processes to several destinations. As noted in Section II, we
also do not treat the corner case of MRAI being set to zero,
as currently done by default by some vendors, or MRAI set
to be faster than the time it takes for incoming updates to
be processed. The convergence in that case can be modeled
by asynchronous results like [15], [17], or, worse, if updates
can be released mid-processing, the system may engage in
qualitatively different long-term behaviors, treated in [20].

We also forego entirely the question of jitter, the required
randomization of MRAI values by each router [1]. The full
paper shows that all of our upper bounds remain intact under
jitter. The lower-bound counter examples also remain valid, in
that stochastic jitter could end up be effectively equal at all
routers, simulating a jitter-less network. That is exponentially
improbable, but we expect that a stochastic analysis of our
worst-case examples will retain the asymptotic behavior, even
in expectation. We conjecture that, roughly, all our counterex-
amples (except Sharktooth) require at most “one direction”
of exact timing (if jitter causes event A to occur before B,
the counterexample may “skip a beat”, but if B is before A,
it will perform as above); and that combining these effects
will at most halve the exponent of the exponential results, but
confirming this rigorously is an open question.

Why MRAI?: Lastly, a worthwhile question to consider is,
why MRAI? This timer was introduced to enable a practicable
and desirable tradeoff, allowing operators to lower control-
plane load by potentially reducing convergence time. But
MRAI is clearly a simple and crude way to implement this
tradeoff, with a single timer value for a node, or for an edge,
with no regard to what update is being delayed by it. There
has been some implementation and simulation work proposing
various more sophisticated alternatives [23], [24]. We believe
that some of our negative results may well be a peculiar artifact
of MRAI timers as such, not a general property of all tools that
enable the control-plane load vs time tradeoff. We thus think

that, before deploying any of the new proposals, it’s worth
evaluating them in the worst-case framework we presented,
starting with the many badly-behaved examples above.

It may well be that even a simple adjustment to make
MRAI timers adaptive, based on the path being announced,
may mitigate much of the worst-case convergence problems.
We note in particular that all of our examples of bad behavior
require nodes further from the destination to be updating much
faster than those that are closer. If each node was aware of
the timer settings of others on the path, it could resolve to
not update faster than any node ahead of it on the path being
announced. We conjecture that such an approach may yield a
polynomial upper bound on control and data plane activity.

REFERENCES

[1] Y. Rekhter, T. Li, and S. Hares, “A Border Gateway Protocol 4 (BGP-
4).” RFC 4271, January 2006.

[2] N. Kushman, S. Kandula, and D. Katabi, “Can you hear me now?!: It
must be BGP,” ACM SIGCOMM CCR, vol. 37, no. 2, pp. 75–84, 2007.

[3] F. Wang, Z. M. Mao, J. Wang, L. Gao, and R. Bush, “A measurement
study on the impact of routing events on end-to-end Internet path
performance,” in ACM SIGCOMM, pp. 375–386, September 2006.

[4] D. Pei, L. Wang, D. Massey, S. F. Wu, and L. Zhang, “A study of packet
delivery performance during routing convergence,” in International
Conference on Dependable Systems and Networks, pp. 183–192, 2003.

[5] P. Jakma, “Revisions to the BGP ’Minimum Route Advertisement
Interval’.” Internet Draft draft-ietf-idr-mrai-dep-02, 2010.

[6] Juniper, “Out-delay.” https://www.juniper.net/techpubs/software/junos/
junos57/swconfig57-routing/html/bgp-summary32.html . Accessed
2010-07-30.

[7] T. G. Griffin and B. J. Premore, “An experimental analysis of BGP
convergence time,” in Proceedings of ICNP, 2001.

[8] K. Varadhan, R. Govindan, and D. Estrin, “Persistent route oscillations in
inter-domain routing,” Computer Networks, vol. 32(1), pp. 1–16, 2000.

[9] T. G. Griffin and G. Wilfong, “An analysis of BGP convergence
properties,” in ACM SIGCOMM, pp. 277–288, September 1999.

[10] T. G. Griffin, F. B. Shepherd, and G. Wilfong, “The stable paths problem
and interdomain routing,” Trans. Netw., vol. 10(2), pp. 232–243, 2002.

[11] L. Gao and J. Rexford, “Stable Internet routing without global coordina-
tion,” IEEE/ACM Trans. on Networking, vol. 9(6), pp. 681–692, 2001.

[12] A. Fabrikant and C. H. Papadimitriou, “The complexity of game
dynamics: BGP oscillations, sink equilibria, and beyond,” in ACM-SIAM
Symposium on Discrete Algorithms, pp. 844–853, 2008.

[13] T. G. Griffin and G. Wilfong, “On the correctness of IBGP configura-
tion,” in ACM SIGCOMM, vol. 32, pp. 17–29, August 2002.

[14] A. Basu, C.-H. L. Ong, A. Rasala, F. B. Shepherd, and G. Wilfong,
“Route oscillations in I-BGP with route reflection,” in ACM SIGCOMM,
pp. 235–247, August 2002.

[15] R. Sami, M. Schapira, and A. Zohar, “Searching for stability in inter-
domain routing,” in IEEE INFOCOM, pp. 549–557, April 2009.

[16] D. Obradovic, “Real-time model and convergence time of BGP,” in Proc.
of INFOCOM, vol. 2, pp. 893–901, 2002.

[17] H. J. Karloff, “On the convergence time of a path-vector protocol,” in
ACM-SIAM Symposium on Distributed Algorithms, pp. 605–614, 2004.

[18] C. Labovitz, A. Ahuja, A. Bose, and F. Jahanian, “Delayed Internet
routing convergence,” Trans. Netw., vol. 9(3), pp. 293–306, 2001.

[19] C. Labovitz, A. Ahuja, R. Wattenhofer, and V. Srinivasan, “The impact
of internet policy and topology on delayed routing convergence,” in
INFOCOM, pp. 537–546, 2001.

[20] M. Suchara, A. Fabrikant, and J. Rexford, “BGP safety with spurious
updates.” In submission.

[21] T. G. Griffin, “The stratified shortest-paths problem,” in Proceedings of
COMSNETS, pp. 1–10, 2010.

[22] Anonymous, “Putting BGP on the right path: A case for next-hop
routing.” In submission.

[23] A. Sahoo, K. Kant, and P. Mohapatra, “Improving BGP convergence
delay for large-scale failures,” In Proc. of DSN, pp. 323–332, 2006.

[24] A. Lambert, M.-O. Buob, and S. Uhlig, “Improving internet-wide routing
protocols convergence with MRPC timers,” in CoNEXT’09, pp. 325–336.


