
Multi-Commodity Flow with In-Network Processing

Moses Charikar, Yonatan Naamad, Jennifer Rexford, and X. Kelvin Zou

Department of Computer Science, Princeton University
{moses,ynaamad,jrex,xuanz}@cs.princeton.edu

Abstract

We introduce and study a new class of multi-commodity flow problems where, in addition
to demands on flows and capacity constraints on edges in the network, there is an additional
requirement that flows be processed by nodes in the network. These problems are motivated by
the placement and configuration of so-called middleboxes at nodes in the network so as to perform
services on the network traffic: how many middleboxes to run, where to place them and how to
direct traffic through them?

We study the problems that arise from jointly optimizing the: (1) placement of middleboxes over
a pool of server resources, (2) steering of traffic through a suitable sequence of middleboxes, and
(3) routing of the traffic between the servers over efficient network paths. We introduce and study
several problems in this class from the exact and approximation point of view.

1 Introduction

1.1 Background In addition to delivering data efficiently, today’s computer networks often perform
services on the traffic in flight to enhance security, privacy, or performance, or provide new features.
Network administrators frequently install so-called “middleboxes” such as firewalls, network address
translators, server load balancers, Web caches, video transcoders, and devices that compress or encrypt
the traffic. In fact, many networks have as many middleboxes as they do underlying routers or switches.
Often a single conversation, or connection, must traverse multiple middleboxes, and different connections
may go through different sequences of middleboxes. For example, while Web traffic may go through a
firewall followed by a server load balancer, video traffic may simply go through a transcoder. In some
cases, the traffic volume is so high that an organization needs to run multiple instances of the same
middlebox to keep up with the demand. Deciding how many middleboxes to run, where to place them,
and how to direct traffic through them is a major challenge facing network administrators.

Until recently, each middlebox was a dedicated appliance, consisting of both software and hardware.
Administrators tended to install these appliances at critical locations that naturally see most of the
traffic, such as the gateway connecting a campus or company to the rest of the Internet. A network
could easily have a long chain of these appliances at one location, forcing all connections to traverse every
appliance—whether they need all of the services or not. In addition, placing middleboxes only at the
gateway does not serve the organization’s many internal connections, unless the internal traffic is routed
circuitously through the gateway. Over the last few years, middleboxes are increasingly virtualized, with
the software service separate from the physical hardware. Middleboxes now run as virtual machines
that can easily spin up (or down) on any physical server, as needed. This has led to a growing interest
in good algorithms that optimize the (i) placement of middleboxes over a pool of server resources, (ii)
steering of traffic through a suitable sequence of middleboxes based on a high-level policy, and (iii)
routing of the traffic between the servers over efficient network paths [7].

1.2 The General Problem Rather than solving these three optimization problems separately, we
introduce—and solve—a joint optimization problem. Since server resources are fungible, we argue that
each compute node could subdivide its resources arbitrarily across any of the middlebox functions, as
needed. That is, the placement problem is more naturally a question of what fraction of each node’s
computational (or memory) resources to allocate to each middlebox function. Similarly, each connection
can have its middlebox processing performed on any node, or set of nodes, that have sufficient resources.
That is, the steering problem is more naturally a question of how to decide which nodes should devote
a share of its processing resources to a particular portion of the traffic. Hence, the joint optimization
problem ultimately devolves to a new kind of routing problem, where we must compute paths through
the network based on both the bandwidth and processing requirements of the traffic between each source-
sink pair. That is, a flow from source to sink must be allocated (i) a certain amount of bandwidth on
every link in its path and (ii) a total amount of computation across all of the nodes in its path.

We can abstract the above problem–flow with in-network processing problem in the following way:
there is a flow demand with multi-sources and multi-sinks, and each flow requires a certain amount of
in-network processing. The in-network processing required for a flow is proportional to the flow size
and without losing generality, we assume one unit of flow requires one unit of processing. For a flow
from a source to a sink, we assume it is an aggregate flow of many connections so the routing and
in-network processing for a flow are both divisible. In this model there are two types of constraints:
edge capacity and vertex capacity, which represents bandwidth and node computational capacity. A
feasible flow pattern satisfies: (1) the sum of flows on each edge is bounded by the edge capacity, (2)
the sum of in-network processing done at each vertex is bounded by the vertex capacity, and (3) the
processing done at all vertices for a flow is equal to the flow size.

Our model is a superset of standard multi-commodity flow model[5], that is, if we can solve this
problem, we can naturally solve multi-commodity flow problem: simply assigning each vertex with an
infinite capacity it becomes an MCF problem. However, our problem is also very different from standard
multicommodity flow variants. For example, a flow might be required to pass through the same edge or
vertex multiple times before reaching its destination, a phenomenon that occurs often in practice when
flows get “detoured” for processing.[7]

1.3 Outline of this paper In Section 2, we introduce the processed packet routing class of
problems, in which we discuss how to feasibly route packets in a fixed network while optimizing various
objective functions. Our main result here is that given a network with edge capacities, vertex processing
capacities and flow demands, we give an LP based algorithm to find a multi-commodity flow with
processing assigned to vertices so as to optimize several natural objective functions: maximum flow,
sum of congestions, etc. As various in-network processing may alter flow size, such as during transcoding,
compression, or encryption, we show how our solution can be adapted to handle dynamically changing
flow sizes. We also discuss the case when multiple processing steps are required before a packet reaches
its destination, as may arise in onion routing or while monitoring processed traffic. In Section 3,
we discuss the processing power allocation class of problems, in which the goal is to purchase
processing capacity in a network (the capacities of edges are fixed) so to maximize the total amount of
traffic it can carry. We show an O(log(n)/δ2) approximation for processing power cost and an associated
multi-commodity flow that satisfies (1− δ) fraction of the demands and satisfies all edge capacities. We
show that the problem is hard to approximate better than a logarithmic factor, even if the demand
requirements are relaxed. We also show that minimizing the processing power cost for a version of the
problem with indifference routing is Label Cover hard.

2 Packet Routing with In-network Processing

2.1 The basic problem We begin by introducing the routing problem in the presence of processing
demands. In this problem, we are given a directed graph G = (V,E) along with edge capacities
B : E → R+, vertex capacities C : V → [0,∞), and a collection of demanded integer flows
D = {(s1, t1, k1), (s2, t2, k2), · · · } ⊆ V × V × R+. While the edge capacities are used in a manner
entirely analogous to its uses in standard multicommodity flow problems, we also require that each unit
of flow undergo one unit of processing at an intermediate vertex. In particular, while edge capacities
limit the total amount of flow that may pass through an edge, vertex capacities only bottleneck the
amount of processing that may be done at a given vertex, regardless of the total amount of flow that uses
the vertex as an intermediate node. The goal is then either to route as much flow as possible, or to satisfy
all flow demand subject to appropriate congestion-minimization objective function. Though ignoring
vertex capacity constraints reduces our class of problems to those of the standard Multicommodity Flow
variety, the introduction of these constraints forms a new class of problems that (to our knowledge) has
not yet been studied in the literature.

2.1.1 Flow Maximization We begin by showing how to express the maximization version of the
problem both as an edge-based and as a walk-based linear program. While neither of these constructions
is particularly difficult, it is not obvious that either is enough to solve the flow problem in polynomial
time. In particular, while the walk-based LP requires exponential size, the polynomial-sized edge-based
LP may a-priori not correspond to valid routing pattern at all. In subsection A.2, we resolve this
problem by showing that the two linear programs are equivalent, and so the edge-based LP inherits the
correctness of the walk-based program, ensuring that we can indeed find a valid solution in polynomial
time. We summarize this result in the following theorem.

s

2

0

2

0 T

2

5 5

5

55

5

5 5

Figure 1: The edge capacity is 10 for all edges and the node capacities are denoted in each node. Here, we can send maximum
flow size 5, by routing it along the red arcs, have it processed at the nodes at the top, and then sent to T along the blue arcs. The

capacity of the bottom middle edge forms the bottleneck here, as all flow must pass through it twice before reaching T .

Theorem 2.1. There exists a polynomial-sized linear program solving the Maximum Processed Flow
problem. Further, the full routing pattern can be extracted from the LP solution by decomposing it into
its composing si, ti walks in O(|V | · |E| · |D|) time.

To express the walk-based linear program, we require one variable pvi,π for each walk-vertex-demand
triplet, representing the total amount of flow from si, ti exactly utilizing walk π and processed at v. The
aggregate (si, ti) flow sent along a given walk π is then simply denoted by pi,π, and the set of all walks
is given by P . The linear program is then the standard multicommodity-flow LP augmented with the
new processing capacity constraints.

The edge-based formulation can be thought of as sending two flows for each Di: fi represents the
packets being sent from si to ti and wi is the processing demand of these packets. While fi is absorbed
(non-conserved) only at the terminals, wi is absorbed only at the processing vertices. The variables fi(e)
and wi(e) measure how much of fi and wi passes through edge e. We use the notation δ+(v) and δ−(v)
to denote the edges leaving and entering vertex v, respectively. The two linear programs are given below:
Walk-based formulation:

maximize

|D|∑
i=1

∑
π∈P

pi,π

subject to

pi,π =
∑
v∈π

pvi,π ∀i ∈ [|D|],∀π ∈ P

|D|∑
i=1

∑
π∈P
π3e

pi,π ≤ B(e) ∀e ∈ E

|D|∑
i=1

∑
π∈P

pvi,π ≤ C(v) ∀v ∈ V

pvi,π ≥ 0 ∀i ∈ [|D|],∀π ∈ P,∀v ∈ V

Edge-based formulation:

maximize

|D|∑
i=1

∑
e∈δ+(si)

fi(e)

Subject to∑
e∈δ−(v)

fi(e) =
∑

e∈δ+(v)

fi(e) ∀i ∈ [|D|],∀v ∈ V \ {si, ti}

pi(v) =
∑

e∈δ−(v)

wi(e)−
∑

e∈δ+(v)

wi(e) ∀i ∈ [|D|],∀v ∈ V

[D]∑
i=1

fi(e) ≤ B(e) ∀e ∈ E

|D|∑
i=1

pi(v) ≤ C(v) ∀v ∈ V

wi(e) ≤ fi(e) ∀i ∈ [D],∀e ∈ E
wi(e) = fi(e) ∀i ∈ [D],∀e ∈ δ+(si)

wi(e) = 0 ∀i ∈ [D],∀e ∈ δ−(ti)

wi(e), pi(v) ≥ 0 ∀i ∈ [D],∀e ∈ E
Flow Maximization with Size Changes In some cases, middlebox processing might significantly

alter the volume of data in a given connection. For example, encrypting middleboxes might increase

pre a ab postabc

pre

a

b post

c

ab

bc

ca

abc

Figure 2: Up: Tasks may have strong dependencies and require sequential processing. Down: Tasks may be processible in any order.

the size of the flow, while compression and transcoding may substantially decrease it [2]. If processing
scales the size of the data of flow i by a constant multiplicative factor ri ∈ R+, such effects can be
captured by linear programs. To do so, we need to separate the flow into two types, preprocessed and
postprocessed, which can be represented as w and f −w. The increase of postprocessed flow equals the
decrease of preprocessed flow. So the flow conservation constraint of the original edge-based LP should
be replaced by pi(v) · ri =

∑
e∈δ+(v)(fi(e)− wi(e))−

∑
e∈δ−(v)(fi(e)− wi(e)).

2.1.2 Cost Minimization The minimization version of our problem, however, allows for nonlinear
(and, in principle, non-convex) objective functions. In this paper, we deal with the minimum congestion
model, parameterized by two monotone, convex congestion measures cv : [0,∞) → [0,∞) and
ce : [0,∞) → [0,∞). In this model, a vertex v with processing capacity C(v) is assigned a congestion

cv = cv(
∑
f∈F fv
C(v)) and each edge is assigned congestion ce = ce(

∑
f∈F fe
B(e)), where fv and fe are the amount

of processing and amount of flow that flow path f assigns to vertices v and e, respectively. Each flow, in
turn, is penalized according to the total amount of congestion it encounters among the edges it takes as
well as its processing vertex. The goal is to feasibly route all requested units of flow while minimizing the
sum of the penalties the various flow encounter, or, equivalently, to minimize

∑
e∈E cefe +

∑
v∈V cvfv.

As a warmup, let’s first consider the special case of constant cv(·) and ce(·). With these simple

functions in place, we can write our objective function as Minimize
∑

v cv(
∑
f∈F fv
C(v))

∑
f∈F fv +∑

e ce(
∑
f∈F fe
B(e))

∑
f∈F fe =

∑
v ĉv

∑
f∈F fv +

∑
e ĉe
∑

f∈F fe for some constants ĉe and ĉv. Adding in

the equality
∑

e∈δ+(Si)
fe = Di for each Si and copying the rest of the edge-based linear program from

Section 2.1.1 completes the linear program.
The more interesting case is monotone convex functions with bounded second derivative. Consider

an arbitrary edge e = (u, v) with monotone, convex cost function ce(·) whose second derivative is
bounded by some K. Dividing e into q edges e1, e2, · · · , eq from u to v with capacity B(e)/q and

constant cost functions cei(·) = ce

(
i−.5
qB(e)

)
, we get an edge set which would collectively lower bound the

cost incurred by the congestion at e. Standard bounds on the errors of Riemman sums show that this

error is bounded by O
(
K
q2

)
. Thus, selecting q =

√
K
|E|ε , the sum of all error terms is bounded by O(ε),

giving an additive O(ε) approximation. Thus, complicated functions can be simulated by a collection of
constant-congestion edges. A similar technique involving replacing vertices with independent sets lets
us replace their cost functions with a collection of constant functions. Thus, if the maximum second
derivative K̂ over all ce and cv is O(poly(n)), this technique gives an additive FPTAS for computing
the minimum-cost routing solution.

2.2 Multiple Types of in-Network Processing as a DAG Sometimes packets need to be
processed in multiple, distinct stages. For example, onion routing requires the data to visit a number
of intermediaries, each with its own decryption key, before reaching its ultimate destination. Further, it
might be the case that certain nodes are fit for only certain types of computations, some of which may
contain interdependencies, such as decrypting of files after they pass through a firewall, or encypting a
file after it’s compressed. Thus, it is natural to attempt to generalize the above formulation into one
that can handle multiple processing nodes.

One way to model this type of problem is via DAGs. For each si, ti pair, we require a DAG Gi
on vertices T ⊆ V . We then require the si, ti flow visit and be processed by nodes in Gi such that
processing of fi at a vertex v succeeding u in Gi is only done after u completed its processing of fi.
While in the dependency routing version of the problem we require all vertices in the DAG eventually
process fi, the indifference routing version simply requires fi to fully traverse and receive processing
at each of the vertices on one maximal path in Gi. Note that indifference routing fully captures the
original routing problem from Section 2.1 when all intermediary nodes of the DAG form an antichain.

Interestingly, we can encode both indifference routing and dependency routing into the above edge-
based linear program, though the latter may require an exponential number of new constraints. To
do so, each vertex v needs to be given T different processing capacities C1(v) · · ·CT (v), one for each
task. Indifference routing can then be implemented by replacing each wi(e) with a collection of wti(e)
measuring how much processing of task t the (si, ti) flow along e yet demands and adding in simple
inequalities ensuring that the flow processed by v is no more than the sum of all flows processed on v’s
immediate predecessors in Gi. The straightforward approach to ensuring feasibility in the dependency
routing case, however, requires flows to fully identify their processing history to ensure that multiple
fractionally-processed flows don’t get merged and counted as a fully processed flow by the LP. We then
ensure that any processing done by vertex u only be done on flow that identifies itself as having been
processed at each of u’s immediate predecessors. Although the naive encoding requires up to 2T new
flows be created for each (si, ti) pair, it is sufficient to decompose T into a chains and store the progress
of the processing along each chain using at most log T bits per chain. A simple application of Dilworth’s
Theorem[3] allows us to bound the size of this encoding by 2A(Gi) log |T | = |T |2A(Gi), where A(Gi) is the
size of the largest antichain in Gi. This gives a significant advantage when the interdependency poset
is close to a chain.

3 Network Design

In this section, we discuss the problem of how to optimally purchase processing capacity so to satisfy a
given flow demand. Although this can be modeled in multiple ways, we limit our discussion to the case
where each vertex v has a potential processing capacity Ĉ, which can only be utilized if Ĉ is purchased.
As in the previous section, this yields two general categories of optimization problems

1. The minimization version of the problem (Min Middlebox Purchase), where the goal is to
pick the smallest set of vertices such that all flow is routable.

2. The maximization version of the problem (Max Middlebox Purchase), where we try to
maximize the amount of routable flow while subject to a budget constraint of k.

Formally, the input to Min Middlebox Purchase is a graph G = (V,E) with nonnegative costs
qv on its vertices, a potential processing capacity C : V → [0,∞), and a collection of (si, ti) pairs with
demands Ri. The goal is to select a set T ⊆ V of vertices such that all demands are satisfied. Max
Middlebox Purchase is given the same collection of inputs along with a budget integer k, and the
goal is to route as much of the demand as possible.

s t

S
1

S
2

S
3

S
|S|

X
1

X
2

X
3

X
|X|

Figure 3: Approximation-preserving reduction from Set Cover and Max k-Coverage to Min Middlebox Purchase and Max
Middlebox Purchase. All edges have infinite capacity, blue vertices have 0 potential capcity, yellow vertices have |X| potential

capacity. All purchase costs are 1.

We begin with the simple observation that Min Middlebox Purchase and Max Middlebox
Purchase inherit the hardness of Set Cover and Max k-Coverage, respectively.

3.1 Hardness of Network Design

Theorem 3.1. It is NP-hard to approximate Min Middlebox Purchase to within a factor better
than .2267 log n. Further, there is no (1 − ε) log n-approximation algorithm for Min Middlebox
Purchase unless NP ⊆ DTIME(nO(log logn)). These results hold even when the algorithm is allowed
to satisfy a mere ε-fraction of each demand yet is compared to an exactly-satisfying optimal solution.

Theorem 3.2. It is NP-hard to approximate Max Middlebox Purchase to within a factor better
than 1− 1/e.

The reduction for both Theorem 3.1 and Theorem 3.2 is provided in Figure 3. In both cases, we
create one vertex Si for each S in the set system S, and one vertex Xj for each X . Each vertex Si is
connected to vertex Xj for each Xj ∈ Si. Each Si is given |X | potential capacity, while all other vertices
are given 0 capacity. Finally, all edges from Xi to t are given capacity 1, and all other edges are assigned
unlimited capacity. Thus, the total amount of flow that can be sent from s to t is exactly the number
of vertices Xj connected to s through a purchased vertex Si. It is thus easy to verify that solutions to
Max Middlebox Purchase and Min Middlebox Purchase on this graph exactly correspond to
solutions to Max k-Coverage and Set Cover, respectively, which, together with known hardness
bounds of those two problems[1][4], implies Theorem 3.1 and Theorem 3.2. Finally, by removing vertex
T and setting one unit of flow demand from S to each of the Xi, we note that any solution satisfying
each demand pair some ε amount is able to satisfy it at equality, as any fractional solution in the
above constructions can be rounded up without any loss of feasibility, proving the last statement of
Theorem 3.1.

It is tempting to state that the amount of routable flow is submodular in the collection of purchased
vertices, which would imply that simple greedy algorithms would match the bounds of Theorem 3.1
and Theorem 3.2. As shown in Figure 4, this natural supposition happens to be false, as there exist
configurations where the natural greedy algorithm gets stuck at an infeasible solution.

3.2 A bicriterion approximation algorithm We describe a modification of the walk based LP
formulation with additional variables xv corresponding to whether or not processing capacity at vertex

S v
1 r v

3 T

u
1

u
2

Figure 4: Example graph where vertex purchasing is not submodular. White vertices have no processing potential, colored vertices
have 1 potential unit of processing. Solid black edges have capacity 2 while dashed red edges have capacity 1. If the only purchased

vertex is r, no single additional purchase can increase the routable flow at all, yet buying both u1 and u2 simultaneously increases it

to 2.

v has been purchased. We further give a polynomial sized edge-based LP formulation with flow variables
f1,v
i (e) and f2,v

i (e) for each commodity i, each vertex v ∈ V and each edge e ∈ E. The variables f1,v
i (e)

correspond to the (processed) commodity i flow that has been processed by vertex v: these variables
describe a flow from v to ti. The variables f2,v

i (e) correspond to the (unprocessed) commodity i flow
that will be processed by vertex v: these variables describe a flow from si to v.
Walk-based formulation:

minimize
∑
v∈V

qvxv

subject to

xv ≤ 1 ∀v ∈ V

pi,π =
∑
v∈π

pvi,π ∀i ∈ [|D|], π ∈ P∑
π∈P

pi,π ≥ Ri ∀i ∈ [|D|]

|D|∑
i=1

∑
π∈P
π3e

pi,π ≤ B(e) ∀e ∈ E

|D|∑
i=1

∑
π∈P

pvi,π ≤ C(v)xv ∀v ∈ V

|D|∑
i=1

∑
π∈P
π3e

pvi,π ≤ B(e)xv ∀e ∈ E, v ∈ V

∑
π∈P

pvi,π ≤ Rixv ∀i ∈ [|D|], v ∈ V,

pvi,π ≥ 0 ∀i ∈ [|D|], π ∈ P, v ∈ π
xv ≥ 0 ∀v ∈ V

Edge-based formulation:

minimize
∑
v∈V

qvxv

Subject to

xv ≤ 1 ∀v ∈ V∑
e∈δ−(u)

f j,vi (e) =
∑

e∈δ+(u)

f j,vi (e)
∀i ∈ [|D|], j ∈ {1, 2}, v ∈ V,
∀u ∈ V \ {si, ti, v}∑

e∈δ−(v)

f2,vi (e) =
∑

e∈δ+(v)

f1,vi (e) ∀i ∈ [|D|], v ∈ V,

∑
v∈V

∑
e∈δ+(si)

f2,vi (e) ≥ Ri ∀i ∈ [|D|]

|D|∑
i=1

∑
v∈V

(f1,vi (e) + f2,vi (e)) ≤ B(e) ∀e ∈ E

|D|∑
i=1

∑
e∈δ−(v)

f2,vi (e) ≤ C(v)xv ∀v ∈ V

|D|∑
i=1

(f1,vi (e) + f2,vi (e)) ≤ B(e)xv ∀e ∈ E, v ∈ V∑
e∈δ+(si)

f2,vi (e) ≤ Rixv ∀i ∈ [|D|], v ∈ V

f2,vi (e) = 0 ∀i ∈ [|D|], v ∈ V, e ∈ δ−(si)

f1,vi (e) = 0 ∀i ∈ [|D|], v ∈ V, e ∈ δ+(ti)

p1,vi (e), p2,vi (e), xv ≥ 0 ∀i ∈ [|D|], v ∈ V, e ∈ E

Given an optimal solution to this LP, we pick vertices to install processing capacity on by randomized
rounding: pick vertex v with probability xv. if xv is picked, then all flows processed by v are rounded
up in the following way: F̂ j,vi (e) = f j,vi (e)/xv for all i ∈ [|D|], j ∈ {1, 2}, e ∈ E. If v is not picked, then

all flows processed by v are set to zero, i.e. F̂ j,vi (e) = 0.

By design, E[F̂ j,vi (e)] = f j,vi (e). In the solution produced by the rounding algorithm, the total

flow through edge e is
∑
v∈V

|D|∑
i=1

((F̂ 1,v
i (e) + F̂ 2,v

i (e)). This is a random variable whose expectation is at

most B(e), and is the sum of independent random variables, one for each vertex v. The constraints
of the LP ensure that if v is selected, then the total processing done by vertex v is at most C(v).
Further, the total contribution of vertex v to the flow on edge e does not exceed the capacity B(e), i.e.
|D|∑
i=1

(F̂ 1,v
i (e) + F̂ 2,v

i (e)) ≤ B(e). Also, the total contribution of vertex v to the commodity i flow is at

most Ri, i.e.
∑

e∈δ+(si)

F̂ 2,v
i (e) ≤ Ri.

We repeat this randomized rounding process t = O(log(n)/ε2) times. Let gk(e) denote the total flow
along edge e, and hki denote the total amount of commodity i flow in the solution produced by the kth
round of the randomized rounding process. The following lemma follows easily by Chernoff-Hoeffding
bounds:

Lemma 3.1.

Pr

[
t∑

k=1

gk(e) ≥ (1 + ε)t ·B(e)

]
≤ e−tε2/3 ∀e ∈ E (3.5)

Pr

[
t∑

k=1

hki ≤ (1− ε)t ·Ri

]
≤ e−tε2/2 ∀i ∈ [|D|] (3.6)

We set t = O(log(n)/ε2) so that the above probabilities are at most 1/n3 for each edge e ∈ E and
each commodity i. With high probability, none of the associated events occurs. The final solution is
constructed as follows: A vertex is purchased if it is selected in any of the t rounds of randomized
rounding. Thus the expected cost of the solution is at most t = O(log(n)/ε2) times the LP optimum.
We consider the superposition of all flows produced by the t solutions and scale down the sum by t(1+ε).
This ensures that the capacity constraints are satisfied. Note that the vertex processing constraints are
also satisfied by the scaled solution. The total amount of commodity i flow is at least 1−ε

1+εRi ≥ (1−2ε)Ri.
Hence we get the following result:

Theorem 3.1. There is a polynomial time randomized algorithm that satisfies all flow requirements
upto factor 1 − δ and produces a solution that respects all capacities, with expected cost bounded by
O(log(n)/δ2) times the optimal cost.

3.3 Purchasing Processing Power for Indifferent Flows We can generalize the Min Middle-
box Purchase problem to incorporate indifference routing as described in Section 2.2. Unlike the
results of the previous section, the following theorem shows that Min Indifference Middlebox
Purchase problem is Label Cover-Hard, and thus is unlikely to admit any polylogarithmic approx-
imation algorithm.

x
1

x
2

x
3

x
4

x
5

x
6

x
7

x
8

x
9

y
1

y
2

y
3

y
4

y
5

y
6

y
7

y
8

y
9

A1

A2

A3

B1

B2

B3

a
12

a
23

a
33

a
45

a
35

a
51

a
54

a
63

a
76

a
79

a
88

a
89

a
97

b
12

b
23

b
33

b
45

b
35

b
51

b
54

b
63

b
76

b
79

b
88

b
89

b
97

a
28

b
28

S

S
11

S
12

S
13

S
21

S
22

S
32

S
33

T

(a) Initial Min Rep Instance (b) Construction of DD (c) Construction of G

a
1?

a
2?

a
3?

a
4?

a
5?

a
6?

a
7?

a
8?

a
9?

b
?1

b
?2

b
?3

b
?4

b
?5

b
?6

b
?7

b
?8

b
?9

S T

S
11

S
12

S
13

S
21

S
22

S
32

S
33

Figure 5: (a) A sample Min Rep instance from which we derive D̂ and Ĝ. (b) The construction of D̂. Edges are directed left-to-right.

(c) The construction of Ĝ. Each cloud is actually a clique of all vertices in D̂ whose name can be attained by replacing the question
mark with a number. All drawn edges are directed left-to-right. Solid black edges have capacity ∞, while dotted red edges have

capacity 1. All vertices are free except those in the clouds, which have a cost of 1 each.

Theorem 3.2. For every ε > 0, there is no polynomial-time algorithm approximating the single-

commodity Min Indifference Middlebox Purchase problem to within an O(2log(1−ε) n) factor unless
NP ⊆ DTIME(npolylogn).

We achieve this hardness result by reducing from Min Rep, defined in [6]. Given a bipartite graph
G with partitions A and B partitioned into subsets A1, A2, · · · and B1, B2, · · · , respectively, we hope
to construct a Min Middlebox Purchase instance with graph Ĝ, indifference routing DAG D̂, and
vertex cost function q : V → R+ whose feasible solutions can be mapped into feasible Min Rep solutions
on G with the same cost.

We begin with the description of D̂. For each hyperedge (Ai, Bj), we construct a source node Sij .
For each edge (ap, bq) in G, we add in two vertices apq and bpq connected by an edge. We then connect
Sij to apq if both ap ∈ Ai and bq ∈ Bj . Finally, we construct source and sink vertices S and T , with S
connecting to each Si and each bpq connecting to T . Thus, traversing this DAG D̂ from S to T can be
thought of as first committing to a hyperedge, and then visiting its endpoints.

Our construction of Ĝ begins by replacing each ap ∈ G (resp. bq ∈ G) with a clique of all vertices
ap (resp. a q), with all edges having unbounded capacity. For each edge (ap, bq) in G, we connect one
arbitrarily-chosen vertex from clique ap to one arbitrarily-chosen vertex of clique b q via an infinite-
capacity edge. Now we connect Sij to some arbitrarily-chosen vertex from each clique ap for which
ap ∈ Ai. Finally, S is connected to Sij with unit capacity edges, and one vertex from each b q clique is
connected to T with infinite capacity edges. Every vertex has unbounded potential processing capacity,
The costs of each vertex in the cliques ap and b q is 1, and the rest of the vertices are free.

We claim that there’s a direct correspondence between valid solutions to the label-cover instance
and solutions to the problem on Ĝ and D̂ where R flow is anticipated from S to T . In particular,
any solution to the Min Rep instance can be transformed into a solution to the constructed instance
by purchasing one vertex from each clique corresponding to vertices chosen in the Min Rep solution.
For each hyperedge, one unit of flow can be routed from S to the Sij corresponding to the hyperedge,
through some vertices of the cliques forming selected endpoints of the hyperedge, and finally to T (recall

that we may not begin and end in the correct vertices within the clique, but the infinite capacities allow
us to traverse to the correct one without issue). Thus, any Min Rep solution may be transformed
into a flow solution of equivalent cost. Conversely, any solution routing R units of flow must send one
unit to each of the various Sij vertices, to some ap? where ap is one of the endpoints of the hyperedge
corresponding to Sij , over to some bq, and to T . To create our solution to the label-cover instance, we
can thus select exactly the ai and bj vertices corresponding to cliques containing selected ap? and b?q
vertices. Since we will only select one vertex from each clique in an optimal solution, any flow solution
may be transformed into a Min Rep solution of equal cost. Therefore, the optimal achievable values
for the provided Min Rep instance and our constructed flow instance coincide, meaning that the flow
problem shares any inapproximability of Min Rep.

References

[1] Alon, N., Moshkovitz, D., and Safra, S. Algorithmic construction of sets for k-restrictions. ACM
Transactions on Algorithms (TALG) 2, 2 (2006), 153–177.

[2] Chi, C.-H., Deng, J., and Lim, Y.-H. Compression Proxy Server: Design and Implementation. In
USENIX Symposium on Internet Technologies and Systems (1999).

[3] Dilworth, R. P. A decomposition theorem for partially ordered sets. Annals of Mathematics (1950),
161–166.

[4] Feige, U. A threshold of ln n for approximating set cover. Journal of the ACM (JACM) 45, 4 (1998),
634–652.

[5] Ford, L. R., and Fulkerson, D. R. A Suggested Computation for Maximal Multi-Commodity Network
Flows. Management Science 5, 1 (1958), 97–101.

[6] Kortsarz, G. On the hardness of approximating spanners. Algorithmica 30, 3 (2001), 432–450.
[7] Qazi, Z. A., Tu, C.-C., Chiang, L., Miao, R., Sekar, V., and Yu, M. SIMPLE-fying Middlebox

Policy Enforcement Using SDN . In Proceedings of the ACM SIGCOMM 2013 Conference on SIGCOMM
(2013), SIGCOMM ’13, ACM, pp. 27–38.

A Appendix

A.1 Proof for equivalence between two LPs subsection 2.1 Proof sketch: we first show that
we can compose an edge-based solution based on a walk-based solution and vice versa for a single flow,
and then show that we can iteratively place multi-commodity flows.

1. show Direction A: If there is a walk-based LP solution, there is an edge-based solution.

2. show Direction B: If there is an edge-based LP solution, there is a walk-based solution using walk
decomposition.

3. show the formulations for multi-commodity flows are also equivalent via extending the above
approach.

A.1.1 walk-based solution → edge-based solution

Proof. we show that we can easily convert walk-based solution to edge-based solution and all the
constraints in edge-based formulation hold.

For each edge e, fi(e) =
∑

π∈P :e∈π
pi,π.

For each vertex v, wi(e) =
∑

v′∈π,v′≤v
pvi,π (v′ ≤ v means e’ is topologically at or after e on the walk

π).

Flow conservation holds
∑

(u,v)∈E
fi(e)=

∑
π∈P,v∈π

pi,π =
∑

(v,w)∈E
fi(e).

Constraints in terms of B(e), C(v) also hold. (A2d,2e)
Relations between wi(e), fi(e) also hold: wi(e) =

∑
v′∈π,v′≤v

pvi,π ≤
∑
v∈π

pvi,π = fi(e), and wi(s, v) =

fi(s, v) and wi(v, t) = 0 are special cases.(A.2f,2g,2h)

A.1.2 edge-based solution → walk-based solution to prove this; we need to show:

1. We can always construct a walk if there is some residual flow left in the graph.

2. All constraints holds for the updated residual graph.

Setup: For simplicity, we only construct all walks for a flow each time, so notation wise we can
remove i. A directed graph G(V,E) with an edge-based LP solution, where f(e) is the flow for each
edge, w(e) is workload demand at the same edge and p(v) process work done at each vertex v. Build
a new graph G′: all vertices V , and for ∀e ∈ E, if f(e) > 0, we put a direct edge e in the graph. To
help proof, divide a flow into two states, processed and unprocessed f1 and f2; in terms of flow volume
f1 = w and f2 = f − w.

Lemma A.1. loops for flows f1 and f2 respectively can be cancelled via flow cancellation without any
side effect.

Proof. it is similar to flow cancellation in a simple graph model:
(i) for e=(u,v) whereas min(f1) > 0, we can simply cancel the unprocessed flow demand by small

amount ε, and it does not affect the outcome of the flow outside the loop, while we can reduce the flow
load and workload demand in the loop without side effect.

(ii) for e=(u,v) whereas min(f2) > 0, we can cancel the processed flow demand by small amount ε,
and this does not affect the outcome of the flow outside of the loop while we can reduce the flow load
in the loop without side effect.

The intuition behind this is that loop exists due to that some flow needs to borrow some processing
capacity from some node(s), so it would “detour” a flow in an unprocessed state and get back the flow
in a processed state.

Introduce an intermediate variable ρ for each edge e where ρe = w(e)
f(e) = f1

f1+f2
. Run flow loop

cancellation for f1 and f2 respectively in G′.
Note: after loop cancellation we may still have loops for f as a unitiy.

Lemma A.2. ρ has the following property: if there is a cycle for unity flow f , there is always at least
one edge with ρ = 1 and one edge with ρ = 0.

Proof. This can be easily inferred from Lemma A.1.

Lemma A.3. (Walk Construction) algorithm 1 can always generate a walk with non-zero flow from
source to sink if there exists any v where p(v) > 0, and the algorithm can converge at O(V 2)

Proof. First, from Lemma A.2, the walk cannot loop a cycle twice from [Walk Construction]. Since
downstream traversal keeps picking min ρ while upstreaming traversal keeps picking max ρ, so we never
pick the same edge twice. Since p(v) > 0 so at the same node there must be one upstream edge with
ρ > 0 and downstream edge with ρ < 1. Since the same edge is never picked twice so there is no loop in

Data: G′(V,E), w(e), f(e) for ∀e ∈ E and p(v) for ∀v ∈ V
Result: f(π), p(π, v) where v ∈ π
Algorithm Walk Construction()

//Construct walk from s→ v and v → t
From v run backward traversal, pick an incoming directed edge with max(ρin) where

ρin ≡ w(ein)
f(ein)

From v run forward traversal, pick an outgoing directed edge with min(ρout) where

ρout ≡ w(eout)
f(eout)

return π

Algorithm Flow Placement()

while ∃v; p(v) > 0 do
//walk representation π ≡< v1, . . . , vk >≡< e1, . . . , ek−1 >
π = Walk Construction()

pπ = min{f1(ea), f2(eb), p(v)}, ea ∈< e1, . . . , u→ v >, eb ∈< v → w, . . . , ek−1 >
pvπ = pπ
for u ∈ π and u 6= v do

pvπ = 0
end
C(v) = C(v)− pπ
p(v) = p(v)− pπ
for i← 1 to k − 1 do

f(ei) = f(ei)− pπ
B(ei) = B(ei)− pπ

end

end
Algorithm 1: Walk Decomposition

terms of f1 and f2. The walk consists of two DAGs, one is from source to v and one is from v to sink,
the walk is a DAG as well.

Second we need to show for a certain walk π; pπ > 0. Since pπ = min{f1(ea), f2(eb), p(v)}; at node
v where p(v) > 0, so we have f1(ein) > 0 and f2(eout) > 0 at vertex v. Since we only pick max{ρ} for
upstream traversal, so for ∀ea; f1(ea) > 0. The same reason we have ∀eb; f2(eb) > 0.

For a single flow, after each iteration, we either take out one edge or one vertex, and the runtime
for each iteration is O(|V |) for traversal. As we iterate through O(|V |) vertices and O(|E|) for edges so
the runtime total will be O(|E|+ |V |) · |V |) = O(|V | · |E|).

Lemma A.4. (Flow Placement) algorithm 1 conserves all the constraints for the reduced graph.

Proof. we show that all the constraints are satisfied:
for A.2b: ∀v ∈ π;

∑
in
f(e)−

∑
out
f(e) =

∑
in6=ei

f(e)−
∑

out6=ei+1

f(e) + [f(ei)− pπ]− [f(ei+1)pπ] = 0

A.2d: ∀e ∈ π; f(e) = f(e)− pπ ≤ B(e)− pπ = Bnew(e)
A.2e: ∀v ∈ π; p(v)− pπ ≤ C(v)− pπ = Cnew(v)
A.2f and A.2g are ensured by the algorithm, since v 6= s and v 6= t.
A.2h constraints are satisfied by numerical relations.

A.1.3 Multi-Commodity Flow For MCF, we can use the same approach above. For a graph with
K source-sink paired flows, we iterate i = 1 . . .K, for each flow we genrate a G′ and exhaustively
decompose walks for fi and it is easy to see that all the constraints still hold after flow i has been
removed. In particular, we have : A.2b, A.2c, A.2f and A.2g hold for all the flows left after one flow is

removed; A.2d: ∀i,∀e;
K∑
l=i

fl(e)− fi ≤ B(e)− fi(e); A.2e: ∀i,∀v;
K∑
l=i

pl(v)− pi(v) ≤ C(v)− pi(v).

A.2 Proof for formulation about flow size change in subsection 2.1

Proof. The algorithm of constructing walks for edge-based LP w.r.t. flow size change is very similar
to the approach above. However we need to “restore” the processed flow to “raw” flow size before
constructing the walks. In particular, using the f1, f2 notation to represent pre and post processed
flows, we restore f2 to f̂2 with the multiplicative factor r, ∀e, f̂2(e) = f2(e)/r. Everything is the same
as previous algorithm after this step. Once we get f1 and f̂2, we simply convert back to f2 via f2 = f̂2 ·r.

	Introduction
	Background
	The General Problem
	Outline of this paper
	Packet Routing with In-network Processing
	The basic problem
	Flow Maximization
	Cost Minimization

	Multiple Types of in-Network Processing as a DAG

	Network Design
	Hardness of Network Design
	A bicriterion approximation algorithm
	Purchasing Processing Power for Indifferent Flows

	Appendix
	Proof for equivalence between two LPs subsection 2.1
	walk-based solution edge-based solution
	edge-based solution walk-based solution
	Multi-Commodity Flow

	Proof for formulation about flow size change in subsection 2.1

