
Practical Network-wide Compression of IP Routing

Tables

Elliott Karpilovsky1, Matthew Caesar2, Jennifer Rexford1, Aman Shaikh3,
Jacobus van der Merwe3

Princeton University1, University of Illinois at Urbana-Champaign2, AT&T
Labs—Research3

Abstract

The memory Internet routers use to store paths to destinations is expen-
sive, and must be continually upgraded in the face of steadily increasing rout-
ing table size. Unfortunately, routing protocols are not designed to gracefully
handle cases where memory becomes full, which arises increasingly often due
to misconfigurations and routing table growth. Hence router memory must
typically be heavily overprovisioned by network operators, inflating operat-
ing costs and administrative effort. The research community has primarily
focused on clean-slate solutions that cannot interoperate with the deployed
base of protocols.

This paper presents an incrementally-deployable Memory Management
System (MMS) that reduces associated router state by up to 70%. The
MMS coalesces prefixes to reduce memory consumption and can be deployed
locally on each router or centrally on a route server. The system can op-
erate transparently, without requiring changes in other ASes. Our memory
manager can extend router lifetimes up to seven years, given current prefix
growth trends.

1. Introduction

The rapid and sustained growth of the Internet over the past several
decades has resulted in large state requirements for IP routers. In recent
years, these requirements are continuing to worsen, due to increased deag-
gregation (advertising more-specific routes) arising from load balancing and
security concerns [1, 2], the fact that routers run multiple routing protocols

Preprint submitted to Computer Networks August 24, 2010



simultaneously (each with their own routing state), and increasing demand
for Virtual Private Networks, which requires multiple routing tables.

Memory growth occurs in two different data structures located on routers,
known as the RIB and FIB. The Routing Information Base (RIB) stores the
set of routes advertised from neighboring routers. The RIB must store a
copy of attributes and reachability information for hundreds of thousands
of prefixes, which must be kept up-to-date in the presence of failures and
network churn. The Forwarding Information Base (FIB) contains entries that
map incoming packets to outgoing links. In the FIB, state must be stored in
very fast (and typically very expensive and power-hungry [3, 4, 5, 6]) memory
for packet lookups; even though it is much smaller in size than the RIB, the
cost per megabyte is considerably higher. RIB and FIB sizes are determined
by many factors, but are both impacted by the number of routable prefixes
(i.e., sets of reachable IP addresses).

Growth of memory requirements presents a serious problem to ISP oper-
ators. Routing protocols are not designed to handle scenarios where memory
is exhausted, leading to incorrect behavior when this occurs. Memory ex-
haustion leads to highly serious failure modes, such as route oscillations and
incorrect forwarding decisions [7]. To protect against this, network operators
are forced to repeatedly upgrade their equipment at enormous expense due to
the large cost of doing an in-field deployment of new hardware. To avoid re-
peated field deployments, network operators can aggressively over-provision
memory on routers. However, provisioning is itself a highly challenging prob-
lem because memory requirements depend on external factors outside the
ISP’s control. In addition, misconfigurations such as “route-leaks” cause
temporary spikes in the number of advertised routes and are hard to predict.
When faced with overload conditions, operators can employ route filters to
restrict the amount of information learned by a router, but these filters may
disrupt connectivity.

There have been many proposals in the research community to solve this
problem, but unfortunately these techniques have not been deployed. Many
of these solutions are not backwards compatible with current protocols, hin-
dering deployment. While clean-slate design proposals are interesting and
worthy of consideration, they often require massive structural changes and
new protocols, which may limit their usage for the foreseeable future. As
an alternative, our work considers incrementally deployable solutions, Our
solutions can be deployed in isolation as a single Autonomous System (AS),
without requiring changes to router hardware or software, and without re-
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quiring cooperation from neighboring ASes.
One work that serves as our inspiration is Optimal Route Table Con-

struction (ORTC) [8]. The ORTC algorithm operates only on FIB memory,
taking a FIB as input and producing a more compact FIB as output. It guar-
antees that the compact FIB has the exact same forwarding behavior as the
input, and given that constraint, that the output FIB has a provably min-
imal number of entries. Experimental tests conducted in 1998 have shown
that it can reduce the number of FIB entries by up to 50%. Despite this
benefit, ORTC has not been adopted in practice, as it suffers from several
major drawbacks. First, it is computationally expensive: the original im-
plementation takes approximately 500 milliseconds1 to run for every routing
update received; in modern networks routers must process tens of updates
per second on average and tens of thousands of updates per second during
spikes [9], making it difficult to use this algorithm in practice. Moreover, it is
inflexible; it must always produce an output that forwards exactly the same
as the input. However, there may be times when even a “compressed” FIB
will not fit in memory. In this case, it may be preferable to alter forwarding
behavior to allow further compression instead of allowing the router to crash.
If these two problems were fixed, ORTC could be a useful building block in
a larger system that managed memory.

1.1. Managing ISP Memory with an MMS

The focus of our research is to improve performance of the ORTC algo-
rithm to enable its use in practical settings, to measure its use in modern
networks, and to leverage it to design a generic memory management system
(MMS) to manage the memory usage in the routers of an ISP’s network.
We apply several techniques to greatly boost the speed of the algorithm.
Moreover, the MMS provides multiple levels of compression, allowing for a
trade-off between unaltered routing and “maximal memory compression.”

The MMS can be deployed either locally on each router or in a logically-
centralized system that monitors and compresses state at all routers in the
AS-wide network. In a local deployment, each router locally performs the
operations of an MMS over its own routing state. This enables our system to
run in a completely distributed fashion. However, this does have some draw-
backs. It requires router software upgrades and possible hardware upgrades

1We verified this number by running our own experiments on a Pentium-IV, 3.6GHz
processor (comparable to control-plane processors in modern routers).
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(if CPU power is lacking). Moreover, there are limitations to the potential
memory savings, as routers still need to maintain BGP control sessions (and
hence cannot compress RIBs, only FIBs) with neighbors, and also because
each router only has a local view of the network and acts independently.

To circumvent these problems, the MMS can also be deployed in an AS-
wide setting, where it runs on a set of servers that collectively assume respon-
sibility for the routing interaction of an AS with neighboring ASes [10, 11, 12].
The MMS receives routing updates from neighboring ASes, preprocesses
these updates before sending routes to routers within the MMS-enabled net-
work, and communicates selected routes to neighboring ASes. Neighboring
ASes can be configured to send updates directly to the MMS, rather than
to the border routers. If neighboring ASes do not wish to perform any re-
configuration, border routers can act as proxies and relay BGP messages
between the MMS and neighboring ASes. Not only does this deployment en-
able extra compression, but this approach allows for additional amortization
techniques to be applied.

1.2. The Benefits of the MMS

Our design has several benefits:

Flexibility: By default, MMS operates in a transparent fashion, with abso-
lutely no changes to the way routes are chosen and packets are forwarded.
In this “transparent mode” external networks need not be aware that an
MMS has been deployed. In such a situation, the MMS can still provide
about a 50% reduction in router memory across the entire network, without
altering forwarding behavior. If more memory savings are desired, the MMS
can shift paths to attain additional memory reduction, up to 70%. However,
routes selected for forwarding may differ from the “transparent” case. We
provide algorithms to automatically perform a small set of routing changes
that increase compressibility without operator involvement. It is important
to note that even if paths are shifted, the system remains inter-operable with
routing protocols and does not introduce any routing loops.

Reduced Operational Cost: The MMS can simplify capacity planning and ex-
tend the lifetimes of older routers. We demonstrate this through experimen-
tal results conducted within a large tier-1 ISP backbone: using local-mode,
FIB memory usage is reduced between 50% to 70%, the rate of increase of
table growth is decreased by a factor of 2.2, and variation in table size is re-
duced by a factor of 2.6 (reducing variability increases the accuracy of future
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provisioning predictions). Given current levels of routing table growth [13],
these reductions can be expected to increase lifetimes of routers needing im-
mediate replacement by up to seven years. Moreover, since the MMS can
operate in the form of a logically-centralized cluster (or a small redundant
set of clusters), it can form a small set of locations where resources may be
upgraded, reducing expenses associated with field deployment.

Safety: Routers near their memory limits can use the MMS to increase the
amount of available resources. This improves resilience to misconfigurations
in neighboring networks. Moreover, given that our compression techniques
perform better with increased levels of deaggregation, our approach could
enable interdomain routing on fully-deaggregated /24 prefixes, which has
benefits in terms of routing flexibility and mitigating hijacking attacks. Use
of the MMS can guarantee that routers will not reach overload conditions
(which can trigger reboots) by selectively filtering new prefix advertisements
before overload is reached.

Incrementally Deployable: A single ISP can deploy an MMS while main-
taining interoperability with existing protocols and without cooperation from
neighboring ASes, in both local and AS-wide deployment modes. In AS-
wide deployment mode, our MMS design requires no changes to existing
router hardware or software. In this case, the MMS communicates routes to
border routers using internal BGP (iBGP) sessions, and maintains external
BGP (eBGP) sessions to neighboring domains on behalf of its border routers.
Furthermore, this deployment may proceed in an incremental fashion even
within a single AS, by having the MMS only control a limited subset of routers
within the ISP. In local deployment mode, the MMS can be loaded as a pro-
tocol daemon update to route software, so this deployment approach does
not require changes to router hardware (aside from CPU upgrades, which our
results on computational overheads indicate should rarely be needed). In this
case, the MMS can deployed at a single router, with no changes required to
external protocols or neighboring routers.

1.3. Roadmap

The rest of the paper proceeds as follows. Section 2 provides an overview
of Internet routing, and describes the kinds of state kept at routers and chal-
lenges in reducing that state. Section 3 overviews our architectural approach,
along with a description of the MMS deployed in local mode. We then dis-
cuss the setup of an AS-wide deployment of an MMS in Section 4. Section 5
presents results using a simulated MMS over real traces from Tier-1 ISP
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Figure 1: BGP update message from Route Views on August 27, 2009, an-
nouncing that two prefixes are reachable through the same next-hop.

routers, as well as analysis using publicly available BGP data. We discuss
related work in Section 6 and conclude in Section 7.

2. Memory Saving Approaches and Limitations

The primary goal of the MMS is to reduce router memory usage within
an ISP. To do this reduction, the MMS performs route coalescing, i.e., re-
placing groups of routes sharing the same next-hop with smaller, equivalent
sets. Although this seems like a simple procedure, several operational chal-
lenges of ISPs make this process quite complex. In this section we describe
the challenges in route coalescing through several examples. We show that
näıve approaches can introduce inconsistencies in packet forwarding, and we
motivate why our design decisions are necessary.

2.1. Routing across ISPs

The Internet is composed of a collection of Autonomous Systems (ASes),
each of which corresponds to a single ISP, enterprise network, or other orga-
nizational entity. Each AS has a set of border routers which communicate to
border routers of adjacent ASes through the use of the Border Gateway Pro-
tocol (BGP). BGP communicates information about routes and constructs
forwarding paths to allow data packets to flow across ASes. Paths are newly
advertised or withdrawn by exchanging update messages containing reach-
ability information (shown in Figure 1). The updated routing information
replaces old information and is used for forwarding data packets. After pro-
cessing an update, the router notifies its neighbors if any routing changes
occurred.

BGP is a path vector protocol, where routers exchange the entire AS-level
path they use to reach the destination. Each AS has a globally unique AS
number. When routes are propagated, the current AS adds its AS number to
the head of the AS path contained in the routing update. This allows other
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Figure 2: Aggregation can have unintended consequences: (a) Suppose AS
1 originates 12.0.0.0/16 and AS 2 originates 12.1.0.0/16. When no ASes
perform aggregation, AS 5 can route traffic to 12.1.0.0/16 via AS 3, and
traffic to 12.0.0.0/16 to AS 4. (b) However, if AS 3 decides to aggregate
12.1.0.0/16 and 12.0.0.0/16 into 12.0.0.0/15, AS 5 can no longer use the
route via AS3. The reason is that all of 12.0.0.0/15 is covered by more
specific prefixes that are reachable via alternate exit points, and Internet
routing always prefers more-specific prefixes.

networks to quickly detect if the path contains routing loops (by scanning
for their own AS number in the list) as well as providing a simple metric for
determining which routes are shorter than others (by preferring routes with
fewer AS-level hops).

BGP propagates routes for prefixes, which denote a collection of host ad-
dresses immediately adjacent in the IP namespace. Prefixes are represented
by an IP address followed by a mask. For example, the prefix 12.1.0.0/16
represents all IP addresses whose first 16 bits match 12.1. Prefixes specify
reachability on multiple levels of granularity, creating ambiguity in reacha-
bility information. For example, a route to 12.0.0.0/8 could have a next-hop
of 1.1.1.1, while a route to 12.0.0.0/9 could use 2.2.2.2. To eliminate this
ambiguity, routers select the longest matching prefix when there are multiple
choices. However, longest prefix matching significantly complicates aggrega-
tion, i.e., the ability to take two prefixes with the same next-hop information
and combine them into a single, larger prefix. An example of such a com-
plication with aggregation is shown in Figure 2. To avoid introducing such
difficult-to-predict side effects, ISPs are constrained in the types of aggrega-
tion they can perform.
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Although ISPs cannot aggregate advertised routes (RIB), they can ag-
gregate forwarding entries (FIB). As previously shown, even if two prefixes
have the same next-hop, an ISP cannot announce an aggregate route, as it
causes problems for other ASes. However, in the case of forwarding, there are
no negative effects from such aggregation. Aggregating FIB entries is com-
pletely transparent to other routers; an aggregated FIB forwards exactly the
same as a deaggregated one. Moreover, if we choose routes from the RIB that
have the same next-hop, we can aggregate these entries in the FIB. In other
words, our choices of routes in the RIB will determine the compressibility of
the FIB.

To summarize, Autonomous Systems cannot advertise compressed routes
to neighboring ASes. While forwarding entries can be coalesced, routing
entries cannot.

2.2. Routing within an ISP

ISP networks earn revenue by providing transit service, i.e., by forwarding
traffic between their neighbors. Hence, ISPs must share reachability infor-
mation received from one neighbor with the others. This is often done by es-
tablishing BGP sessions between border routers (when BGP is run within an
ISP, it is referred to as iBGP). Internal reachability between border routers is
provided by an intra-domain routing protocol such as OSPF [14] or IS-IS [15].
iBGP sessions are sometimes established in a full-mesh configuration, where
each border router maintains a session to every other border router. However,
since routers must maintain routing state separately for each iBGP session,
full-mesh configurations can have very large RIB memory requirements. For
example, if there are n border routers, then each border router may need to
store and maintain up to n − 1 internal routes for each of the hundreds of
thousands of prefixes in the routing table.

To circumvent this problem, larger networks often deploy route reflec-
tors [16] at strategic locations within their network. Route reflectors act as
internal accumulation points, which collect routing updates from a subset of
border routers, and only advertise the most preferred route to their iBGP
neighbors; as such, border routers only receive the most preferred routes from
their associated route reflectors. Unfortunately, the use of route reflectors in-
troduces a set of problems. They can induce persistent forwarding loops and
oscillations if deployed improperly [17]. They require additional work for net-
work operators to maintain, as they must be reconfigured to match changes
in the underlying network topology. While route reflectors reduce memory
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Figure 3: Example of prefix coalescing over tries. Both FIBs forward packets
in the same way, but FIB (a) needs to store three prefixes, while FIB (b)
only needs to store two.

usage, they do not reduce the number of prefixes in the routing table. Hence
route reflectors do not reduce the size of the router’s forwarding table (which
is commonly stored in expensive, fast memory).

2.3. Router-Level Routing

Routers are logically divided into a control plane, which contains the RIB,
and a data plane, which contains the FIB. The goal of the control plane is to
compute the set of routes the router should use locally, and of these, which
should be advertised to neighboring routers. The goal of the data plane is
to forward data packets, by selecting from a set of next-hops computed by
the control plane. In addition to storing the next-hop and prefix infor-
mation, the RIB also stores a set of attributes that define properties of the
route (e.g., the AS-path, cost metrics, where the route was learned from).
The RIB also stores multiple routes per prefix—this is done so that if the
currently-used route fails, the router may use an alternative route through
a different neighbor to circumvent the failure. Unfortunately, when routers
run out of memory, they can continuously reboot, crash, or begin behaving
incorrectly [7]. Reducing RIB memory is quite difficult. RIB entries contain
routing information that may be vital when primary links fail and backup
routes are needed. Moreover, routing information is often exchanged between
routers and used to determine forwarding paths. As such, care must be taken
when attempting to reduce RIB memory – data cannot be simply discarded.

The FIB stores the set of routes which will be used to forward packets to
individual prefixes. The FIB must perform forwarding lookups very quickly
and are hence typically implemented in fast memory with low access times,
such as SRAM or TCAM. There are two restrictions regarding FIB memory
reduction. First, the contents of the FIB must “match” the RIB (each entry
in the FIB should be the most-preferred route in the RIB) to prevent routing
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loops. Therefore, prefixes can be coalesced if such actions do not change the
forwarding behavior advertised by the router. Figure 3 provides an example.
Second, FIB reduction techniques must be extremely fast. If an algorithm
is too slow, a router may not be able to handle the high rates of updates
present in modern networks.

3. The MMS in Local Deployment

There are fundamental problems with trying to compress routes: pre-
fixes cannot be coalesced when announced, FIB compression is limited by
RIB decisions, compression algorithms must be fast, etc. In this section,
we discuss how our Memory Management System can circumvent some of
these problems when deployed in “local mode” on individual routers. We
demonstrate how the MMS can provide flexibility in aggregation for the FIB
without introducing network problems. Moreover, we show how techniques
such as parallelization and incremental computation can be used to signifi-
cantly speed-up the ORTC algorithm, which is used as a building block for
the MMS. The local mode MMS also serves as a basis for the AS-wide MMS,
which is discussed in the next section.

Although the MMS can be used to reduce FIB memory consumption,
the RIB cannot be easily compressed in “local mode.” A router may need
backup routes in case of primary route failure, and may need to advertise
information about them to neighboring ASes in such a situation. As such, we
focus on FIB compression. Later, during the discussion of “AS-wide mode,”
we demonstrate how the RIB can be compressed.

3.1. A Fast FIB Compression Implementation

Draves et al. [8] previously proposed an Optimal Routing Table Con-
struction (ORTC) algorithm, which takes a forwarding table as input, and
computes the provably smallest 2 forwarding table that performs forwarding
in an equivalent manner. Algorithm 1 outlines their algorithm, which as-
sumes a binary tree representation known as a trie data structure. ORTC
works by making three passes over the trie, in steps known as normalization,
prevalent hop set calculation, and next-hop selection. The authors of [8] pro-
vide several optimizations to speed up this computation. They also extend
the algorithm to deal with multiple next-hops per prefix and default routes.

2With respect to the number of prefix/next-hop pairs.
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Unfortunately, even with optimizations, ORTC is too slow to use online
in modern networks. While the authors were able to optimize run time down
to several hundred milliseconds for the smaller forwarding tables that existed
when their paper was published, these run times remain too slow in modern
networks which can burst to tens of thousands of updates per second. We
leverage the techniques of parallelization and incremental updates to augment
this algorithm, speeding it up so it can be used with the MMS.

3.1.1. Parallelization

Parallel algorithms are becoming increasingly important as chip manu-
facturers move to multicore designs. Conventional wisdom is now to double
the number of cores on a chip with each silicon generation, while the speed
of each core grows much more slowly or remains constant [18]. As commer-
cial routers typically use commodity CPUs for control-plane processors, this
provides the opportunity to leverage this increased parallelization in our de-
sign. Such trends in processor design can be exploited to help compression
algorithms keep pace with the increased computational load associated with
the growth and churn of Internet routing tables.

There has been substantial previous work on parallel algorithms for graph
structures [19]. Our design is loosely based on these techniques and consists
of two stages. In the first stage, all nodes associated with /8 prefixes are
added to a queue. When a thread becomes available to perform work, it
selects a node from the head of the queue, and performs compression on the
sub-trie rooted at that node. To ensure correctness, it is important that no
other threads concurrently process any nodes in that sub-trie. As a result,
a thread locks all descendants of that node. In the second stage, a single
thread performs the rest of the remaining compression for the nodes that
have not been processed. Note that the second stage could be parallelized as
well to further decrease computational time.

3.1.2. Incremental Computation

The ability to incrementally update data structures is crucial for speed.
The benefit of an incremental approach is that changes to a single prefix
do not require recomputing the router’s entire FIB. However, with ORTC
compression, this is no longer true – changing a single prefix may trigger other
routes to become coalesced (or to uncoalesce). The näıve way to deal with
this would be to rerun ORTC after every received update. However, doing
this would be wasteful, as the vast majority of routes would not change after
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a particular update is received. Furthermore, some updates do not require
any recomputation (for example, an update that removes a route that is not
used by any routers in the network).

To improve processing time, traditional ORTC works by periodically pro-
cessing batches of updates at fixed intervals. However, such an approach
increases the time needed before a router can respond to a change in the net-
work. To deal with this, we developed an incremental algorithm (Figure 2),
that only processes the portion of the ORTC trie that is affected by the re-
ceived update. When a routing update for a prefix is received, the algorithm
looks up the corresponding node and recurses up and down the trie, stop-
ping whenever it determines that no more changes are needed. This code
calls four subroutines. First, mod normalize performs the normalization step.
This process is the same as normalization in ORTC, except that if a node
is not modified by normalization, children of that node are not normalized.
Second, mod calc prev set computes the set of prevalent hops. This step is
the same as the prevalent hop calculation step in ORTC, except that if a node
N has no children, N.prev set is set equal to N.rib info. Third, all affected
ancestors of N are normalized using mod ancestor normalize. Here, ancestors
are processed in ascending order. If a node was not moridifed by normal-
ization, its ancestors are not normalized. The highest variable is updated
to refer the highest ancestor normalized. Finally, the mod select next hop
function computes new next hops as needed. This is the same as the next-
hop selection procedure in ORTC, except that if the next hop of a node is
unchanged, that node’s children are not processed.

For example, consider a trie with two (prefix, next-hop) pairs: (0.0.0.0/0, 1.1.1.1),
and (0.0.0.0/1, 1.1.1.1). This trie can be compressed to a single (prefix, next-
hop) entry: (0.0.0.0/0, 1.1.1.1). Now consider the announcement of a new
route: (128.0.0.0/1, 2.2.2.2). Adding this new route does not change for-
warding behavior of 0.0.0.0/1. The forwarding behavior does change for
0.0.0.0/0, though, and it (along with new nodes) will need to be re-evaluated
for compression gains. 0.0.0.0/1, however, can be unaware of any such com-
putations, as long as 0.0.0.0/0 still “covers” it by forwarding toward 1.1.1.1.
The new compressed trie, (0.0.0.0/0, 1.1.1.1), (128.0.0.0/1, 2.2.2.2), is opti-
mal and does not require a full computation.

While parallelization and incremental updates could be combined, it is
unclear how well they would work together. Parallel algorithms work best
with large sets of data that can be processed independently, while the in-
cremental algorithm attempts to operate over small sets of nodes that may
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have inter-dependencies. As such, the overhead from thread locks may out-
weigh the amount of possible parallelization savings. Thus, we consider these
techniques to be complementary and useful for different situations. For ex-
ample, if an operator enabled compression, a parallelized full computation
would be faster than the incremental algorithm (since a full computation
is needed anyway, and a parallelized version has additional opportunity for
speedups). However, if a router is simply processing updates received in nor-
mal BGP communication, the incremental version would most likely be the
fastest algorithm to use.

3.2. Selecting Routes to Improve Compression

Although ORTC coalesces the prefixes in a FIB, it is bound by the re-
quirement that the forwarding behavior is unchanged. In this section, we
demonstrate how it is possible to further improve the compression results by
allowing the MMS to modify the forwarding behavior.

As previously mentioned, the BGP decision process, shown in Figure 4, is
run over the RIB to select the route to populate into the FIB. This decision
process uses a series of rules to pick routes. Each rule eliminates a subset of
routes, and rules are applied until a single route remains [20]. The router
(1) first chooses the routes with the highest LocalPref (a numeric value as-
signed by the operator to indicate which next-hops are most preferred), then
(2) the routes with shortest AS-path length (the routing update contains the
AS-path, which is the sequence of AS-level hops to the destination), then (3)
the routes with the lowest origin type (a flag indicating whether the route
originated internally or externally to the ISP), then (4) routes with the lowest
MED (a numeric value advertised by a neighboring ISP, to indicate which
entry point should be used, when the two ISPs peer in multiple locations),
then (5) routes learned through eBGP (BGP sessions with neighboring ASes)
are preferred over iBGP routes (routes learned through other border routers
in the local AS), then (6) the router chooses the closest exit point (or shortest
internal route) to reach the destination prefix, then (7) to break ties, if mul-
tiple options still exist, the router chooses the route advertised by the router
with the smallest router ID. The process is designed around several goals,
such as maximizing revenue (through local preference settings), attempting
to minimize latency (through shortest AS paths), load balancing (through
IGP metrics), and so on.

The BGP decision process constrains the level of compression achievable,
as it places constraints on the set of routes that are populated into the FIB.
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Algorithm 1 Pseudo-code for the ORTC algorithm. Each node represents a
different prefix. rib info represents the chosen route for a prefix (as dictated
by the RIB). NULL next-hop indicates no FIB entry needed for that prefix.

// Normalization: all nodes to have 0 or 2 children.
for node N in t in preorder traversal:
if N has one child:
create missing child for N
child inherits N.rib info

// Prevalent hop calculation: find the set of
// maximally coalescable next-hops.
for node N in t in postorder traversal:
if N has no children:
N.prev set = {N.rib info}

else:
N.prev set is the intersection of its
children’s prev sets

if N.prev set == ∅:
N.prev set is the union of its
children’s prev sets

// Next-hop selection.
for node N in t in preorder traversal:
if N is root of t:
N.next hop = arbitrary element
of N.prev set

else:
clst = closest ancestor of N with
non-NULL next-hop
if clst.next hop ∈ N.prev set:
N.next hop = NULL

else:
N.next hop = arbitrary elem
in N.prev set
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Algorithm 2 Pseudo-code for the incremental update algorithm. rib info

represents the set of routes passed to a prefix from the RIB. Incrementally
update a trie t with an update u from neighboring router u.neighbor.

// Update the node with the new routing information.
N = node in t associated with u.prefix

if u is an announcement:
N.rib info -= {old next hop of u.neighbor}
N.rib info += {u.next hop}

else:
N.rib info -= {old next hop of u.neighbor}

// Normalize all affected children of N.
mod normalize(sub-trie rooted at N)

// Calculate the prevalent hop set.
mod calc prev set(sub-trie rooted at N)

// Normalize all affected ancestors of N.
highest = N

mod ancestor normalize(N, highest)

// Compute new next-hops as needed.
mod select next hop(sub-trie rooted at highest)
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To improve compression further, the MMS allows the operator to select sets
of routes that are acceptable for use. By allowing the compression algo-
rithms flexibility to choose amongst this set, additional compression can be
achieved. In particular, an operator configures the MMS with a threshold
level. The threshold level determines how many steps of the BGP decision
process to execute. All routes that are equally good at a particular level are
considered possible routes for the FIB. A route coalescing algorithm is then
computed over these possibilities. For example, a “level 0” setting would
not run any steps of the decision process, and use all possible routes in the
coalescing algorithm. A “level 1” setting would select all routes that remain
after applying step 1 of the decision process; a “level 2” setting would select
all routes that remain after applying steps 1 and steps 2; and so on.

It is important to note that such flexibility requires the use of tunnels
between border routers. Without tunnels, packets may be forwarded in a dif-
ferent manner than expected. For example, consider the network depicted in
Figure 5a. Routers A and B both use their external links to reach 1.2.0.0/16.
It is possible for router D to choose A for forwarding to this prefix, while
router E chooses B. However, both D and E must go through C. If C
decides to forward traffic to 1.2.0.0/16 through A, then router E’s choice is
invalidated. Since BGP specifies a single next-hop for a given prefix, this
problem is unavoidable. To overcome it, tunnels between border routers can
be used. Tunnels have the additional benefit of freeing memory in the core
of the network. Such BGP-free cores are feasible to implement (e.g., using
GRE or MPLS tunnels) and are often used in practice.

Flexibility in route selection may cause routes to change from the original
forwarding behavior; however, such deviation may be tolerable. If a router
is at risk of memory exhaustion, higher levels of compressibility can ensure
reachability information is not discarded, even if routing to those destina-
tions is suboptimal. Moreover, the amount of differentiation can be tweaked,
offering more differentiation and savings in some situations and less differ-
entiation and savings in others. In addition, this approach can be used as a
fallback mechanism that is enabled only if the level 7 (i.e., no differentiation)
compressed routing table size would exceed router capacity.

3.3. Limitations on Route Selection

Care must be taken whenever deviating from the BGP decision process,
as routing loops or oscillations could occur. These problems can occur at
either the inter-AS level or intra-AS level.
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Figure 4: The BGP Decision Process.

At the inter-AS level, due to the relationships that exist between Au-
tonomous Systems, such problems can be avoided at the inter-AS level as
long as step 1 of the BGP decision process is always applied. This is be-
cause step 1 is primarily used by ISPs to encode relationships, with cus-
tomers often receiving higher local preference values than peers, and peers
receiving higher local preference values over providers. As long as ASes are
routing according to economic incentives, loops and oscillations should not
happen [21]. However, sibling ASes (that is, ASes that appear to be separate
but are actually owned by the same organization) may not be able to use
route selection, depending on their setup. This problem arises because the
MMS assumes a BGP-free core, and sibling ASes would need to use BGP
to communicate between themselves; since sibling ASes are owned by the
same organization, they can be thought of combining to form a super-AS,
and the inter-connections of the siblings would require BGP in the “core” of
the super-AS.

At the intra-AS level (in local deployment mode), the MMS cannot be
overly aggressive with route selection. Oscillations can occur if we are not
careful and routers act independently. For example consider router A and
router B in a network that both have external routes to the same prefix.
If enough BGP decision steps are ignored, router A might decide that it
should simply forward everything to B. In this case, it would withdraw its
reachability information from B, since it is using B for routing. Likewise, B
would do the same thing for A. If the events are synchronized, the routers
may oscillate between using their externally learned routes (and thus re-
announcing them) and each other (and thus withdrawing them). Although
such oscillations may not be common in practice, it is nonetheless noteworthy.

To solve the oscillation problem, each MMS should be configured so that
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step 5 (eBGP preferred over iBGP) is always some part of the decision pro-
cess. This configuration prevents oscillation because, due to the dynamics
of iBGP, iBGP learned routes always point to a router that has an eBGP
learned route. Thus, all routers in a network fall into one of two cases:

• The router has at least one eBGP-learned route to choose from after ap-
plying the modified BGP decision process. In this case, the MMS forces
the router to pick an external route, preventing intra-AS problems.

• The router has all iBGP-learned routes after applying the modified BGP
decision process. Using any of these routes will send packets to a router
that has at least one eBGP-learned route. The previous case applies
to that router, and packets will be forwarded using the eBGP route,
preventing intra-AS problems.

In summary, as long as the modified BGP decision process includes step
5 (the eBGP comparison), intra-AS oscillation can be avoided. For example,
applying steps 1 through 3 and 5 (while ignoring 4) would be sufficient, but
applying steps 1 through 4 would not. The increased flexibility can lead to
better compression. In the next section, we discuss AS-wide deployment of
the MMS, and discuss a different mechanism to solve this problem.

4. Optimizations in AS-Wide Deployment

As an alternative to being deployed at a single router, the MMS may
be deployed across an AS. The overall architecture of an AS-wide MMS is
shown in Figure 5b. It can be implemented through a logically-centralized
architecture which offloads memory management functionality to a small
set of servers. These servers are completely responsible for disseminating
routing information to routers within the ISP. The MMS directly maintains
peering sessions with neighboring ASes, offloading the responsibility from its
associated border routers. The Memory Management System maintains a
network-wide view including the routing preferences of and routing updates
received by all border routers. Thus, the MMS can locally maintain a routing
table on behalf of each BGP-speaking router in the network. The MMS
can compress the routes and send the compressed information to the border
routers (while sending the uncompressed information to other autonomous
systems). To design the server infrastructure for the MMS, we rely on
previous work that shows offloading routing can be deployed at scale and
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(a)

(b)

Figure 5: (a) An example network with four border routers and one internal
router. Dashed lines represent AS boundaries, solid lines indicate links, and
dotted lines represent paths to the AS that owns 1.2.0.0/16. (b) An exam-
ple network showing peering with neighboring domains. Note for backwards-
compatibility reasons, the MMS uses BGP to communicate routes to routers
(hence routers only need to store a single RIB corresponding to their session
to the MMS). Border routers at other autonomous systems speak directly to
the MMS, which is permissible as BGP is run over the TCP/IP protocol. The
MMS then sends coalesced information to its own routers for forwarding.

with resilience [10, 11, 12]. For example, when deployed across an AS, the
MMS should be replicated to improve fault tolerance. We use an approach
similar to a Routing Control Platform (RCP) [10], having one server act as
a primary in charge of distributing routes throughout the network, with the
rest of servers acting as backups.

This approach has several benefits. First, our centralized approach of-
floads computation from routers, freeing up computational resources for other
protocols or for speeding convergence. Second, as opposed to the local de-
ployment mode, this approach requires minimal changes to existing routers
(no changes to protocols or router software is required). Third, common
computations across routing tables could be amortized to yield further com-
putational savings.

4.1. Compressing FIB Entries

In AS-wide deployment mode, the MMS can obtain all the FIB compres-
sion benefits from the local deployment mode. In its simplest setting, the
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AS-wide MMS can run an instance of a local MMS for each router, per-
forming all the computation on behalf of the routers. Moreover, because the
AS-wide MMS has a complete view of the network, it can avoid the problem
of routing loops caused by incomplete routing information. The MMS can
dictate all forwarding decisions such that no routing loops occur.

In addition, the MMS can amortize some of the computational steps
by performing them once instead of repeating them for each router. For
example, before step 5 of the decision process, all routers with the same
routing information will make the exact same decisions regarding “equally
good” routing sets. This phenomenon occurs because the first four BGP
decision process steps are always the same for every router, if given the
same set of routes. However, not every router will have the same set. For
example, if router 1.1.1.1 has an eBGP learned route r with next-hop 2.2.2.2
and advertises it, all other routers will see r as having next-hop 1.1.1.1.
However, if routers share similar sets, the computations can be amortized.

To efficiently compute compressed FIBs (and RIBs) in an amortized fash-
ion, the MMS first computes sets of routes that are equally good according
to the first N steps of the BGP decision process, where N is the threshold
level. All routers in the network must select a route from this set. A smaller
computation is then done to further select routes on a per-router basis (that
deviate from this “common” case). This approach consists of two separate
stages:

Stage 1, compute common FIB: First, the MMS computes a compressed
FIB that all routers in the network share. In particular, the MMS logically
creates a virtual internal router, which receives all routes from every border
router in the network. The MMS then constructs a compressed FIB for this
router.

Stage 2, compute router-specific differences: At first glance, it appears
that every router in the network should use the common FIB computed
in stage one. However, this is not the case. For example, consider a net-
work that picks next-hop 1.1.1.1 for prefix p. If 1.1.1.1 is a border-router in
the network, then everyone can route successfully except for 1.1.1.1. Since
1.1.1.1’s forwarding table would state that the next-hop is 1.1.1.1, the router
would forward packets to itself. To avoid this scenario, the MMS computes
(on behalf of 1.1.1.1) which one of 1.1.1.1’s outgoing links is best suited for
forwarding traffic to p, and sends that information to 1.1.1.1.

It is important to note that this amortization resolves the oscillation
problem mentioned above, since the MMS ensures that the border router
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Threshold Level FIB Entries % of original size

1 110890 35.6%
2 119150 38.3%
7 130842 42.0%
Uncompressed 311466 100.0%

Table 1: Tier-1 results for a single router on a single day. Results were similar
for other routers in the network.

responsible for a prefix picks an eBGP route. Further, two separate com-
pression steps do not necessarily produce the smallest possible FIB for each
router (unlike ORTC, which is provably minimal in the number of prefixes
it produces). However, our results indicate that the MMS compresses well.

4.2. Compressing RIB Entries

The AS-wide MMS has the opportunity to reduce the amount of redun-
dant routing state in a network. First, instead of maintaining multiple iBGP
sessions, each router only maintains one (with the MMS), reducing the num-
ber of RIBs that need to be maintained. Second, every time a route is
announced and propagated, it may be stored on every router that receives
it. Individually, each router may not be able to remove RIB entries, since it
may need to transmit the information to neighboring ASes; thus, reducing
the redundancy may be difficult. However, the MMS can act as a central
database to store all such routes. Only one copy of the route need be stored
in this case.

Moreover, if the AS-wide MMS is responsible for routing advertisement,
prefixes can be coalesced and supernetted for both the RIB and the FIB.
Since routers are no longer advertising information, they can compress their
RIBs through the same mechanism that FIBs are compressed. Attributes
can be stripped (except for prefix and next-hop information), as the MMS
would retain an original copy. For example, information such as AS path
and community attributes can be removed, both of which have the potential
to consume significant amounts of memory relative to the other attributes.

5. Evaluation

Data used to evaluate the MMS comes from a tier-1 ISP’s BGP feeds from
January of 2008 to June of 2008. These feeds are live traces, containing fail-
ures, configuration changes, and other network events, including effects from
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Figure 6: Internet simulation results: AS relationships are inferred, routes
are propagated, and compression ratios are calculated, with flexibility level
set to “local-preference.” Figure (a) shows compression ratios across fifty
randomly sampled ASes from each tier, and Figure (b) shows compression
ratios over time for a subset of ASes.

both inter- and intra-domain events. These feeds are input into our imple-
mentation of the MMS. In order to evaluate how other ASes might benefit
from the MMS, and in order to perform a longitudinal study on how com-
pression results may change over time, a public feed from RouteViews [22] is
also used from 2002 to 2008. Unfortunately, because the public feed is from
a single aggregation point, the data does not indicate network topology or
router configuration in the considered ASes. ISPs today are often (under-
standably) unwilling to share such information due to privacy issues. Hence,
we attempt to infer such information from the Route Views feed. We do this
by applying the Gao-Rexford rules [21] to compute routes to each prefix from
each AS (treating each AS as if it were a single router). While this inference
greatly oversimplifies how actual networks operate, the method represents a
“best effort” attempt to evaluate the MMS on alternate Autonomous Sys-
tems, given the limited source of data. Unless otherwise mentioned, results
are for FIB compression, under local-mode, and with threshold 7.

5.1. Compression Ratio

Table 1 shows compression achieved across a router within the ISP. Here,
the compression techniques were run over a routing table snapshot that was
collected on June 1, 2008. The compression gains of this routing table snap-
shot were compared with other routers in the network; no significance differ-
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Figure 7: (a) Number of prefixes making up Internet routing tables, as ob-
served from Route Views. Increasing deaggregation leads to larger numbers
of more specific prefixes. (b) Compression savings over time during spike in
routing table size.

ence was seen. Moreover, the router’s compression gains were studied over
a two month period from April 15, 2008 to June 15, 2008; no significant
variance was seen. As such, the data from Table 1 can be considered repre-
sentative. With Level 7 compression, routing table size is 42% of its original
size, without causing any changes in forwarding behavior. Lower levels in-
crease compression. Finally, additional compression may extend lifetimes
of deployed routers, by reducing the need to deploy new hardware to meet
increasing table sizes. To study this, we measured the rate of growth of
an uncompressed router’s FIB, and compared that to rate of growth of the
router’s FIB if it were compressed in local-mode. We repeated this over all
routers in the ISP, and found that router lifetimes could be extended by over
7 years on average. We repeated this study on the AS-level data and found
a similar amount of lifetime extension.

Figure 6a shows a CDF of the compression ratio (compressed size divided
by uncompressed size) achieved for each of the 28335 ASes present in the
Route Views snapshot collected on June 1, 2008. The algorithm given in [23]
is used to classify ISPs into tiers within the AS hierarchy. In this simulation,
the MMS reduces routing table size of most tier 1 ISPs to roughly 35% of
their original size. Interestingly, lower tier ISPs achieve a greater benefit with
our approach, for example 90% of tier 2 ISPs (the customers of tier 1 ISPs)
achieve a compression ratio of 25% or better, with 50% of ISPs attaining a
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compressed routing table only 17% of the original size.
Figure 6b shows the compression ratio for a representative subset of ISPs,

sampled monthly from November 1, 2001, to June 1, 2008. The compres-
sion ratio for ISPs steadily improves over time. One possible explanation
is that ISPs increasingly employ deaggregation to simplify multihoming and
to improve load balancing. Route Views traces indicate that the number of
more-specific prefixes is increasing at a faster rate than less-specific prefixes,
as shown in Figure 7a. For example, between November 1 2001 and June 1
2008, the number of /8s in routing tables did not significantly change, the
number of /16s increased by 42%, and the number of /24s increased by 127%.

The variability in routing table size over time was also studied. Router
table sizes associated with the tier-1 ISP were studied over a period from
May 1, 2008 to June 7, 2008. Both compressed and uncompressed versions
of the routing table were analyzed. Overall, route table compression reduced
table size variability by an average factor of 2.6. Figure 7b shows table
size, sampled after every update, for a 2.5 hour window containing a sudden
increase in table size. Compression reduces magnitude of the spike by a
factor of 2.1.

5.2. Runtime

Next, we evaluated the run time behavior of our MMS implementation,
executing on a 2004-era Pentium IV 3.6GHz processor with 1GB RAM.
Figure 8a shows the speed up results from parallelization. In this experiment,
a single threaded version of ORTC was run, and timing information was
recorded for processing each node. These results were fed to a simulator that
simulated a multithreaded version of the ORTC algorithm. For simplicity,
we assumed that the underlying parallelization of the hardware was equal
to the number of threads that was run. The simulator used the results
from the single threaded run to estimate the time that each thread spends
when it processes a node. Based on these results, significant speed up can
occur. However, after about 20 threads, speed up becomes negligible. It is
important to note that a speedup of up to a factor of 8 (with approximately
20 threads) is significant (current commodity CPUs commonly have 4 cores,
with projected doubling every 18 months [18]).

Figure 8b demonstrates the benefits from incremental computation, i.e.,
only recomputing the portion of the routing table that is affected by a re-
ceived update. The figure shows a time-series plot of update processing
time, for both the incremental algorithm and the traditional non-incremental
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ORTC algorithm. The incremental computation significantly improves up-
date processing time, both in terms of absolute magnitude, as well as in terms
of absolute variance. For example, over the one month period from June 15,
2008, to July 15, 2008, the computation time decreased by a factor of 9344 on
average, and the standard deviation in update computation time decreased
by a factor of 194. The incremental computation time is a function of
the portion of the trie affected by the update, and queuing (as several up-
dates arriving close together in time have to be processed sequentially, as the
parallelization optimization was disabled for this test). The trace shown in
the figure had a maximum incremental computation time of 33ms (standard
deviation of 1.29ms). In practice, overheads greater than update exchange
periods (which can be several seconds, for example in the event of a session
failure) are not visible, as computation is done at the same time as update
exchange.

Lastly, Figure 9 demonstrates how the AS-wide deployed MMS can save
additional computational resources through amortization. The MMS can
leverage this by performing compression-related computations once for parts
of the routing table that are common across routers. The figure shows a
CDF, over all 40 border routers in the tier-1 ISP network, of the relative
speedup gained by amortization as compared to running ORTC once per
router. On average, this simulation indicates that amortization reduces com-
putation time by a factor of 12 on average. Overall, it appears that the run
time to compute all 40 FIBs in the network was only three times larger than
running ORTC for a single FIB.

6. Related Work

Improving network scalability by reducing router memory usage has been
widely studied in previous work. Hierarchical routing [14, 24], landmark
routing [25, 26], and geographic routing [27] embed topological information
in addresses, so as to reduce the number of routes required to be stored at
routers. Alternatively, DHTs [28] work by reducing the number of routes
maintained by each participant in the system. These techniques are more
formally studied by compact routing [29], which provides theoretical bounds
on the amount of memory that can be saved for a given degree of suboptimal
routing. Commonly, such work focuses on minimizing routing table size
or control overhead while bounding path inflation. The MMS architecture
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computation speed up.
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differs from previous work in these areas, in that it aims to operate within
the confines of existing IP routing protocols, rather than replacing them.

One way to reduce memory usage is to use MPLS tunneling in an ISP’s
core, while deploying route reflectors to exchange routes amongst the edge
routers, to construct a “BGP-free core”. While this helps the memory re-
quirements for both border routers and ISP’s cores, it does require the de-
ployment of route reflectors. As previously mentioned in Section 2, route
reflectors have their own set of problems and limitations. Alternatively, in-
stead of storing an entire routing table itself, a router may instead use default
routes to forward traffic to another router that contains the routes. Unfor-
tunately, default routes often require manual effort to construct, and can
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lead to unexpected behavior during link failures. Moreover, default routes
can only be used for routes that can be statically pinned to a certain egress,
limiting their applicability in non-stub ISP networks.

There has been other recent research in reducing memory consumption
while remaining backwards compatible. The ViAggre [30] work demonstrates
how routers can be reconfigured to store a smaller subset of the routing ta-
ble. ViAggre works by aggregating prefixes into super-prefixes and assigning
routers to be responsible for certain super-prefixes. By adding indirection,
the BGP table can be effectively split between a set of routers. As compared
to our work, Viaggre achieves its memory reduction from a different source,
and is hence complementary and orthogonal to our work. Viaggre suffers
from additional stretch (increasing worst-case stretch by a factor of four to
achieve the 60% gain we acquire in this work), and requires modification
to the way routing protocols are configured to operate correctly. Moreover,
while ViAggre requires the reconfiguration of multiple routers in a network,
the MMS (in local mode) can be deployed on as little as a single router and
still provide memory savings. Finally, since our techniques are complemen-
tary, they may be applied to a ViAggre router to further increase memory
savings.

Another piece of work known as Route Relaying [31] demonstrated a
similar technique in the VPN setting, where edge routers forward to traffic
to a collection of “hub” nodes that store the full routing table. However,
it is worth noting that such deflection techniques can interfere with traffic
engineering. In contrast, the MMS can be configured to use IGP weights in
the decision process, which are typically used for traffic engineering.

The Routing Research Group (RRG) has also explored the scalability is-
sue with respect to memory [32]. In particular, the work on Locator / ID
splitting (LISP) has gathered attention, where the IP address space is divided
into separate spaces for end-hosts and for organizations. Substantial mem-
ory savings are possible under this scheme [33]. However, this scheme has a
deployment problem. A single ISP cannot deploy it and realize the savings
unless other ISPs cooperate. This is because LISP uses IP-in-IP tunneling
that requires encapsulator and decapsulator routers positioned in each ISP.
While it may be considered “incrementally deployable” from the perspective
that it builds on top of existing infrastructure, it does require some coordi-
nation between ASes. As such, we consider this work complementary to the
MMS.

There has also been work on several technologies that enable the MMS
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design. The Routing Control Platform (RCP), NOX, and 4D [10, 12, 11, 34]
provided an architecture for logically centralizing route selection within an
RCP. The prototypes in [10, 34, 35] demonstrated that this architecture
can scale to the size of a tier-1 ISP backbone, and deal with failure and
consistency issues when operating at scale. The RCP aimed to compute and
distribute BGP routes to routers within an ISP, and did not aim to reduce
table sizes at routers. However, the MMS algorithms may be deployed on
top of an RCP-like infrastructure.

Other related work includes Verkaik et. al.’s BGP Atoms [36], Forgetful
Routing [37], and Draves et. al.’s Optimal Routing Table Constructor [8].
BGP Atoms can be used to reduce memory overhead by clustering prefixes
based on policy, rather than supernets. Forgetful Routing enables routers to
share their RIBs in a distributed fashion, reducing redundancy in a network.
The work by Draves et. al. served as a primary inspiration for our work.
The algorithmic contributions, architecture, and deployment strategies used
in the MMS can be viewed as a way to make ORTC practical in a modern-
day network environment. Our work also measures compression benefits over
modern workloads and a range of of topologies and environments, including
a tier-1 ISP network.

7. Conclusions

Deploying an MMS within an ISP has several benefits. An MMS can
prevent router memory requirements from exceeding capacity, as well as ex-
tend the lifetime of routers. Moreover, experimental results show substantial
reduction of routers’ FIBs. Reducing these requirements and safely prevent-
ing routers from becoming overloaded reduces the need to upgrade them as
often, decreasing operational costs and administrative work. The MMS is
designed to be practical and also amenable to partial deployment.

For future work, several items may be interesting to investigate. While the
threshold levels are assumed to be fairly static, a fully-automated “adaptive
mode” could be developed; the algorithm would automatically adjust the
threshold level to stay within memory bounds while deviating from the BGP
decision process as little as possible. Additional savings might be possible by
developing protocols to perform memory management across ISPs. Finally,
if memory is still scarce after compression, the memory management system
could be used to selectively filter less popular routes to ensure that the most
popular ones remain available.
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