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ABSTRACT
Associating network traffic with human-readable domain names,
instead of low-level identifiers like IP addresses, is helpful for mea-
suring traffic by domain name, rate-limiting packets by domain, and
identifying IoT devices. However, existing monitoring techniques
require examining traffic at an external compute node, introducing
overhead and privacy risks. In this paper, we introduce Meta4, a
framework for monitoring traffic by domain name in the data plane
by extracting the client IP, server IP, and domain name from DNS re-
sponse messages and associating the domain name with data traffic
from the subsequent client-server session. A data-plane implemen-
tation has the benefits of running efficiently at line-rate, enabling
the switch to take direct action on the packets (e.g., to rate-limit,
block, or mark traffic based on the associated domain), and pro-
tecting the privacy of user information. We implemented Meta4 on
an Intel Tofino switch and evaluated our prototype against packet
traces from an operational network.
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1 INTRODUCTION
Network monitoring usually groups related packets based on low-
level identifiers like IP addresses, MAC addresses, or port numbers.
Ideally, network operators should be able to monitor traffic by
defining higher-level policies that match closer to their actual intent.
For example, network operators should be able to specify a policy
like “count all traffic related to video-streaming services”, rather than
worrying about the low-level details of which flows are associated
with various streaming services. That is, video-streaming services

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
SOSR ’21, September 20–21, 2021, Virtual Event, USA
© 2021 Association for Computing Machinery.
ACM ISBN 978-1-4503-9084-2/21/09. . . $15.00
https://doi.org/10.1145/3482898.3483357

Figure 1: Complementary cumulative distribution function
for the number of unique domain names associated with
each server IP address over a week.

should be identified by their domain names (e.g., www.youtube.com
and *.netflix.com), rather than IP addresses.

Unfortunately, monitoring by domain name can be expensive,
because the headers of data packets contain IP addresses rather than
the associated domain name. Plus, many domain names can map to
the same IP address. To illustrate this problem, we analyzed a week
of DNS response messages from our campus network. Figure 1
shows a complementary cumulative distribution function (CCDF)
of how many unique domain names are associated with a particu-
lar server IP address. Out of 288,834 observed server IPs, around
25% of them are associated with multiple unique domain names
in DNS responses over the course of the week. Some IP addresses,
corresponding to web hosting platforms and Content Distribution
Networks, are associated with hundreds or even thousands of do-
main names in the trace. Clearly, a static, one-time mapping of
domain name to server IP address would associate data traffic with
the wrong domain names.

Instead, the monitoring platform needs to “join” each DNS re-
sponse message with the subsequent data traffic. For example,
NetAssay [9] sends copies of DNS response messages received at an
OpenFlow switch to an external controller, which then parses the
packets to determine the IP address associated with each queried
domain name (e.g., 172.217.12.206 for youtube.com). Then the con-
troller monitors the subsequent YouTube traffic by installing a
match-action table rule that matches on the client and server IP ad-
dresses. Such an approach, however, relies on off-switch processing
to find the IP address for every domain name. In this paper, we lay
the groundwork for implementing domain-based traffic monitoring
within the data plane, without the controller playing any role in
parsing and mapping domain names to IPs.

The advent of programmable data planes allows us to parse and
process packets without having to capture, store, and analyze large
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amounts of traffic at a separate server. By parsing DNS response
packets in the data plane, we can extract the client’s IP address
(the destination IP address of the DNS response), the server’s IP
address (found in the answer of the DNS response), and the domain
name requested by the client (found in the query field of the DNS
response). By joining the client IP and server IP pair with the domain
name in the data plane, we are able to track client-server sessions
by the associated domain name. Here, we define “session” as all
the traffic a server/domain pair sends to a client for a given time
after a single DNS lookup. A given session may in fact consist of
multiple TCP connections over time due to DNS response caching
(e.g., browser caching) by the client.

Taking advantage of a PISA (Protocol Independent Switch Archi-
tecture) data plane, we introduce Meta4, a framework for domain-
based monitoring in the data plane. Meta4 has several benefits over
off-switch approaches. First, data-plane programs naturally process
packets much faster than servers, allowing us to monitor large
amounts of traffic without compromising performance. Second,
implementing the analysis in the data plane allows the switch to
take direct action on packets based on monitoring results, without
waiting for an external controller to act. For example, a network
operator can run a P4 application that uses Meta4 to detect IoT
devices that communicate with a suspicious domain name and im-
mediately re-route or block traffic, all performed in the data plane.
Third, as domain-based monitoring happens in the data plane, there
is no need to export raw packet traces to an external server. This
provides better user privacy as DNS response packets, which are
highly sensitive, and follow-on data packets, stay in volatile mem-
ory in the data plane rather than on a non-volatile disk space on
an external server. Moreover, authorization and authentication for
accessing switches and routers are usually more restrictive than
servers, making them generally more secure.

However, implementing Meta4 in the data plane is challenging.
PISA-based switch hardware imposes a number of restrictions that
make implementing Meta4 difficult. For one, PISA switch parsers
in real hardware are designed to parse fixed-length header fields,
which makes dealing with variable-length domain names difficult.
Furthermore, there are significant limitations in register memory
as well as limitations on the amount of processing that can be
done per packet due to limited stages in the processing pipeline. To
parse variable-length domain names, we leverage the octet prefix
that indicates the length of each domain label. We then combine
different parser states with different parsing widths to match the
indicated domain label length (Section 4.1). To efficiently utilize the
limited switch memory, we use a multi-stage register data structure
for storing the client IP, server IP, and domain information. We use
a timeout value for overwriting stale entries when hash collisions
occur (Section 4.2).

In this paper, we use a generic use case for presenting Meta4:
measuring traffic volume by domain name. Network operators
can define domain-based “traffic classes” such as “Netflix video”
or “Zoom video chat” and monitor the traffic volume (in bytes or
packets) sent by servers to clients for domains associated with
these traffic classes. We implement this use case in P4 and run it
on Intel’s Tofino [14] programmable data plane. Our code is open-
source, publicly available on Github [17]. We run Meta4 against two

Figure 2: Meta4 architecture

different packet traces captured at a campus network and present
our performance evaluation in Section 5.

Although measuring traffic volume by domain name is our run-
ning example, domain-based monitoring in the data plane allows
network operators to create a variety of different applications that
can run in the switch. With this vision in mind, we design Meta4’s
core functions, which are domain name parsing and matching
follow-on traffic to domain names accordingly, to fit in the ingress
pipeline in the PISA switch. This leaves the egress pipeline for
developers to implement and run a variety of applications that use
the domain name as a primitive. For example, we present a DNS
tunneling detection use case in Section 7.1. By identifying clients
who routinely make DNS requests with no subsequent traffic, we
can easily identify client IP addresses that are suspects for using
DNS for nefarious purposes. Another useful application is IoT de-
vice detection and fingerprinting. In Section 7.2, we show that by
identifying domain names commonly associated with particular
IoT devices, we can fingerprint user devices, or client IP addresses,
that routinely exchange traffic with domains (and using particu-
lar TCP/UDP ports) that uniquely identify a type or model of IoT
device.

We envision many other applications could make use of domain-
based monitoring in the data plane. For instance, to improve net-
work performance, a network operator could allow traffic from
certain trusted domains to bypass processing by an intrusion de-
tection system (IDS). Similarly, a network operator could create
firewall rules based on domain name to redirect or drop packets
associated with certain untrusted domains.

2 META4 DESIGN CHALLENGES
In this section, we provide an overview of the architecture of Meta4
and the challenges presented by trying to create a data-plane im-
plementation. In Section 2.1, we start by describing Meta4 through
the most basic use case where we use the IP address-domain name
mapping to identify traffic associated with a particular domain
name and track its traffic volume. In Section 2.2, we describe the
challenges with implementing Meta4 in a PISA-based data plane.

2.1 Meta4 Architecture
The overall architecture for aMeta4 application is shown in Figure 2.
The system is defined by three levels: the network operator, the
control plane, and the data plane. In this specific application, a
network operator wishes to measure traffic volume by certain traffic
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Figure 3: Required packet traces for Meta4.

classes. For instance, in Figure 2, the network operator wants to
compare video streaming traffic from Netflix and education-related
traffic. The network operator uses these traffic classes to define
a known domain list: a list of domain names that encompass the
traffic sources of interest. This list of domains is then converted
into match-action table rules by the control plane which are then
used by the data plane to decide if the packets it sees are relevant
to the network operator’s intended policy.

Using DNS response packets, the data plane parses domain
names and uses the match-action rules to create Domain to IP
address mappings. These IP address mappings are then used to
identify the domains associated with the subsequent data packets.
The data plane stores information like the number of bytes/packets
seen for each of the traffic classes in registers. When the network
operator wants to see the traffic volume results, the control plane
polls the register values to retrieve the number of bytes/packets
for each traffic class. The control plane can then interpret this data
and report it to the network operator in terms of the original policy
that was defined. Note that the control plane and the operator can
only view the traffic count by domain as an aggregate, not the
DNS queries made by individual clients or their associated traffic
volumes.

Figure 3 shows the packet traces for Meta4 to output the most
accurate analyses for traffic between an enterprise network and
the Internet. Note that the programmable data plane should be
able to see the traffic that goes between the enterprise network
and the Internet, as well as the DNS response packets going to the
clients in the enterprise networks. Thus, the programmable data
plane should either be deployed in-line at a location in the network
that can see all such traffic or have all relevant traffic mirrored
to it. An alternate approach is to extract domain names from the
Server Name Indication (SNI) included in TLS handshakes. The SNI
field, however, turns out to be much more challenging to parse and
extract within the data plane due to many variable-length and long
“extensions” that often appear in TLS Client-Hello packets. Thus,
we focus on using DNS response packets and leave other methods
as future work.

2.2 PISA Implementation Challenges
The PISA-based switches, which contain a programmable packet
parser, processing pipeline, and a packet deparser, enable us to
implement Meta4 in the data plane. To preserve line-rate packet

processing speed, however, there are limited computations and
memory when parsing and processing packets in a PISA-based
switch, as well as a limit on the number of pipeline stages. There are
two main challenges under the capability and resource constraints
of PISA hardware: (1) correctly parsing domain names and mapping
flows to them, and (2) accurately collecting statistics.
Correctly parsing domain names and mapping flows: First,
variable-length domain names have to be parsed correctly. Packets
traverse a programmable packet parser, which extracts header fields
and metadata from a packet. The processing pipeline can then use
such metadata to make particular decisions for the packet. How-
ever, parsers in the latest PISA-based switches are yet not versatile
enough for handling variable-length packet-header fields with ease.
While the parser can make different parsing decisions by switching
to different parser states based on header field values, it cannot
parse through a variable number of bits. For Meta4, this poses a
challenge with parsing domain name fields from DNS response
packets since domain names are, by nature, variable-length strings.

The limited memory for match-action tables also poses con-
straints when mapping flows to domain names. Within the pro-
cessing pipeline, a program can make use of match-action tables,
which can match on packet-header fields and metadata that are
extracted at the parsing stage. Upon a match (or miss), the program
can apply some action: a forwarding decision, an update to header
or metadata values, or an update to a register, which is a stateful
memory in the data plane. In Meta4, match-action rules provide
a natural way for us to match domain names from a DNS packet
to check if a domain name (e.g., netflix.com) belongs to one of our
predefined traffic classes (e.g., video streaming). However, match-
action tables consume TCAM/SRAM space, and the data plane has
a limited amount of memory. Such constraints limit the number of
domain names we can store in the match-action table, but more
importantly, it limits the total length of a domain name that we can
match on.

The existence of variable number of CNAME entries, which can
appear before the A record in DNS responses, also poses a challenge.
The case-sensitivity of a domain name has to be dealt with, too; for
example, foo.com and FOO.com should be considered the same.
Accurately collecting statistics: PISA-based switches have the
ability to preserve some state in persistent memory across multiple
packets by way of registers, or register arrays. Such register arrays
can be used for keeping state for <client IP, server IP, domain ID>
tuples from every DNS response packet in the switch. Within the
processing pipeline, however, each stage contains a limited number
of register arrays of limited and fixed width [15]. Furthermore, on
a PISA switch, a program can only access (read/write) an entry in
a register array once per packet. This naturally causes difficulties
with many programs for PISA switches that need to perform more
complex operations. Limitations in the total amount of memory
available in the form of register arrays mean that it is likely im-
possible to store all <client IP, server IP, domain ID> tuples from
every DNS response packet in the switch. This means that we n
need a solution to intelligently evict stale entries to allow room for
new DNS response entries if we want to collect statistics accurately
against the traffic.
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3 RELATEDWORK
Intentional network monitoring. The basic design and func-
tionality of Meta4 was inspired by intentional network monitoring,
pioneered by the NetAssay system [9]. One of the specific appli-
cations of NetAssay, in particular, dealt with using DNS packets
in order to match subsequent packets to their associated domain
names, an idea that we implement in the data plane with Meta4.
NetAssay itself was also inspired by the concept of intentional
naming in networks. The Intentional Naming System or INS [4]
allows systems to route traffic based on higher-level intent, such
as a domain name, as opposed to a lower-level identifier like IP or
MAC address. Meta4 differs fromNetAssay in that it is implemented
entirely in the data plane. We also present multiple use cases that
take advantage of the information extracted from DNS response
packets.
Parsing domain names. Previous work in developing solutions
for parsing variable-length domain names in PISA-based switches
helped us design and implement Meta4. P4DNS [25], an in-network
DNS server in P4, parses different domain names in different, pre-
determined, fixed-length parser states. This results in having many
parser states and metadata fields in different sizes to cover various
domain names with different lengths (e.g., 1 to 60 bytes or charac-
ters). The P4 Authoritative DNS Server [16] expands on P4DNS’s
idea and parses the separate labels of a domain name (the parts of
the domain name delineated by periods) into separate fixed-length
parser states. This reduces the overhead with metadata fields since
each metadata field length is now limited to a single label. We fur-
ther expand on these ideas in designing our domain name parser
for Meta4 to optimize the efficiency and performance of our parser.
In particular, we store domain name labels in header fields by com-
bining only four different metadata fields with varying sizes: 1, 2,
4, and 8 bytes. This minimizes the amount of metadata we needed
to store while also allowing us to maximizes the length of domain
labels we could parse. Meta4 also deals with CNAME entries and
case-sensitivity in domain names, which has not been done by
previous works. Section 6.1 describes this in more detail.
Data structure implementation inP4. PRECISION [5] andHash-
Pipe [23], heavy-hitter detection programs in P4, provided the idea
of separating a register data structure into separate stages to hedge
against the possibility of hash collisions. In addition, HashPipe also
proposed the idea of evicting table entries based on some sort of
counter. Specifically, HashPipe evicts table entries for flows that
have a low packet count value. We expand on these ideas for our
implementation of our DNS response table to create a multi-stage
data structure. We handle hash collisions differently: Meta4 evicts
entries for having timestamp values that had not been updated for
a certain period of time.

4 MONITOR BY NAME IN DATA PLANE
In this section, we describe Meta4’s design. We use a canonical
application as a running example: a Meta4-based program that
measures traffic volume in terms of bytes and packets sent by server
to clients by domain name. First of all, Meta4 treats DNS response
packets and data packets differently.
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Figure 4: Storing IP addresses from DNS response. A is a
match-action table whereas B and C are registers.
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Figure 5: Updating traffic counts for data packet. Table B and
D are registers.

For DNS response packets (Figure 4):Meta4 parses and extracts
the domain name that was queried by the client. The extracted
domain name is then matched against a domain name-to-ID match-
action table, which is pre-populated with the domains the operator
wants to track. By doing so, the data plane can now label and track
domain names using a numerical identifier (dID) instead of using
a string of characters. The server IP address (sIP), which is the IP
address for the queried domain name answered by the DNS resolver,
appears after the domain name string. Meta4 parses and extracts
this address, too. Meanwhile, the client IP address (cIP), which is
the destination of the DNS response packet, is extracted from the IP
header. Meta4 then stores the <cIP, sIP, T, dID> tuple in the register,
where T is the packet timestamp. Meta4 also keeps track of whether
an entry for the incoming DNS response was able to get inserted
into the register memory. If inserted, it is recorded as a hit in table
C, otherwise a miss.
For data packets (Figure 5):Data packets are exchanged between
the client and server after the client learns the server IP address for
its queried domain name in the DNS response. When data packets
arrive at the data plane, Meta4 extracts the source and destination
IP addresses and uses them find a matching entry in the register
memory, table B. When a match is found, the data packet and its
bytes are counted towards the matching domain.

Meta4 is designed so that it is easy to “plug-in” a new domain-
based monitoring application. Thus, core tables like A, B, and C are
all implemented in the ingress pipeline while application-specific
parts are in the egress pipeline. For example, table D, which is for
monitoring traffic volume by domain name, is implemented in the
egress pipeline.

We now describe how we tackle hardware limitations in parsing
(Section 4.1) and memory (Section 4.2). We also present a simple
method for correcting for missed DNS responses (Section 4.3).
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4.1 Parsing Long, Variable-Length Names
Extracting variable-length domain names from DNS response pack-
ets is a challenging task in hardware since it requires significant
flexibility in parsers. This is one of many things that is easily done
in a software switch (e.g., P4 behavioral model [20]), but not in PISA
hardware.

In order to successfully parse domain names, it is important
to understand how DNS encodes domain names. Domain names
are stored within the DNS “question” field which separates the
domain name into “labels”, the parts of the domain name delineated
by periods. For example, the labels of “example.foobar.com” are
“example”, “foobar”, and “com”. Within the DNS question field, each
domain label is preceded by a single octet which gives the length,
in characters, of the label. The last label is followed by the octet
0x00 which indicates that there are no more labels in the domain
name. Thus, the domain “example.foobar.com” would be encoded
as “(0x07)example(0x06)foobar(0x03)com(0x00)”.

In order to parse domain names in Meta4, we take advantage
of the octet prefix indicating the length of the subsequent domain
label in order to parse a domain name in fixed-length segments.
We fix the maximum number of labels allowed in a domain name
and parse different label widths in different parser states in order to
comply with the PISA parser restriction of parsing only fixed-length
header fields. For example, for “example.foobar.com”, the parser
first reads the 0x07 octet and then transitions to a state that reads
the next seven bytes into a fixed-width variable. Then, the parser
reads the octet 0x06 and transitions to a state that reads the next
six bytes. The parser then reads 0x03 and transitions to a state that
reads three bytes. The parser then reads 0x00 and then transitions
out of parsing the domain name.

Theoretically, this solution would allow us to parse any domain
name up to 255 bytes, which is the max width of a label. However,
in reality, memory such as TCAM is expensive, limiting the max
width of table A in Figure 4. This drastically restricts the size of
domain names that can be used in our programs. In our P4_16
implementation on the Tofino switch, we limit parsing domain
names to a maximum of 60 bytes. Moreover, we use four labels with
15 characters each, which covers most of the domains we observe
in our network. Note that different domain parsing configuration
could work better on certain domain names. For example, four
labels with 20, 30, 5, 5 characters respectively could work better
for domains such as “www.nationalgeographic.com”, which tend
to have labels with many characters followed by short labels like
“com” or “org”. It turns out, however, that it is better to maximize
the number of labels that we can parse instead of the maximizing
the longest length for a particular label we can parse. We further
discuss this in Section 5.1.

A DNS response may include multiple CNAME entries before
the A records appear. Meta4 jumps through these entries using the
parser counter feature in Tofino [19].We describe this in more detail
in Section 6.1. A DNS response packet may also include multiple A
records, thus providing multiple IP addresses for a given domain
name. Meta4 parses only the first IP address in the returned list. We
assume most web browsers will behave similarly, which seems to
be the default behavior of modern browsers (e.g., Chromium [8]).

4.2 Efficient Memory Usage
Avoiding storing domain names in registers. Since register
memory has even more limited width than match-action tables,
it is difficult to store large and variable-length strings like domain
names. To address this issue, Meta4 takes advantage of the domain
names the operator provided through the control plane (Figure 2).
An integer ID is associated with each domain name or traffic class.
Using a match-action table, table A in Figure 4, we can match parsed
domains to domains in the known list. If a match occurs, a domain
is represented as its integer domain ID corresponding to its traffic
class, allowing us to store a 32-bit integer and not the entire domain
name. All references to a domain name in subsequent data struc-
tures use this domain ID as opposed to the full domain name. The
domain ID is also the array index for the traffic statistics table in
Figure 5 (table D), which stores the accumulated packet/byte-count
for each traffic class.
Multi-stage register data structure. The <cIP, sIP, T, dID> tuple,
extracted from a DNS response packet, is stored within a register
data structure known as the DNS response table, which is table
B in Figure 4 and Figure 5. The purpose of this data structure is
to associate a data packet with a certain domain by matching the
data packet’s source and destination IP address to the client IP
and server IP address in table B. Ideally, this data structure would
accommodate an unlimited number of entries. However, due to
the register memory constraints in PISA-based hardware, a large
amount of DNS response traffic could quickly fill up the register,
causing hash collisions between new entries and existing entries.

To avoid hash collisions as the table fills up, we implement a
solution inspired by the multi-stage data structure used in PRE-
CISION [5]. The basic premise is to divide the data structure into
multiple registers. If a hash collision occurs at one register, the
program then tries the next register with a hash with a different
salt and so forth until it finds an available entry or until it checks
every register and fails to insert. While this method uses the same
amount of memory as a single big register, dividing the register into
multiple sets can promote a more efficient use of register memory
by hedging against the possibility of hash collisions, giving new
entries multiple chances to find an empty entry.
Freeing register entries. Even with more efficient register usage,
the register data structure inevitably fills up as more traffic goes
through the switch. To help free up table entries, the program
makes table entries available once it has determined that a client-
server session is no longer active. This is determined bymaintaining
a timestamp value for each table entry. When the table entry is
initially created by a DNS response packet, the table entry is marked
with the packet’s timestamp as seen in Figure 4. Subsequent packets
that belong to the same client-server session are used to update the
timestamp as seen in Figure 5. If a new table entry encounters a
hash collision with an existing entry and the old entry’s timestamp
is older than a predetermined timeout value, then the new entry is
allowed to occupy that space in the table. To avoid unnecessarily
evicting table entries, we lazily evict timed out entries. In other
words, we do not evict an entry until a hash collision occurs. We
further discuss about the appropriate timeout value in Section 5.2.
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Packet resubmission. In reality, table B in Figure 4 and 5 is com-
posed of multiple registers. This is because a <cIP, sIP, T, dID> tuple
entry is too “wide”, making it challenging to fit into a single regis-
ter. In Meta4, we allot three separate parallel registers to store the
tuple entries: register <cIP, sIP>, register <T>, and register <dID>.
The hash index is identical among them for an entry in table B.
This, however, poses a new issue for a PISA-based hardware. For
evicting an entry, the program first reads the register <cIP, sIP> to
see if the existing IP addresses in the entry match those of the new
DNS response packet that indexed to that entry. If the IP addresses
match, we can just update the timestamp <T> register and move
on. However, if the IP addresses do not match, then we have to
check the timestamp value for staleness and decide if we want to
evict the existing entry. If we decide to evict the entry, we then
need to update both the timestamp <T> and the existing <cIP, sIP>
addresses. All of these operations cannot be conducted in a single
packet pass through the PISA pipeline, especially because the reg-
ister <cIP, sIP> has to be read once in one stage but might have to
be written to in a following stage depending on the read operation
outcome from the timestamp <T> register. Thus, Meta4 performs a
packet resubmission operation, allowing the packet to go through
the ingress pipeline one more time to finish updates to correspond-
ing registers. Because this resubmission only happens with DNS
response packets and when an entry in table B has to be replaced,
it has negligible effect on latency or bandwidth consumption on
the switch.

4.3 Correcting for Missed DNS Responses
Meta4 has two potential sources of error. First, Meta4 might not be
able to insert a new <cIP, sIP, T, dID> tuple entry in table B due to
limited register memory and hash collisions. If this happens, Meta4
is not able to track subsequent data traffic associated with this
new client-server session. The second source of error is premature
eviction of an existing entry in table B. For example, assume a
client and server pair pauses exchanging traffic for 120 seconds but
resumes afterwards. If the timeout value was set to 100 seconds and
a hash collision occurs for this entry between 100 and 120 seconds,
it will be replaced with a new one. This premature eviction leads
to not tracking traffic anymore between this pair.

These two sources of error tend to work against each other. If we
increase our timeout value, table B may become bloated, causing
new <cIP, sIP, T, dID> entries to experience more hash collisions
and fail to be stored. On the other hand, if we reduce our timeout
value to accept more new entries, we may prematurely evict old
entries more often.

While reducing the second source of error is a matter of fine-
tuning the timeout value, there are other methods to reduce the first
type of error. We introduce a mitigating measure to avoid potential
under-representation of packet/byte counts associated with certain
domains due to missed <cIP, sIP, T, dID> entries. The main idea is to
calculate an approximation of the proportion of total packets/bytes
missed for a certain domain/traffic class. For this, we leverage the
DNS statistics table, or table C, in Figure 4, which keeps track of the
number of successful as well as failed attempts to insert or update
an entry in table B. This register table allows us to calculate the
proportion of DNS responses that we were not able to monitor

for each domain. Using this proportion as a scaling factor, we can
scale up the number of bytes and packets for a particular domain
in order to provide a more accurate representation of the amount
of traffic associated with each domain. For example, assume Meta4
saw 100 DNS response packets in total for “example.com” in a day,
but was only able to store 80 of them in table B. In this case, table
C will have 80 hits and 20 misses. Then, we scale the counts for
“example.com” by 1.25 (100/80). Thus, if Meta4 reported seeing 100
data packets and 1000 bytes for this domain in table D in Figure 5,
we correct them by multiplying 1.25 to each, revising the count
to 125 packets and 1250 bytes. We further evaluate this correction
method in Section 5.

5 PERFORMANCE EVALUATION
In this section, we assess how well Meta4 performs within data-
plane constraints such as parsing limitations and register memory
constraints. In order to provide a comparison for Meta4’s perfor-
mance under varying conditions, most of the experiments in this
section are performed in a Python program that emulates Meta4’s
behavior in the data plane.

We use two packet traces, both captured from a campus net-
work, for evaluating Meta4. The first trace is a three-hour trace
that was captured on August 19, 2020 between 8:00am-11:00am
local time. The trace has an average of 138,383 packets per second
with an average 205 DNS responses per second. The second trace
is a 15-minute trace captured during a period of heavier load. This
trace was captured on April 7, 2020 between 3:00pm-3:15pm lo-
cal time. The trace has an average of 240,750 packets per second
with an average 2,151 DNS responses per second. Unless otherwise
stated, all experiments are run on a three-hour trace. Note that the
packet traces are collected during the global COVID-19 pandemic.
Although the list of popular domains might slightly differ from
pre-pandemic, we do not believe this would significantly affect the
performance evaluation done in this section.

Ethics: All packet traces were inspected and sanitized by a net-
work operator to remove all personal data before being accessed by
researchers. The client IP addresses, or internal host IPs from our
campus, are anonymized in a consistent manner using a one-way
hash. The server IP addresses in DNS response packets are not
anonymized since they are publicly available via DNS queries any-
way. Our research was approved by our university’s institutional
review board.

5.1 DNS Response Parsing Limits
The first experiment assumes unlimited register memory and ap-
plies various parsing constraints to the domain name parser. We
measure the number of DNS response packets that contain domain
names that cannot be parsed under various parser configurations.
We also measure the number of data packets and the number of
bytes from those packets that are missed in case we are unable to
first successfully parse the DNS packet. All domain name parser
configurations were limited to a maximum of four labels with an
equal number of bytes allocated to each label. In Figure 6, for ex-
ample, 60 bytes on the x-axis corresponds to a domain parsing
configuration of four labels with 15 bytes allocated to each label.
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Figure 6: Traffic missed vs. max name length. The red line
shows the max length in our Tofino prototype.

Figure 6 shows the results of the experiment. In our Tofino im-
plementation with the 60-byte limit, we are unable to parse about
18% of DNS queries/responses but only miss about 10% of the data
traffic. This indicates that the domains we are not able to parse
contribute proportionally less traffic than the domains that we are
able to parse.

A closer inspection reveals that each individual domain that
Meta4 cannot parse contributes, on average, only 0.0037% of DNS
responses, 0.0049% of packets, and 0.0048% of bytes. Among the
domains that Meta4 cannot parse, the greatest contributor in terms
of byte and packet count was “m-9801s3.ll.dash.row.aiv-cdn.net”:
it contributes 4.0% of byte traffic and 3.4% of total packets. The great-
est contributor in terms of DNS responseswas “124.230.49.37.4vw5p-
iqz5ksoolyszwje5tobsi.sbl-xbl.dq.spam-haus.net”, which contributes
5.2% of total DNS responses. However, there were no data packets
for this domain. This is because this DNS response is actually a
spam blacklist [3] using the DNS protocol for convenience. Many
of the DNS response packets that Meta4 cannot parse are from
queries made by non-human clients, which is why they proportion-
ally contribute less traffic than the domains we are able to parse.
Overall, the vast majority of domain names that cannot be parsed
contribute little or no traffic when inspected individually. Thus,
Meta4 stands as an effective tool for monitoring and measuring
major sources of traffic volume. We also envision that the next
generation of switches will have fewer parsing restrictions.

5.2 Evaluating the DNS Table Timeout
We now look into how different timeout values for the DNS re-
sponse table influence Meta4’s accuracy when monitoring traffic.
Recall that a long timeout value will prevent new <cIP, sIP, T, dID>
entries from getting stored while a small timeout value might pre-
maturely evict existing entries. Striking the right balance with the
timeout value is imperative in the face of limited memory resources.
In this experiment, we measure the amount of traffic, in bytes, that
would be missed by Meta4 with varying timeout values. We limit
the DNS response table to 216 total entries and two stages, which
we use in our Tofino implementation.

Figure 7: Traffic missed vs. DNS responses timeout. The red
line is for our prototype.

We use two different packet traces for this evaluation: the three-
hour trace and the 15-minute trace. Notice in particular that traffic
density of DNS responses is ten times greater in the 15-minute
trace. This means that the frequency of DNS response packets, each
creating a new <cIP, sIP, T, dID> entry, is tenfold in the 15-minute
trace.

The results in Figure 7 for the three-hour trace suggest that a
longer timeout is better for capturing more traffic. However, this
is not true for the higher density 15-minute trace. Because the
15-minute packet trace has a significantly higher traffic rate, the
DNS response table fills up rather quickly, causing many more hash
collisions. Increasing the timeout at some point prevents stale table
entries from being evicted, leading to more traffic being missed.
Thus, we ultimately decided on a timeout of 100 seconds as a good
balance that performs well under conditions of both high and low
traffic density. A timeout of 100 seconds was also chosen for a num-
ber of structural reasons. For one, many browsers like Chrome [2]
and Firefox [1] cache DNS results for a default of one minute. In
addition, most users are likely to engage with a particular domain
name in a single, sustained period of time where the biggest gaps
of time come from the user’s “think time” in between transactions
with a server. A user’s “think time” usually falls much under 100
seconds [21], allowing us to effectively capture traffic from most
client-server sessions within our chosen timeout value.

5.3 DNS Response Table Memory Limits
We evaluate how Meta4 performs when varying the total amount
of register memory and the number of stages. Note that varying
the number of stages does not vary the total amount of memory;
it just splits the total memory across stages. We first fix a timeout
value to 100 seconds, based on the results in Section 5.2. We then
assess the percentage of traffic missed, in bytes, under the varying
memory configurations.

Figure 8 shows that at the memory limitation of 216 entries, the
total memory used in our Tofino implementation, we miss under
5% of traffic when using two stages. Also note that when so little
traffic is missed, there are negligible, or even no, benefits to using
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Figure 8: Traffic missed vs. memory size constraints

more stages. However, for the memory limit of 210 and 212 entries,
there are significant improvements with four stages as opposed to
one stage. This occurs because the amount of traffic just begins to
overwhelm the system when the limit is 210 or 212 entries. As the
data structure fills up, the probability of hash collisions increases,
thus providing extra stages to resolve hash collisions can provide a
significant boost in the performance of the data structure. However,
as we further increase the number of stages, the actual benefit of
hedging against hash collisions starts to diminish due to smaller
memory allocation per stage. For example, in the case of 212 memory
length, the greatest benefit comes from moving from one to two
stages, but the gain from going to eight stages is rather small.

Through further analysis, we realized that our current Meta4
implementation does not fully utilize the extra stages. Our algo-
rithm currently evicts the first timed-out entry that it encounters
even if there might be a more stale or even a free entry in later
stages. As shown in Figure 8, this leads to some instances where
adding more stages actually worsens the performance because each
stage’s memory becomes smaller. Our Meta4 implementation for
real hardware performs well in general when using 216 table entries
and two stages. Nonetheless, we believe there are opportunities to
improve, and we leave this as future work.

5.4 Correction for DNS Response Misses
Finally, we evaluate the efficacy of the correction method described
in Section 4.3. In a nutshell, we scale up the number of packets and
bytes estimation for a domain based on the number of successful
and unsuccessful insertions to the DNS response table for that
particular domain.

In Figure 9, we show the relative error for the amount of bytes
recorded for each of the top 15 domains by DNS count, both before
and after our correction applied. We excluded domains with only
a single defined label (domains like *.com, *.*.edu, etc). For this
evaluation, we use the same memory configuration, 216 max entries,
and timeout value, 100 seconds, as our Tofino implementation. We
see that the correction applied makes a significant difference for
most of the domains, often cutting down the error by more than
half. This improvement, however, is not universal. For instance,

Figure 9: Relative error for the top 15 domains by DNS re-
sponse count with 216 max register entries.

Parameter Hardware Implementation Value
Domain Parser 4 labels, 15-byte each (60 bytes total)
DRT Timeout 100 seconds
DRT Length 216 entries
DRT Stages 2

Table 1: Final parameters of Meta4 hardware implementa-
tion for Tofino switch. DRT stands for DNS Response Table.

for the domains “*.zoom.us” or “outlook.office365.com”, the scaling
correction actually increases the relative error. This suggests that
for some domains, the amount of packets and bytes transmitted to
a client is not very consistent per DNS request. Since the scaling
correction works by essentially determining the average number
of packets and bytes a client receives per known session for a
given domain, a domain that provides an inconsistent or essentially
random amount of traffic per session with high standard deviation
is not going to work well with the scaling correction: the correction
can overcount or undercount significantly. This makes sense for
services such as Zoom or Microsoft Teams, which provide varying
amounts of traffic per user depending, among other things, on the
length of a video call; this is rarely consistent between various
client-server sessions. Domains that primarily serve webpages, on
the other hand, are relatively consistent in the number of packets
and bytes served per DNS request. While this scaling correction
can be a useful tool, it is important to use it selectively on domains
that are known to be consistent in the amount of traffic that they
send per client-session and also only on domains for which Meta4
has been able to collect a large sample of DNS responses and traffic
to make a more accurate scaling correction.

6 PROTOTYPE AND DEPLOYMENT
In this section, we discuss our experiences implementing and de-
ploying Meta4 in hardware. The final parameters of our hardware
implementation are summarized in Table 1. Based on traffic lost
both due to parsing limitations and memory limitations, this hard-
ware configuration of Meta4 had a final percentage of traffic loss of



Analyzing Traffic by Domain Name in the Data Plane SOSR ’21, September 20–21, 2021, Virtual Event, USA

14.2%, by bytes, when run on our three-hour trace. We discuss our
hardware implementation challenges and experience in Section 6.1
and Section 6.2. In Section 6.3, we share our experience with de-
ploying our running example, measuring traffic volume by domain
name, on our campus network. Our code is open-source, publicly
available on Github [17].

6.1 Parsing DNS Packets
Dealing with CNAME entries. One issue with parsing DNS re-
sponse packets that is specific to the hardware implementation is
the challenge of dealing with CNAME entries. A DNS response
providing IP addresses (A records) for a domain name often in-
cludes a variable number of preceding CNAME records that map a
domain name alias to other domain names. As indicated above, it
is a challenge to parse a variable-length field like a domain name.
It is even more challenging to parse through a variable number of
variable-length fields. Thankfully, each CNAME entry is preceded
by an octet which gives the length of the CNAME record in bytes.
We use this field to set a parser counter to the length of a CNAME
record. A parser counter is a feature in Tofino [19], which allows
us to skip through a CNAME field byte by byte while decrementing
the counter until the counter reaches 0. We repeat this process
for each CNAME record we find until we finally reach the A (IP
address) record.
Case-sensitivity in domain names. Another problem we en-
countered is case-sensitivity of the domain name parser. In the
packet traces used for evaluation and testing (see Section 5.2), a
small portion of the domain names contained capital letters in unex-
pected places. To account for potentially unexpected capitalization,
we edited the masks used for the ternary match-action table rules
for domain names to make them case-insensitive. Domain names
in DNS are encoded using ASCII, so the difference between capital-
ized and non-capitalized letters is just a single bit (the third most
significant bit in the eight bit code). For example, the letter “a” is
encoded as 01100001 and the letter “A” is encoded as 01000001, so
by using match-action rule: 01*00001, we can match both on “a”
and “A”. It should be noted, however, that DNS response packets
that contain capital letters are an anomaly, contributing only 1.6%
of DNS response packets in our test traces. Furthermore, most of
the <cIP, sIP, T, dID> tuples from these DNS responses had no
follow-on traffic, contributing only 0.00044% of total traffic in terms
of packets.
Encrypted DNS packets. Meta4 cannot parse encrypted DNS re-
sponse packets that are exchanged throughDNS-over-TLS (DoT) [12]
or DNS-over-HTTPS (DoH) [11]. Thus, Meta4 ignores such packets.
To gauge the amount of encrypted DNS response packets, we ana-
lyzed our campus traces to detect them.We used server port number
853 to detect DoT traffic. For detecting DoH traffic, we used server
port 443 to capture traffic from well-known public DNS servers
that support DoH, including Cloudflare (1.1.1.1, 104.16.248.249) and
Google DNS (8.8.8.8, 8.8.4.4). In our 15-minute campus packet trace,
there are 1,710 encrypted DNS response packets, which is around
0.09% of total (encrypted and raw) DNS response packets. For the
three-hour trace, there are 27,938 encrypted DNS response packets,
which account for 1.2% of total DNS responses. Our analysis shows
that Meta4 does not miss many DNS responses in our campus trace.

Figure 10: Data-plane resource usage in Tofino

Monitoring traffic when encrypted DNS protocol is in use, however,
is a general issue among network operators, not just for Meta4. We
leave this as future work.
Combining four header field types for domain labels. As pre-
viously mentioned, we allow four domain labels, where each do-
main label can be up to 15 characters, or bytes, in our hardware
implementation. In a parser state, Meta4 has to store each domain
label into header fields, which are later used as match keys in the
domain match-action table. One way is to use a single fixed max-
sized header field (15 bytes) to store a domain label with any length.
However, this wastes bit-space when a domain label is not exactly
15 characters. Another way is define 15 different header field types
to cover every possible domain label length, which is also a subop-
timal method. Instead, we only define and use four different header
field types: 1, 2, 4, and 8-byte header fields. We then combine them
to cover domain labels with any length. In fact, it is possible to
store domain name labels of any length up to, and including, 15
bytes using only these four header fields, which are in powers of
two. For example, if a domain label is seven bytes long, we stored it
in the 1-, 2-, and 4-byte header fields. If a domain label is ten bytes
long, we stored it in the 2- and 8-byte header fields. Header fields
that are not used for a particular domain label are set to be invalid,
which indicates that they do not represent any characters in the
domain name. This solution allows us to maximize the number of
domains we are able to parse while minimizing the total amount
of TCAM in the match-action table we consume. Figure 10 shows
TCAM resource consumption by the domain match-action table.

6.2 Utilizing the Limited Number of Stages
The processing pipeline for a PISA switch is restricted to a limited
number of stages. A programmer is also limited by the arithmetic
logic unit (ALU) to a restricted number of operations per stage.
Furthermore, a packet cannot access or modify a register entry in
a pipeline more than once. As noted in Section 4.2, this particular
restriction is problematic for our <cIP, sIP, T, dID> tuple data struc-
ture. Thus, we utilize the packet resubmission feature, which allows
us to resubmit specific packets to go through the ingress pipeline
once more. In particular, we determine if a <cIP, sIP, T, dID> entry
needs to be replaced on the first pass for a DNS response packet. If
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so, we resubmit the DNS response packet and replace the old <cIP,
sIP, T, dID> entry on the second pass. Because we are only resub-
mitting DNS response packets, any overhead due to resubmission
is negligible. For example, in our three-hour trace used for testing
in Section 5, DNS response packets made up 0.14% of total packets.
In our 15-minute trace, DNS response packets only made up 0.89%
of total packets. With these packets contributing very little to the
total corpus of packets traversing the switch, resubmitting these
packets adds little additional overhead. Besides, we only resubmit
a DNS response packet when it has to replace a stale entry after a
hash collision, which further reduces the overhead.

Even with resubmission, however, our entire running example
does not fit into the limited stages of the ingress pipeline. This fur-
ther motivates the design choice of keepingMeta4’s core modules in
the ingress pipeline while the application-specific part goes into the
egress pipeline. This design choice also enables easier integration of
other DNS-based monitoring use cases with Meta4. For the Meta4
traffic volume measurement program, for example, we move the
data structures counting packets and bytes indexed by domain ID to
the egress pipeline. In general, we keep the DNS responses table in
the ingress for all Meta4 programs. Any subsequent data structures
unique to a particular use case are realized in the egress pipeline,
such as the DNS statistics table. Meta4 defines a custom packet
header, which is used for delivering the each packet’s domain ID
information from the ingress pipeline to the egress pipeline.

6.3 Measuring Traffic Volume by Domain
We revisit the use case from our running example. We ran our traffic
volume measurement program on a Tofino switch with the same
15-minute and three-hour traces from the campus network that we
used in Section 5.2. The 15-minute trace was captured at 15:00-15:15
on April 7, 2020 and the three-hour trace at 08:00-11:00 on August
19, 2020. The 15-minute trace was captured while school was in
session during mid-afternoon, whereas the three-hour trace was
captured while school was out of session during the morning. The
monitored traffic is not necessarily representative of campus traffic
in normal operations. We believe the ongoing global pandemic
had some impact on traffic patterns, like popular domains, seen on
campus. To create our policy configuration, we used historic heavy-
hitter analysis to determine the most popular domains requested
on campus. For each trace, we used Netify’s application lookup
tool [18] to map particular domain names (e.g., ytimg.com) to a
known service or application (e.g., YouTube).

In the 15-minute trace, the top service both by packet and byte
counts was Steam, which is an online game hosting platform [24].
Interestingly, the DNS traffic for Steam only accounted for 0.005%
of total DNS traffic, but the packet and byte counts were 17.5% and
16.7% of total traffic, respectively. Facebook, Google Ads, and Lime-
light CDN trafficwere the next biggest, followed by Skype/Microsoft
Teams, Google (general), Reddit, iCloud, and Instagram. It was note-
worthy that Google-related services have produced the most DNS
traffic, accounting for 36.5% of total DNS traffic.

In the three-hour trace, the top service by traffic volume was
Skype/Microsoft Teams, which accounted for one-third of all pack-
ets and bytes. Google Ads, Google (general), Apple (general), Zoom,
and YouTube traffic were the next heavy-hitters. Microsoft Teams

is used heavily by the campus IT department staff. In addition, it is
important to note that oftentimes, traffic associated with certain
domains is not specifically requested by actual users. For example,
the prevalence of Google Ads is not due to users specifically re-
questing the Google ad services domain, but rather due to the high
frequency of Google Ads (including still image banners and videos)
across the web, including non Google-affiliated websites. Similar
to the 15-minute trace, Google-related services have produced the
most DNS traffic, accounting for 26% of total DNS traffic. Also,
Zoom, while contributing a significant portion of traffic, is not as
dominant as one might have expected for campus traffic. The lack
of Zoom traffic can largely be attributed to classes not being in
session during the period the three-hour trace was captured and an
increasing shift to pre-recorded lectures over Zoom-hosted lectures
during the period the 15-minute trace was captured.

7 ADDITIONAL USE CASES
We now turn to other use cases of Meta4 to show how various
applications can be built off of the same fundamental framework
described in Sections 2 and 4. We also evaluate their performance
based on our experiments with real hardware.

7.1 DNS Tunneling Detection
DNS tunneling is a method of using the DNS protocol to bypass
security protocols/firewalls to send or receive normally restricted
traffic. While DNS is not usually intended for data transfer, the fact
that it is allowed to bypass most firewalls makes it a potential tool
for malicious users seeking to “tunnel” unwanted traffic [6].

To detect potential incidents of DNS tunneling, we need to iden-
tify client IP addresses that are making an abnormal number of DNS
requests with no subsequent traffic to those server IP addresses
contained in the DNS response. This particular Meta4 use case is
unique in that it does not require a list of domain names and a
corresponding match-action table as we are interested in all DNS
response packets and not just those for specific domains. Yet, the
domain name in the DNS response has to be successfully parsed so
that Meta4 can extract the server IP address that follows it.

For DNS response packets, the program uses a hash of the server
and client IP addresses to find a table entry in the DNS response
table. Unlike the traffic volume case for Meta4, however, there is
no need to store the domain ID. Then, using the hash of the client
IP as index, an entry in a counter register called the client IP table
is accessed, either creating a new entry when empty or increasing
the counter when an entry already exists.

For a non-DNS data packet, the source and destination IPs are
hashed to key into the DNS response table. If there is a match,
the timestamp is set to 0 to indicate that the table entry is free
and available for re-use. The counter in the client IP table is then
decremented to indicate that the DNS response was followed by
actual traffic. If a DNS response is never followed by additional data
packets, the entry in the DNS response table will eventually time
out, after five minutes, and the counter in the client IP table will
never be decremented. Obviously, an entry in the client IP table
with a high count is a suspect for DNS tunneling.

To test our Meta4-based DNS tunneling application, we gener-
ated two instances of DNS tunneling traffic using the open-source
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dnscat2 tool [7] and embedded them within normal, benign traffic.
First, the client made an SSH connection through a DNS tunnel and
performed simple UNIX commands (e.g., cd, ls). For the second
case, the client made an SCP connection through a DNS tunnel
to make a data transfer around 5 MB. We made a control-plane
script that queried the registers every 30 seconds to see if there
were any positive detection. A positive detection was defined as a
client that has a counter value of five or more in the client IP table,
which means there were five more DNS response packets than data
packets. In our test, we had zero false positives and were able to
successfully detect both SSH and SCP traffic that went through
DNS tunneling.

DNS packets that are being used for tunneling are often signifi-
cantly longer than normal DNS packets as they hold relatively large
amounts of data where the domain name would usually be stored in
a DNS packet. Because of this, it is often difficult for the P4 parser
to completely parse through a DNS tunneling packet. Nonetheless,
our program was able to parse through and detect about half of the
DNS packets used for tunneling, allowing us to catch instances of
DNS tunneling in less than a minute once started. In the case of the
SSH tunneling traffic, we were able to detect 132 out of 306 DNS
tunneling packets. In the case of the SCP tunneling traffic, we were
able to detect 35,089 out of 75,078 DNS tunneling packets.

7.2 IoT Device Fingerprinting
It is possible to fingerprint particular IoT devices by tracking the
domains they talk to. For example, Saidi et al. proposed a reliable
method for fingerprinting particular IoT devices by tracking the
domains names they reach out to and the server’s source port num-
ber when sending traffic to clients; with 33 devices from different
manufacturers, 97% were able to be detected within 72 hours of
active monitoring [22].

We implement the same mechanism in the data plane using
Meta4. Using the public IoT signatures [10] from this previous work,
we generate a known list of domains that populates the match-
action table rule in Meta4. An IoT device type can have multiple
signatures or rules; matching more rules increases the detection
accuracy. Our Meta4-based IoT detection program processes DNS
response packets identical to the traffic-volume measurement use
case. The domain name from the DNS response packet is parsed
and a match-action table is used to find the domain’s associated ID.
An entry is accessed in the DNS response table using a hash of the
server and client IP addresses. The timestamp is also set using the
DNS packet’s timestamp. The domain ID is set from the ID matched
in the match-action table.

When a data packet from the server to the client has a source and
destination IP addresses that match an entry in the DNS response
table, we set the timestamp in the entry to 0 to indicate that the
entry is free for re-use. We then generate a special report packet that
includes the domain ID, client IP address, and the server’s source
port number. By accumulating a long-term record of such report
packets, an operator can detect particular IoT devices. Such reports
can be either saved in a separate register in the data plane or sent
to an external controller, where former is better for privacy.

To evaluate our IoT fingerprinting use case, we ran our pro-
gram with 10 hours of traffic from a IoT traffic dataset downloaded

from IMPACT (Information Marketplace for Policy and Analysis
of Cyber-risk and Trust) [13]. This packet trace contains traffic
from seven IoT devices that are present in the public IoT signature
list [10]: Alexa Fire TV, Alexa Echo Dot, Philips Hub, TPlink smart
bulb, TPlink smart plug, Amcrest camera, and Wansview camera.
Our Meta4-based IoT detection program successfully detected all
seven devices. For each of the seven devices, we were able to get
at least one positive detection without any false device detection,
confirming the effectiveness of our fingerprinting application. The
Alexa-based devices were the easiest to detect as they have the
longest list of known signatures. The Philips Hub was the next,
followed by the remaining devices.

8 DISCUSSION AND FUTUREWORK
Ambiguity with the correction strategy: As discussed in Sec-
tion 5.4, our correction strategy described in Section 4.3 generally
works well, but is not perfect. Domains with highly variable traffic
amount during a client-server connection can make the scaling
factor unreliable. Also, a domain name insertion “miss” (due to full
a register array) followed by a “hit” for the same domain can result
in largely incorrect counting, especially for long-lived flows. For
example, consider a situation where a client downloads two large
files from a domain named foo.com, and assume each download
takes 60 minutes. Let’s say the client requests one file first and then
requests the other one after 10 minutes. Now assume the first DNS
response was missed but the second DNS response was a hit and got
inserted into the <cIP, sIP, T, dID> register array. Meta4 will start
to count data packets once the second DNS response got inserted,
actually counting data packets for the first file download flow too,
only missing the first 10 minutes. In result, the packet and byte
counts for domain foo.com will be for 110 minutes. However, our
correction scheme will only consider the fact that the first insertion
has failed and “correct” this by doubling the count. Now, the byte
and packet counts for the domain will be for 220 minutes while for
120 minutes is actually the correct one.

Although rare, the situation like above can certainly happen.
One way to tackle this is to be more consistent when deciding a
hit or miss for a particular domain. With this in mind, a promising
strategy is to perform sampling by tuple (<cIP, sIP, dID>) with some
probability p. In other words, either apply a fixed sampling rate on
a tuple or never account for it. Then, rather than correcting the
counts by multiplying with a scaling factor calculated by hits and
misses, multiply by 1/p. The advantage of this approach is that the
scaling factor is a consistent, unbiased value based on probability p.
We leave the exploration and implementation of different correction
strategies as future work.
Multiple domains using a shared server IP: The prevalence of
Content Distribution Networks (CDNs) in today’s Internet ecosys-
tem can lead to multiple different domain names sharing a single
server IP address. To deal with this ambiguity, Meta4 uses the client
and server IP pair (<cip, sip>) to map packets to a domain instead
of using just the server IP. By doing so, the ambiguity arises only
when a single client concurrently (or in close succession) requests
and visits two or more domains that share a server IP address. One
common scenario for a client to request multiple different domains
in close succession is when the client visits a website that has
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closely related but different components that need to be loaded. For
example, visiting “www.bbc.com” subsequently makes a client to
send DNS requests for “bbc.map.fastly” and “fig.bbc.co.uk”,
and all three domains map to the same server IP address. In such a
scenario, however, the associated traffic would correspond to the
same “class” anyway, thus would have the same domain ID. Besides,
shared hosting among totally different domain names is expected
to be less common for popular domains.

In any case, it is important to note that multiple domains using
a shared server IP is a known issue for domain-based monitoring
in general, not just for data-plane approaches like Meta4. An in-
teresting future work is to investigate how to clear this ambiguity.
One approach is to analyze the traffic pattern to further fingerprint
a website only when such ambiguities arise. Meta4 can possibly
interact with such data-plane or control-plane solution in real time.

9 CONCLUSION
This paper outlined the design and implementation of Meta4, a
network monitoring framework in the data plane that allows an
operator to associate traffic by domain name. Developed for PISA-
based programmable switches, Meta4 parses DNS response packets
to dynamically extract client IP, server IP, timestamp, and domain
name at line rate, which are then stored on registers in the switch.
Using a register data structure, Meta4 associates subsequent data
packets to a domain by matching the destination and source IP
addresses to the client and server IP address in a register entry.

We implemented Meta4 on Tofino hardware using the P4 lan-
guage and deployed it on a campus network. We evaluated Meta4
and showed that even under the hardware restrictions and lim-
itations of the switch, we were able to achieve a relatively high
accuracy in terms of traffic volume measurement by domain name.
We also presented two more use cases: DNS tunneling detection
and IoT device fingerprinting.

Meta4 highlights an interesting approach for realizing intent-
based networking with programmable data planes. In particular,
Meta4 presents a unique approach of “joining” two different packet
types within the data plane, using a common IP header field. We be-
lieve this form of intentional network monitoring can be expanded
beyond DNS, and we hope this work shed some light on discovering
unique opportunities with programmable data planes.
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