
Design Principles for Manageable Networks
Jiayue He

Dept. of EE, Princeton University
Email: jhe@princeton.edu

Jennifer Rexford
Dept. of CS, Princeton University

Email: jrex@cs.princeton.edu

Mung Chiang
Dept. of EE, Princeton University

Email: chiangm@princeton.edu

Abstract— As networks grow in size and complexity, network
management has become an increasingly challenging task. We
argue that “bolting on” network-management functions to the
existing architecture is the wrong approach. Instead, networks
should be designed with management in mind from the beginning.
We focus on two important aspects of network management:
tomography and optimization. We present principles with illus-
trative examples of recent research that pinpoint why network
management is difficult and show how changes to existing
protocols and architectures can lead to manageable networks. We
also discuss the trade-offs between making network management
easier and the overhead these changes impose.

I. INTRODUCTION

Network management is the continuous process of mon-
itoring a network to detect and diagnose problems, and of
configuring protocols and mechanisms to fix problems and
optimize performance, as in Figure 1. Unfortunately, today’s
network architectures were not designed with these tasks as
a main priority. As a result, managing data networks is, at
best, a black art practiced by an increasingly overwhelmed
community of network operators. We observe that the design
of protocols, control mechanisms, and monitoring systems in-
duces the problems that network operators must solve. Rather
than just retrofitting network management on the existing
infrastructure, we advocate designing network architectures
with management in mind in the first place. The key idea
is to design protocols and architectures to induce network-
management problems that are easy to solve.

Fig. 1. An overview of network management system.

Traditionally, network management has been largely impen-
etrable to the research community since many of the problems
appear both complex and ill-defined. During the past few
years, the research community has made tremendous progress
casting many important management tasks as tomography and
optimization problems:

• Network tomography involves inferring important proper-
ties of the network from the available measurement data,
which become the inputs to network management. For
example, operators typically infer the traffic matrix—the
offered load between the ingress and egress points in the
network—from link load statistics.

• Network optimization involves configuring tunable pa-
rameters to optimize an objective function under resource
constraints, which forms the outputs from network man-
agement. For example, operators typically set the link
weights for shortest-path routing protocols like OSPF or
IS-IS to minimize network congestion.

To make general ideas we advocate more concrete, we will
focus on tomography and optimization problems in this paper.
Recent research on these subjects has lead to useful tools for
network operators. However, today’s monitoring systems and
network protocols can still often lead to network tomography
and optimization problems that are exceptionally difficult to
solve. For example, inferring the traffic matrix is highly un-
derconstrained [1], [2]. Similarly, optimizing the link weights
is NP-hard and the best heuristics still could deviate from
the optimal solution significantly [3]. Many tasks in network
management remain an art.

In this paper, we argue that the difficulty of solving the
key tomography and optimization problems is an indication
that we need to revise the underlying protocols, or even the
architectures, that lead to these problem formulations in the
first place. We advocate the design of manageable networks—
network architectures that lead to easy-to-solve tomography
and optimization problems. Indeed, the key difference between
“network management” and “manageable networks” is that
the former refers to solving a given problem (induced by the
existing protocols and architectures) while the latter involves
formulating the “right” problem (by changing protocols or
architectures accordingly) that would be easy to solve later.

The changes to protocols and architectures can range from
minor extensions to clean-slate designs. In general, the more
freedom we have to make changes, the easier it would be
to create a more manageable network. On the other hand,
the resulting improvements in network management also need
to balanced against other considerations such as scalability
and extensibility, and must be made judiciously. There can
be a trade-off between making network-management problems
easier by changing the statement of the problem and the im-
plementation costs which result. To make design judgements,
it is essential to quantify these trade-offs.



In the next two sections, we introduce design principles for
manageable networks through illustrative examples in tomog-
raphy and optimization, respectively. Most of the examples
focus on incremental changes to the existing Internet archi-
tecture, with one example of clean-slate design. Our examples
focus primarily on intradomain routing, where tomography and
optimization problems are relatively easy to formulate and
promising advances have been made in recent years. These
examples are included here mainly to serve as illustrations
of general principles, and certainly do not constitute an
exhaustive list. In the Section IV, we discuss other aspects
of networking, such as interdomain routing and active queue
management, where the problems are even more challenging.
We conclude in Section V with further discussions on future
research opportunities.

II. DESIGNING FOR TOMOGRAPHY

Tomography provides inputs to network management by
solving inverse problems where network properties that cannot
be observed directly are inferred from other measurement
data. Most of the successful approaches thus far use a linear
model y = Ax, where y is a vector of measurements, A is
a routing matrix, and x is a vector of network properties;
the goal is to infer either A or x from y. Often, these
inverse problems are underconstrained, where the number of
unknown variables is larger than the number of constraints
imposed by the available measurements. In contrast to the
process of solving a given tomography problem, designing
for tomography explores ways to change the system to make
inverse problems easy to solve. This can be achieved by
reducing the sources of uncertainty in the measurement data
or increasing the number of constraints. The first principle
is introduced through an example of inferring link properties
from path measurements, and the second principle through
traffic-matrix estimation.

A. Reducing the Uncertainty Across Observations

Measurement data collected at different times do not ob-
serve the network under the same conditions, leading to un-
certainty about the network state. This problem is exemplified
by the difficulties of inferring link-level properties from active
probes of end-to-end paths. The goal of inferring the link-level
properties is to identify the link (or the set of links) responsible
for dropping or delaying packets due to congestion, bit errors,
failures, misconfiguration, or the presence of an adversary.
Determining the faulty link in a system is necessary step
towards diagnosing and fixing the problem.

Inline with the syntax for general tomography problems,
yp is the sum of link properties (e.g. delay) along the path
used by probe p, Ap,` is 1 if the probe p traverses link `
and 0 otherwise, and x` represents the performance properties
of link l. Since active probes are sent at different times, the
tomography problem must include a time-dependent error term
ε, leading to the equation y = Ax + ε.

One potential solution to tomography is to use maximum
likelihood estimation. The following example highlights po-

Fig. 2. A multicast-tree with 4 receivers.

tential challenges with this approach. Consider the topology
in Figure 2, where we adopt the labelling convention that link
i connects node i to its parent node. Using normal unicast
probes means each probe packet would be sent from node 0 to
nodes 4, 5, 6, and 7 at separate times. Comparing the four end-
to-end measurements can shed light on the link responsible for
performance problems. For example, if probe packets do not
reach nodes 4 and 5, while they do reach nodes 6 and 7,
then link 2 is the likely culprit. However, since the probes
are sent independently and link properties vary with time,
a probe packet to node 4 could be dropped while a probe
packet to node 5 is received even if link 2 is sometimes faulty.
Maximum likelihood estimation can narrow down the possible
failure locations based on repeated measurements, but relies
on knowing the stochastic model for ε.

Changing the underlying system to reduce the uncertainty
can significantly simplify the tomography problem. For ex-
ample, suppose the network supports multicast delivery of
the probe packets [4], [5]. Then, node 0 would multicast a
single probe packet to all four end nodes simultaneously. In
this case, if link 2 drops the probe, then node 4 and node 5
would both lose the packet. Sending a multicast probe provides
an extra degree of coupling between the observations by the
four receivers. Although not widely used in today’s Internet
for a variety of technical and business reasons, IP multicast
is supported by the routers. Enabling the use of multicast
within a single domain, simply for the purpose of sending
probes, would be easy. In addition to reducing the uncertainty
introduced by measurement process, multicast probes consume
less bandwidth since they traverse each link only once and
therefore also reduces the measurement overhead. With or
without multicast, the key idea is that reducing the uncertainty
across observations leads to easier tomography problems.

B. Increasing the Number of Deterministic Constraints

Network tomography problems typically do not have
enough constraints, leading to many feasible solutions. A
classic example is the problem of inferring the traffic matrix
from link-load statistics. Each element in the traffic matrix is
the offered load from an ingress router i to an egress router j,
as shown in Figure 3. The traffic matrix is an important input to
several network-management tasks, such as anomaly detection
and traffic engineering. For example, changes in traffic load

2



can alert the system to the potential existence of a flash crowd,
denial-of-service attack, network failure, or a change in user
behavior. The traffic matrix is also useful for predicting the
effects of configuration changes, such as the way link loads
would change after adapting the intradomain link weights.

Fig. 3. Network topology with link weights for shortest path routing.

Direct observation of the traffic matrix is difficult because
it requires collecting fine-grained measurements at every edge
router. Instead, network operators typically infer the traffic
matrix from coarse-grained link-load statistics and knowledge
of the current routing configuration. The unknown traffic-
matrix elements are represented by xp, where p is an ingress-
egress pair, such as (i, j) for edge nodes i and j. The current
routes are represented by A`,p—the fraction of traffic for
ingress-egress pair p that traverses link `; for example, A`,p

is 1 if the path traverses ` and 0 otherwise1. The relationship
between xp and A`,p can be written in matrix form as y = Ax,
where y` is the load imposed on link `. However, inverting this
relationship to compute x from y and A is difficult, because
the number of links is typically much smaller than the number
of ingress-egress pairs—that is, many different traffic matrices
would be consistent with the observed link loads.

Estimating the traffic matrix requires a way to compensate
for the limited number of constraints. Early work considered
collecting the link-load statistics at several points in time and
binding these observations together with statistical models;
however, the statistical assumptions did not apply well to Inter-
net traffic, leading to large errors in the resulting inferences [1].
More recent approaches draw on the notion of gravity models
that make assumptions about the spatial distribution of traffic,
with greater accuracy [1], [2]. Still, the errors can be relatively
large, e.g., 20%. Stepping back, there are several ways to
change the system in the first place to increase the number
of constraints:
• Creating multiple instances of A: Modifying the link

weights in the operational network provides a way to ob-
serve the link loads under different routing matrices [6].

• Populating some values of x: Extending selected routers
to collect fine-grained traffic statistics would enable direct
observation of xp for certain node-pairs p [7].

• Collecting the local traffic matrix at each router: Extend-
ing each router to collect a “local traffic matrix”—a count
of the traffic between each input and output port—would
impose more constraints on the global traffic matrix [8].

1More generally, A`,p ∈ [0, 1] if the network supports multi-path routing.

The first solution can be applied today, at the expense of
introducing transient disruptions in the running network. The
second solution is also feasible today, if some routers have
been upgraded to support flow-level monitoring (e.g., Cisco’s
Netflow feature). The third approach introduces less mea-
surement overhead but would require modest changes to the
routers. All three are effectively adding more constraints (i.e.,
the vector x is constrained to lie within a smaller space) to
make a tomography problem easier to solve.

III. DESIGN FOR OPTIMIZATION

Optimization produces outputs from network management
by setting the tunable parameters that control network be-
havior. Solving an optimization problem involves minimizing
an objective function subject to a set of constraints. Many
optimization problems that arise in data networks are compu-
tationally intractable 2 or even have many local minima that
are significantly suboptimal.

Occasionally, through mathematical techniques, an alterna-
tive representation of such difficult optimization problems may
lead to effective solutions, without changing the formulation
of the problem. In contrast, we advocate the engineering
approach of designing for optimization, which focuses on
formulating problems to be easier to solve, and changing the
protocols accordingly. This is particularly important when the
existing problem formulations are not even amenable to alter-
native representations, efficient approximations, or exhaustive
search. Of course, the merits of these modified protocols
should also be balanced with any extra overhead in practical
implementation and robustness to changing network dynamics.

Changes in the protocol can lead to changes in the structure
of the constraints or in the degrees of freedom. We introduce
the first principle through the problem of optimizing the
link weights in intradomain routing, and the second principle
through the problem of selecting the egress points that direct
traffic to neighboring domains. Our third and final example
illustrates how embedding management objectives in the pro-
tocol can lead to new distributed protocols that implicitly solve
well-formulated optimization problems.

A. Changing the Constraint Set

Often optimization problems involve integer constraints,
which are not convex. For example, operators today set the
link weights in intradomain routing protocols such as OSPF
and IS-IS using traffic matrices as inputs (see II-B). Figure 3
shows an example network topology with an integer weight
on each link. Each router learns the weighted graph and runs
Dijkstra’s algorithm to compute a forwarding table that directs
each packet to the next hop along a shortest path. The network
operator can only indirectly influence how the routers forward
traffic, through the setting of the link weights. The objective of
the optimization is to minimize the sum of link-cost functions
f (often an increasing and convex function of link utilization)
over all links.

2Sometimes because the constraint set is not a convex set or the objective
to be minimized is not a convex function.

3



Optimizing the link weights in shortest-path routing proto-
cols based on the traffic matrix is NP-hard, even for convex
objective functions [3]. In practice, local-search techniques are
often quite effective for selecting link weights [3]; however,
the deviation from the optimal solution can still be large,
especially under link failure scenarios and multiple traffic
matrices. The crux of the problem is that these protocols
direct traffic only along the shortest path, or split traffic evenly
amongst multiple shortest paths. The ability to split traffic
arbitrarily over multiple paths would make the constraints
convex, as in MPLS. However, the downside is this approach
would sacrifice the simplicity of OSPF and IS-IS, where
routers compute paths in a distributed fashion based on a small
amount of configuration state.

Rather than adding new technology that supports arbitrary
splitting, two recent proposals advocate small extensions to
OSPF and IS-IS to split traffic over multiple paths [9], [10].
Under these proposals, the routers forward traffic on multiple
paths, with diminishing proportions of the traffic directed to
the longer paths. Although the resulting optimization is still
computationally difficult for general topologies and traffic
matrices, the resulting constraints are much easier to be ap-
proximated by convex constraints, leading to faster solutions.
In addition, the modified protocols are better than conventional
OSPF and IS-IS at making efficient use of link capacities,
and are more robust to small changes in the path costs. By
changing the constraint set, [9] and [10] retain the simplicity
of link-state routing protocols, while inducing optimization
problems that are both easier to solve (faster running time than
OSPF) and leading to more efficient solutions (substantially
reduced gap to optimum).

B. Increasing the Degrees of Freedom

Today’s network protocols often impose many, tightly-
coupled constraints on the settings of the tunable parameters,
inducing intractable optimization problems. A good example
is the challenge of controlling how traffic leaves one domain
en route to the ultimate destination. When a network, such as
an Internet Service Provider (ISP) backbone, can reach a des-
tination through multiple egress points, each router typically
selects the closest egress point, in terms of the intradomain
link weights, in a practice known as early-exit or hot-potato
routing [11]. In the example in Figure 4, traffic from Dallas
exits via New York City rather than San Francisco since the
intradomain path cost from Dallas to New York City is smaller.
Controlling where packets leave the network, and preventing
large shifts from one egress point to another, is an important
part of engineering the flow of traffic in the network.

Since large ISPs peer typically in multiple locations, the
intradomain link weights play a major role in how traffic
leaves an ISP via its peering links to other providers. For
example, if the traffic from Dallas encounters congestion
along the downstream path from New York City, the network
operators could tune the link weights to make the path via San
Francisco more attractive. However, setting the link weights is
highly constrained, since the weights are used to compute both

Fig. 4. Traffic from Dallas exits via New York City (with a path cost of 10)
rather than San Francisco (with a path cost of 11), due to hot-potato routing

the forwarding paths between the routers inside the domain
and the egress points where the traffic leaves the domain.
In addition, small changes in the path costs, due to weight
changes or link failures, can lead to abrupt, unintentional shifts
in traffic from one egress point to another. Models can capture
the effects of changing the link weights on the intradomain
paths and the egress points, but identifying good settings of
the weights is very difficult; in some cases, no setting of the
weights would satisfy all of the constraints.

Weakening the coupling between intradomain routing and
egress-point selection is the key to simplifying the optimiza-
tion problem and improving network performance. Rather
than selecting egress points based only on the intradomain
path costs, the routers can consider, e.g., a weighted sum of
the path costs and a constant term [12]. Providing separate
parameters for each destination prefix allows even greater
flexibility, such as allowing delay-sensitive traffic to use the
closest egress point while preventing unintentional shifts in
the egress points for other traffic. By increasing the degrees
of freedom, a management system can apply standard integer
programming techniques to set the new parameters under a
variety of constraints that reflect the operators’ goals for the
network [12]. Not only does the network become easier to
optimize, but the performance improves as well, due to the
extra flexibility in controlling where the traffic flows.

C. Embedding Management Objectives in the Protocol

Because today’s protocols were not designed with manage-
ment in mind, network operators have at best indirect control
over system behavior by tuning the configurable parameters.
With a clean-slate redesign, the protocols could allow the
network-management system to specify its objectives directly.
In this subsection, we explore this idea in the context of
traffic engineering, with an emphasis on the interaction be-
tween congestion control and routing. In the Internet today,
traffic engineering is performed assuming that the offered
traffic is inelastic. In reality, end hosts adapt their sending
rates to network congestion, and network operators adapt the
routing based on measurements of the traffic matrix. Although
congestion control and routing operate independently, their
decisions are coupled. The joint system is sometimes stable,
but often suboptimal [13]. In addition, traffic engineering does
not necessarily adapt on a small enough timescale to respond
to shifts in user demands.

4



Congestion control tries to maximize aggregate user utility,
and as a result tends to push traffic into the network so
that multiple links are used at capacity. In contrast, traffic
engineering tries to prevent links from being fully utilized
and to tolerate fluctuations in network conditions. One way
to balance the conflicting objectives of traffic engineering
and congestion control is to take a “top-down” approach by
formulating an objective function that is a weighted sum of
end user utility functions and network link cost functions. The
capacity constraints are on the routing matrix and source rate
vectors, both of which are design variables [13]. This leads to
a convex optimization problem that is readily solvable through
distributed algorithms.

In [13], we construct a decomposition that revisits the
boundary between the network elements and the management
system, while assuming end hosts still run TCP. Decomposing
the optimization problem with this goal in mind, a distributed
protocol is derived that splits traffic over multiple intradomain
paths, where the splitting proportions depend on feedback from
the links. The solution is called DATE (Distributed Adaptive
Traffic Engineering). It may appear to be similar to [14], but
the construction of the mechanism is “top-down” (starting
from an optimization problem formulation), and considers the
effects of jointly optimizing congestion control at the end
hosts and routing over the links. The objectives of the network
operator are represented by the same link-cost function f as
the previous work on traffic engineering, discussed earlier in
Section III-A. By embedding the management objectives in the
protocols, the link-cost function is now autonomously applied
by the links themselves as part of computing the feedback sent
to the edge routers, rather than by the network-management
system. As such, the network-management system merely
specifies f , and does not even need to adapt the configuration
of the routers over time.

IV. OPEN CHALLENGES

Our examples in Sections II and III focus on tomography
and optimization problems in intradomain routing. Routing
within a single domain side-steps several important issues that
arise in other aspects of data networking, for several reasons:
• A single domain has the authority to collect measurement

data (such as the traffic and performance statistics) and
tune the protocol configuration (such as the link weights).

• The routing configuration changes on the timescale of
hours or days, allowing ample time to apply more com-
putationally intensive solution techniques.

• The tomography and optimization problems consider
highly aggregated information, such as link-level perfor-
mance statistics or offered load between pairs of routers.

When these assumptions do not hold, the resulting tomography
and optimization problems become even more complicated, as
illustrated by the following two examples.

Tomography in interdomain routing: An Autonomous Sys-
tem (AS) may experience equipment failures or configura-
tion mistakes that lead to routing changes in other parts of
the Internet. Identifying the responsible AS is useful to aid

network operators in avoiding paths that traverse this AS
in the future, or in generating reports on the robustness of
different ISPs. The routing-protocol messages exchanged in
the Border Gateway Protocol (BGP) provide an indirect view
into the root cause of a routing change. Analysis of these
messages from many vantage points can be used to infer
the AS responsible for the routing change. However, this
tomography problem does not map into a relatively simple,
linear “y = Ax” formulation. Several recent studies have
approached this problem [15], [16], with at best mixed success,
in part because BGP-speaking routers can apply complex
routing policies for selecting routes.

Optimization in active queue management: A router may
apply active queue management schemes like Random Early
Detection [17] to provide TCP senders with early feedback
about impending congestion. RED has many configurable
parameters to be selected by network operators, e.g., queue-
length thresholds and maximum drop probability. Unfortu-
nately, predictive models for how the tunable parameters affect
RED’s behavior remain elusive. In addition, the appropriate
parameter values may depend on a number of factors, includ-
ing the number of active data transfers and the distribution of
round-trip times, which are difficult to measure on high-speed
links. Recent analytic work demonstrates that setting RED
parameters to stabilize TCP is fundamentally difficult [18].

From these two examples, it is clear that there are many
open challenges to network management. For example, aug-
menting the BGP update messages to provide more informa-
tion about the reasons for routing changes may help make the
tomography problem easier to solve, but identifying the right
protocol changes and the incentives for ASes to deploy them
remains an open question. Similarly, it is appealing to explore
alternative active-queue management schemes that are easier to
optimize, including self-tuning algorithms that do not require
the network-management system to adjust any parameters.

The challenges are not just limited to protocols. Archi-
tecturally, the DATE example represents one extreme where
most of computation and coordination is moved into the
distributed protocols that run in the routers. One can consider
another extreme, where the network-management systems bear
all the responsibility for adapting to changes in network
conditions. Both approaches redefine the boundaries between
the components in Figure 1, where one moves most of the
control into the distributed protocols and the other has the
management systems directly specify how the routers handle
packets. Determining the appropriate division of labor between
the network elements and the management systems is another
avenue for challenging research problems.

V. DISCUSSIONS

The examples in Sections II and III demonstrate that
changes in the design of monitoring systems and network pro-
tocols can make tomography and optimization problems much
easier to solve. However, these examples also illustrate the
limitations in our ability to design with network management
in mind, including the following two:

5



• Problems still remain difficult to solve: Some of the
approaches may not go far enough in converting an
intractable problem into a tractable one. For example, the
extensions to link-state routing protocols in Section III-A
still induce computationally difficult optimization prob-
lems, though they do admit simpler relaxation techniques.
Similarly, capitalizing on multicast probes in Section II-
A still results in under-constrained problem, though the
accuracy of the solutions is improved.

• Changes to the system impose extra overhead: Some of
the approaches make the network more manageable at
the expense of additional overhead, and may have gone
too far. For example, adding flexibility in egress-point
selection in Section III-B introduces more parameters
that the network-management system must set. Similarly,
revisiting the division of functionalities in Section III-C
leads to a solution that requires feedback from the links
and shaping of the TCP flows.

Moreover, the above two challenges are clearly “at odds”
with each other—making network-management problems eas-
ier to solve often comes at some cost in network overhead.
Characterizing a network architecture in terms of the tractabil-
ity of network-management problems is just one piece of a
complex design puzzle. The design of manageable networks
introduces tension between the ease of network management
(as measured by the tractability of the tomography and op-
timization problems) and the overhead of monitoring and
protocol functions. Providing a deeper understanding of these
trade-offs remains an important avenue for future research.

Furthermore, ensuring a completely tractable tomography
or optimization problem is sometimes unnecessary. For ex-
ample, having a rough estimate of the traffic matrix may
be sufficient for important network-management tasks such
as traffic engineering, especially if the routing configuration
must be robust to the natural statistical fluctuations in the
traffic matrix anyway. Similarly, an NP-hard problem may
be acceptable, as long as reasonably accurate and readily-
solvable approximations are available. Finding effective ways
to quantify the acceptable error for tomography, and the
acceptable amount of deviation from the optimal solution,
is important for striking the right trade-offs in the design
of manageable networks. There are also well-established,
quantitative measures of the notions of how under-constrained
a tomography problem is and how easily-solvable an opti-
mization is. These quantitative measures can help determine
how much the protocols and architectures need to change
to better support network management. As such, we believe
that the design of manageable networks can be a promising,
new interdisciplinary area between the systems and theory
communities.

Networks need to be managed, thus should be designed
for the ease of management in the first place. Ultimately, the
design of manageable networks raises important architectural
questions about the appropriate division of functionalities
between network elements and the systems that manage them.
This paper represents a first step toward identifying design

principles that can guide these architectural decisions. The
open challenges which remain suggest that the design of
manageable networks may continue to be somewhat of an art,
but hopefully one that will be guided by more and more design
principles. We believe that providing a new, comprehensive
foundation for the design of manageable networks is an
exciting avenue for future research.

ACKNOWLEDGMENT

We would like to thank Constantine Dovrolis, Nick Feam-
ster, and Renata Teixeira for their feedback on earlier drafts.
This work has been supported in part by NSF grants CNS-
0519880 and CCF-0448012, and a Cisco grant GH072605.

REFERENCES

[1] A. Medina, N. Taft, K. Salamatian, S. Bhattacharyya, and C. Diot,
“Traffic matrix estimation: Existing techniques compared and new
directions,” in Proc. ACM SIGCOMM, August 2002.

[2] Y. Zhang, M. Roughan, N. Duffield, and A. Greenberg, “Fast, accurate
computation of large-scale IP traffic matrices from link loads,” in Proc.
ACM SIGMETRICS, June 2003.

[3] B. Fortz and M. Thorup, “Increasing Internet capacity using local
search,” Computational Optimization and Applications, vol. 29, no. 1,
pp. 13–48, 2004.

[4] F. LoPresti, N. Duffield, J. Horowitz, and D. Towsley, “Multicast-based
inference of network-internal delay distributions,” IEEE/ACM Trans.
Networking, vol. 10, pp. 761–775, December 2002.

[5] R. Caceres, N. Duffield, J. Horowitz, and D. Towsley, “Multicast-
based inference of network-internal loss characteristics,” IEEE Trans.
Information Theory, vol. 45, pp. 2462–2480, November 1999.

[6] A. Nucci, R. Cruz, N. Taft, and C. Diot, “Design of IGP link weights for
estimation of traffic matrices,” in Proc. IEEE INFOCOM, March 2004.

[7] G. Liang, N. Taft, and B. Yu, “A fast lightweight approach to origin-
destination IP traffic estimation using partial measurements,” In special
joint issue of IEEE/ACM Transactions on Networking and IEEE Trans-
actions on Information Theory, June 2006.

[8] G. Varghese and C. Estan, “The measurement manifesto,” in Proc.
SIGCOMM Workshop on Hot Topics in Networking, November 2003.

[9] J. H. Fong, A. C. Gilbert, S. Kannan, and M. J. Strauss, “Better
alternatives to OSPF routing,” Algorithmica, vol. 43, no. 1-2, pp. 113–
131, 2005.

[10] D. Xu, M. Chiang, and J. Rexford, “DEFT: Distributed exponentially-
weighted flow splitting.” Submitted to IEEE INFOCOM, August 2006.

[11] R. Teixeira, A. Shaikh, T. Griffin, and J. Rexford, “Dynamics of hot-
potato routing in IP networks,” in Proc. ACM SIGMETRICS, June 2004.

[12] R. Teixeira, T. Griffin, M. Resende, and J. Rexford, “TIE breaking:
Tunable interdomain egress selection,” in Proc. CoNEXT, October 2005.

[13] J. He, M. Bresler, M. Chiang, and J. Rexford, “Towards robust
multi-layer traffic engineering: Optimization of congestion control and
routing,” April 2006. Submitted. www.princeton.edu/˜jhe/
research/jsac2.pdf.

[14] S. Kandula and D. Katabi, “Walking the tightrope: Responsive yet stable
traffic engineering,” in Proc. ACM SIGCOMM, August 2005.

[15] A. Feldmann, O. Maennel, Z. M. Mao, A. Berger, and B. Maggs,
“Locating Internet routing instabilities,” in Proc. ACM SIGCOMM,
September 2004.

[16] M. Caesar, L. Subramanian, and R. H. Katz, “Towards localizing root
causes of BGP dynamics,” Tech. Rep. CSD-03-1292, UC Berkeley,
November 2003.

[17] S. Floyd and V. Jacobson, “Random early detection gateways for
congestion avoidance,” IEEE/ACM Trans. Networking, vol. 1, pp. 397–
413, August 1993.

[18] S. H. Low, F. Paganini, J. Wang, and J. C. Doyle, “Linear stability of
TCP/RED and a scalable control,” Computer Networks, vol. 43, pp. 633–
647, December 2003.

6


