
1

Princeton University

Department of Computer Science

Senior Thesis

Detecting Violations of Service-Level

Agreements in Programmable Switches

Author: Advisor:

Mack Lee Jennifer Rexford

Princeton University Princeton University

Undergraduate Professor

This paper represents my own work in accordance with University regulations.

Date of Submission: May 7, 2018

2

Table of Contents

Abstract ... 3

Acknowledgments... 4

1. Introduction ... 5

2. Problem Statement .. 8

2.1 Defining SLA .. 8

2.2 Scalable Passive Monitoring of RTT .. 10

3. Accurate Detection of SLA Violations ... 13

3.1 Ideal Algorithm ... 13

3.2 Delayed and Cumulative ACK ... 15

4. Hardware-friendly Algorithm ... 19

4.1 Hash-Indexed Array of Packets .. 19

4.2 Multiple Stages of Hashing ... 22

4.3 Handling Cumulative ACK ... 23

5. Python Prototype ... 25

6. Evaluation ... 26

6.1 Tuning ... 27

6.2 Memory and Performance Tradeoff .. 30

6.3 Performance of Backtracking.. 32

7. Related Work .. 34

8. Conclusion .. 37

9. Future Work .. 38

References ... 39

3

Abstract

Service level agreements (SLA) are an integral part in the delivery of services between

internet service providers and their customers. They define the quality of service (QoS) that a

provider promises to the customer. The implications of monitoring SLA compliance benefits

both providers and customers: customers can verify whether providers uphold their QoS

guarantees and providers can take corrective action if a SLA violation is detected. However,

current active network measurement techniques used to monitor SLA are not accurate and are

not representative of the traffic between customers and providers. In this paper, we design an

algorithm and data structure to passively measure latency/RTT such that it can be applied to

monitoring SLA. Our algorithm uses constant time processing per packet and our data structure

uses bounded memory, making our design hardware-friendly. We evaluate the performance of

our methods using trace-driven simulations on a Python prototype.

4

Acknowledgments

 This thesis represents the work I have done over the past year. I would like to recognize

my friends and family who have helped me succeed in my time as an undergraduate at Princeton.

I would also like to thank all the faculty that have mentored me as they have given me the tools

and skills to achieve my goals and to grow intellectually.

 I would like to thank Professor Jennifer Rexford and Xiaoqi (Danny) Chen for assisting

me with my thesis. This thesis would not have been possible without their guidance and advice

throughout the research process.

5

1. Introduction

Internet service providers use service-level agreements (SLA) to describe and quantify

the quality of service (QoS) they offer [10]. SLA are legally binding contracts that promise and

define a set of metrics regarding the delivery of services (e.g. latency, throughput, packet loss).

SLA generally contain the following components: a description of the service, expected

performance, and a penalty clause that includes the consequences if the provider does not meet

the QoS guarantees. The purpose of SLA is to hold service providers accountable and give

customers a legal contract associated to the service they receive. However, in practice, it is

difficult to ensure that these standards are being upheld.

 Detecting SLA violations is beneficial for both providers and customers. On one hand, it

is desirable for providers to detect violations quickly so they can take corrective action. On the

other hand, it is desirable for customers to detect violations to verify the quality of service they

receive and potentially get their money back if there is a breach of contract. Sometimes providers

have the tendency to cheat on SLA (e.g. provide less bandwidth to users than specified in the

SLA) to make more money and support more users. Therefore, being able to reliably monitor

and verify SLA compliance can benefit both providers and customers.

Verifying SLA compliance requires monitoring all network traffic and determining

whether metrics defined by the SLA are true. Network measurement methods is generally

classified into two different categories: active and passive. Active measurement uses probes that

are sent across the network to gather information (e.g. measure the response time of an

application or measure the time it takes to reach one end of the network). Passive measurement

records packets without adding traffic to network via monitoring buffers in routers or duplicating

link traffic in a hub or more recently, using programmable switches [9] [22].

6

 Currently, verifying SLA is done using active measurement - telemetry packets are sent

across the network using the same bandwidth as customers [13] [15] [20]. Active measurement

methods have several drawbacks: probes can slow down the network, the data gathered by these

probes are not representative of regular traffic, and probe results are not comprehensive. The

emergence of new programmable protocol-independent network switches has motivated passive

monitoring of network traffic in the data plane because of their flexible, high-speed packet

processing capabilities. Passive measurement methods monitor all network traffic in real-time,

making them more representative of network behavior. The advantage of conducting

performance diagnostics on the data plane is that the data plane is able to detect issues more

quickly and make quicker decisions for corrective action (e.g. load balancing for network-limited

connections) [9]. That said, developing methods to run on a hardware switch has constraints

including limited arithmetic and boolean operations per packet and limited storage for

maintaining state. Given the large number of packets being transmitted and received per second,

it is infeasible to store information about all of the packets. For example, the amount of data

generated by passive measurement on an hour trace for a 1 gigabit link with utilization of 60%

(in the IP layer) and average packet size of 300 bytes requires about 270 gibibytes of storage

[15]. Even if we were to only IP and transport layer headers, we would still need 36 gb of storage

space for an hour trace [15]. In addition to storage, it is important for passive measurement

techniques to use a little processing per packet as possible. For a 100 Gbps connection, a passive

monitoring scheme that captures all network traffic would require processing a packet about

every 6.5 nanoseconds [1]. Considering time and space constraints, it is important to design

passive measurement heuristics that have constant time processing per packet and use bounded

memory.

7

In this paper, we present a hardware-friendly algorithm and data structure to passively

monitor the latency of TCP traffic and verify SLA compliance in real-time, on the data plane.

Motivation: The ability to passively detect SLA violations would allow providers to quickly

respond to QoS issues and deliver better service to customers. Customers can be more confident

about the service they receive from providers. It would ensure that the legal contract between

providers and customers is not violated.

8

2. Problem Statement

2.1 Defining SLA

From investigating state-of-the-art SLA from service providers, we generalize SLA and

translate them from plain English to a data structure. Most state-of-the-art SLA define violations

in terms of different metrics (e.g. latency, throughput threshold) and guarantee a maximum

fraction of violations within a time interval (e.g. days, hours, weeks). In this paper, we focus on

monitoring latency guarantees as follows:

• For each < 𝑆𝐿𝐴_𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 >, we guarantee less than < 𝑆𝐿𝐴_𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒 > violations.

• For each packet, an RTT greater than < 𝑇 > is a violation.

Figure 1. Examples of latency guarantees for state-of-the-art SLA from Comcast and Verizon. Each

defines a latency threshold and a time interval at which the SLA applies [2] [3].

Usually SLA are defined across different regions (e.g. US, Europe, Asia) as different

performance guarantees are possible depending on available resources and infrastructure. For

example, an SLA for a specific region (e.g. US) may include:

• For every hour, we guarantee less than 99% SLA violations

• For each packet, an RTT greater than 50 ms, is considered a violation

9

Our abstraction of SLA allows us to keep track of whether the percentage of violations

that occur within a timeframe is acceptable. The abstraction is broken down in to fields and state

variables as shown in Table 1. Fields are constant whereas state variables change with each time

interval.

Table 1: SLA abstraction with field and state variables

We update this SLA as packets are received using the logic in Figure 1. We keep track of

the percentage of violations that occur within a certain time interval and update that time interval

depending on the current time (extracted from packet timestamps). Henceforth, we use latency

and roundtrip time (RTT) interchangeably.

10

Figure 2. Flowchart describing the logic used to update SLA abstraction

 Monitoring SLA is useful for both customers and service providers. A customer offering

a service (e.g. CDN) could be interested in knowing whether an ISP is keeping its promises. An

ISP would want to take action if a customer is at risk of having violated a SLA.

2.2 Scalable Passive Monitoring of RTT

We develop algorithms and data structures to passively monitor the latency of TCP

packets in real-time on a hardware switch. We focus on TCP traffic because it accounts for the

majority of internet traffic. We uniquely identify a TCP/IP connection using a flow ID which

contains the bi-directional 4-tuple and sequence/acknowledgment (SEQ/ACK) numbers

extracted from packet headers. More specifically, the flow ID consists of the following packet

headers:

• Source IP

• Destination IP

• Source Port

• Destination Port

• SEQ/ACK numbers

11

The 4-tuple in the flow ID is bidirectional because a sender and receiver will have the same

combinations of IP addresses and port numbers but with the source and destinations swapped.

We identify both the sender and receiver with the same flow ID.

 We assume that we are running a passive monitoring scheme on a network switch that is

close to a host. Monitoring close to one end is representative of how SLA will be monitored by a

customer or provider (near the end hosts). It also removes overhead and the need to keep per-

flow state for both ends of each flow. The network switch monitors outgoing packets and

incoming ACKs where each packet-acknowledgment pair produces an RTT sample that is

either:

1. High-latency: sampled RTT exceeds the latency threshold (Δ𝑡 > 𝑇)

2. Low-latency: sampled RTT does not exceed the latency threshold (Δ𝑡 ≤ 𝑇)

3. Unknown: sampled RTT may not be valid or representative.

Note that a high latency packet that is above the RTT threshold T is different from a SLA

violation which limits the percentage of violations within a certain time frame (see section 2.1).

We rely on the packet-acknowledgment pairing and match outgoing packets with their

incoming ACKs (differentiated using TCP flags and payload length). For each outgoing packet,

we use the flow ID and expected ACK number (e-ack) which is calculated from the outgoing

packet’s size and SEQ number to match incoming ACKs with the stored outgoing packets. The

difference between the timestamps of the outgoing packet and its corresponding ACK, (Δ𝑡) is

used to calculate a RTT sample.

 It is not feasible to monitor all network traffic at line rate because of the memory and

computational restrictions imposed by hardware as well as some of the vagaries of TCP.

Therefore, it is important to consider how packets are sampled. We must be unbiased in how

12

packets are sampled in determining SLA compliance. Bias towards high latency packets could

lead to an incorrect classification of a SLA violation while bias towards low latency packets

could lead to a missed classification of a SLA violation. We want to avoid saying an SLA is

violated when it is not and vice versa. Therefore, the sampling rate (the percentage of network

traffic sampled) is important since memory restrictions make it impossible to be able to monitor

all packets within the time-frame defined by the SLA. We also want to ensure that we are

detecting all high latency packets accurately. Therefore, we use true positive rate which is the

percentage of high latency packets that are detected by our algorithms and data structures.

13

3. Accurate Detection of SLA Violations

In this section, we describe an ideal algorithm to passively measure RTT. We define an

algorithm to be ideal if it makes all possible RTT measurements with 100% accuracy using the

minimum amount of memory. We assume that each outgoing packet receives a matching

incoming ACK.

3.1 Ideal Algorithm

 An easy, intuitive solution to measuring RTT is to take each outgoing packet and store

the flow ID, expected ACK, and timestamp (t) in a data structure without memory constraints

(e.g. dictionary). With this information, we can then match incoming ACKs with outgoing

packets and calculate RTT as the difference between their timestamps. This will guarantee 100%

accuracy since we assume that there is a 1-to-1 correspondence between packets and ACKs.

ACKs that match an outgoing packet stored in the data structure are defined as a matched

incoming ACKs and those that do not are defined as unmatched incoming ACKs. Outgoing

packets that have been stored for longer than the RTT threshold are considered expired.

Maintaining the assumption that every packet is guaranteed to receive an ACK, we can

implement the ideal algorithm using a queue. The queue stores outgoing packets that have not

exceeded the T. If a packet is stored for longer than the T, then it is considered expired and

removed. This allows incoming ACKs to determine whether their corresponding outgoing

packets exceed or do not exceed the threshold based on whether or not they are in the queue. We

describe how outgoing and incoming packets are handled in detail below:

14

• Expired packet: Remove from queue since the latency exceeds 𝑇

• Outgoing packet: Record the flow ID, expected ACK, and timestamp and add

<fid, e-ack, t> to back of the queue.

• Matched incoming ACK: The corresponding outgoing packet has not exceeded

the latency threshold so it is classified as low-latency. Remove matched packet

from queue.

• Unmatched incoming ACK: The corresponding outgoing packet must have been

expired so it is classified as high-latency.

Figure 3: Queue in the ideal algorithm. Outgoing packets (P6) are added to the tail of the queue.

Expired packets are removed from the queue (P2). Incoming ACKs that match an outgoing packet

in the queue do not exceed the latency threshold and are low-latency (P4-ACK4). Incoming ACKs

that do not match an outgoing packet in the queue do exceed the latency threshold and are high-

latency (ACK2) since the outgoing packet (P2) must have expired.

15

The queue achieves 100% accuracy because the arrival of an ACK will produce a high or

low latency classification based on whether or not the matching packet is or is not in the queue,

which is equivalent to whether the matching packet has or has not exceeded the RTT threshold.

It also does not use any more memory than needed because it only keeps track of packets that

have not already exceeded the RTT threshold.

3.2 Delayed and Cumulative ACK

 The ideal algorithm in Section 3.1 does not account for the fact that, in TCP,

acknowledgments can be delayed, aggregated, or lost. Hosts often combine multiple ACKs into

one packet to reduce load on the network as shown in Figure 4. This is possible because TCP

implements “cumulative ACK” which implies that a receiver has received all previous packets

successfully.

 TCP acknowledgments can also be delayed because of delayed ACK. Delayed ACK is a

mechanism in which the receiver waits to receive a certain number of bytes before sending an

ACK within a certain amount of time (delayed ACK timeout). Holding ACKs up to the timeout

gives the receiver the opportunity to piggy-back ACKs on outgoing data packets. Because

subsequent data packets is common in data transfer (e.g. loading a webpage), delayed ACK

reduces overhead and improves network performance by giving hosts a timeframe to aggregate

ACKs.

16

Figure 4: TCP cumulative acknowledgment. Two data packets being sent from host A are

acknowledged by one ACK packet from host B [8].

We discussed the issues that cumulative and delayed ACK cause with respect to the

algorithm described in Section 3.1. Previously, we assumed that each outgoing packet receives a

matching incoming ACK. If a receiver aggregates multiple ACKs into one packet because of

cumulative ACK, we can no longer make that assumption. Thus, if a matched incoming ACK is

meant to acknowledge multiple packets, we must do extra work to check to check if it

corresponds to other previous outgoing packets in the queue if we want to sample them

(discussed in section 4.3). However, if an outgoing packet experiences delayed ACK and

exceeds T, we do not want to count that as a sample. Delayed ACK may cause RTT samples to

exceed the latency threshold, leading to high latency packets that are not at the fault of the

service provider but rather the TCP protocol. Classifying such packets as high-latency is

erroneous. It is difficult, from passive observations of packets alone, to know whether a

17

receiving host used delayed ACK in a RTT sample. However, the likelihood that it experienced

delayed ACK can change depending on the size of the packet. Data transmissions often contain

subsequent full-size packets followed by a small packet. It is likely that the small packet would

experience delayed ACK since the receiver likely did not receive enough data to trigger an

acknowledgment. This scenario is shown in Figure 5, where a server receives a full-size packet

followed by a small-size packet but does not send an acknowledgment because it continues to

wait for more data to reach its threshold

Figure 5: Delayed ACK scenario where a client sending a full-size packet followed by small packet

does not trigger acknowledgement from the server [7].

To avoid mistaking packets that experience delayed ACK for high-latency packets, we ignore

outgoing packets that likely experienced delayed ACK by performing an extra check on the size

of the matched outgoing packets. Each flow in a TCP connection agrees upon a maximum

segment size (MSS) that is determined during the TCP handshake which caps the amount of data

that can be transmitted in a single packet. We rely on this header and filter out packets that are

18

smaller than the MSS. To avoid missing a potential high latency packet, we revise the threshold

for an expired packet (currently equals T) and add the delayed ack timeout 𝑇𝑑𝑎. We can only be

certain that an outgoing packet that has not received an ACK is high-latency if it has exceeded

𝑇 + 𝑇𝑑𝑎. We revise the algorithm from section 3.1 and assume that receiving hosts use delayed

ACK as follows:

• Expired packet: Remove from queue if 𝛥𝑡 > 𝑇𝑑𝑎 + 𝑇 since we can be certain

that the packet experiences high latency not just due to delayed ACK.

• Outgoing packet: Record the flow ID, expected ACK, and timestamp and add

<fid, e-ack, t> to back of the queue.

• Matched incoming ACK: If the size of the matched outgoing packet is <MSS,

then we remove it from the queue since it might have experienced delayed ACK.

If not (=MSS), then calculate Δ𝑡 and remove matched packet from the queue. If

Δ𝑡 > 𝑇, then we have detected a high latency sample.

• Unmatched incoming ACK: The corresponding outgoing packet must have been

expired so we have detected a high latency sample.

19

4. Hardware-friendly Algorithm

Implementing the algorithm described in Section 3.2 in hardware is not feasible due to

memory restrictions and limited computing resources. Passively checking for expired packets is

too expensive given the throughput of real traffic. In this section, we describe data structures and

algorithms that are hardware-friendly.

4.1 Hash-Indexed Array of Packets

Since we need constant time processing per packet, we replace the queue of packets from

Section 3.2 with a hash-indexed array. Outgoing packets are stored in the array by hashing the

packet's <fid, e-ack> to generate an index within the length of the array and storing <fid, e-ack,

t>. Henceforth, we assume that hashing a packet <fid, e-ack, t> means only hashing <fid, e-ack>.

Incoming ACKs are hashed in the same way to generate an index and are checked against the

outgoing packet stored at that index. Henceforth, in the following examples, we assume that the

arrays are indexed starting from 1.

 As mentioned earlier in section 3.2, we no longer assume that each outgoing packet is

guaranteed to receive a corresponding ACK because of cumulative ACK. In section 3.2, we

removed expired packets and assumed that an unmatched incoming ACK produce a high-latency

sample. However, since we aim to remove the overhead in passively checking for expired

packets, we revise this heuristic and store each outgoing packet for long enough for them to

receive an ACK even if it takes longer than the T. How long should we wait? Since high latency

packets are only counted when a matching incoming ACK has been received, we must define a

new threshold S > T where S represents the time at which we assume an outgoing packet will not

receive an ACK. We will call S the stale threshold.

20

How do we remove the check for expired packets? An important invariant of this data

structure is that hash collisions gives the opportunity to check how long a packet has waited for a

matching ACK. If an outgoing packet's hash matches a packet already stored at that index

(collision), then the stored packet has not received an ACK yet. Based on this knowledge, we can

make decisions on whether a packet will most likely not receive an ACK on hash collisions. We

describe how outgoing and incoming packets are handled:

• Outgoing packet: If packet size is full size (=MSS), hash the packet <fid, e-ack,

t> to produce index. Check to see if a packet is already stored. We only store full-

size packets since small packets are likely to experienced delayed ACK.

o collision: If Δ𝑡 > 𝑆, evict current entry since it is stale and we assume it

will not receive an ACK. Replace with new packet. Otherwise, ignore the

new packet (drop the sample).

o no collision: Insert packet at index.

• Incoming ACK: Hash the packet <fid, e-ack, t> to produce index. Check if it

corresponds to an outgoing packet stored in the array.

o matched: If Δ𝑡 > 𝑇, then the sample is high latency. Else, it is low-

latency. Remove the stored packet.

o unmatched: The corresponding outgoing packet must have been evicted

so we have detected a high latency sample.

21

Figure 6: Hash-indexed array showing a packet’s flow ID, expected ACK, and timestamp being

hashed to compute an index into the hash-indexed array. The array stores outgoing packets that

have not received an ACK.

We illustrate the described algorithm using the values in the hash-indexed array shown in

Figure 6. We see that outgoing packet <2, 202, 4> was hashed into index 6 and stored there. If

we receive an incoming ACK, then the hash of <fid, e-ack, t> is computed and the entry in the

resulting index is checked for a match. If the incoming ACK was <2, 202, 8>, then it will be

hashed to index 5 and checked against the packet currently stored there. Since the fid and e-ack

match, the time difference Δ𝑡 would be calculated, producing a RTT sample of Δ𝑡 = 4.

However, if a hash collision occurs (ex. if the incoming ACK hashed to index 6 in Figure

6) and the stored packet has not exceeded 𝑆, then the outgoing packet would not be sampled.

This could be problematic since it would decrease the sampling rate. Missing a sample could

lead to an incorrect conclusion that the SLA is violated (e.g. if the sample could lead to the

difference between exceeding or not exceeding the percentage of violations defined by the SLA).

This issue motivates the need for the optimization in the following section: using multiple stages

of hash functions.

22

4.2 Multiple Stages of Hashing

The next step in our design is to maximize the sampling rate by reducing the number of

hash collisions. One common technique in data plane switching is to handle hash collisions by

splitting the hash-indexed array into 𝑑 disjoint arrays of equal size indexed with 𝑑 different hash

functions. Note that this does not use any more memory than in the hash-indexed array in

Section 4.1 (where 𝑑 = 1) since we split the fixed memory allocation. With multiple stages of

hashing, instead of dropping outgoing packets as a result of collisions, we hash the outgoing

packet into another array using a different hash function. The trade-off is that storing outgoing

packets and matching incoming ACKs are more expensive since it requires d lookups instead of

1 lookup because each array needs to be checked. However, since 𝑑 is a fixed, lookups are still

done in constant time and can be pipelined in a network switch. That said, depending on d, this

design could introduce excessive hash collisions and dropped samples since each stage would

have less memory to work with. Therefore, 𝑑 must be tuned depending on the nature of the

network traffic.

Figure 7. 3-stage hash-indexed array. A packet is hashed into the next stage if the packet cannot

be stored in the previous stage as a result of hash collision.

23

Figure 7 shows a d-stage hash-indexed array with three stages. Outgoing packets <1, 100,

0> and <2, 200, 1> were hashed using 𝐻1 and stored into the first array. When outgoing packet

<3, 300, 2> arrived, it collided with one of the entries in the first array so it is hashed using 𝐻2

and stored in the second array. When the ACK arrives for that packet (ex. <3, 300, 6>), it is

hashed using 𝐻1 and a match is not found in the first array. Then it is hashed using 𝐻2 and a

match is found so Δ𝑡 is calculated to be 6 − 4 = 2. The stored packet <3, 300, 2> would then be

removed (not shown). The hash-indexed array in section 4.1 is a degenerate case of the d-stage

hash-indexed array where 𝑑 = 1. Note that if 𝑑 = ∞, each stage would have an array of size 1

and would achieve perfect correctness as no outgoing packets would be dropped.

4.3 Handling Cumulative ACK

Since incoming ACKs are often meant to acknowledge multiple outgoing packets

because of cumulative ACK, we describe a routine that removes all packets acknowledged by the

incoming ACK as opposed to just the matched packet. Henceforth, we will call this the

backtracking routine. Currently, if an incoming ACK is meant to acknowledge two outgoing

packets in the data structure, only the most recent outgoing packet is removed while the other

will stay in the array until a hash collision occurs after it has been stored for longer than S.

On each matched incoming ACK, using the size of the stored packet, we can infer the

expected ACK of the previous packet by subtracting the size from the acknowledgment number

of the incoming ACK. We can then hash and check the array for the previous packet and remove

it if a match is found. This requires storing the size of each packet in addition to <fid, e-ack, t>.

Figure 8 shows the revised hash-indexed array with an added field to store the size.

24

Figure 8: Backtracking routine when incoming ACK matches last entry.

We demonstrate through example how the backtracking routine handles cumulative

ACK. In Figure 8, suppose that an incoming ACK <2,202,6> matches the packet stored in the

last index of the array. Since the size of the stored packet is 2, we can subtract 2 from the

expected ACK of the stored packet to figure out the expected ACK of the previous packet in the

flow. We then do a lookup on the previous packet to see if the incoming ACK is meant to

acknowledge the previous packet as well. In the example, the incoming ACK also matches the

first entry in the array so the first entry would be also be removed by the backtracking routine.

This results in a more efficient use of memory as outgoing packets acknowledged by cumulative

ACK are properly removed so there will be fewer dropped samples.

25

5. Python Prototype

We built a prototype to run trace-driven simulations to analyze these algorithms and data

structures using Python as the high-level language for implementation. In our prototype, we

assume that TCP packets include Ethernet, IPv4, and TCP headers, though it can easily be

changed to support other protocols such as IPv6. Some of the libraries that were used included:

• scapy: Provides libraries and functions used to process and abstract packet headers

o https://scapy.net/

• mmh3: Implementation of the murmur hash

o https://pypi.org/project/mmh3/2.0/

o Murmur hash was used to ensure an even distribution of hashes such that the

indices they produced would be uniformly distributed.

• pygeoip: Libraries for region lookup based on IP address

o https://pypi.org/project/pygeoip/

Simulations were run using Python version 2.7 on a 2016 Macbook Pro running MacOS

10.13.3 and a 3.3 GHz Intel Core i7 CPU. The total lines of code that includes the

implementations of the revised ideal algorithm in section 3.2 and the d-stage hash-indexed array

in section 4.2 totals to about 800 lines of code.

https://scapy.net/
https://pypi.org/project/mmh3/2.0/
https://pypi.org/project/pygeoip/

26

6. Evaluation

In this section, we discuss the evaluation of the performance of our algorithms and data

structures. The revised ideal algorithm in section 3.2 serves as a ground truth in evaluating the

performance of our constant-memory algorithms. In section 6.1, we describe the tuning of

different parameters. In section 6.2, we analyze the tradeoff between accuracy and memory

overhead and the performance improvement of the backtracking routine described in section 4.3.

Experiment setup: We tested our methods by running simulations using the Python prototype

described in section 5 on a university data center trace. This trace used was recorded from a

university data center in 2010, consisting of approximately 100 million packets with about

10,000 packets per second [5]. The primary use of this data center is for students and faculty of

the university, providing services including Web services, E-mail servers, and distributed file

systems. The university trace was used because the data center is located close to the students

which is suitable for the application of our algorithms in verifying SLA compliance. We set

T=50 ms since it is common among SLA in the US and would provide enough high latency

packets to better diversify our metrics with different parameters.

Metrics: We define memory use by the number of entries used in the data structures described in

section 3 and 4. We are also interested in minimizing the number of dropped samples in our

methods so we use sampling rate to measure the confidence in our decisions on whether the

percentage of high latency packets exceeds the threshold defined in a SLA or not. We use true

positive rate and false negative rate to measure the number of high-latency packets that are

correctly classified as high-latency in our algorithms. Henceforth, we refer to use accuracy and

true positive rate interchangeably.

27

6.1 Tuning

Number of stages: Assuming we allocate a fixed amount of memory for our data structures, we

tune the number hash stages d and divide the memory equally among each stage. As d increases,

the amount of memory for each stage decreases but allows for more collisions to occur.

However, if d is too high, a small memory allocation for each stage could lead to an

unnecessarily high number of collisions as well. We analyze the tradeoff between the number of

stages and accuracy.

Figure 9: True positive rate vs. number of stages for three fixed memory values.

Figure 9 shows how the number of stages d impacts accuracy for different fixed memory

allocations. We plot true positive rate vs. memory tradeoff for 1,2,5, and 8-stage hash-indexed

arrays in Figure 10. We observe that as d increases from 1-5, true positive rate improves.

However, as d increases from 5-8, the true positive rate worsens. This is consistent with our

expectation that while a higher number of stages allows more hash collisions to occur with fewer

packet drops, using too many stages could lead to an unnecessarily high number of collisions and

an inefficient use of memory. We find that using d = 5 stages yields the highest accuracy for all

28

tested memory allocations and gives the optimal balance between allowing for more hash

collisions while maintaining appropriate size for each stage. This balance is trace-dependent as a

different traffic may require more stages or more memory for each stage (e.g. higher throughput,

many flows with high traffic). It is clear that the d = 1 case is described in section 4.2 exhibited

the worst true positive rate, showing that applying d-stage hashing improves performance.

Henceforth, we use d=5 for all simulations.

Figure 10: True positive rate vs. memory use for different values of d.

Stale threshold: The stale threshold that yields the best performance is dependent on the trace.

For example, a trace with overall higher latency would require a higher stale threshold to ensure

that more packets are sampled. We tune the stale threshold based on false negative rate (the

number of high-latency packets that are not detected) since we aim to minimize the number of

missed high-latency packets. In theory, increasing the stale threshold would give outgoing

packets more time to receive an ACK whereas decreasing the stale threshold may lead to

removing outgoing packets too early before they receive their corresponding ACKs. We plot the

29

false negative rate vs. stale threshold S for 100 entries in Figure 11. Since we want to minimize

false negative rate and detect high-latency packets at high accuracy, a stale threshold of 1.6 ∗ 𝑇

is chosen to be optimal. This is consistent with the nature of the packet trace as Figure 12 shows

the median RTT per flow. There is a high percentage of packets that have a RTT of around 80

ms. Therefore, setting a threshold that captures all of these samples just long enough for them to

receive their corresponding ACK packets would be most memory-efficient. Henceforth, unless

otherwise mentioned, we use 𝑆 = 1.6 ∗ 𝑇 where T=50 ms.

Figure 11: False negative rate vs. S for 100 entries.

Figure 12: Distribution of median RTT per flow for a sample of the data center trace.

30

6.2 Memory and Performance Tradeoff

We plot the true positive rate vs. memory tradeoff in Figure 13 using the tuned

parameters mentioned in Section 3.1 for the d-stage hash-indexed array. The true positive rate

converges to 100% as memory increased. We expect this since increasing memory allows for the

storage of more outgoing packets without suffering from the loss of samples. Overall, the

performance of the d-stage hash indexed array with respect to true positive rate (correctly

detecting high latency packets) is high. We achieve nearly 100% accuracy only using about a

quarter of the maximum amount of memory used in the ideal case (~300 entries vs. ~1200

entries). In Figure 14, we plot the sampling rate vs. memory use for different values of S to show

how different stale thresholds can impact sampling rate. The value 𝑆 = 1.6 ∗ 𝑇 yields the highest

sampling rate for memory allocations up to ~125 entries. With the allocated memory exceeds

~125 entries, a higher stale threshold (S=3.0*T in the figure) begins to yield a higher sampling

rate. Once the data structure has enough memory to samples to the point that collisions are not

likely to occur, a higher stale threshold becomes advantageous. We achieve a sampling rate of

around 40-45% which is high considering that most network hosts implement cumulative ACK.

Only packets that produce RTT samples are considered in the sampling rate. If there are packets

that are ACK’d by a cumulative ACK, then those are not counted in the sampling rate. Most

systems combine two packets into one ACK, so a sampling rate of 40-45% means we consider

most of the packet trace.

31

Figure 13: True positive rate vs. memory use using tuned parameters (blue) compared to

maximum usage of the ideal algorithm (red).

Figure 14: Sampling rate vs. memory for different values of S.

32

6.3 Performance of Backtracking

We now evaluate how the backtracking routine described in section 4.3 boosts

performance with respect to sampling rate and true positive rate. We expect backtracking to yield

more true positives and a higher sampling rate for a fixed memory allocation since the routine

removes outstanding packets that have already been acknowledged by a cumulative ACK. In

Figure 15, we plot the true positive rate vs. memory tradeoff with and without backtracking. The

backtracking routine strictly improves true positive rate for a given memory allocation by 3-4%

and the improvement is greater for lower memory allocations. With less space to store packets,

the impact of keeping packets that will never receive an ACK in the array increases since more

samples would be dropped.

 We plot sampling rate vs. S with and without backtracking for a fixed memory allocation

in Figure 16. We see that the impact of backtracking which removes outgoing packets that are

acknowledged by cumulative ACK increases the sampling rate by 3-4%. Without backtracking,

the impact of using a higher S decrease the sampling rate more than with backtracking.

Backtracking creates more space for outgoing packets to be stored so having a higher stale

threshold will more slowly impact the sampling rate when backtracking is not used.

33

Figure 15: True positive rate vs. memory use with and without backtracking.

Figure 16: Sampling rate vs. S with and without backtracking using a memory allocation of 50

entries in the array.

34

7. Related Work

Several works have explored passively monitoring TCP performance. The emergence of

programmable switches has made network monitoring at line rate a possibility, allowing for

network measurement in real-time on the data plane [11]. Researchers have begun to design and

develop algorithms to take advantage of this technology. Ghasemi et al. developed a system

called Dapper that analyzes TCP performance in real-time near the end-hosts [9]. Dapper detects

TCP bottlenecks and then focuses on diagnosing those troubled connections. They built a

prototype in P4 (a protocol independent language that allows a user to specify how packets are

processed and forwarded) and tested it on real and synthetic network traffic, finding that

performance monitoring in the data plane removes the overhead of packet capturing and

processing from the end-hosts, allowing the tool to diagnose results in real-time [9].

The main issue with passive measurement is the amount of memory required to store

packet-level information. Researchers have sought to reduce the amount of storage and overhead

needed for passive measurement. Some researchers have experimented with to compressing

packets using compression algorithms (e.g. gzip) and removing unneeded fields such as the

packet payload and other headers depending on the metric of interest [16] [17]. Peuhkuri

compressed packet storage by only storing differences between consecutive packets in the same

flow [17]. Sampling traffic is also a common technique to reduce the amount of overhead

required for passive network measurement [15]. However, not all sampling techniques yield

good results so it is important to ensure that sampling is unbiased and performs well for the

application it is applied to [6]. For instance, Paxson et al. implementing a sampling technique

that had difficulty analyzing flow-level statistics [16].

35

Although there has been a lot of work in passive network measurement, because of the

amount overhead required, monitoring network performance in practice is mostly done actively

by injecting packets with the purpose of gathering flow or network statistics into the network.

For example, one active measurement method measures available bandwidth by sending probes

at increasing rates and monitoring the rate that packet delays increase [19]. Some have explored

the use of the OpenFlow protocol and SDN controllers to generate measurement probes and

direct them around the network [20]. Kim et al. used P4 to prototype an abstraction that uses data

packets to gather information related to the state of a network switch and diagnose performance

problems [13].

Significant work exists on monitoring SLA has focused on architectural design because

of the challenges inherent in monitoring a large system. One successful architecture that is

implemented is service oriented architecture (SOA) which is where services are treated as

independent entities in a system that rely on each other [4]. Monitoring SLA between services in

these systems is difficult because a single service malfunction could lead to issues with the entire

system [4]. Some researchers have designed an architecture that takes these into account by

introducing entities that measure, analyze, and make decisions [4]. Another challenge with SLA

monitoring is that the notion of verifying SLA compliance usually emerges after services have

been deployed. Xiao et al. designed a framework to monitor SLA when a service architecture is

being designed rather than after it has already been deployed [23]. They built a prototype that

allows system integrators to verify nonfunctional requirements defined in SLA when composing

services [23].

Because carriers use different metrics and depending on the type of service (SLA with

internet service providers use different metrics than data center providers), other work related to

36

SLA focuses on developing a common language and structure for SLA. Lamanna et al.

investigated end-to-end quality of service and introduced a language for defining SLA [14]. Rana

et al. focused on identifying different types of penalty clauses in SLA and how they can be

enforced from SLA monitoring [18]. SLA specifications can also be based on the type of service

such as the Web Service Level Agreement framework designed for web services [12]. SLA

extends further than internet service providers. Cloud service providers also use SLA to specify

the resources (e.g. computing and storage) and performance they offer [24]. Ye et al. developed

an algorithm to detect whether cloud service providers violate SLA clauses related to the

physical memory size in the virtual machine [24]. They find from real experiments that their

algorithm can detect malicious cloud service providers who attempt to conceal SLA violation

[24]. There has not been significant work in utilizing passive measurement for the specific

application of monitoring SLA compliance.

 In Section 4.2, we utilize a common data-plane switching technique to split arrays into

multiple arrays indexed by d different hash functions. Sivaraman et al. designed a detection

algorithm to identify flows with large traffic volumes which uses a pipeline of hash tables similar

to the d-stage hash-indexed arrays used in Section 4.2 [21].

37

8. Conclusion

In this paper, we proposed an algorithm and data structure to passively measure RTT

within the memory and processing constraints of hardware switches. Our algorithm measures

RTT by using multiple hash-indexed arrays each indexed by a different hash function to store

outgoing packets and matching incoming ACK packets. We take the difference between their

timestamps to produce RTT samples. We built a prototype in Python and evaluated our method

using a real university datacenter trace and an ideal algorithm as a ground truth, showing that we

achieve high sampling rate and high true positive rate with respect to detecting high-latency

packets. Furthermore, good performance indicates that our measurement scheme can be applied

to monitor SLA compliance and determine whether the percentage of high-latency packets

within a time frame is acceptable.

38

9. Future Work

Because we designed our algorithm and data structure to be hardware friendly, future

work would require implementing the prototype on a programmable hardware switch (e.g. using

P4) and deploying the switch in a real-world system. Further studies might explore the

computational time and analyze the overhead required to process packet headers, hash them, and

perform lookups. Since the number of packets that pass through a network switch in a given

second is so large, the computational speed of our algorithm and how it is implemented could

greatly impact performance.

 Future work could explore a smarter allocation of memory in the d-stage hash-indexed

array. Currently, we split a memory allocation in to d equally sized partitions. However, the

probability that a hash collision occurs in each of stages decreases as a packet moves through the

pipeline. One might design a way to take advantage of this property to make more efficient use

of memory.

If this measurement scheme is deployed to heavy network traffic, further studies could

explore adaptive sampling that first detect problematic flows and change the sampling rate based

on whether the flow is likely to experience performance issues. Perhaps an algorithm could

adjust its sampling rate and learn based network traffic behavior.

39

References

[1] How many packets per second per port are needed to achieve wire-speed?, 2009. Accessed:

2018-05-06.

[2] Service level agreement for wholesale dedicated internet, Comcast, 2018. Accessed: 2018-

05-06.

[3] Service level agreements, Verizon, 2018. Accessed: 2018-05-06.

[4] D. Ameller and X. Franch. Service level agreement monitor (salmon). In Composition-Based

Software Systems, 2008. ICCBSS 2008. Seventh International Conference on, pages 224–227.

IEEE, 2008.

[5] T. Benson, A. Akella, and D. A. Maltz. Network traffic characteristics of data centers in the

wild. In Proceedings of the 10th ACM SIGCOMM conference on Internet measurement, pages

267–280. ACM, 2010.

[6] N. Duffield. Sampling for passive internet measurement: A review. Statistical Science, pages

472–498, 2004.

[7] K. R. Fall and W. R. Stevens. TCP/IP illustrated, volume 1: The protocols. addison-Wesley,

2011.

[8] N. Feamster. COS461 lecture notes, 2017. Accessed: 2018-05-06.

[9] M. Ghasemi, T. Benson, and J. Rexford. Dapper: Data plane performance diagnosis of tcp. In

Proceedings of the Symposium on SDN Research, pages 61–74. ACM, 2017.

[10] J. Goo, R. Kishore, H. R. Rao, and K. Nam. The role of service level agreements in

relational management of information technology outsourcing: an empirical study. MIS

quarterly, pages 119–145, 2009.

[11] A. Gupta, R. Birkner, M. Canini, N. Feamster, C. Mac-Stoker, and W. Willinger. Network

monitoring as a streaming analytics problem. In Proceedings of the 15th ACM Workshop on Hot

Topics in Networks, pages 106–112. ACM, 2016.

[12] A. Keller and H. Ludwig. The wsla framework: Specifying and monitoring service level

agreements for web services. Journal of Network and Systems Management, 11(1):57–81, 2003.

[13] C. Kim, A. Sivaraman, N. Katta, A. Bas, A. Dixit, and L. J. Wobker. In-band network

telemetry via programmable dataplanes. In ACM SIGCOMM Symposium on SDN Research

(SOSR), 2015.

[14] D. D. Lamanna, J. Skene, and W. Emmerich. Slang: a language for service level

agreements. IEEE Computer Society Press, 2003.

[15] V. Mohan, Y. J. Reddy, and K. Kalpana. Active and passive network measurements: a

survey. International Journal of Computer Science and Information Technologies, 2(4):1372–

1385, 2011.

40

[16] V. Paxson, J. Mahdavi, M. Mathis, and G. Almes. Framework for ip performance metrics.

Framework, 1998.

[17] M. Peuhkuri. A method to compress and anonymize packet traces. In Proceedings of the 1st

ACM SIGCOMM Workshop on Internet Measurement, pages 257–261. ACM, 2001.

[18] O. Rana, M. Warnier, T. B. Quillinan, and F. Brazier. Monitoring and reputation

mechanisms for service level agreements. In International Workshop on Grid Economics and

Business Models, pages 125–139. Springer, 2008.

[19] M. Roughan. Fundamental bounds on the accuracy of network performance measurements.

In ACM SIGMETRICS Performance Evaluation Review, volume 33, pages 253–264. ACM,

2005.

[20] E. Rye and R. Beverly. Sdn as active measurement infrastructure. arXiv preprint

arXiv:1702.07946, 2017.

[21] V. Sivaraman, S. Narayana, O. Rottenstreich, S. Muthukrishnan, and J. Rexford. Heavy-

hitter detection entirely in the data plane. In Proceedings of the Symposium on SDN Research,

pages 164–176. ACM, 2017.

[22] C. Williamson. Internet traffic measurement. IEEE Internet Computing, 5(6):70–74, 2001.

[23] H. Xiao, B. Chan, Y. Zou, J. W. Benayon, B. O’Farrell, E. Litani, and J. Hawkins. A

framework for verifying sla compliance in composed services. In Web Services, 2008. ICWS’08.

IEEE International Conference on, pages 457–464. IEEE, 2008.

[24] L. Ye, H. Zhang, J. Shi, and X. Du. Verifying cloud service level agreement. In Global

Communications Conference (GLOBECOM), 2012 IEEE, pages 777–782. IEEE, 2012.

