
Lucid: A Language for Control in the Data Plane
John Sonchack

Princeton University

jsonch@princeton.edu

Devon Loehr

Princeton University

dloehr@princeton.edu

Jennifer Rexford

Princeton University

jrex@cs.princeton.edu

David Walker

Princeton University

dpw@cs.princeton.edu

ABSTRACT
Programmable switch hardware makes it possible to move fine-

grained control logic inside the network data plane, improving

performance for a wide range of applications. However, applications

with integrated control are inherently hard to write in existing data-

plane programming languages such as P4. This paper presents Lucid,

a language that raises the level of abstraction for putting control

functionality in the data plane. Lucid introduces abstractions that

make it easy to write sophisticated data-plane applications with

interleaved packet-handling and control logic, specialized type

and syntax systems that prevent programmer bugs related to data-

plane state, and an open-sourced compiler that translates Lucid

programs into P4 optimized for the Intel Tofino. These features

make Lucid general and easy to use, as we demonstrate by writing

a suite of ten different data-plane applications in Lucid. Working

prototypes take well under an hour to write, even for a programmer

without prior Tofino experience, have around 10x fewer lines of

code compared to P4, and compile efficiently to real hardware. In a

stateful firewall written in Lucid, we find that moving control from

a switch’s CPU to its data-plane processor using Lucid reduces the

latency of performance-sensitive operations by over 300X.

CCS CONCEPTS
• Networks→ Programmable networks; Network dynamics;
• Computer systems organization→ Reconfigurable computing;
Pipeline computing; • Software and its engineering→Distributed
programming languages; Concurrent programming languages; Ab-
straction, modeling and modularity.

KEYWORDS
network control, data plane programming abstractions, syntactic

constraints, ordered type-and-effect system

ACM Reference Format:
John Sonchack, Devon Loehr, Jennifer Rexford, and David Walker. 2021.

Lucid: A Language for Control in the Data Plane. In ACM SIGCOMM 2021
Conference (SIGCOMM ’21), August 23–28, 2021, Virtual Event, USA. ACM,

New York, NY, USA, 17 pages. https://doi.org/10.1145/3452296.3472903

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

SIGCOMM ’21, August 23–28, 2021, Virtual Event, USA
© 2021 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 978-1-4503-8383-7/21/08. . . $15.00

https://doi.org/10.1145/3452296.3472903

1 INTRODUCTION
In the early days of Software-Defined Networking (SDN), controller

applications changed network behavior by updating the match-

action rules that switches use to forward packets. Unfortunately,

many interesting applications needed the switches to direct packets

to the controller (e.g., to learn about new flows and install new

rules in response), causing latency, overhead, and security vulner-

abilities. In addition, writing these applications was tricky, since

programmers had to reason about possible inconsistencies between

the switches and the controller due to delays in installing new rules.

As a result, few of these dynamic controller applications saw any

significant deployment in practice.

The emergence of programmable data-plane hardware has the

potential to change all that, by making it possible to move fine-

grained control logic into the forwarding engines of individual

switches. Modern hardware, i.e., a PISA pipeline [5], supports not

only flexible parsing and manipulation of packets, but also updates

to persistent state (such as register memory) that can be used to

affect the handling of future traffic.

Consider, for example, a stateful firewall that protects an enter-

prise from unsolicited traffic. By default, packets sent by external

hosts are dropped. Upon receiving outbound packets, the switch

state is updated to permit return traffic from the destination; after

a period of inactivity, the switch returns to dropping such pack-

ets. Having a controller handle these “events”—the arrival of the

first packet and the timeout after inactivity—introduces latency

and overhead, and the subtle risk that return traffic starts arriving

before the data plane is updated to permit it. Implementing this

logic directly in the data plane reduces reaction time, and avoids

the need for synchronization between controller and data plane.

The stateful firewall is just one of many examples. Figure 1

presents several other applications, along with their state and their

data-plane and control-plane components. Past researchers have

demonstrated that many of these applications, including load bal-

ancers [1, 15, 18], routers [15], and telemetry systems [30] benefit

substantially from data-plane implementations.

Despite this, writing applications that do network control inside

of PISA data planes is incredibly difficult. Languages like P4 offer

the abstraction of single-threaded packet processing that does little

(if any) state management. However, applications like the stateful

firewall require multiple threads, one for packet handling (e.g.,
forwarding permitted packets and dropping the rest) and several

more for control operations that manage local state (e.g., updating
the rules in response to both flow arrivals and timeouts).

Lucid is available at: https://github.com/princetonUniversity/lucid

https://doi.org/10.1145/3452296.3472903
https://doi.org/10.1145/3452296.3472903
https://github.com/princetonUniversity/lucid

SIGCOMM ’21, August 23–28, 2021, Virtual Event, USA John Sonchack, Devon Loehr, Jennifer Rexford, and David Walker

Application Data Plane Operations Control Plane Operations Shared State

Router get next hop update route forwarding database

Fault-Tolerant Router get online path probe link, reroute link and route statistics

MAC Learner get output port learn, age, STP MAC table

Flow Load Balancer count packets, get path set path flow stats, paths

Flowlet Load Balancer set, get path age flowlets flowlet hash table

NAT translate address allocate, pin, free address map and pool

TCPMigration adjust ack number migrate flow ack offset table

Stateful Firewall check flow add flow allowed flow set

Probabilistic Firewall check, add flow rotate (age) Bloom filters

Distributed Probabilistic FW check flow add, age, sync replicated Bloom filters

Sketch-based Query update sketch reset, decode approximate data structure

Telemetry Cache append packet record evict, free per-flow log

Figure 1: Example applications in groups: (1) Routing, (2) Connection-oriented services, (3) Security, and (4) Telemetry.

A programmer’s first challenge is simply expressing control with

packet processing abstractions, which requires using disjoint and

low-level primitives such as parsers, match-action units, and packet

recirculation. For more sophisticated control, such as distributed

route computation or a delayed scan for inactive flows, program-

mers must also carefully orchestrate PISA components that are

outside the scope of data-plane languages, such as programmable

queues and packet generators.

Beyond this, there is a second equally daunting challenge: operat-

ing on persistent state (registers) in the data plane. The demands of

line-rate constrain the Arithmetic Logic Units (ALUs) that operate

on registers in all sorts of nuanced ways. Control operations can be

complex and run up against these limits. Further, a PISA processor

is a pipeline where each register is associated with a single stage.

Multiple threads of control that share state must always access the

underlying registers in a consistent order.

None of the above constraints are enforced in the stateful primi-

tives of data-plane languages. So when compilation fails because

of inevitable programmer error, the failure often occurs in a target-

specific backend that is ill-equiped to provide meaningful source-

level programmer feedback. Faced with this, the programmer must

resort to a painful trial-and-error process of rewriting the program

and grappling with cryptic compiler errors, never sure when the

compiler will finally yield to the next tweak of the program.

Lucid: Simple, Event-driven Data-Plane Programming. This
paper introduces Lucid, a high-level programming language for

implementing control applications in PISA data planes.

Lucid programs are organized as multiple collaborating compo-

nents located either on a single switch or distributed across many

switches in a network. In Lucid, programmers program with high-

level, abstract events and handlers. Each event is named and carries

user-specified data, while its associated handler defines the atomic

stateful computation to perform when an event occurs. An event

could be a packet to process, a request to install a firewall entry, or

a probe from a neighboring switch to report a link’s status.

Events are also associated with times and locations to facilitate

coordination between control operations among different switches,

possibly with a delay. Programmers can write sophisticated control

logic without having to worry about the low-level details of custom

packet formats, parsers and deparsers, or having to “roll their own”

mechanisms for buffering and delayed information processing.

Lucid’s event-based abstractions for structuring applications and

coordinating control are complemented by a careful “correct-by-

construction” approach to stateful operations. Rather than allow

programmers to write event handler code that operates on state

in arbitrary ways, but may produce arbitrary failures in a PISA

compiler’s backend, Lucid introduces a persistent array abstraction

that is carefully designed to rule out illegal constructions. This

abstraction is supported by domain-specific syntactic constraints

and a novel type system:

• Syntactic constraints: We design a sublanguage of memops,
stateful operations that can execute in a single ALU of a PISA

switch. Memop definitions that cannot fit in a single ALU are

rejected, and source-level error messages point out exactly where

any such mistakes occur, making it easier for programmers to

understand how and why they must change the processing of an

individual control operation.

• Types and effects: We develop a novel ordered type-and-effect
system that limits the way programs interact with persistent

memory. Our type system tracks the order in which handlers

access registers and provides actionable source-level feedback

when there are inconsistencies. This feedback helps programmers

quickly identify control operations that must be changed (e.g.,
decomposed into multiple simpler operations).

Together, Lucid’s event-based abstractions and carefully-designed

stateful interface give programmers a natural and modular way

to express data-plane applications that interleave packet process-

ing with ongoing control operations and help them navigate the

difficulty of programming complex switch hardware.

The Lucid compiler shows how to map the above ideas to real

hardware—the Intel Tofino. Our compiler analyzes Lucid programs

and translates valid programs into Tofino-compatible P4_16. It also
optimizes them to reduce pipeline resource requirements.

We evaluate Lucid by implementing a diverse set of applications

including a stateful firewall, fault tolerant router, self-driving DNS

protection service, telemetry cache, and more. All programs had

5-10X fewer lines of code than their P4 equivalents and, due to the

Lucid compiler’s optimizations, utilize the Tofino’s limited pipeline

stages efficiently. In writing these applications, we find that Lucid

enables high developer productivity and presents a low barrier of

entry to high-speed data-plane programming. Several applications

were written by a PhD student who had never worked with the

Tofino before (one of the authors, who worked only on the language

front end). They used Lucid to implement a variety of interesting

prototype applications, all in well under an hour. In our experience,

it often takes students days or even weeks of debugging to get

equivalent P4 programs to compile and use resources efficiently.

Lucid: A Language for Control in the Data Plane SIGCOMM ’21, August 23–28, 2021, Virtual Event, USA

select
egress

routing
route
check

route
query

route
update

link
check

link status
query

link status
update

routes link stats

fault detection

forwarding

to
neighbors

from
neighbors

to
neighbors

from
neighbors

Figure 2: fast rerouter architecture. Circles represent op-
erations, with arrows for (possibly delayed) control flow.
Shaded objects are data structures.

Finally, a case study of a stateful firewall written in Lucid demon-

strates the performance benefit of integrating latency-sensitive

network control in the data plane. We find that flow installation

time is 300X lower for data-plane integrated control, compared to

remote control from the switch CPU.

Summary. The main contribution of this paper is the design of

Lucid, a high-level language for stateful, distributed data-plane

programming. More specifically, this paper:

• motivates data-plane integrated control and identifies the en-

abling mechanisms in PISA processors (Section 2);

• introduces event-based abstractions that naturally generalize

both packet and control processing (Section 3);

• designs an interface to data-plane state that uses syntactic con-

straints and a novel type system to identify programs ill-suited

for the underlying hardware (Sections 4 and 5);

• describes an open-source, optimizing compiler targeting the Intel

Tofino (Section 6); and

• evaluates Lucid, demonstrating that it is general, easy to use, and

compiles efficiently to real hardware (Section 7).

Ethics. All user data in this work are from paper authors.

2 INTEGRATED DATA-PLANE CONTROL
Many network services benefit from integrated data-plane control,
i.e., the placement of control operations in the data plane’s packet

processing hardware rather than in servers or switch management

CPUs. In this section, we illustrate the benefits of integrated data-

plane control, and the enabling hardware mechanisms, with a driv-

ing example: the fast rerouter, a fault-tolerant forwarder that detects
and dynamically routes around failed links.

The fast rerouter (see Figure 2) consists of three key components.

Forwarding. The fast rerouter looks up a next hop for each packet

in an associative array based on its destination. Before forwarding,

the program checks a second data structure to determine if the next

hop is still reachable. If not, it may trigger rerouting.

Fault detection. Concurrent with forwarding, a fast rerouter node

also regularly pings all of its directly connected neighbors to deter-

mine if they are still reachable.

Rerouting. Interleaved with the above, a reroute operation in the

fast rerouter queries all of its neighbors to find the next hop with

the lowest route length. This can be triggered by a packet with no

next hop or a periodic route table scan.

2.1 Motivation: Low Latency Control
Low latency is a primarymotivator for data-plane integrated control

in many applications.

• Fault tolerance services, such as the fast rerouter and F10 [20],

detect and mitigate failures in the data plane to minimize reaction

time and therefore disruption to traffic.

• In 5G mobile cores [27], integrating signal handling operations
into the data plane reduces latency by up to 98%, enabling faster

connection setup and migration for users.

• Load balancers [1, 18] with control loops in the data plane can

react faster to congestion events. This, in turn, improves end-to-

end application performance.

• Security services that operate on flows, such as DDoS defense

systems [21] and stateful firewalls (Section 7.4), integrate control

into the data plane to block threats or authorize trusted flows

with less latency.

Root causes. In most cases, data-plane integration reduces latency

by eliminating communication overheads. Consider the fast rerouter
as an example. Detecting and routing around a link failure requires

at least two rounds of messages between a switch and its neighbors:

One round to determine that a next hop has failed and a second

round to identify an alternate next hop. If the fast rerouter’s con-

trol operations ran as a Linux application on the switch’s CPU,

the operating system itself would add around 400 µs of latency be-

cause unidirectional messaging between Linux socket endpoints

takes around 100 µs end-to-end [33]. However, a version of the fast

rerouter with control in the data plane would completely avoid

this overhead, along with others due to control-related middle-

ware [4, 11]. For example, sending a message (i.e., a packet) from a

switch’s data-plane processor to its neighbor takes around 1 µs, and

is bound only by the propagation and queueing delays of the physi-

cal hardware. Data-plane integration also eliminates the communi-

cation overheads between a switch’s data-plane and management

processors (e.g., PCIe latency [24]). These overheads dominate in

single-node applications with simpler control operations, such as

in a stateful firewall (Section 7.4).

2.2 PISA Programmable Packet Processing
This paper focuses on PISA (Protocol Independent Switch Architec-

ture) processors. PISA is a compelling data-plane architecture for

three reasons: First, it is programmable; second, it is a generalization

of real-world chips, primarily the Intel Tofino, and third; it processes

packets at a high and guaranteed line rate (one packet per clock).

Given a platform-specific minimum packet size, a PISA processor

can sustain a workload that saturates all ports simultaneously.

The core of a PISA processor, illustrated in Figure 3, is a pro-

grammable line-rate match-action pipeline. Line rate demands a

tightly synchronized, feed-forward design: Each pipeline stage has

a throughput of one packet per clock, and packets only ever move

forward through the pipeline. Instruction-level parallelism is also

critical for line rate. A packet’s header moves through each stage in

parallel, as a vector. When the packet header enters a stage, ternary

(TCAM) and exact (hash + SRAM) match-action tables evaluate it

to feed ALU vectors with instructions to modify header fields. The

“programmable” aspect of the pipeline is the capability to set table

layouts and instructions at compile time, and set table entries from

a management CPU at run time.

Stages also have stateful ALUs (sALUs) for updating local SRAM

register arrays. Each stateful ALU can read from a single address in

SIGCOMM ’21, August 23–28, 2021, Virtual Event, USA John Sonchack, Devon Loehr, Jennifer Rexford, and David Walker

P
A
R
S
E

D
E
P
A
R
S
E

routes
link
stat

routing op detection opdata packet

PISA Ingress
from recirc to recirc

Figure 3: Interleaving the fast rerouter’s control operations
and packet processing in a PISA switch.

SRAM, perform limited computation, and write back to SRAM or

modify metadata associated with the packet.

The ingress pipeline can direct packets to an egress port or, op-

tionally, a recirculation port that brings the packet back to the start

of the pipeline for additional processing. A recirculation port typi-

cally has the same bandwidth as a single front-panel port and shares

the pipeline’s packet-processing bandwidth, so only a fraction of

packets can be recirculated without limiting throughput.

Finally, real-world PISA processors also include platform-specific

and semi-programmable “support engines” outside of the core

pipeline. The Intel Tofino, which this paper focuses on, includes

four such engines: (1) a multicast engine to copy packets, (2) a

queue manager to shape flows, (3) a packet generator for spawning

packets, and (4) configurable MAC blocks that can dynamically

pause queues based on Priority Flow Control (PFC) frames.

2.3 Packet-driven Control Operations
We know that packet processing maps well to a PISA chip [5], but

how do we use it for more general control tasks? The key is to break

control tasks down into atomic operations driven by the arrival of

packets—when an ordinary data packet arrives, its presence and

path through the switch can trigger execution of control operations

that occur alongside regular forwarding operations. This can work

well if control operations align with data packet arrival and are

simple enough to fit in a single pass through a PISA switch.

But what if control operations are complex and their execution

depends on one another rather than on the arrival of ordinary data

packets? For example, Figure 2 sketches the control structure of

the fast rerouter. Complex control operations like routing or fault

detection can be decomposed into simpler units—route updates,

route checks and route queries in the case of the routing component,

for instance. And each of those operations can be performed in a

single pass through a PISA pipeline. To ensure these operations

occur at the appropriate cadence, it is possible to design, generate

and parse new synthetic control packets to initiate execution of

these control operations at the appropriate time.

2.4 Persistent State
Typically, the goal of control operations is to update state that

affects the processing of subsequent packets. For example, reroute

operations set entries in an array that determines where future

packets are forwarded. A PISA pipeline stores this state in its stage-

local SRAM banks. Control (and packet) operations read and write

the state atomically using stateful ALUs. Atomicity means that a

stateful operation can only update a single word of memory and

perform computation that is simple enough to execute in a single

instruction.

For more complex stateful operations, we can use multiple SRAM

banks or stages. For example, when the fast rerouter forwards a

packet, it looks up a next hop from an array in one stage, then

uses an array in a subsequent stage to determine if the next hop is

still active. Conveniently, multi-stage stateful operations are still

atomic and line rate because of the feed-forward architecture of a

PISA pipeline [28]. But this comes with a programmer challenge

because it forces all packet and control operations to access state

in the same order.

2.5 Control Threads via Recirculation
Some control operations far exceed the resource limits of a PISA

pipeline. For instance, in the fast rerouter, checking the status of

one link is a simple computation. But how do we check the status of

an entire table of links? In general, maintenance tasks that require
iteration over large tables or sets of values to identify stale or

erroneous entries may appear impossible to support. However, we

can use recirculation for serial processing, by recirculating a control
packet multiple times to perform one part of its task in each pass,

or we can use it for parallel processing, by recirculating multiple

control packets back-to-back, each operating on a different entry.

A potential concern is that recirculation for control consumes

bandwidth that could be used for packet processing. This is pos-

sible, but for many applications, overhead is low because control

operations, even low-latency and fine-grained ones, are infrequent

compared to data-plane packets. For example, consider the fast

rerouter on a 1 Ghz PISA with 128 ports. It detects failed links by

serially scanning the link status table with a control packet that

recirculates once per µs. The recirculation throughput, 1 million

packets/s, is only 0.1% of the pipeline’s bandwidth. Even though

overhead is low, it still checks each port often, once per 128 µs.

2.6 Scheduled Control via Support Engines
Of course, we may not always want control threads to operate at

the highest possible rate, or, for that matter, at the same switch. This

brings us to the last piece of the puzzle: how can a PISA processor

schedule the place and time where control operations execute?

Place. Changing where an operation executes is straightforward,

assuming that switches have addresses. Since control operations

are processed like packets, a switch can schedule an operation

at another location by encapsulating the corresponding control

packet in an appropriately addressed frame and forwarding it just

like any other packet. With line-rate multicast engines, we can

even schedule an operation at multiple locations (such as the fast

rerouter pinging all neighboring switches) in a single step.

Time. Changing when an operation executes is harder. Essentially,

we need to buffer a control packet for some amount of time. A de-

sign for a generic PISA processor could buffer it in a register array

along with the time at which it should be executed, and then scan

the array periodically to find operations ready to execute. However,

this approach could consume a large number of stateful ALUs. An

alternative is to simply recirculate the control packet repeatedly

Lucid: A Language for Control in the Data Plane SIGCOMM ’21, August 23–28, 2021, Virtual Event, USA

until it is ready to execute, but this consumes recirculation band-

width. A more efficient design, specialized for the Intel Tofino, is

to use a dedicated queue for delayed control operations, which is

paused and periodically released using PFC pause frames from the

Tofino’s packet generator.

2.7 Masters of Complexity
To many a hacker, our discussion of control in the data plane may

sound glorious. All one needs to do is:

• break complex control operations into simpler ones;

• create formats, parsers, and deparsers for new synthetic packets

to drive control operations where necessary;

• mind the constraints on stateful ALUs and per-stage computation;

• ensure that control operations access state in a consistent order;

• manually recirculate packets for multi-step operations, carefully

interleaving the processing of recirculated and data packets;

• learn how to program the support engines outside the language

of your programmable switch; and

• implement primitives for delay and distribution of control.

What’s not to like? Everyone loves rolling multiple low-level re-

source constraints and a couple of different programming paradigms

around in their head, before they even get to considering the high-

level logic of their application! And yet, in our experience, expert

programmers can spend weeks and hundreds or thousands of lines

of code developing network control applications with relatively

simple high-level ambitions.

Hence, rather than embracing this challenge to master com-

plexity, we propose a better way: higher-level abstractions, static

analysis, and automatic generation of low-level code. As the coming

sections will show, these mechanisms together reduce programmer

time from days to hours and lines of code by a factor of 10.

3 EVENT-DRIVEN PROGRAMMING
To create control applications for PISA switches, programmers

currently must implement many low-level mechanisms by hand.

In many ways, it is reminiscent of writing a distributed system

without basic operating system services. Consider the challenge of

adding the fast rerouter’s route query control operation to a basic

forwarding program written in P4. We must define a route query

header along with parsers and deparsers; adjust the control flow to

branch on that header’s presence (in addition to existing branches);

serialize generated queries into event packets; and finally configure

the multicast engine to broadcast these packets to all neighbors.

All of this effort only gets us to the point where we can begin to

implement the interesting logic, e.g., the P4 that generates and

responds to route queries.

3.1 Event-based Lucid Abstractions
The main idea behind Lucid’s core abstractions is to unify packet

processing with control operations through intuitive primitives for

coordinating when and where events execute.

Events. Lucid abstracts both control operations and data packets

as events. Every event consists of a four-tuple containing (1) a name,

(2) carried data, (3) a time, and (4) a place. Events give programmers

a way to structure multi-threaded programs that is missing from P4

and other existing data-plane languages. For example, the routing

component of the fast rerouter has three events, corresponding to

its three operations in Figure 2.� �
event route_query(int sender_id, int dst);
event route_reply(int sender_id, int dst, int pathlen);
event check_route(int dst);� �
Events are also a high-level abstraction for application-layer mes-

sages. The route_query event is a request that switch sender_id sends

to its neighbor, asking for the length of its path to dst. A route_reply

is a response to a query. Finally, check_route is an instruction that a
switch sends to itself to check whether the route to dst has failed.

Handlers. In a Lucid program, all computation happens in a han-

dler. A handler specifies what happens, such as a control opera-

tion or a packet-processing function, when a switch gets an event.

Each handler compiles to a slice of parallel tables, ALUs, and state-

ful ALUs, and executes in a single pass through the match-action

pipeline. Although the low-level implementation is complex, the

high-level language for writing handlers is simple and expressive.

For example, here is the route_query handler from the fast rerouter.� �
handle route_query(int sender_id, int dst) {

int pathlen = get_pathlen(dst);
event reply = route_reply(SELF, dst, pathlen);
generate Event.locate(reply, sender_id);

}� �
The handler runs on a switch when its neighbor sender_id sched-

ules a route_query event to execute on it. The handler looks up the

length of the path to dst from a persistent array (pathlens), and com-

municates the result to sender_id by scheduling a route_reply event

to execute there. The programmer can implement all the logic for a

route query (including the get_pathlen function) while only writing

roughly the number of lines it would take merely to declare a route
query header in P4.

Event generation.As the route_query example also shows, handlers

not only perform some computation in response to an event/packet,

but can also generate events to trigger additional future computa-

tion. This abstraction of time is powerful because it lets us break

complex control operations up into a thread of events that executes

over a period of time.

For example, in the fast rerouter, we implement the thread that

periodically scans the status of every route request as a recursive

event handler. The handler checks the status of a route at a certain

position in the routing table, and then (recursively) generates an-

other event to check the next position. As another example, the

stateful firewall application (Section 7.4) uses an event that recurses

a bounded number of times to implement the insert operation of a

cuckoo hash table in the data plane.

Event combinators. Event combinators let a handler changewhen
and where an event that it generates will execute.

The locate combinator, which the route_query example uses, lets

a handler specify where an event will be generated. Similar to a

send system call in Linux, the locate combinator provides a sim-

ple abstraction for unicast communication. Lucid also provides a

multicast locate combinator for group communication.

The delay combinator changes when an event is executed. This

combinator makes it easy to pause persistent computations, and

hence resembles the Linux sleep system call. The fast rerouter

SIGCOMM ’21, August 23–28, 2021, Virtual Event, USA John Sonchack, Devon Loehr, Jennifer Rexford, and David Walker� �
event a(); event b(); event c(); const group GRP = {2, 3};
handle a() {
generate b();
mgenerate Event.delay (Event.locate (c(), GRP), 10ms);
}� �

serialize

forward multicast

Scheduler
Handlers

delay

dispatch serialize

forward multicast

Scheduler
Handlers

delay

dispatch

switch 3

switch 1 switch 2

ab c ab c

b
and

c

b

cb

c
c
c

c
c

c

c
c

c
start

Figure 4: Event scheduling for a simple program.

uses the delay combinator to control the rate at which it pings its

neighbors and also the rate at which it scans its routing table.

3.2 Data-Plane Event Scheduler
Lucid realizes the abstractions for event-based distribution and

communication using an event scheduling library that is inlined

into a Lucid program. As Figure 4 shows, the library sits logically

between a Lucid application and the underlying network, filling

the role of a lightweight operating system. The library is mostly

comprised of hand-written code that is Tofino specific.

We describe the main components by following Figure 4, begin-

ning with the execution of handler a at switch 1. This generates

two events, b and c, by removing the a event header from the packet

and attaching event headers for both b and c.

Event serialization. After the ingress pipeline finishes, Lucid’s
serializer transforms the single packet with headers for b and c into

serialized event packets, one for each event.

First, the serializer uses the switch’s multicast engine to create

one copy of the packet for each event. When a copy arrives at the

egress pipeline, it has headers for both b and c. The event serializer

deletes one header from each copy, using a clone ID field that the

Tofino provides as metadata.

Event dispatching. The event serializer sends the event packets
for b and c to the switch’s recirculation port. When these packets

re-enter the ingress pipeline, the event data is extracted by a Lucid-

generated parser and passed to an event dispatcher, an ingressmatch-

action table that performs one of three actions based on an event’s

location and delay.
Non-local events: If the event’s location is not the current switch,

the dispatcher calls a user-configured forwarding table to select

an output port or multicast group for the event. In the example

program, the dispatcher at switch 1 sets a multicast group for event

packet c, sending it to switches 2 and 3.

Delayed local events: For events that are destined to the local

switch, but with a delay > 0, the dispatcher calls a delay function.

In the example, switch 2 initially delays event c.

Processable events: When an event’s delay is 0 and its location is

the current switch, the dispatcher applies the compiler-generated

tables that implement the event handlers. In the example program,

the dispatcher at switch 1 will do this for b as soon as it arrives.

Implementing delay. Delay is the most sophisticated function in

the scheduler. Lucid implements this with pausable egress queues.
Events to delay are placed in a special “delay queue” of the recircu-

lation port. The queue is paused most of the time and unpaused at

a regular interval to release packets, e.g., once every 100 µs. When

events exit the queue, a table in egress updates their delay parame-

ter based on their queue time. The packets recirculate and repeat

until their delay is 0. PFC (Priority Flow Control) packets let the

event scheduler time the queue. We send a stream of packets into

the pipeline that consists of pairs of PFC packets at a low, constant

rate. The first PFC packet in a pair unpauses the queue to let event

packets out, while the second one repauses it. The PFC stream can

be generated by either the pipeline’s packet generator or, if none is

available, the switch’s CPU.

4 OPERATING ON PERSISTENT STATE
There are two kinds of state in a data-plane program: local state that

lives for the processing of a single packet and global (or persistent)

state that remains across packets. In prior data-plane languages,

persistent state makes development unreasonably challenging. The

problem is not that the hardware has constraints, but rather that

the constraints are left implicit by the language.

For example, P4 programs store persistent state in RegisterArrays

and use RegisterActions with arbitrary blocks of C-like code to

operate on those arrays. It is easy towrite a RegisterAction that is too

complex for the underlying hardware to support, but often difficult

to figure out why. The “decision” that a particular RegisterAction

is too complex is made by part of the compiler’s back-end that is

far removed from the source code, for example, a target-specific

assembler. When a problem occurs at this late stage, neither the

programmer nor the compiler have any direct way of figuring out

what went wrong. For example, here is a RegisterAction body that is

too complex for the Tofino and results in an assembler error related

to operand referencing.� �
void apply(inout bit<32> memCell) {

if (memCell > y) {
memCell = memCell + y;

} else {
memCell = x + y;

}
}� �
Lucid’s solution is a carefully designed interface to persistent

state that enables syntactic checks on untransformed source code.

These checks occur at the very beginning of compilation, quickly

identify invalid programs, and return source-level error message

that tell us exactly what is wrong.

4.1 The Array Module
Lucid programs store persistent state in arrays, such as pathlens in

this example from the fast rerouter.� �
global pathlens = new Array<<32>>(tbl_sz);
memop incr(int stored, int added) { return stored + added; }
fun int get_pathlen(int dst) {

return Array.get(pathlens, dst, incr, x);
}� �
All computation on arrays is done through Lucid’s Array module,

whose methods abstract the stateful operations that are possible

within a single ALU. In the above example, the Array.get method

Lucid: A Language for Control in the Data Plane SIGCOMM ’21, August 23–28, 2021, Virtual Event, USA

retrieves pathlens[dst]. Array also includes set and update (i.e., set and

get in parallel) methods.

Of course, the stateful ALUs of a PISA switch can do more than

read or write values from persistent memory. They can read the

state, perform a small amount of computation, and then write the

state back to memory and/or packet metadata [28]. Lucid’s Array

module has a functional interface to these capabilities. In the above

example, the third argument of the call to Array.get is incr, a function.

Array.get will return incr(pathlens[dst], x).

Lucid’s interface to state is flexible and allows programmerswrite

modular and re-usable code. Functions like incr can be re-used in

any call to Array.get, set, or update. Further, arrays themselves can

be arguments to functions or handlers.

4.2 Memop Functions
Function arguments to Array methods, such as incr in the above

example, arememops: a special kind of function that is syntactically

restricted to ensure that it does not do more computation than

what a single stateful ALU can support. The syntax of a memop is

limited by the instruction set of the targeted PISA processor because

every Array method that uses a memop must be able to compile to

a valid instruction. At the same time, the syntax must carefully

balance expressiveness and regularity. On the one hand, we would

like memops to be flexible enough to implement any program that

the underlying hardware can support. On the other hand, we would

like memops to be as simple and regular as possible, to decrease the

Lucid learning curve make it easier to use.

With those design criteria in mind, we defined a memop to be a

function of two arguments that satisfies the following constraints:

• the body is either a single return statement or an if statement

containing one return statement in each branch;

• each variable is used at most once per expression; and

• only ALU-supported operators are used.

When a user declares amemop, we automatically check that its body

satisfies these requirements. If this check passes, the programmer

is guaranteed that the operation is compilable; if not, our compiler

can explain exactly what is wrong.

The current memop syntax slightly favors regularity over ex-

pressiveness. There are expressions that the Tofino can implement,

but memops disallow including compound conditional expressions,

operations that read multiple local variables, and approximate ex-

ponentiation. We disallow the above expressions because they can

only be used in certain cases. For example, an Array.set call that uses

amemop with a compound condition, e.g., ((x == 1)|| (x == 2)), can

compile to a legal sALU instruction. However, an Array.update call

that uses two memops, each with a different compound condition,

cannot compile to a legal sALU. Alternate kinds of memops could
support these expressions where possible, for example, a memop
with compound conditions that can be used in Array.set, but not

Array.update. So far, however, we have been able to write a wide

range of applications (see Figure 9) without needing to introduce

this extra complexity into the programming model. Appendix C

discusses memop limitations further.

Although our current memop definition is geared specifically for

the Tofino, the principle the design suggests is quite general: Use

static, source-level constraints to limit the expressions programmers

� �
const int SIZE = 16;

global arr1 = new Array<<32>>(SIZE);
global arr2 = new Array<<32>>(SIZE);

handle setArr1(int idx, int data) {
int x = Array.get(arr2, idx);
Array.set(arr1, idx, x);

}
handle setArr2(int idx, int data) {

int x = Array.get(arr1, idx);
Array.set(arr2, idx, x);

}� �
Figure 5: A disordered program.

write, as they write them. Doing so makes it possible to provide

targeted programmer feedback that pinpoints the exact line and

character where an error occurred and ultimately saves one of the

most important resources, programmer time.

5 ORDERED DATA ACCESS
Most data-plane programs with integrated control use multiple per-
sistent variables. For example, the fast rerouter has a next hop array

and link status array. A general constraint of any PISA processor is

that such persistent data must be partitioned across the stages of

a feed-forward pipeline. This leads to a natural order in which a

program can access the data. Current languages force programmers

to manually track the order of data access in their programs, which

compounds the state-related challenges described in Section 4.

To illustrate this issue, Figure 5 presents a simple but invalid

Lucid program. The program declares two arrays arr1 and arr2,

and two handlers setArr1 and setArr2 which access those arrays

in different orders. In general, programs of this form cannot be

compiled to a PISA pipeline—one handler demands that data for

arr1 appear earlier in the pipeline than data for arr2 and vice versa,

creating irresolvable constraints.

These constraints are fundamental to any PISA pipeline, but they

are not enforced by P4. If we write the program from Figure 5 in P4

for the Tofino, compilation does not fail until the Tofino backend.

When the backend cannot solve the program’s layout constraints

to allocate stateful data to particular stages of the pipeline, it fails

with an error that states “Table placement cannot make any more

progress”, but does not indicate what is wrong with the program.

Lucid resolves this issue by interpreting a program’s data decla-

rations as an implicit, high-level specification of the programmer’s

data layout intentions. The Lucid type system then verifies that

the order of data accesses in the rest of the program is consistent

with the specification, guaranteeing that compilation is possible (if

enough pipeline stages are available). When an access ordering er-

ror arises, a useful source-level error message indicates the specific

lines of code in conflict.

5.1 Well-ordered Programs
We say a Lucid program is well-ordered if the data accesses in every

handler follow the same order as the global data declarations. In
other words, we treat the order of data declarations as a specification
that clearly documents requirements for all handlers. It is an easy

specification for programmers to write, as they must declare and

initialize their data anyway.

SIGCOMM ’21, August 23–28, 2021, Virtual Event, USA John Sonchack, Devon Loehr, Jennifer Rexford, and David Walker

The specification is high level—it does not refer to specific hard-

ware stages; in fact, programs such as this are portable across hard-

ware platforms with different numbers of stages. The compiler has

the flexibility to place any object in any stage so long as it faithfully

implements the program’s semantics. The specification merely en-

sures that, provided a program adheres to its requirements, the

compiler can find some solution to the data-allocation problem.

If programmers do not adhere to the specification, a simple error

message directs them to the disordered portion of their program.

For the program in Figure 5, Lucid would issue an error for the

setArr1 handler saying that it accesses arr2 and arr1 in the oppo-

site order of their declarations. While verifying a toy example like

Figure 5 is straightforward, the verification problem becomes in-

creasingly difficult as programs grow and use auxiliary functions

to encapsulate common idioms and user-defined abstractions. Such

functions may access global variables (directly or via arguments),

which constrains the order in which they may be called from other

functions or handlers.

5.2 Types for Ordered Data Access
We use a type-and-effect system to check that a Lucid program is

well-ordered while also performing regular type checking. The full

details of this type system appear in Appendix A.

While past work [7, 17] explored the use of ordering constraints

to ensure correct access to volatile state in other contexts (e.g.,
“no-use-after-free” properties for memory managers or “no data

access without first acquiring a lock”), we are unaware of prior uses

of ordered type systems for data layout along pipelines, or more

generally in the context of networking. On the one hand, systems

such as ordered logic [26] appear too restrictive for our purposes—

functions that refer to an ordered variable cannot be declared until

prior variables are used. On the other hand, prior systems [7, 17]

designed for enforcing protocols such as open-read/write-close

sequences over OS resources are unnecessarily complex, requiring

additional type annotations or sophisticated inference mechanisms.

In Lucid, the key difference is that we know all the ordered variables

in advance, allowing us to create a simpler system that can still

define and verify functions separately from where they are used.

At a high level, our strategy is to use a system in which effects are

integers representing abstract stages. Each ordered variable (either

an array or a counter) is associated with a stage based on the order

in which variables are declared. During typechecking, we keep

track of a current stage, which tracks the most recently-accessed

ordered variable. The typechecking fails if the program attempts to

access an ordered variable whose stage is less than the current one,

indicating that during execution the packet would have already

passed by that data in the pipeline.

Formally, our typing judgement has the following form:

Γ, 𝜖1 ⊢ 𝑒 : 𝜏, 𝜖2.
In English, this can be interpreted as the statement “Starting with

environment Γ and at stage 𝜖1, the expression 𝑒 has type 𝜏 and will

finish evaluating in stage 𝜖2”. We use this to prove the following

soundness theorem:

Theorem: If ∅, 𝜖1 ⊢ 𝑒 : 𝜏, 𝜖2, then either 𝑒 is a value, or 𝑒 → 𝑒 ′

and there is some 𝜖 ′
1
such that ∅, 𝜖 ′

1
⊢ 𝑒 ′ : 𝜏, 𝜖2.

� �
Array nexthops = new Array<<32>>(NUM_HOSTS);
Array pcts = new Array<<32>>(NUM_PORTS_X3);
Array hcts = new Array<<32>>(NUM_HOSTS);
memop plus(int cur, int x){return cur + x;}

event count_pkt(int dst, int proto);
handle count_pkt (int dst, int proto) {

int idx = Array.get(nexthops, dst);
if (proto != TCP) {

if (proto == UDP)
idx = idx + NUM_PORTS;

else
idx = idx + NUM_PORTS_X2;

}
Array.set(pcts, idx, plus, 1);
if (proto == TCP)

Array.set(hcts, dst, plus, 1);
}� �

nexthops_get

idx_eq_1idx_eq_0

pcts_fset

hcts_fset

proto != TCP &&
proto != UDP proto == UDP

proto == TCP

nexthops_get

idx_eq_1idx_eq_0

pcts_fset

proto != TCP &&
proto != UDP proto == UDP

hcts_fset

proto == TCP

nexthops_get

if_0

if_1

idx_eq_1idx_eq_0

pcts_fset

if_2

proto != TCP

proto != UDP proto == UDP

proto == TCP

hcts_fset

proto == TCP

(1) Table Control Graph (2) Control Graph with
Inlined Conditionals

(3) Table Dataflow Graph

Figure 6: Top: a Lucid handler using only atomic statements.
Bottom: the handler represented as an atomic table graph (1)
and optimized to require fewer pipeline stages (2 and 3).

This theorem implies that any program which typechecks will

never "get stuck" trying to access unavailable data. The proof of

the theorem appears in Appendix A.

6 COMPILING TO THE TOFINO
After syntax and type checking, the Lucid compiler translates a

program into P4_16 optimized for the Intel Tofino. Most of the

backend’s complexity lies in compiling handler bodies, since events

map directly to packet headers and the event scheduler (Section 3.2)

is mostly static code. The main steps of handler compilation are

translating to atomic P4 tables and optimizing control flow.

6.1 Translating to Atomic P4 Tables
The compiler first uses function inlining and subexpression elimi-

nation to reduce a handler’s body into a graph of statements that

are each simple enough to execute with at most one Tofino ALU.

The top of Figure 6 is an example of a handler where all statements

are already in this atomic form. The compiler then translates each

atomic statement directly into a P4 table, to produce an atomic table

graph like the one shown in Figure 6(1). There are three kinds of

atomic tables, demonstrated in Figure 7.

Lucid: A Language for Control in the Data Plane SIGCOMM ’21, August 23–28, 2021, Virtual Event, USA

Lucid idx = idx + NUM_PORTS; Array.setm(tcp_cts, port, plus, 1); if(proto != TCP)

P4 Operation Table Memory Operation Table Branch Table

action do_idx_add {idx = idx + NUM_PORTS;}

table tbl_idx_add {

actions = {do_idx_eq;}

const default_action = {do_idx_eq;}

}

RegisterAction<...>(tcp_cts) setm_1 = {

void apply(inout bit<32>m, out bit<32>r){

mem = mem + 1;

}

};

action do_setm_1() { setm_1.execute(port);}

table tbl_setm_1 {

actions = {do_setm_1;}

const default_action = {do_setm_1;}

}

action if_true(); action if_false();

table tbl_if {

keys = {proto : ternary;}

actions = {if_true; if_false;}

entries = {

(TCP) : if_false;

(_) : if_true;

}

}

Figure 7: Examples from Figure 6 of the three kinds of Atomic P4 tables that the Lucid compiler generates.

Operation table. An operation table uses a single ALU to evaluate

a binary expression over two local variables (metadata in P4) and

assign its result to a third local variable.

Memory operation table.Amemory operation table uses a single

stateful ALU to update one element in a P4 register array. It is a

direct translation of a call to an Array method.

Branch table. A branch table uses two match-action rules to com-

pare a local variable against a constant to determine which table

will execute next.

6.2 Optimizing Control Flow
The Lucid compiler optimizes the atomic table graph in three steps

to reduce the number of pipeline stages it requires.

Inlining branch operations. Branch tables are wasteful in the

table representation of a Lucid program because, in a PISA pipeline,

a branch table’s successors must be placed in a subsequent stage.

The compiler eliminates branch tables by first transforming each

non-branch table to check the conditions necessary for its own exe-

cution using static match-action rules. The table executes its single

action if there is a match, else a no-op. For example, by following the

path from the root of Figure 6(1) to the table idx_eq_0, we see that it

only executes if (proto != TCP)&& (proto != UDP), thus in Figure 6(2),

the table idx_eq_0 tests these conditions before executing.

The compiler applies this transformation to all tables then deletes

the branch tables. As Figure 6(1) and (2) show this saves three

pipeline stages in the example program.

Rearranging tables.Next, the compiler rearranges tables based on

data flow to further reduce the number of stages used by a program.

For example, in Figure 6(2), the table that implements Array.set(hcts,

dst, plus, 1); (hcts_fset) does not have any data flow dependencies

on previous tables. None of the variables that it reads are modified

by any other tables in the program, so it can be executed in parallel

with the first table, as shown in Figure 6(3).

Merging tables and actions. For complicated programs, the atomic

table representation of a Lucid program would still require many

stages because it uses many tables (one per operation) and PISA

processors can only support a limited number of tables per stage. Lu-

cid’s final optimization reduces table overhead by merging atomic

tables into multiple-operation tables. This is possible because Lucid-

generated tables use only static rules. Figure 8 shows how tables

from the example in Figure 6 get merged.

The compiler uses a simple greedy algorithm that produces a

pipeline with𝑀 stages and 𝑁 merged tables per stage by walking

the atomic table graph topologically. For each table 𝑡 , it finds the

proto actions
* do_nh_get

proto actions
TCP do_hcts_fset

proto actions
UDP do_idx_eq_1
TCP do_noop

* do_idx_eq_0

proto actions
* do_pcts_fset

merged table 1

merged table 2

merged table 3

merged table 5

proto actions
UDP do_noop
TCP do_noop

* do_idx_eq_0

proto actions
UDP do_idx_eq_1

+

idx_eq_0 idx_eq_1

stage 1 stage 2 stage 3
Figure 8: Merged tables for the program in Figure 6.

earliest merged table that 𝑡 can be merged into. This decision is

based on data flow constraints, a simple model of the free resources

in each stage, and a small number of Tofino-specific constraints.

When a merged table𝑚 that can fit 𝑡 is found,𝑚 is replaced with

𝑚′
—the cross product of𝑚 and 𝑡 . The algorithm ends when either

all atomic tables have been merged, or it reaches an atomic table

that cannot be placed.

7 EVALUATION
We evaluate Lucid by implementing the applications described in

Figure 9 and compiling them to the Tofino with the Lucid com-

piler
1
and P4-studio verision 9.2. We analyze the design of Lucid,

the effectiveness of its optimizations and the runtime overhead of

recirculation. Finally, a case study with the stateful firewall eval-

uates the potential performance benefit of data-plane integrated

control.

7.1 Language Design
We first compare the lines of code required to program in Lucid

versus P4. *Flow [30] is a complex application that gives us a point

of comparison to hand-written P4. The Lucid program is a com-

plete implementation of *Flow in 149 lines of code. The published

implementation, in P4_14, is 1559 lines of code—over 10X longer.

We are unaware of hand-written implementations for the other

Lucid applications and, due to the time required to program the

Tofino in P4, we did not re-implement any ourselves. However,

using *Flow as a calibration point suggests that the Lucid compiler

produces P4 that is within 15% the length of hand-written P4. Thus,

we conclude that Lucid reduces lines of code by around 10X for

diverse applications.

1
https://github.com/princetonUniversity/lucid

https://github.com/princetonUniversity/lucid

SIGCOMM ’21, August 23–28, 2021, Virtual Event, USA John Sonchack, Devon Loehr, Jennifer Rexford, and David Walker

LoC Tofino
Application Description Lucid P4 Stages

Stateful

Firewall

(SFW)

Blocks connections not initiated by trusted

hosts. Control events update a Cuckoo
hash table.

189 2267 10

Fast

Rerouter

(RR)

Forwards packets, identifies failures, and

routes. Control events perform fault detec-
tion and routing.

115 899 8

Closed-loop

DNS Defense

(DNS)

Detects/blocks DNS reflection attack with

sketches & Bloom filters. Control events age
data structures.

215 1874 10

*Flow [30] Batches packet tuples by flow to accelerate an-

alytics. Control events allocate memory.
149 1927 12

Consistent

Shared State

(SRO)[35]

Strongly consistent distributed arrays.Control
events synchronize writes.

94 897 11

Distributed

Prob. Firewall

(DFW)

Distributed Bloom filter firewall. Control
events sync. updates.

66 1073 10

+Aging Adds control events for aging. 119 1595 10

Single-dest.

RIP

Routingwith the classic Route Information Pro-

tocol (RIP). Control events distribute routes.
81 764 8

Simple NAT Basic network address translation. Control
events buffer packets and install entries.

41 707 11

Historical

Prob. Queries

(CM)

Measures flows with sketches for historical

queries. Control events age and export state
periodically.

93 856 5

Figure 9: Applications with data plane-integrated control,
implemented in Lucid and compiled to the Barefoot Tofino.
The role of control events is bolded.

SF
W RR DN
S

*F
lo

w

SR
O

DF
W

DF
W

(a
)

RI
P

NA
T

CM

Application

0

1000

2000

Lin
es

 o
f C

od
e

P4 Action
P4 RegActions

P4 Tables
P4 Headers

P4 Parsers
Lucid

Figure 10: Breakdown of P4 code in Figure 9.

Application NAT RIP Dist FW Dist FW + Aging

Dev. Time 25m 40m 25m 25m + 30m

Figure 11: Time for a student without Tofino experience to
write Tofino-compiling Lucid applications.

Figure 10 breaks down the lines of P4. Actions and tables take the

most lines. An interesting observation is that for most applications,

the entire Lucid program was fewer lines of code than just the

register actions in P4. This is partially because P4 register actions are

not reusable like Lucid’s memops—the programmer must manually

copy the code every time they want to repeat the same operation

on a different array. In Lucid programs, and even across programs,

we re-use the same generic memops multiple times.

The applications in Figure 11 were implemented by a PhD stu-

dent who has never programmed the Tofino before. As it shows,

it took less than an hour to write each of these non-trivial proto-

types that successfully compiled to the Tofino. With P4, this level

of productivity is hard to imagine, even for an experienced Tofino

NA
T

RI
P

DF
W

SR
O RR CM

DF
W

(a
)

*F
lo

w
SF

W
DN

S

application

0

2

4

St
ag

e
Ra

tio

Figure 12: Optimized stage
count vs unoptimized.

NA
T

RI
P

DF
W

SR
O RR CM

DF
W
(a
)

*F
lo
w

SF
W

DN
S

application

0

5

10

Pa
ra
lle
liz
at
io
n

Figure 13: ALU instrs. per
stage in optimized code.

0 20 40 60 80
Concurrent Events

0

20

40

60

80

Re
cir

c.
 B

w
(G

b/
s)

Baseline
Delay Queue

0 20 40 60 80
Concurrent Events

0.00

0.02

0.04

0.06

Re
la

tiv
e

Er
ro

r

Baseline
Delay Queue

Figure 14: Pausable queue overhead and accuracy.

programmer. For PhD students new to the architecture, it can take

weeks to do anything non-trivial. We are excited by the potential

for Lucid to save future students’ time.

7.2 Optimization Benchmarks

Compiler optimizations. Next, we evaluate Lucid’s compiler op-

timizations by comparing the number of required stages with and

without optimizations. Figure 12 shows the ratio for each applica-

tion. For unoptimized stages, we report the number of atomic P4

tables in the longest code path, as many programs did not fit into

the Tofino’s pipeline without optimization. Optimizations reduced

stage requirements by a factor of 1.5-4 for most applications. The

benefit was greater for complex applications, such as *Flow and

the closed-loop DNS defense system, which originally had critical

paths nearly 4X too long for the Tofino’s pipeline.

Figure 13 shows the number of Lucid statements that the com-

piler mapped to each stage. It ranged from 2 - 13, demonstrating

that the compiler was able to find and exploit a significant amount

of parallelism in the programs.

Event scheduler optimizations. A key optimization in Lucid’s

event scheduler is the pauseable queue mechanisms for reducing

the overhead of delaying events via recirculation. We measured the

bandwidth overhead and timing accuracy of delaying 64B event

packets on one of the Tofino’s 100 Gb/s recirculation ports, with

and without the pausable queues.

As Figure 14 shows, the pausable queues make the recirculation

bandwidth cost of delayed events negligible. The bandwidth cost

for delaying 90 concurrent events indefinitely was 5.5 Gb/s. In

comparison, delaying 90 concurrent eventswithout Lucid’s pausable
queues consumed over 95 Gb/s—the port was effectively saturated.

This nearly 20X reduction in overhead has two costs: increased

packet buffer utilization and timing variance. The increase in packet

buffer utilization is small compared to the amount of recirculation

throughput saved. For example, storing 90 64B events in a queue

uses around 7KB of packet buffer (depending on memory cell size).

The Tofino has 22MB of shared packet-buffer memory, or a bit more

than 320KB per port. So, with 90 concurrent events we trade around

Lucid: A Language for Control in the Data Plane SIGCOMM ’21, August 23–28, 2021, Virtual Event, USA

Recirc. use Recirc. rate Applications
Data struct. maintenance O(

num. entries

scan interval
) SFW, RR, DWF, CM, DNS, RIP

Flow setup E[O(flow rate)] SFW, NAT, *Flow, RR

State synchronization O(update rate) SRO, DFW

Figure 15: Recirculation uses in Figure 9 applications.

flow rate (𝑓) 10K flows/s 100K flows/s 1M flows/s

recirc. rate 815K pkts/s 2M pkts/s 16M pkts/s

pipeline utilization 0.08% 0.22% 1.66%

min. pkt. size 125.26 125.55 127.67

Figure 16: Modeled worst-case recirculation overhead for
the stateful firewall with 𝑁 = 2

16 and 𝑖 =100ms.

2% of the recirculation port’s fair share of buffer space for a 20X

reduction in bandwidth utilization.

Pausable queues also increases the variance of event execution

times. As Figure 14 shows, event delay was off by up to approxi-

mately 50 µs when using pausable queues that release every 100 µs.

7.3 Recirculation Overhead
As Figure 15 shows, the example applications recirculate packets

to perform: data structure maintenance, in which case a timed

loop triggers periodic recirculation; flow setup, in which case new

flows trigger recirculation; or state synchronization, in which case

a state update event must recirculate through multiple switches.

The stateful firewall requires the most recirculation out of all of

the applications. It features both a flow setup operation, installing

per-flow entries into a Cuckoo hash table, and a data structure

maintenance operation, scanning the Cuckoo hash table to find and

delete timed-out flows.

To understand recirculation overhead more concretely, we an-

alyze the stateful firewall in more detail. We base analysis on an

idealized PISA processor with a throughput of 1B packets per sec-

ond that services 10 100Gb/s front-panel ports plus a 100Gb/s recir-

culation port. This processor supports line rate on all front-panel

ports simultaneously when packets are larger than 125B and the

recirculation port has no load.

Given this idealized platform, we derive a simple explanatory

model of the stateful firewall’s recirculation rate. Model parameters

are: 𝑁 , the size of the firewall’s table; 𝑖 , the per-flow timeout check

interval; and 𝑓 , the flow-arrival rate. The worst-case recirculation

rate, 𝑟 , is: 𝑟 = N

i
+ 𝑓 · log(𝑁). The first term is recirculation for

timeout scanning and the second term isworst-case recirculation for
flow installation, as an installation in a Cuckoo table may require

log(𝑁) Cuckoo operations, each of which requires a recirculation.

Figure 16 shows that the recirculation rate is high in absolute

numbers, but only a small percentage of the pipeline’s packet-

processing bandwidth—a workload with 1M new flows per second

has less than a 2% bandwidth overhead. At this point, the pipeline

could still support line rate on all front-panel ports if all packets

were larger than 128B (versus 125B with no recirculation load).

7.4 Stateful Firewall Case Study
Finally, to evaluate the latency reduction that data-plane integrated

control can provide, we benchmark a stateful firewall in Lucid.

0μs (line rate) 1μs 1000μs
Flow installation time (log scale)

0.2

0.4

0.6

0.8

1.0

Pr
ob

ab
ilit

y

Remote Control (Baseline)
Integrated Control (Lucid)

Figure 17: Stateful firewall flow installation times. 1000 tri-
als using a 2048-element table with a load factor of .3125.

Implementation.The core of the Lucid stateful firewall is a Cuckoo
hash table [25]. Each flow maps to one of two possible locations,

addressed by a different hash of its key. A lookup operation simply

checks both locations in sequence. An install operation for flow 𝑓

attempts to place it in either of 𝑓 ’s locations. If both are occupied,

a Cuckoo operation replaces a colliding victim 𝑣 with 𝑓 , then gen-

erates an event to re-install 𝑣 . This process repeats until an install

operation has no victim, or the install handler detects that it has

attempted to re-install 𝑓 more than twice, indicating failure [19].

While a flow 𝑣 is being re-installed, its entry is stored in a stash

at the end of the pipeline, so that the (re-)install operations are

transparent to concurrent lookups.

Flow installation time.Our benchmark metric is flow installation

time—the difference between when the first packet of a flow arrives

and when the corresponding installation operation completes. This

metric is critical in a stateful firewall because flow installation must

complete in between the arrival of the first packet from an outbound

flow and the arrival of the first packet from the return flow, i.e.,
one RTT. If not, the firewall will disrupt traffic by either dropping

return packets or queuing the first packet of every new flow until

the installation is complete.

Baseline.We compare against a baseline that represents flow in-

stallation with efficient remote control, using Mantis [34]. Mantis

is a driver-level framework for low-latency control in the manage-

ment CPU of a Tofino switch. We measure the time required for a

Mantis control thread to install a new entry into a P4 match-action

table in the Tofino. This is a lower bound because it ignores the

time required for the CPU to detect that a new flow has arrived,

for example by polling a P4 register in the Tofino that stores a ring

buffer of new flow keys.

Benchmarks. Figure 17 shows the distribution of flow installation

times. Average flow installation time for the data-plane integrated

version was only 49 ns. For over 90% of flows, installation com-

pleted during the processing of the flow’s first packet—an effective

flow installation time of 0 ns. Most of the remaining flows installed

in a single recirculation—about 600 ns. The worst case was 4 recir-

culations or around 2.4 µs. In comparison, the remote-controlled

baseline took at least 12 µs to install a rule for a new flow into a

P4 match-action table, with an average of 17.5 µs—over 300X longer
than the data-plane integrated version. End-to-end flow installation

time with remote control would be much higher in practice, because

of the time required to inform the remote controller that a new

flow has arrived and the queuing delays that would occur when

multiple flows arrived simultaneously.

SIGCOMM ’21, August 23–28, 2021, Virtual Event, USA John Sonchack, Devon Loehr, Jennifer Rexford, and David Walker

Memory efficiency. A drawback of the current Lucid firewall

prototype is memory efficiency. It uses around 3X more memory

than the remotely controlled baseline. The Lucid version does not

include mechanisms to resolve or eliminate installation failures [3,

19], so the load factor must be kept low (0.3125 in our experiments)

to keep the probability of flow installation failure low. The remotely-

controlled baseline, on the other hand, uses the native match-action

tables of the Tofino that are based on a more sophisticated Cuckoo

hashing algorithm that supports a load factor near 1. Improved

algorithms for Cuckoo hashing are possible in Lucid, for example

we implemented a Cuckoo hash table with a stash [19]. We leave

exploration ofmore advanced Lucid data structures for future work.

8 DISCUSSION
Lucid’s abstractions, syntactic restrictions, and backend optimiza-

tions go a long way towards making data-plane programming feel

less like arcane magic and more like software engineering. Still,

Lucid is a work in progress. This section discusses the current

limitations of Lucid and data-plane integrated control.

8.1 Language Limitations
Lucid’s limitations arise from our design goal: a high-level language

that lets us reliably write and compile self contained applications

to a specific, widely-used PISA processor.

Read-only tables. Lucid does not provide a direct abstraction of a

PISA processor’s TCAM-based match-action tables. Applications

can use match-action tables to classify packets in P4 that applies to

packets before/after the Lucid event dispatcher is called. Updating

these tables is slow because it must involve the switch’s CPU. For

higher performance, programmers can build “software” packet-

classification data structures [12] in Lucid, like the Cuckoo hash

table in the stateful firewall. These data structures update faster, but

may have recirculation overhead and require more stages compared

to lower-level P4 equivalents.

Portability. Lucid currently only targets the Intel Tofino. Portable

data-plane languages are a focus of recent research [9]. The chal-

lenge of portability arises from the diversity of data plane hardware.

P4 programs, for example, are often not portable because many

commonly-used primitives (such as those for stateful operations)

are platform-specific externs. Although Lucid currently only sup-

ports the Tofino, its event-based abstractions and ordered type-and-

effect system are relevant to any PISA processor. The concept of

memops is also portable, though the syntax of amemop may change

depending on target capabilities [28].

Multiple pipelines. Switches often have multiple PISA pipelines,

e.g., one ingress and egress pipeline per 16 ports. While the current

implementation of Lucid does not support state sharing across

pipelines, future implementations could support multi-pipeline

applications by adding pipelines as event locations and extending

Lucid’s event scheduler.

Optimization. The optimizations in Lucid’s compiler are heuris-

tics based on our experiences with hand-coding efficient P4-Tofino

programs. Recent work suggests that sophisticated optimizations

based on synthesis [10] or ILP [14] algorithms may do better. How-

ever, in general, finding an optimal PISA layout is NP complete [32].

8.2 Integrated Control Limitations
While data-plane integrated control can have significant benefits,

it is not always the best option. We identify three factors that can

make remote control more appealing.

Compute-bound operations.Compute-bound operations [13] do

not benefit as much from the reduced communication overhead that

data-plane integration provides. Further, for compute-bound tasks,

a server may be faster than the data-plane processor [6]. Of course,

future packet processing architectures may shift the balance [31].

Centralized, network-wide control. While remote control has

high overhead, an advantage is that it enables a centralized pro-

gramming model. Centralization reduces programmer effort, as

demonstrated by prior control-plane languages like Flowlog [23],

Frenetic [8], NetKAT [2], and McNetKAT [29]. Data-plane inte-

grated control, on the other hand, has much lower overhead but

a distributed programming model. An open question is whether

we can provide the abstraction of logically centralized control atop

a distributed layer of data-plane integrated control, to provide a

simpler programming model with low communication overhead.

Runtime overhead. Data-plane integrated control adds runtime

overhead due to packet recirculation. This overhead is often low

(Section 7.3), but is application dependent and should be consid-

ered by the programmer. Future architectures could eliminate this

overhead with hardware to process control operations in parallel

with packets [16] and periodically synchronize shared state.

9 CONCLUSION
Lucid makes it easy to write data-plane applications with high-

performance integrated control. PISA switches already have all

the necessary mechanisms; however, programmers today must use

them at a very low level. Instead of writing packet-processing func-

tions that always execute here and now, Lucid programmers can use

intuitive event-based abstractions to distribute control in both time

and space. Complementing this is a careful correct-by-construction

approach to stateful operations in the data plane that uses syntactic

constraints and a sound type system to improve compiler feedback

and rule out programs that are unlikely to compile.

We realize these ideas for the Intel Tofino, with an optimizing

compiler that generates efficient, Tofino-compatible P4. A diverse

range of Lucid applications require require∼10X fewer lines of code,

compared to P4 equivalents. Programmers without any prior Tofino

experience are able to write compiling code in well under an hour.

Finally, a Lucid stateful firewall outperforms a remotely-controlled

baseline by over 300X.

Overall, Lucid is general, fast, and easy to use. It will save time,

enable new applications, and perhaps change the way we think

about what hardware data planes can do.

Acknowledgments. We thank our shepherd, Brent Stephens, and

the anonymous reviewers for their feedback. We also thank Mihai

Budiu, Ben Pfaff, Leonid Ryzhyk, and Muhammad Shahbaz for

fruitful discussions and useful feedback on this project, and Dovid

Braverman for his helpwith developing the compiler front-end. This

work is supported by NSF grants CNS-1703493 and FMitF-1837030

and DARPA grants HR0011-17-C-0047 and HR0011-20-C-0160.

Lucid: A Language for Control in the Data Plane SIGCOMM ’21, August 23–28, 2021, Virtual Event, USA

REFERENCES
[1] Mohammad Alizadeh, Tom Edsall, Sarang Dharmapurikar, Ramanan

Vaidyanathan, Kevin Chu, Andy Fingerhut, The Vinh Lam, Francis Ma-

tus, Rong Pan, Navindra Yadav, and George Varghese. 2014. CONGA: Distributed

congestion-aware load balancing for datacenters. In ACM SIGCOMM. 503–514.

[2] Carolyn Jane Anderson, Nate Foster, Arjun Guha, Jean-Baptiste Jeannin, Dexter

Kozen, Cole Schlesinger, and David Walker. 2014. NetKAT: Semantic Foundations

for Networks. InACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages. 113–126.

[3] Yuriy Arbitman, Moni Naor, and Gil Segev. 2009. De-amortized cuckoo hash-

ing: Provable worst-case performance and experimental results. In International
Colloquium on Automata, Languages, and Programming. Springer, 107–118.

[4] Pankaj Berde, Matteo Gerola, Jonathan Hart, Yuta Higuchi, Masayoshi Kobayashi,

Toshio Koide, Bob Lantz, Brian O’Connor, Pavlin Radoslavov, William Snow, et al.

2014. ONOS: Towards an open, distributed SDN OS. InWorkshop on Hot Topics
in Software Defined Networking. 1–6.

[5] Pat Bosshart, GlenGibb, Hun-Seok Kim, George Varghese, NickMcKeown,Martin

Izzard, Fernando Mujica, and Mark Horowitz. 2013. Forwarding metamorpho-

sis: Fast programmable match-action processing in hardware for SDN. In ACM
SIGCOMM. 99–110.

[6] Xiaoqi Chen. 2020. Implementing AES encryption on programmable switches via

scrambled lookup tables. In ACM SIGCOMMWorkshop on Secure Programmable
Network Infrastructure. 8–14.

[7] Rob DeLine andManuel Fahndrich. 1999. Natural deduction for intuitionistic non-

commutative linear logic. In International Conference on Typed Lambda Calculi
and Applications.

[8] Nate Foster, Rob Harrison, Michael J. Freedman, Christopher Monsanto, Jennifer

Rexford, Alec Story, and David Walker. 2011. Frenetic: A Network Programming

Language. In ACM International Conference on Functional Programming. 279–291.
[9] Jiaqi Gao, Ennan Zhai, Hongqiang Harry Liu, Rui Miao, Yu Zhou, Bingchuan Tian,

Chen Sun, Dennis Cai, Ming Zhang, and Minlan Yu. 2020. Lyra: A Cross-Platform

Language and Compiler for Data Plane Programming on Heterogeneous ASICs.

In ACM SIGCOMM. 435–450.

[10] Xiangyu Gao, Taegyun Kim, Michael D. Wong, Divya Raghunathan, Aatish Kis-

han Varma, Pravein Govindan Kannan, Anirudh Sivaraman, Srinivas Narayana,

and Aarti Gupta. 2020. Switch Code Generation Using Program Synthesis. In

ACM SIGCOMM. 44–61.

[11] The P4.org API Working Group. [n.d.]. P4Runtime Specification. https://p4lang.

github.io/p4runtime/spec/main/P4Runtime-Spec.html

[12] Pankaj Gupta and Nick McKeown. 2001. Algorithms for packet classification.

IEEE Network 15, 2 (2001), 24–32.

[13] Brandon Heller, Srinivasan Seetharaman, Priya Mahadevan, Yiannis Yiakoumis,

Puneet Sharma, Sujata Banerjee, and Nick McKeown. 2010. ElasticTree: Sav-

ing energy in data center networks. In USENIX Networked Systems Design and
Implementation, Vol. 10. 249–264.

[14] Mary Hogan, Shir Landau-Feibish, Mina Tahmasbi Arashloo, Jennifer Rexford,

David Walker, and Rob Harrison. 2020. Elastic Switch Programming with P4All.

In ACM SIGCOMM HotNets Networks. 168–174.
[15] Kuo-Feng Hsu, Ryan Beckett, Ang Chen, Jennifer Rexford, and David Walker.

2020. Contra: A programmable system for performance-aware routing. In USENIX
Symposium on Networked Systems Design and Implementation. 701–721.

[16] Stephen Ibanez, Gianni Antichi, Gordon Brebner, and Nick McKeown. 2019.

Event-driven packet processing. In ACM Workshop on Hot Topics in Networks.
133–140.

[17] Atsushi Igarashi and Naoki Kobayashi. 2001. Enforcing high-level protocols in

low-level software. SIGPLAN Notices 36 (May 2001). Issue 5.

[18] Naga Katta, Mukesh Hira, Changhoon Kim, Anirudh Sivaraman, and Jennifer

Rexford. 2016. Hula: Scalable load balancing using programmable data planes. In

ACM SIGCOMM Symposium on SDN Research. 1–12.
[19] Adam Kirsch, Michael Mitzenmacher, and UdiWieder. 2008. More robust hashing:

Cuckoo hashing with a stash. In European Symposium on Algorithms. Springer,
611–622.

[20] Vincent Liu, Daniel Halperin, Arvind Krishnamurthy, and Thomas Anderson.

2013. F10: A Fault-Tolerant Engineered Network. In USENIX Symposium on
Networked Systems Design and Implementation. 399–412.

[21] Zaoxing Liu, Hun Namkung, Georgios Nikolaidis, Jeongkeun Lee, Changhoon

Kim, Xin Jin, Vladimir Braverman, Minlan Yu, and Vyas Sekar. 2021. Jaqen:

A High-Performance Switch-Native Approach for Detecting and Mitigating

Volumetric DDoS Attacks with Programmable Switches. In USENIX Security
Symposium.

[22] Robin Milner. 1978. A theory of type polymorphism in programming. J. Comput.
System Sci. 17, 3 (1978), 348–375. https://doi.org/10.1016/0022-0000(78)90014-4

[23] Tim Nelson, Andrew D. Ferguson, Michael J.G. Scheer, and Shriram Krishna-

murthi. 2014. Tierless Programming and Reasoning for Software-Defined Net-

works. In USENIX Networked Systems Design and Implementation. 519–531.
[24] Rolf Neugebauer, Gianni Antichi, José Fernando Zazo, Yury Audzevich, Sergio

López-Buedo, and Andrew WMoore. 2018. Understanding PCIe performance for

end host networking. In ACM SIGCOMM. ACM, 327–341.

[25] Rasmus Pagh and Flemming Friche Rodler. 2004. Cuckoo hashing. Journal of
Algorithms 51, 2 (2004), 122–144.

[26] Jeff Polakow and Frank Pfenning. 1999. Natural deduction for intuitionistic non-

commutative linear logic. In International Conference on Typed Lambda Calculi
and Applications.

[27] Rinku Shah, Vikas Kumar, Mythili Vutukuru, and Purushottam Kulkarni. 2020.

TurboEPC: Leveraging Dataplane Programmability to Accelerate the Mobile

Packet Core. In ACM Symposium on SDN Research. 83–95.
[28] Anirudh Sivaraman, Alvin Cheung, Mihai Budiu, Changhoon Kim, Mohammad

Alizadeh, Hari Balakrishnan, George Varghese, NickMcKeown, and Steve Licking.

2016. Packet transactions: High-level programming for line-rate switches. In

ACM SIGCOMM. 15–28.

[29] Steffen Smolka, Praveen Kumar, David M. Kahn, Nate Foster, Justin Hsu, Dexter

Kozen, and Alexandra Silva. 2019. Scalable Verification of Probabilistic Networks.

In ACM SIGPLAN Programming Language Design and Implementation. 190–203.
[30] John Sonchack, Oliver Michel, Adam J Aviv, Eric Keller, and Jonathan M Smith.

2018. Scaling hardware accelerated network monitoring to concurrent and

dynamic queries with *Flow. In USENIX Annual Technical Conference. 823–835.
[31] Tushar Swamy, Alexander Rucker, Muhammad Shahbaz, and Kunle Olukotun.

2020. Taurus: An intelligent data plane. arXiv preprint arXiv:2002.08987 (2020).

[32] Balázs Vass, Erika Bérczi-Kovács, Costin Raiciu, and Gábor Rétvári. 2020. Com-

piling Packet Programs to Reconfigurable Switches: Theory and Algorithms. In

P4 Workshop in Europe. 28–35.
[33] Kenichi Yasukata, Michio Honda, Douglas Santry, and Lars Eggert. 2016.

StackMap: Low-Latency Networking with the OS Stack and Dedicated NICs.

In USENIX Annual Technical Conference. 43–56.
[34] Liangcheng Yu, John Sonchack, and Vincent Liu. 2020. Mantis: Reactive Pro-

grammable Switches. In ACM SIGCOMM. 296–309.

[35] Lior Zeno, Dan R. K. Ports, Jacob Nelson, and Mark Silberstein. 2020. SwiSh-

mem: Distributed Shared State Abstractions for Programmable Switches. In ACM
SIGCOMM HotNets Workshop.

https://p4lang.github.io/p4runtime/spec/main/P4Runtime-Spec.html
https://p4lang.github.io/p4runtime/spec/main/P4Runtime-Spec.html
https://doi.org/10.1016/0022-0000(78)90014-4

SIGCOMM ’21, August 23–28, 2021, Virtual Event, USA John Sonchack, Devon Loehr, Jennifer Rexford, and David Walker

Appendices are supporting material that has not been peer-reviewed.

A LUCID’S TYPE SYSTEM

⟨𝜖 (stages)⟩ ::= 0 | 1 | 2 | . . .

⟨𝑇 (base types)⟩ ::= Unit | Int

⟨𝑡𝑎𝑢 (types)⟩ ::= 𝑇 | ref (𝑇, 𝜖) | (𝜏, 𝜖) → (𝜏, 𝜖)

⟨𝑥 (variables)⟩ ::= alphanumeric

⟨𝑔 (global variables)⟩ ::= 𝑔0 | . . . | 𝑔𝑛−1

⟨𝑣 (values)⟩ ::= () | Z | 𝑔 | fun (𝑥 : 𝜏, 𝜖) → 𝑒

⟨𝑒 (expressions)⟩ ::= 𝑣 | 𝑥 | 𝑒 + 𝑒 | let 𝑥 = 𝑒 in 𝑒 | !𝑒 | 𝑒 := 𝑒 | 𝑒 𝑒

Figure 18: A toy language and type system

int

𝑛 ∈ Z
Γ, 𝜖 ⊢ 𝑛 : Int, 𝜖

Unit

Γ, 𝜖 ⊢ () : Unit, 𝜖

global variable

Γ, 𝜖 ⊢ 𝑔𝑖 : ref(𝑇𝑖 , 𝑖), 𝜖

local variable

Γ [𝑥] = 𝜏

Γ, 𝜖 ⊢ 𝑥 : 𝜏, 𝜖

plus

Γ, 𝜖 ⊢ 𝑒1 : Int, 𝜖1 Γ, 𝜖1 ⊢ 𝑒2 : Int, 𝜖2

Γ, 𝜖 ⊢ 𝑒1 + 𝑒2 : Int, 𝜖2

let

Γ, 𝜖 ⊢ 𝑒1 : 𝜏1, 𝜖1 Γ [𝑥 := 𝜏1], 𝜖1 ⊢ 𝑒2 : 𝜏2, 𝜖2

Γ, 𝜖 ⊢ let 𝑥 = 𝑒1 in 𝑒2 : 𝜏2, 𝜖2

deref

Γ, 𝜖 ⊢ 𝑒 : ref(𝑇, 𝜖1), 𝜖2 𝜖2 ≤ 𝜖1

Γ, 𝜖 ⊢ !𝑒 : 𝑇, 𝜖1 + 1

update

Γ, 𝜖 ⊢ 𝑒1 : 𝑇, 𝜖1 Γ, 𝜖1 ⊢ 𝑒2 : ref(𝑇, 𝜖2), 𝜖3 𝜖3 ≤ 𝜖2

Γ, 𝜖 ⊢ 𝑒2 := 𝑒1 : Unit, 𝜖2 + 1

abs

Γ [𝑥 := 𝜏𝑖𝑛], 𝜖𝑖𝑛 ⊢ 𝑒 : 𝜏𝑜𝑢𝑡 , 𝜖𝑜𝑢𝑡

Γ, 𝜖 ⊢ fun (𝑥 : 𝜏𝑖𝑛, 𝜖𝑖𝑛) → 𝑒 : (𝜏𝑖𝑛, 𝜖𝑖𝑛) → (𝜏𝑜𝑢𝑡 , 𝜖𝑜𝑢𝑡), 𝜖

app

Γ, 𝜖 ⊢ 𝑒1 : (𝜏𝑖𝑛, 𝜖𝑖𝑛) → (𝜏𝑜𝑢𝑡 , 𝜖𝑜𝑢𝑡), 𝜖1 Γ, 𝜖1 ⊢ 𝑒2 : 𝜏𝑖𝑛, 𝜖2 𝜖2 ≤ 𝜖𝑖𝑛

Γ, 𝜖 ⊢ 𝑒1 𝑒2 : 𝜏𝑜𝑢𝑡 , 𝜖𝑜𝑢𝑡

Figure 19: Typing rules

This appendix presents a simplified definition of Lucid’s type

system, as well as an operational semantics and soundness proof.

To begin, figure 18 defines a grammar for a model ML-like language

on which we will define our type-and-effect system. We present

the system for this language purely for convenience; adapting the

rules to Lucid’s C-like syntax presents no theoretical challenge.

The system is defined with respect to some predefined, ordered

set of 𝑛 global variables 𝑔0 through 𝑔𝑛−1, each of which has an

associated base type 𝑇𝑖 . Base types are simply types which do not

reference stages – in this example, the only two base types are Unit
and Int. Despite the name, global variables are treated as values in

the language, not as variables. They can be thought of exactly like

ref cells in OCaml, and this line of thinking inspires much of the

syntax used for them in the language.

Effects in this system are called stages, and are used to track

which global variables have been used so far. Intuitively, the stage i

represents the pipeline stage containing 𝑔𝑖 . We begin typechecking

at stage 0, and increment the stage when global variables are used.

We can then ensure that the global variables are used in order by

only allowing variable 𝑔𝑖 to be used if the current stage is at most 𝑖 .

The types in this system are mostly straightforward, but note

that functions now have starting and ending stages as well as input

and output types, and we have a ref type representing the type of

a global variable – in general, the type of 𝑔𝑖 is ref (𝑇𝑖 , 𝑖).
Expressions in this language are also straightforward, except

that we have two operators on global variables: dereference (!𝑒),

which returns the current value of the variable, and update 𝑒1 := 𝑒2,

which updates global variable 𝑒1 to hold the value of 𝑒2. Both of

these operators access the global variable, and hence should never

be used out-of-order. Note that these operators do not exist in Lucid;

instead, there are several builtin functions for performing these

accesses.

A.0.1 The Typing Judgement. Our typing judgement has the form

Γ, 𝜖1 ⊢ 𝑒 : 𝜏, 𝜖2, where Γ is an environment which maps local vari-

ables to values. In English, this judgement can be read as “starting

with environment Γ at stage 𝜖1, the expression 𝑒 has type 𝜏 and will

finish evaluation in stage 𝜖2”. The typing rules are presenting in 19.

The most interesting rules here are the DEREF and UPDATE

rules, as they are the ones which interact with stages. Each first

typechecks its subexpression(s) and expects to receive a global vari-

able𝑔𝑖 (i.e. something with ref type) as its first argument. Crucially,

neither rule can be applied unless the stage after evaluating the

subexpression(s) is at most 𝑖 . If this is satisfied, typechecking fin-

ishes in stage 𝑖 + 1. There is a similar constraint on the function

application rule (APP), which specifies that the current stage when

beginning to evaluate a function be at most the function’s starting

effect.

A.0.2 Extensions in Practice. For clarity, we only present a min-

imal system here. In practice, the algorithm we implemented for

Lucid programs differs in two ways beyond simple syntactic differ-

ences. First, it performs type and stage inference, rather than simply

checking the user’s annotations, using an imperative algorithm

analogous to Algorithm J [22].

Our algorithm also allows for polymorphic functions, so that a

single function definition can be re-used for different input types or

at different starting stages. For example, a function which takes two

global variables as arguments and accesses them in order should

work for any two arguments where the first is less than the second.

To express this, function types can be extended contain constraints

on polymorphic stages which appear in the type. These constraints

have the form 𝜖 ≤ 𝜖 , and can be automatically inferred and checked

by the type system.

Lucid: A Language for Control in the Data Plane SIGCOMM ’21, August 23–28, 2021, Virtual Event, USA

plus-1

(𝐺,𝑛, 𝑒1) → (𝐺′, 𝑛′, 𝑒′
1
)

(𝐺,𝑛, 𝑒1 + 𝑒2) → (𝐺′, 𝑛′, 𝑒′
1
+ 𝑒2)

plus-2

(𝐺,𝑛, 𝑒2) → (𝐺′, 𝑛′, 𝑒′
2
)

(𝐺,𝑛, 𝑣 + 𝑒2) → (𝐺′, 𝑛′, 𝑣 + 𝑒′
2
)

plus-2

𝑣1, 𝑣2 ∈ Z 𝑣3 is the integer sum of 𝑣1 and 𝑣2

(𝐺,𝑛, 𝑣1 + 𝑣2) → (𝐺,𝑛, 𝑣3)

let-1

(𝐺,𝑛, 𝑒1) → (𝐺′, 𝑛′, 𝑒′
1
)

(𝐺,𝑛, let 𝑥 = 𝑒1 in 𝑒2) → (𝐺′, 𝑛′, let 𝑥 = 𝑒′
1
in 𝑒2)

let-2

(𝐺,𝑛, let 𝑥 = 𝑣 in 𝑒2) → (𝐺,𝑛, 𝑒2 [𝑣/𝑥])

deref-1

(𝐺,𝑛, 𝑒) → (𝐺′, 𝑛′, 𝑒′)
(𝐺,𝑛, !𝑒) → (𝐺′, 𝑛′, !𝑒′)

deref-2

𝑛 ≤ 𝑖

(𝐺,𝑛, !𝑔𝑖) → (𝐺, 𝑖 + 1,𝐺 [𝑖])

update-1

(𝐺,𝑛, 𝑒1) → (𝐺′, 𝑛′, 𝑒′
1
)

(𝐺,𝑛, 𝑒2 := 𝑒1) → (𝐺′, 𝑛′, 𝑒2 := 𝑒′
1
)

update-2

(𝐺,𝑛, 𝑒2) → (𝐺′, 𝑛′, 𝑒′
2
)

(𝐺,𝑛, 𝑒2 := 𝑣) → (𝐺′, 𝑛′, 𝑒′
2
:= 𝑣)

update-3

𝑛 ≤ 𝑖

(𝐺,𝑛,𝑔𝑖 := 𝑣) → (𝐺 [𝑖 := 𝑣], 𝑖 + 1, ())

app-1

(𝐺,𝑛, 𝑒1) → (𝐺′, 𝑛′, 𝑒′
1
)

(𝐺,𝑛, 𝑒1 𝑒2) → (𝐺′, 𝑛′, 𝑒′
1
𝑒2)

app-2

(𝐺,𝑛, 𝑒2) → (𝐺′, 𝑛′, 𝑒′
2
)

(𝐺,𝑛, 𝑣 𝑒2) → (𝐺′, 𝑛′, 𝑣 𝑒′
2
)

app-3

𝑣1 = fun (𝑥 : 𝜏, 𝜖) → 𝑒

(𝐺,𝑛, 𝑣1 𝑣2) → (𝐺,𝑛, 𝑒 [𝑣2/𝑥])

Figure 20: Operational Semantics

B SOUNDNESS OF TYPE SYSTEM
In this section we define an operational semantics for the example

language defined in Appendix A, and prove the soundness of our

type system.

B.1 Operational Semantics
Our small-step operational semantics is defined on states of our
program, which are three tuples (𝐺,𝑛, 𝑒). Here, 𝐺 is an array of

values such that 𝐺 [𝑖] is the current value of global variable 𝑔𝑖 . We

write 𝐺 [𝑖] for the value in 𝐺 at index 𝑖 , and 𝐺 [𝑖 := 𝑣] for the array
with all entries the same as𝐺 , but where index 𝑖 has value 𝑣 instead.

We say that 𝐺 is well-typed if 𝐺 [𝑖] has type 𝑇𝑖 for all 𝑖; that is, if
∅, 𝜖 ⊢ 𝐺 [𝑖] : 𝑇𝑖 , 𝜖 for all 𝜖 .

𝑛 is an index into the array indicating the next global variable to

be used – global variables with index less than 𝑛 are inaccessible.

Finally, 𝑒 is the expression we are evaluating.

Note the syntactic convention that themetavariable 𝑣 will only be

used to represent expressions which are values. We use a standard

definition of variable substitution, where 𝑒 [𝑣/𝑥] means "e with the

value v substituted for the variable x wherever it appears".

B.2 Important Lemmas
We first prove a number of useful lemmas. The Canonical Forms

lemma says that typing a value does not change the stage, and that

only integer values have type integer, and similarly for other types.

The Substitution lemma states that uniformly replacing a variable

with a value of the same type does not affect our ability to type an

expression. Finally, the weakening lemma says that if an expression

typechecks starting at some stage, then it also typechecks starting

from any earlier stage.

Lemma (Canonical forms): If ∅, 𝜖 ⊢ 𝑣 : 𝜏, 𝜖 ′, then 𝜖 = 𝜖 ′ and:

• if 𝜏 = Int then 𝑣 ∈ Z
• if 𝜏 = ref(𝑇, 𝑘), then 𝑣 = 𝑔𝑘 and 𝑇 = 𝑇𝑘 .

• if 𝜏 = (𝜏𝑖𝑛, 𝜖𝑖𝑛) → (𝜏𝑜𝑢𝑡 , 𝜖𝑜𝑢𝑡 then 𝑣 = fun (𝑥 : 𝜏𝑖𝑛, 𝜖𝑖𝑛) →
𝑒 and ∅[𝑥 := 𝜏𝑖𝑛], 𝜖𝑖𝑛 ⊢ 𝑒 : 𝜏𝑜𝑢𝑡 , 𝜖𝑜𝑢𝑡 .

Proof: Inversion of the typing relation. ■
Definition: If Γ is a map, let Γ\𝑥 denote the same map without a

binding for 𝑥 .

Lemma (Substitution Lemma): If Γ [𝑥] = 𝜏 and ∅, 𝑖 ⊢ 𝑣 : 𝜏, 𝑖

and ∅, 𝜖 ⊢ 𝑒 : 𝜏 ′, 𝜖 ′, then Γ\𝑥, 𝜖 ⊢ 𝑒 [𝑣/𝑥] : 𝜏 ′, 𝜖 ′
Proof: This is a standard lemma and may be proved for our

language in the standard way. ■
Lemma (Weakening): If ∅, 𝜖 ⊢ 𝑒 : 𝜏, 𝜖 ′, and 𝜖1 ≤ 𝜖 ′, then there

is some 𝜖 ′
1
≤ 𝜖 ′ such that ∅, 𝜖1 ⊢ 𝑒 : 𝜏, 𝜖 ′

1
.

Proof: Straightforward induction on the typing derivation. ■

B.3 Progress
Weprove our soundness theorem in the standardway: by combining

progress and preservation lemmas.

Theorem (Progress): If ∅, 𝑖 ⊢ 𝑒 : 𝜏, 𝑗 then either 𝑒 is a value or

for all well-typed 𝐺 there exist some 𝐺 ′, 𝑗 ′, 𝑒 ′ such that (𝐺, 𝑖, 𝑒) →
(𝐺 ′, 𝑗 ′, 𝑒 ′).

Proof: Structural induction on the typing derivation.

Case INT/UNIT/GLOBAL VARIABLE/ABS: In these cases the

expression is already a value, so the result is trivial.

Case LOCAL VARIABLE: This case is impossible, as our typing

judgement contains an empty environment.

Case PLUS: In this case, 𝑒 = 𝑒1 + 𝑒2. By induction, either 𝑒1 is a

value or it steps to some (𝐺 ′, 𝑖 ′, 𝑒 ′
1
). In the latter case, we may apply

rule PLUS-1 to show that (𝐺, 𝑖, 𝑒1 + 𝑒2) → (𝐺 ′, 𝑖 ′, 𝑒 ′
1
+ 𝑒2.

Similarly, either 𝑒2 is a value or it steps to some other (𝐺 ′, 𝑖 ′, 𝑒 ′
2
).

If 𝑒1 is a value and 𝑒2 steps, then we may apply rule PLUS-2 to show

that (𝐺, 𝑖, 𝑒1 + 𝑒2) → (𝐺 ′, 𝑖 ′, 𝑒1 + 𝑒 ′
2
)

Finally, if both 𝑒1 and 𝑒2 are values, then note that by the premises

of the PLUS rule, both have type Int. By our canonical forms lemma,

𝑒1, 𝑒2 ∈ 𝑍 , so we may apply the PLUS-3 rule to show that (𝐺, 𝑖, 𝑒1 +
𝑒2) → (𝐺, 𝑖, 𝑣) where 𝑣 is the sum of 𝑒1 and 𝑒2.

Case LET: In this case, 𝑒 = let 𝑥 = 𝑒1 in 𝑒2. By induction,

either 𝑒1 is a value or it steps to something. In the latter case we

may apply rule LET-1; otherwise, we may apply rule LET-2.

Case DEREF: In this case, 𝑒 =!𝑒1. By induction, either 𝑒1 is a value

or it steps to something. In the latter case we may apply rule DEREF-

1; otherwise, note that we have the premise ∅, 𝑖 ⊢ 𝑒1 : ref(𝑇, 𝑘), 𝑗 ′
where 𝑗 ′ ≤ 𝑘 . Since 𝑒1 is a value, our canonical forms lemma tells

us that 𝑒1 = 𝐺𝑘 , and 𝑗 ′ = 𝑖 . Hence 𝑖 = 𝑗 ′ ≤ 𝑘 , so we can apply rule

DEREF-2 to show that (𝐺, 𝑖, !𝑒1) → (𝐺,𝑘 + 1,𝐺 [𝑘]).
Case UPDATE: In this case, 𝑒 = 𝑒2 := 𝑒1. As in previous parts,

the only interesting case is when 𝑒1 and 𝑒2 are both values. In that

case, as in the DEREF rule, canonical forms tells us that 𝑒2 = 𝑔𝑘 for

some 𝑘 ≥ 𝑖 , and thus we can apply rule UPDATE-3.

Case APP: In this case, 𝑒 = let 𝑥 = 𝑒1 in 𝑒2. The reasoning is

analogous to the PLUS case. ■

SIGCOMM ’21, August 23–28, 2021, Virtual Event, USA John Sonchack, Devon Loehr, Jennifer Rexford, and David Walker

B.4 Preservation
Theorem (Preservation): If ∅, 𝑖 ⊢ 𝑒 : 𝜏, 𝑗 , 𝐺 is well-typed, and

(𝐺, 𝑖, 𝑒) → (𝐺 ′, 𝑖 ′, 𝑒 ′), then𝐺 ′
is also well-typed, and there is some

𝑗 ′ ≤ 𝑗 such that ∅, 𝑖 ′ ⊢ 𝑒 ′ : 𝜏, 𝑗 ′.
Proof: Structural induction on the typing derivation.

Case INT/UNIT/GLOBAL VARIABLE: This case cannot occur,

because values do not evaluate to anything.

Case LOCAL VARIABLE: This case also cannot occur, because

the typing judgement contains an empty environment.

Case PLUS: In this case 𝑒 = 𝑒1 + 𝑒2 and 𝜏 = Int. Thus the proof
that 𝑒 steps must have used either PLUS-1, PLUS-2, or PLUS-3. We

also have the premises of the PLUS rule: ∅, 𝑖 ⊢ 𝑒1 : Int, 𝑘 and

∅, 𝑘 ⊢ 𝑒2 : Int, 𝑗 .
• If we used PLUS-1, then we know that (𝐺, 𝑖, 𝑒1) → (𝐺 ′, 𝑖 ′, 𝑒 ′

1
)

and 𝑒 ′ = 𝑒 ′
1
+ 𝑒2. Thus by induction, 𝐺 ′

is well-typed and

∅, 𝑖 ′ ⊢ 𝑒 ′
1
: Int, 𝑘 ′ for some 𝑘 ′ ≤ 𝑘 . We may use weakening

on the second premise to obtain ∅, 𝑘 ′ ⊢ 𝑒2 : Int, 𝑗 ′ for some

𝑗 ′ ≤ 𝑗 , and combine these judgements to show that ∅, 𝑖 ′ ⊢
𝑒 ′
1
+ 𝑒2 : Int, 𝑗

′
as required.

• If we used PLUS-2, then we know that (𝐺, 𝑖, 𝑒2) → (𝐺 ′, 𝑖 ′, 𝑒 ′
2
)

and 𝑒 ′ = 𝑒1 + 𝑒 ′
2
. We also know that 𝑒1 is a value, so by

canonical forms 𝑒1 ∈ Z and 𝑘 = 𝑖 . Thus we may combine

this with the second premise and use induction to conclude

that 𝐺 ′
is well-typed, and that ∅, 𝑖 ′ ⊢ 𝑒 ′

2
: Int, 𝑗 ′ for some

𝑗 ′ ≤ 𝑗 . Since 𝑒1 ∈ Z we may use the INT rule to show

that ∅, 𝑖 ′ ⊢ 𝑒1 : Int, 𝑗 , and combine this with the previous

judgement to show that ∅, 𝑖 ′ ⊢ 𝑒1 + 𝑒 ′
2
⊢ Int, 𝑗 ′ as required.

• If we used PLUS-3, we know that 𝐺 ′ = 𝐺 and is hence well-

typed, 𝑗 = 𝑖 , and both 𝑒1 and 𝑒2 are values, so 𝑒1, 𝑒2 ∈ Z and
thus 𝑒 ′ ∈ Z as well. Thus we may simply use the INT rule to

show that ∅, 𝑖 ⊢ 𝑒 ′ : Int, 𝑗 as required.
Case LET: In this case, 𝑒 = let 𝑥 = 𝑒1 in 𝑒2, and we have the

premises ∅, 𝑖 ⊢ 𝑒1 : 𝜏1, 𝑘 and ∅[𝑥 := 𝜏1], 𝑘 ⊢ 𝑒2 : 𝜏, 𝑗 .
The proof that 𝑒 steps must have used either LET-1 or LET-2.

The LET-1 case is analogous to the PLUS-1 case. In the LET-2 case,

we know that 𝑒1 is a value, 𝐺
′ = 𝐺 and hence is well-typed, and

𝑖 = 𝑗 . By canonical forms, 𝑘 = 𝑖 . By the substitution lemma, the

second premise becomes ∅, 𝑖 ⊢ 𝑒2 [𝑒1/𝑥] : 𝜏, 𝑗 , which is precisely

what we wanted to show.

Case DEREF: In this case, 𝑒 =!𝑒1, and we have the premises that

∅, 𝑖 ⊢ 𝑒1 : ref(𝑇, 𝑘), 𝑘 ′ where 𝑘 ′ ≤ 𝑘 and 𝜏 = 𝑇 . As usual, we must

have used either the DEREF-1 or DEREF-2 rule to prove that 𝑒 steps.

The DEREF-1 case is analogous to the PLUS-1 case.

If we used DEREF-2, then we know that 𝐺 ′ = 𝐺 is well-typed,

𝑗 = 𝑘 + 1, 𝑒1 is a value, and 𝑒
′ = 𝐺 [𝑘]. By canonical forms, 𝑒1 = 𝑔𝑘

and 𝜏 = 𝑇 = 𝑇𝑘 . We need only show that ∅, 𝑘 + 1 ⊢ 𝐺 [𝑘] : 𝜏, 𝑘 + 1,

which follows immediately from 𝐺 being well-typed.

Case UPDATE: In this case, 𝑒 = 𝑒2 := 𝑒1, 𝜏 = Unit, and we have

the premises that ∅, 𝑖 ⊢ 𝑒1 : 𝑇, 𝑘1, ∅, 𝑘1 ⊢ 𝑒2 : ref(𝑇, 𝑘2), 𝑘3 where
𝑘3 ≤ 𝑘2. As usual, we must have used either UPDATE-1, UPDATE-

2, or UPDATE-3 to show that 𝑒 steps, and the first two cases are

analogous to PLUS-1 and PLUS-2, respectively.

In the UPDATE-3 case, we know that the output value is (),
which can trivially be typed using the UNIT rule. So we need only

show that𝐺 ′ = 𝐺 [𝑘2 := 𝑒1 is well-typed. But since 𝑒1 is a value, we

must have used the INT or UNIT rule to prove the first premise,

and that rule works for all 𝜖 . Thus 𝐺 ′[𝑘2] has the right type, and
all other entries are unchanged, so 𝐺 ′

is well-typed.

Case APP: In this case, 𝑒 = 𝑒1 𝑒2, and we have the premises

∅, 𝑖 ⊢ 𝑒1 : (𝜏𝑖𝑛, 𝜖𝑖𝑛) → (𝜏𝑜𝑢𝑡 , 𝜖𝑜𝑢𝑡), 𝑘 and ∅, 𝑘 ⊢ 𝑒2 : 𝜏𝑖𝑛, 𝑘2 where

𝑘2 ≤ 𝜖𝑖𝑛 , 𝜏 = 𝜏𝑜𝑢𝑡 and 𝑗 = 𝜖𝑜𝑢𝑡 . As usual, we must have used either

the APP-1, APP-2, or APP-3 rules here, and the first two cases are

again analogous to PLUS-1 and PLUS-2.

If we used the APP-3 rule, then we know that 𝐺 ′ = 𝐺 is well-

typed, that 𝑖 ′ = 𝑖 , that 𝑒1 = fun(𝑥 : 𝜏1, 𝜖1) → 𝑒𝑏𝑜𝑑𝑦 and 𝑒2 are both

values, and that 𝑒 ′ = 𝑒𝑏𝑜𝑑𝑦 [𝑒2/𝑥]. Since both 𝑒1 and 𝑒2 are values,

by canonical forms we know that 𝑖 = 𝑘 = 𝑘2.

By the canonical forms lemma on 𝑒1, we know that ∅[𝑥 :=

𝜏𝑖𝑛], 𝜖𝑖𝑛 ⊢ 𝑒𝑏𝑜𝑑𝑦 : 𝜏𝑜𝑢𝑡 , 𝜖𝑜𝑢𝑡 . Now, 𝑒2 is a value, and by the sec-

ond premise it has type 𝜏𝑖𝑛 ; thus by the substitution lemma ∅, 𝜖𝑖𝑛 ⊢
𝑒𝑏𝑜𝑑𝑦 [𝑒2/𝑥] : 𝜏𝑜𝑢𝑡 , 𝜖𝑜𝑢𝑡 . Since 𝑖 = 𝑘2 ≤ 𝜖𝑖𝑛 , by weakening there is

some 𝜖 ′𝑜𝑢𝑡 such that ∅, 𝑖 ⊢ 𝑒𝑏𝑜𝑑𝑦 [𝑒2/𝑥] : 𝜏𝑜𝑢𝑡 , 𝜖 ′𝑜𝑢𝑡 ■

B.5 Soundness
Finally, we combine the progress and preservation theorems to

prove that expressions which typecheck always evaluate – that is,

"Well-typed programs do not get stuck". We denote the transitive

closure of the evaluation relation by→∗
.

Theorem (Soundness): If ∅, 𝜖1 ⊢ 𝑒 : 𝜏, 𝜖2, then either 𝑒 is a

value, or 𝑒 → 𝑒 ′ and there is some 𝜖 ′
1
such that ∅, 𝜖 ′

1
⊢ 𝑒 ′ : 𝜏, 𝜖2.

Proof: Inductively apply preservation to show that𝐺2 and 𝑒2 are

well-typed, then apply progress to show that 𝑒2 is either a value, or

another step can be taken. ■

C MEMOP LIMITATIONS� �
memop compoundCondition(int memval, int y){
if (memval == 1 || memval == 2) {
return memval;

} else {
return y;

}
}
memop twoLocalArgs(int memval, int y, int z){
if (memval == 1) {
return y;

} else {
return z;

}
}
const int N = 10;
memop multipy(int memval, int x){

return (N * memval) + x;
}� �
Figure 21: Memops that are invalid because of: 1) compound
conditional expressions; 2) accessing too much local state
(i.e., packet header or metadata) and; 3) arithmetic opera-
tions that are too complex.

This appendix discusses stateful operations that can be imple-

mented by the Tofino, but are not supported by Lucid’s basememop
syntax. Ultimately, memops rule out some implementable opera-

tions to provide a uniform base abstraction where: 1) every array

method call with valid memops is guaranteed to be implementable

by a stateful ALU; 2) any memop can be used in any array method;

and 3) all memops have the same syntactic restrictions.

Lucid: A Language for Control in the Data Plane SIGCOMM ’21, August 23–28, 2021, Virtual Event, USA

A uniform memop abstraction reduces completeness because

some array methods place more restrictions onmemops than others.

Specifically, while each array method call compiles to a single state-

ful ALU instruction, an Array.update call (i.e., a parallel get and set)

requires us to compile two memops to a single instruction, whereas
Array.get and Array.set only require us to compile one memop to

the instruction. Thus, compared to an Array.get or Array.set, each

memop that we pass to Array.update can only safely use “half” of

the stateful ALU’s capabilities. Since we want any memop to be us-

able in any array method, the base memop syntax must reflect this

constraint. This, in turn, disallows some of the more complicated

set or get operations that the Tofino could implement.

Figure 21 gives three examples of memops that are not valid

in Lucid, but can be implemented on the Tofino. Each example

memop could be implemented in a stateful ALU, but would not leave

enough stateful ALU resources to guarantee that a second memop
of array.update could also fit. Each example stresses a different kind

of primitive within the stateful ALU. All of these examples could

be supported by a future version of Lucid with a special kind of

memop that is not allowed to be used by the fully general version of

Array.update.

D ARTIFACT APPENDIX
D.1 Abstract
The artifact associated with this paper is the Lucid compiler, which

translates Lucid programs into Tofino-optimized P4_16. As of pub-
lication, we are actively developing the Lucid compiler and using

Lucid to build data-plane applications for several other projects.

D.2 Scope
The Lucid compiler is intended for general Tofino programming.

We believe it can significantly reduce programmer effort for a wide

range of data-plane applications. The Lucid interpreter, which can

also be found in this repository, enables rapid prototyping and

testing of data-plane applications without requiring access to the

Tofino toolchain.

Additionally, the artifact can be used to reproduce Figure 9 from

the evaluation.

D.3 Contents
The main branch of this repository contains the Lucid compiler,

the Lucid interpreter, example applications, usage instructions and

tutorials, and scripts for automating deployment to P4.

The sigcomm21_artifact branch of the Lucid repository con-

tains a snapshot of the Lucid compiler from 5/2021 with instructions

to reproduce Figure 9 from the evaluation.

D.4 Hosting
The repository is hosted on GitHub, at:

https://github.com/PrincetonUniversity/lucid.

The branch to reproduce Figure 9 is at:

https://github.com/PrincetonUniversity/lucid/tree/sigcomm21_artifact .

D.5 Requirements
The repository branch associated with Figure 9 was tested with:

virtualbox 6.1.8 (https://www.virtualbox.org/wiki/Downloads); Va-

grant 2.2.9 (https://www.vagrantup.com/downloads); and the Intel

P4 studio SDE version 9.5.0. P4 studio is only necessary if you wish

to compile the output of the Lucid compiler to the Tofino.

The main branch of the Lucid repository lists current require-

ments in its readme.md.

https://github.com/PrincetonUniversity/lucid
https://github.com/PrincetonUniversity/lucid/tree/sigcomm21_artifact
https://www.virtualbox.org/wiki/Downloads
https://www.vagrantup.com/downloads

	Abstract
	1 Introduction
	2 Integrated Data-Plane Control
	2.1 Motivation: Low Latency Control
	2.2 PISA Programmable Packet Processing
	2.3 Packet-driven Control Operations
	2.4 Persistent State
	2.5 Control Threads via Recirculation
	2.6 Scheduled Control via Support Engines
	2.7 Masters of Complexity

	3 Event-Driven Programming
	3.1 Event-based Lucid Abstractions
	3.2 Data-Plane Event Scheduler

	4 Operating on Persistent State
	4.1 The Array Module
	4.2 Memop Functions

	5 Ordered Data Access
	5.1 Well-ordered Programs
	5.2 Types for Ordered Data Access

	6 Compiling to the Tofino
	6.1 Translating to Atomic P4 Tables
	6.2 Optimizing Control Flow

	7 Evaluation
	7.1 Language Design
	7.2 Optimization Benchmarks
	7.3 Recirculation Overhead
	7.4 Stateful Firewall Case Study

	8 Discussion
	8.1 Language Limitations
	8.2 Integrated Control Limitations

	9 Conclusion
	References
	A Lucid's Type System
	B Soundness of Type System
	B.1 Operational Semantics
	B.2 Important Lemmas
	B.3 Progress
	B.4 Preservation
	B.5 Soundness

	C Memop Limitations
	D Artifact Appendix
	D.1 Abstract
	D.2 Scope
	D.3 Contents
	D.4 Hosting
	D.5 Requirements

