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Abstract—Minimizing user-perceived latency is crucial for
Content Distribution Networks (CDNSs) hosting interactive ser-

vices. Latency may increase for many reasons, such as inter-

domain routing changes and the CDN’s own load-balancing
policies. CDNs need greater visibility into the causes of tancy
increases, so they can adapt by directing traffic to differeh
servers or paths. In this paper, we propose a tool for CDNs to
diagnose large latency increases, based gassive measurements
of performance, traffic, and routing. Separating the many caises
from the effects is challenging. We propose alecision tree for
classifying latency changes, and determine how to distindgsh
traffic shifts from increases in latency for existing serves, routers,
and paths. Another challenge is that network operators grop
related clients to reduce measurement and control overheadut
the clients in a region may use multiple servers and paths diing
a measurement interval. We propose metrics that quantify tle
latency contributions acrosssets of servers and routers. Based
on the design, we implement the LatLong tool for diagnosing
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Fig. 1. CDN architecture and measurements

large latency increases for CDN. We use LatLong to analyze a world. Instead, this paper explores how CDNs can diagnose

month of data from Google’s CDN, and find that nearly 1%
of the daily latency changes increase delay by more than 100
msec. Note that the latency increase of 100 msec is signifi¢an
since these are daily averages over groups of clients, and waly
focus on latency-sensitive traffic for our study. More than ©% of
these increases coincide with interdomain routing changesand
more than one-third involve a shift in traffic to different servers.
This is the first work to diagnose latency problems in a large,
operational CDN from purely passive measurements. Through
case studies of individual events, we identify research cHanges
for managing wide-area latency for CDNs.

|I. INTRODUCTION

latency problems based on measurements they can readily and
efficiently collect—passive measurements of performance [1],
traffic [2], and routing from their own networks. Our goal is

to design the system to maximize the information the CDN
can glean from these sources of data. By joining data celtect
from different locations, the CDN can determine where antlie
request enters the CDN's network, which front-end server
handles the request, and what egress router and interdomain
path carry the response traffic, as shown in Figure 1. Using
this data, we analyze changes in wide-area latency between t
clients and the front-end servers; the rest of the usereperd
latency, between the front and back-end servers, is already

Content Distribution Networks (CDNSs) offer users accessmder the CDN'’s direct control.

to a wide variety of services,

running on geographically Finding theroot cause of latency increases is difficult. Many

distributed servers. Many web services are delay-seasithactors can contribute to higher delays, including intérna

interactive applications (e.g., search, games, and aoidive

factors like how the CDN selects servers for the clients,

editing). CDN administrators go to great lengths to mininizand external factors such as interdomain routing changes.

user-perceived latency, by overprovisioning server reses)

Moreover, separating cause from effect is a major challenge

directing clients to nearby servers, and shifting trafficagw For example, directing a client to a different front-endveer
from overloaded servers. Yet, CDNs are quite vulnerable t@turally changes where traffic enters and leaves the nketwor
increases in thevide-area latency between their servers andut the routing system is not to blame for any resulting
the clients, due to interdomain routing changes or congiestiincrease in latency. After detecting large increases eniay,

in other domains. The CDN administrators need to detemtir classification must first determine whether client retgie
and diagnose these large increases in round-trip time, astdfted to different front-end servers, or the latency tclrethe

adapt to alleviate the problem (e.g., by directing clientsat
different front-end server or adjusting routing policiestlect
a different path).

existing servers increased. Only then can we analygethese
changes happened. For example, the front-end server may
change because the CDN determined that the client is closer t

To detect and diagnose latency problems, CDNs couwdddifferent server, or because a load-balancing policy eg¢ed

deploy a large-scale active-monitoring infrastructureddect

to shift clients away from an overloaded server. Similarly,

performance measurements from synthetic clients all dwer tif the round-trip time to a specific server increases, ratin



changes along the forward or reverse path (or both!) could bence. These case studies illustrate the difficulty of ingid

responsible. an accurate latency-map to direct clients to nearby sertregs
The scale of large CDNs also introduces challenges. Textra latency client experience when flash crowds force some

measure and control communication with hundreds of miliomequests to distant front-end servers, and the risks ofngly

of users, CDNs typically group clients by prefix or geographion AS path length as an indicator of performance. Although

region. For example, a CDN may collect round-trip times andany of these problems are known already, our case studies

traffic volumes by IP prefix, or direct clients to front-enchighlight that these issues arise in practice and are redgen

servers by region. During any measurement interval, a gpbupfor very large increases in latency affecting real users.

clients may send requestsruiltiple front-end servers, and the Our tool is complementary to the recent work on Why-

traffic may traversenultiple ingress and egress routers. Thudligh [3]. WhyHigh usesactive measurements, combined

in order to analyze the latency increases for groups of tguewith routing and traffic data, to studyersistent performance

we need to define the metrics to distinguish the changes framoblems where some clients in a geographic region have

an individual router or server. much higher latency than others. In contrast, we passive
In designing our tool LatLong for classifying large latencyneasurements to analyze large latedugnges affecting entire
increases, we make the following contributions: groups of clients. Thelynamics of latency increases caused

Decision tree for separating cause from effectA key by changes in server selection and inter-domain routing are
contribution of this paper is that we determine the causabt studied in the work of WhyHigh.
relationship among the various factors which lead to latenc The rest of the paper is organized as follows. Section Il
increases. We proposelecision tree for separating the causesprovides an overview of the architecture of the Google CDN,
of latency changes from their effects, and identify the datand the datasets we gathered. Section IIl describes ougrdesi
sets needed for each step in the analysis. We analyze ¢i¢atLong using decision-tree based classification. 8ad
measurement data to identify suitable thresholds to iflentpresents a high-level characterization of the latency gbsn
large latency changes and to distinguish one possible cairs¢he Google’s CDN, and identifies the large latency events
from another. we study. Next, we present the results of classificationgusin

Metrics to analyze oversets of servers and routers:Our LatLong in Section V, followed by several case studies in
tool LatLong can analyze latency increases and traffic shiffection VI. Then, we discuss the future research direciions
over sets of servers and routers. For all potential causes &ection VII, and present related work in Section VIII. Figal
the latency increase in the decision tree, we propose maetnee conclude the paper in Section IX.
to quantify the contribution of the latency increases. For

each potential cause, we define the metric to quantify the ||. GoocLE'S CDN AND MEASUREMENT DATA
contribution of latency increases by a single router or &erv In this section, we first provide a high-level overview of the

as well as a way to summarize the contributions across ﬁgtwork architecture of Google's CDN. Then, we describe the

routers and servers. .
. measurement dataset we gathered as the input of our tool.
Deployment of LatLong in Google’s CDN: We apply ¢ P

our tool to one month of traffic, performance, and routin .
data from Google’s CDN, and focus our studies on the larde Google’s CDN Architecture
latency increases which last long and affect a large number o The infrastructure of Google’'s CDN consists of many
clients. Note that our tool could be applied to study therleye servers in the data centers spread across the globe. The
increases at any granularity. We focus on the large incseasdient requests are first served at a front-end (FE) server,
because these are the events which causes serious peréermahich provides caching, content assembly, pipelininguesg
degradation for the clients. We determine 100 msec as tteglirection, and proxy functions for the client requestsh@ve
threshold of large latency increase, because it is significagreater control over network performance, CDN administsat
given that this number is the daily average aggregated fragpically place front-end servers in managed hosting locat
group of clients. We also focus on the latency-sensitiviiicra or ISP points of presence, in geographic regions nearby the
for interactive applications for our study, which doest clients. The client requests are terminated at the FEs, and
include video traffic (e.g., YouTube). We identified that mga (when necessary) served at the backend servers which imple-
1% of the daily latency changes increase delay by more thament the corresponding application logic. Inside the CDN's
100 msec. Our results show that 73.9% of these large ineaisgernal network, servers are connected by the routers, and
in latency were explained (at least in part) by a large irmeealP packets enter and leave the network at edge routers that
in latency to reach an existing front-end server, with 42.2%onnect to neighboring ISPs.
coincided with a change in the ingress router or egressrouteFigure 1 presents a simplified view of the path of a client
(or both!); around 34.7% of the large increases of latencgquest. A client request is directed to an FE, based on
involved a significant shift of client traffic to differentdnt- proximity and server capacity. Each IP packet enters the CDN
end servers, often due to load-balancing decisions or @sangetwork at aningress router and travels to the chosen FE.
in the CDN’s own view of the closest server. After receiving responses from the back-end servers, the FE
Case studies to highlight challenges in CDN manage- directs response traffic to the client. These packets ldawe t
ment: We present several events in greater detail to highligBDN at anegress router and follow anAS path through one
the challenges of measuring and managing wide-area perfor-more Autonomous Systems (ASes) en route to the client.



Data Set Collection Point Logged Information
Performance| front ends (FEs) | (client /24 prefix, country, RPD, average RTT)

Traffic ingress routers (client IP address, FE IP address, bytes-in)
egress routers (FE IP address, client IP address, bytes-out)
Routing egress routers (client IP prefix, AS path)

Joint data (client IP prefix, FE, RPD, RTT{ingress, bytes-if, {egress, AS path, bytes-giit

TABLE |
MEASUREMENTS OF WIDEAREA PERFORMANCE TRAFFIC, AND ROUTING

The user-perceived latency is affected by several factbes: source address for incoming traffic and the destinationesidr
location of the servers, the path from the client to the ingrefor outgoing traffic; similarly, the FE is the destinationr fo
router, and the path from the egress router back to the clieincoming traffic, and the source for outgoing traffic. Netflow
From the CDN'’s perspective, the visible factors are: theeng performs packet sampling, so the traffic volumes are estisnat
router, the selection of the servers, the egress routerttend after correcting for the sampling rate. This leads to restindt
AS path. summarize traffic in each fifteen-minute interval, indingtthe
Like many CDNs, Google uses DNS to direct clients tolient IP address, front-end server address, and traffiowel
front-end servers, based first onlatency map (preferring Traffic for a single client address may be associated with
the FE with the smallest network latency) and second anultiple routers or FEs during the interval.
a load-balancing policy (that selects another nearby FE if BGP routing (at egress routers): The edge routers also
the closest FE is overloaded) [4]. To periodically condirugollect BGP routing updates that indicate the sequence of
the latency map, the CDN collects round-trip statistics bXutonomous Systems (ASes) along the path to each client IP
passively monitoring TCP transfers to a subset of the |Refix. (Because BGP routing is destination based, the reute
prefixes. In responding to a DNS request, the CDN identifigannot collect similar information about the forward patnfi
the IP prefix associated with the DNS resolver and returns tbgents to the FEs.) A dump of the BGP routing table every
IP address of the selected FE, under the assumption that @fiden minutes, aligned with the measurement interval fier t
users are relatively close to their local DNS servers. Chang\etflow data, indicates the AS-PATH of the BGP route used
in the latency map can lead to shifts in traffic to differenfo reach each IP prefix from each egress router.
FEs. The latency between the front-end and back-end servergpint data set: The joint data set used in our analysis
is a known and predictable quantity, and so our study focusgsmbines the performance, traffic, and routing data, usieg t
on the network latency—specifically, the round-trip time—lient IP prefix and FE IP address as keys in the join process.

between the FEs and the clients. First, the traffic and routing data at the egress routers are
_ joined by matching the client IP address from the Netflow
B. Passive Measurements of the CDN data with the longest-matching prefix in the routing data.

The measurement data sets, which are routinely collectégcond, the combined traffic and routing data are aggregated
at the servers and routers, are summarized in Tableinto summaries and joined with the performance data, by
The three main datasets—performance, traffic, and routiftfitching the /24 prefix in the performance data with the
measurements—are collected by different systems. The miggest-matching prefix from the routing data. The resgltin
surement data gathered is composed of latency sensitifie trgoint data set captures the traffic, routing, and perforredoc
for the interactive applications. We dwt include the video €ach client IP prefix and front-end server, as summarized in
traffic(e.g., YouTube) for our study, because that is lagendable I. The data set is aggregated to prefix level. In additio
insensitive. the data do not contain any user-identifiable informatiarcis

Client performance (at the FEs): The FEs monitor the as packet payloads, timings of individual requests, etbg T
round-trip time (RTT) for a subset of the TCP connectior@ata set we study is based on a sample, and does not cover
by measuring the time between sending the SYN-ACK ar@dl of the CDN network.
receiving an ACK from the client; if this SYN-ACK RTT The data have some unavoidable limitations, imposed by
is larger than the RTT for data transfers in the same TGQRe systems that collect the measurements: the performance
connection, then the servers log the shorter RTT for dadata does not indicate which ingress and egress router were
transfer instead. These measurements capture the prapagatsed to carry the traffic, since the front-end servers do not
and queuing delays along both the forward and reverse paltase access to this information. This explains why the joint
to the clients. Each FE also counts of the number of requesiata set has aet of ingress and egress routers. Fortunately,
producing a daily summary of the round-trip time (RTT) anthe Netflow measurements allow us to estimate the request
the requests per day (RPD) for each /24 IP prefix. Each /gate for the individual ingress routers, egress routerd, A8
prefix is associated with a specific country, using an IP-ggaths from the observed traffic volumes; however, we cannot
database. We use it to group prefixes in nearby geographidaectly observe how the RTT varies based on the choice of
regions for our study. ingress and egress routers. Still, the joint data set pesvid

Netflow traffic (at edge routers): The edge routers collecta wealth of information that can shed light on the causes of
traffic measurements using Netflow [2]. The client is thkrge latency increases.



Latency map, and front-end server capacity and de- where RPD; = ), RPD;; is the total number of requests
mand: In addition to the joint data set, we analyze changes tmm that region, across all front-end servers, for timeiquer
the latency map used to drive DNS-based server selection,las\ similar equation holds for the second time period, with
discussed in more detail in Section 11I-B. We also collegido the subscripts changed to consider round-trip times anebistq
of server capacity and demand at all front-end servers. \We uates at time 2.
the logs to determine whether a specific FE was overloadedrhe increase in average round-trip time from time 1 to time
at a given time (when the demand exceeded capacity, @di.e., ARTT = RTT> — RTT)) is, then,
requests were load balanced to other front-end servers).

ARTT =" (RTTQZ- x =20 RTTy; *

I11. DESIGN OF THELATLONG ToOL P

Analyzing wide-area latency increases is difficult, beeaushe equation shows how the latency increases could come
multiple inter-related factors can lead to higher rounpl-trejther from a higher round-trip time for the same server,(i.e
times. Also, our_analys,ls_should account fo_r the factthetts R7T,, > RTT;) or a shift in the fraction of requests directed
may direct traffic tomultiple front ends, either because theo each FE (i.e.RPD,;/RP D, vs. RPD;;/RPD;), or both.
front-end server changes or because different clients én th 19 tease these two factors apart, consider one, B&d the
same region use different front-end servers. term inside the summation. We can split the term into two

In this section, we present the design of LatLong to analygts that sum to the same expression, where the first capture

latency increases, as illustrated in Figure 2. \We propo§gs impact on the round-trip time from traffic shifting towar
metrics for distinguishing FE changes from latency changggnt-end servei:

that affect individual FEs. Then, we describe the techrsque RPD..  RPD..
to identify the cause of FE changes (the latency map, or AFE; _RTT%*< Z_ “)

load balancing). Lastly, we present the method to correlate RPD;  RPDy

the latency increases that affect individual FEs with mgiti where A FE; is high if the fraction of traffic directed to front-
changes. Note that the first step in the procedure (chaizeteend serveri increases, or if the round-trip time is high at
latency) is described in details in the next section. This ifine 2. The second term captures the impact of the latency to
because the classification of our tool is general, and can s@@nt-end servei increasing:
port to diagnose latency changes at different granulaeity.(

different ways to aggregate users, and different timesgale ALat; = (RTTy; — RTTh;) * RPDi

Table Il summarizes the notation used in this paper. RPDy

where the latency is weighted by the fraction of requests

A. Front-End Server Change vs. Latency Increase directed to front-end server to capture the relative impact

The average round-trip time could increase for one of @ this FE on the total increase in latency. Through simple
main reasons: algebraic manipulation, we can show that

« Front-end server changes AFFE): The clients switch ARTT — Z(AFEi + ALat;).

from one front-end server to another, where the new -

server used has a higher RTT. This change could beA h — bt he |
caused by an FE failure or a change in the CDN's s such, we can quantify the contribution to the latency

server-selection policies, as shown in the upper branEHange that comes from shifts between FEs:
of Figure 2. , AFE =Y AFE;/ARTT
« Front-end latency changes A Lat): The clients could ,
continue using the same FE, but have a higher RTT for o
reaching that server. The increased latency could st&ﬂd latency changes for individual front-end servers
from changes along the forward or reverse path to the ALat — ZALati/ARTT
client, as shown in the lower branch of Figure 2. ;
The analysis is difficult because a group of clients could-co h
tact multiple front-end servers, and the RTT and RPD for eagfa
server changes. Correctly distinguishing all of theseofact

K2

3

ere the factors sum tb. For example, if the FE change

ntributes 0.85 and the latency change contributes 0.25, w
. . . N can conclude that the latency increase was primarily caused
requires grappling witleets of front-ends andweighting the by a traffic shift between front-end servers. If the FE change

RTT measurements app_rop_rlately. : : contributes -0.1 and the latency change contributes 1.1, we
The average round-trip time experienced by the clients Is

. can conclude that the latency increase was due to an increase
the average over the requests sent to multiple front-erd$, e. .
o s .~in latency to reach the front-end servers rather than adraffi
with its own average round-trip time. For example, conmdghiﬂ_ if anything, the -0.1 suggests that some traffic sbifto
a region of clients experiencing an average round-trip tirhe FE o ' . .
. . . s withlower latency, but this effect was dwarfed by one or
RTT; at time 1, with a request rate &{PD; and round-trip Y y

. more FEs experiencing an increase in latency.
time RTT,; for each front-end server Then, pe! 9 . Y
RPD In the following subsections, we present the method to
17

identify the causes of the FE changes: the latency map and
RPD, load balancing.

RTT, = Z RTTy; *



Performance Data

l

Latency Map
FE Capacity and Demand

Load Bal.ancing
(Section 3.2, 3.3)

FE Server
Changes

FE Ch T BGP Routing
Characterize| Events V;mge Classification Netflow Traffic Report
Latency FE Latency Increase v
Routing Changes:

(Section 4)

(Section 3.1)

FE Latency Ingress Router
Changes Egress Router, AS Path
(Section 3.4)
LatLong system design: classification of large leyechanges
Symbol Meaning
RTT:, RTT> round-trip time for a client region at time 1 and time 2
ARTT change in RTT from time 1 to time 2 (i.eRTT> — RTT1)
RTTy;, RTTy; round-trip time for requests t6'E; at time 1 and time 2
RPD:, RPD, requests for a client region at time 1 and time 2
RPD1;, RPDo; requests taFE; at time 1 and time 2
AFE; latency change contribution from traffic shifts B
ALat; latency change contribution from latency change$ &t
AFFE latency change contribution from traffic shifts at all FEs
ALat latency change contribution from latency changes at all FEs
T1i, T2 fraction of requests served &tE; predicted by the latency map at time 1 and time 2
ALatMap fraction of requests shifting FEs predicted by the laten@apm
AFEDist actual fraction of requests shifting FEs
LoadBalancey fraction of requests shifting FEs by the load balancer aetim
ALoadBal difference of the fraction of requests shifting FEs by thadidalancer from time 1 to time 2
Alngress fraction of the traffic shifting ingress router at a specifie F
AFEgressASPath | fraction of the traffic shifting (egress router, AS path) apeecific FE

B. Front-End Changes by the Latency Map

TABLE Il
SUMMARY OF KEY NOTATION

towards another (i.erp; —r1; increasing for some other front-

Google CDN periodically constructs a latency map to dire&nd server).
clients to the closest front-end server. The CDN constrilngts
latency map by measuring the round-trip time for each /23. Front-End Changes by Load Balancing

prefix to different front-end servers, resulting in a listpping In practice, the actual distribution of requests to fronte
each /24 prefix to a single, closest FE. From the latency m%@%

R rvers does not necessarily follow the latency map. Some
we can compute the target distribution of r_equests over Pes may be overloaded, or unavailable due to maintenance.
front-end servers for groups of co-located clients in e+, \qerstand how the traffic distribution changes in peagti
intervals. To cpmbme thl$ information across all /24 prediin | quantify the changes in front-end servers as follows:
the same region, we weight by the requests per day (RPD) %r
each /24 prefix. This results in a distribution of the fractaf RPDy;  RPDy; /2
requests-; from the client region directed to front-end server RPDy;  RPD;

i, at time 1. . . .
T(lgllzi\t is, we calculate the fraction of requests to #& time

As the latency map and the request rates change, the regl gt 5 and he diff ) I
may have a different distributiofiry; } at time 2. To analyze and time 2, an Comp_“te the di erence, summing over a
f)nt—end servers. As with the equation f&xLatMap, we

changes in the latency map, we consider the fraction g ) , . X
requests that should shift to different front-end servers: ivide the sum by two to avoid dpuble counting shifts away
from one front-end server and shifts toward another.
ALatMap =) |ro — ruil /2 The differences are caused by the CDN's own load-
i balancing policy, which directs traffic away from busy front
Note that we divide the difference by two, to avoid doublend servers. This may be necessary during planned mainte-
counting the fraction of requests that move away from omance. For example, an FE may consist of a cluster of com-
FE (i.e.,ry; — r1; decreasing for one front-end servigrand puters; if some of these machines go down for maintenance,

AFEDist = Z

%



the aggregate server capacity decreases temporarilyhkr ot To quantify how traffic shifted to different ingress routers

cases, a surge in client demand may temporarily overload the compute:

closest front-end server. In both cases, directing sonemtsli

to an alternate front-end server is important for preventin Alngress = Z |f25 = f13l/2

degradation in performance. A slight increase in roungl-tri J

time for some clients is preferable to all clients experirgc Note that the difference between the fractions is divided by

slower downloads due to congestion. two, to avoid double counting traffic that shifts away from
To estimate the fraction of requests shifted by the loawhe ingress router and toward another. Similarly, we define a

balancer, we identify front-end servers that handléower metric to measure the fraction of traffic to a FE that switches

fraction of requests than suggested by the latency map. Tthea different egress router or AS path. Suppose the fraction

latency map indicates that front-end serveshould handle a of traffic to (egress router, AS patf) is ¢;;, at time 1 and

fractionr; of the requests for the clients at time 1. In realityyx at time 2. Then,

the server handleRPD,;/RPD;. AEgressASPath — Z ook — g1il/2
k

similar to the equation for analyzing the ingress routel®ese

metrics allow us to correlate large increases in latency to

where []* indicates that the sum only includes the positiveerver with observable routing changes. Note that the analysis

values, with the target request load in excess of the aatadl| can only establish a correlation between latency increases

Similarly, we define the fraction of queries load balanced and routing changes, rather than definitively “blaming” the

time 2 asLoadBalances. routing change for the higher delay, since the performance
If much more requests are load balanced on the secdngasurements cannot distinguish RTT by which ingress or

day, then more requests are directed to alternative FEs tRglfess router carried the traffic.

are further away, leading to higher round-trip times. Thus,

use the difference of the load balancer metric to captureemor IV. DISTRIBUTION OF LATENCY CHANGES

load balancing traffic at time 2: In the rest of the paper, we apply our tool to measurement
AlLoadBal — LoadBalances — LoadBalance data from Google’s CDN. The BGP and Netflow data are col-
- 2 ! lected and joined on a 15-minute timescale; the performance
We expect the load-balancing policy to routinely trigge?ata is collecte_d_ daily, and joined with th_e routing andficaf
some small shifts in traffic. data to_ form a joint data set for each day in June 201_0. For our
analysis, we focus on the large latency increases whictidast
a long time and affect a large number of clients. We pick daily
D. Inter-domain Routing Changes changes as the timescale, because the measurement data we ge
. . _is aggregated daily. We group clients by “region,” combanin
. N_e>_<t, our analysis chuses on event_s where th_e RTT JUMPF |p addresses with the same origin /A8d located in the
s_lgnlflcantly for specific FEs. These Increases in rourmi-tqsame country. In this section, we describe how we preprocess
time could be caused by routing changes, or by congest data, and characterize the distribution of daily insesan

along the paths to and from the client. Since the CDN does rfgfency to identify the most significant events which last fo

have direct visibility into congestion outside its own netk, days. We also determine the threshold for the large latency
we correlate the RTT increases only with the routing Changﬁ‘l%reases we study

visible to the CDN—changes of the ingress router where tlien As our datasets are proprietary, we are not able to reveal

traffic enters the CDN network, and chang_es of the €OTSFe exact number of regions or events, and instead report
router and the AS path used _to reach the client. percentages in our tables and graphs; we believe percentage
Recall that the latency metrit Lat can be broken down 10 56 more meaningful, since the exact number of events and
the sum of latency metrics at individual FEs (i.8.Lat;). We  ragions naturally differ from one CDN to another. In additio
focus our attention on the FE with the hlghest_value&(ﬂati, the granularity of the data, both spatially (i.e., by regiand
because the latency change for requests to this FE has the 'Tmporally (i.e., by day) are beyond our control; these ob®i

impact on the latency increase seen by the clients. Then, W& 4t fundamental to our methodology, which could easily
define metrics to capture what fraction of the traffic desting,, applied to finer-grain measurement data.

to this FE experiences a visible routing change. Focusing on

the front-end servef with the highest latency increase, we ] .

consider where the traffic enters the network. Given all tH Agdgregating Measurements by Region

traffic from the client region to the front-end server, we can Our joint dataset has traffic and performance data at thé leve
compute the fractiong;; and fo; entering at ingress routgr of BGP prefixes, leading to approximately 250K groups of
at time 1 and time 2, respectively. Note that we compute thedénts to consider. Many of these prefixes generate vetg lit
fractions from the “bytes-in” statistics from the Netflowtda traffic, making it difficult to distinguish meaningful chaegin
since the front-end server cannot differentiate the reguyss latency from statistical noise. In addition, CDN admirastrs

day (RPD) by which ingress router carried the traffic. understandably prefer to have more concise summaries of

LoadBalance; = Z [Tli -

%

RPDy; 1"
RPD,



. . Category % Events
significant latency changes that affect many clients, ratien Absoltte RTT Increass 100 ms | 76.9%

reports for hundreds of thousands of prefixes. Relative RTT Increase 1 35.6%
Combining prefixes with the same origin AS seems like a Total large events 100%

natural way to aggregate the data, because many routing and

traffic changes take place at the AS level. Yet, some ASes

are quite large in their own right, spanning multiple coiegr

We combine prefixes that share the same country and origin

TABLE Il
EVENTS WITH A LARGE DAILY RTT INCREASE

AS (which we define as eegion), for our analysis. From the Category % Events
performance measurements, we know the country for each /24 FE latency increase 73.9%

fix, allowing us to identify the country (or set of couns) ngress router 10.3%
prenx, g _ Y _ . (Egress, AS Path)  14.5%
associated with each BGP prefix. A prefix spanning multiple Both 17.4%
countries could have large variations in average RTT simply Unknovg'] 31-50%
due to differences in the locations of the active clients. As FELS:{ggCy rf]‘g%e ﬁégjo
such, we filter the small number of BGP prefixes spanning Load balancing 2.9%
multiple countries. This filters approximately 2K prefixes, LBJOtl? 2-43‘?;0

. . 0, : 0, - nknown 4%
which contribute 3.2% of client requests and 3.3% of thditraf ol T00.0%
volume.

After aggregating clients by region, some regions still TABLE IV

contribute very little traffic. For each region, we calceldhe CAUSES OF LARGE LATENCY INCREASESWHERE LATENCY MORE THAN
minimum number of requests per day (RPD) over the month f 0uoLE5 07 HCTEASES BY MORE FiAIO0uSEQ, reLrve To,
June 2010. The distribution of monthly minimum RPD over LATENCY INCREASES AND FE SERVER CHANGES
all the regions (not shown) reveals that most requests come
from a small fraction of the regions. We choose a threshold
for the minimum RPD to filter the regions with very low client
demand. This process improves statistical accuracy, sedau We define anevent to be a daily RTT increase over a
makes sure that we have enough samples of requests forttieshold for a specific region. Table Ill summarizes theneve
regions we study. This also helps focus our attention ororegi We selected to characterize the latency increase. We choose
with many clients, and reduce the volume of the measureméfg threshold of absolute RTT increase as 100 ms and the
data we analyze. This process excludes 85.8% of the regioifigeshold of relative RTT increase as 1, leading to a contbine
but only 6% of the traffic. list of hundreds of events corresponding to the most sigamific
Hence, for the rest of our analysis, we focus on client8creases in latency: with 76.9% of the events over the absol
aggregated by region (i.e., by country and origin AS), arldT T increase threshold; 35.6% of the events over the relativ
regions generating a significant number of requests per d&J.T increase threshold; and 12.5% of the events over both
Note that our analysis methodology could be applied equalfjresholds.
well to alternate ways of aggregating the clients and filigri
the data. V. LATLONG DIAGNOSIS OFLATENCY INCREASES
In this section, we apply our tool to study the events of large
latency increases, which are identified in the previous@ect
To gain an initial understanding of latency changes, wé&e first classify them into FE changes and latency increases
first characterize the differences in latency from one day & individual FEs. Then, we further classify the events of
the next throughout the month of June 2010, across all tR& changes according to the causes of the latency map and
client regions we selected. We consider both #imsolute load balancing; classify the events of FE latency increases
changes (i.e.RTT, — RTT;) and therelative change (i.e., according to the causes of inter-domain routing changes.
(RTT, — RTTy)/RTT)), as shown in Figures 3(a) and 3(b), Our high-level results in this section are summarized in
respectively. The graphs plot only thecreases in latency, Table IV. Nearly three-quarters of these events were exgthi
because the distributions of daily increases and decreases(at least in part) by a large increase in latency to reach
symmetric. an existing front-end server. These latency increases ofte
The two graphs are plotted as complementary cumulatigeincided with a change in the ingress router or egress rroute
distributions, with a logarithmic scale on both axes, tohhig (or both!); still, many had no visible interdomain routing
light the large outliers. Figure 3(a) shows that latencydases change and were presumably caused by BGP routing changes
less than 10msec for 79.4% of the time. Yet, nearly 1% of thom the forward path or by congestion or intradomain routing
latency increases exceed 100 msec, and every so oftenyatesitanges. Around one-third of the events involved a sigmifica
increases by more than one second. Figure 3(b) shows thlaift of client traffic to different front-end servers, afteue
the RTT increases by less than 10% in 80.0% of cases. Yetload-balancing decisions or changes in CDN's own view of
the daily RTT at least doubles (i.e., a relative increase of 1 the closest server. Nearly 9% of events involved both an “FE
more) for 0.45% of the time, and we see occasional increasaency increaseand an “FE server change,” which is why
by a factor of ten. they sum to more than 100%.

B. ldentifying Large Latency Increases
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Fig. 3. Distribution of daily RTT increase

Threshold
0.3 0.4 0.5
ALat | 61% | 65% | 71%
AFE | 23% | 26% | 29%
Both 16% 9% 0%

TABLE V
EVENTS CLASSIFIEDBYALat AND AFE

CDF (All Events)

a range of thresholds, around two-thirds of the events are
explained primarily by an increase in latency between the

T A - S— ‘ ‘
o i, ‘ ‘ clients and the FEs. For example, using a threshold of 0.4

-1 -0.5 0 0.5 1 1.5 2

for both distributions, 65% of events have a larfyé.at and
A FE and A Lat

another 9% of events have large values for both metrics,
resulting in nearly three-quarters of the events causeldi@e

part) by increases in RTTs to select front-end servers. én th
rest of the paper, we apply a threshold( to distinguish
events into the three categories in Table V. This is because
A. FE Change vs. Latency Increase the threshold of 0.5 separates the two categories apart; the

1 0,
Applying our tool to each event identified in the last se(;tiorltlhresmld of 0.3 (where one factor contributes to 30% of the

. . o atency increases) is not as significant as 0.4.
we see that large increases in latency to reach existingiserv
(i.e., ALat) are responsible for more than two-thirds of the
events with a large increase in round-trip time. To identlify B. Normal Front-End Changes
cause of latency increases, we first show the CDRAGTE To understand the normal distribution of latency-map
(traffic shift) andALat (latency increase) for the events wechanges, we calculat&LatMap for all of the regions—
study in Figure 4. The distributions are a reflection of eackhether or not they experience a large increase in latency—
other (on both the x and y axes), becaus€'E’ and ALat on two consecutive days in June 2010. Figure 5 shows the
sum to 1 for each event. results. For 76.9% of the regions, less than 10% of the reégues
The graph shows that about half of the events havéE' change FEs because of changes to the latency map. For 85.7%
below 0.1, implying that shifts in traffic from one FE toof regions, less than 30% of traffic shifts to different front
another are not the major cause of large-latency events. Sénd servers. Less than 10% of the regions see more than
traffic shifts are responsible faome of the latency increases—half of the requests changing front-end servers. Oftersethe
one event has AF'E of 5.83! (Note that we do not show thechanges involve shifts to another front-end server in almear
very few points with extreme\F'E or ALat values, so we geographic region.
can illustrate the majority of the distribution more cleaimh However, note that the distribution &fLat M ap has a long
the graph). In comparisor Lat is often fairly high—in fact, tail, with some regions having 80% to 90% of the requests
more than70% of these events have ALat higher than 0.5. shifting FEs. For these regions, changes in the measured
To classify these events, we apply a threshold to botatency lead to changes in the latency map which, in turn,
distributions and identify whetheAF'EY or ALat (or both) lead to shifts in traffic to different front-end servers. $he
exceeds the threshold. Table V summarizes the results éatliers are not necessarily a problem, though, since the FE
thresholds0.3, 0.4, and 0.5. These results show that, foron the second day may be very close to the FEs on the first

Fig. 4. AFFE andALat for large events
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Fig. 5. Distribution of A LatMap and AF E Dist across all client regions Fig. 7. Distribution ofA LatencyM ap and AF E Distribution for Events

for one day in June 2010 AFE>04
1 .
N ' 777777 N e | C. Front-End Changes During Events
oglb : ‘ i To understand the influence of traffic shifts during the
07 L | events, we analyze the large-latency events where framt-en
06 b o i changes are a significant contributor to the increase imdste
u 0'5 777777 L T o | (i.e., AFE > 0.4); 35% of the events fall into this category,
o 0'4 : : ‘ ‘ as shown earlier in Table V. Figure 7 plots the distributions
T ‘ ‘ ] of ALatMap and AFEDist for these events. For these
0.3 [ o ] events, the FE distribution still mostly agrees with theaty
0.2 s R el B o 7] map. Compared with the curves in Figure 5, the events which
01 S N%",‘Qg'lgvaesneé . 7 experienced large latency increases have a stronger atiorel
0 with FE changes. According to the latency map, only 14% of
06 04 -02 0 02 04 06

events have fewer than 10% of requests changing FEs; 46% of
the events have more than half of queries shifting FEs. Note
that FE changes (i.e., in nearby geographical locations) do
Fig. 6. Distribution of ALoadBalance for Normal Cases and Events NOt necessarily lead to large latency increases, and may eve
AFE>04 improve user-perceived throughput by avoiding busy server
That said, these FE changes can cause increases in ropnd-tri
time, so we need to understand how and why they happen.
day. To understand the impact of these traffic shifts, we needwe then calculate th& LoadBal, the difference of fraction
to consider the resulting latency experienced by the dient of traffic directed by the load balancer from one day to the
Figure 5 also shows the resulting distribution®f' EDist next. Figure 6 shows the distribution &fLoadBal for these
(i.e., the actual FE changes) for all client regions for orevents and for all client regions. As illustrated in the figur
pair of consecutive days in June 2010. As expected, tB2.5% of the normal cases have less than 10% of requests
distribution matches relatively closely with the distiilmn shifted away from the closest front-end server. In contrast
for ALatMap, though some significant differences existfor the AFE events, 27.7% of the events have\d oadBal
Sometimes the traffic shifts even though the latency map dogsue greater than 10%; more than 9% of the events have
not change. This is evident in the lower left part of the graph ALoadBal in excess 0of0.3, suggesting that the load-
where most client regions see little or no change to the ¢gterbalancing policy is responsible for many of the large insesa
map, but a higher fraction experience as much &$cashift in latency.
in traffic. Based on theALatMap and ALoadBal metrics, we
We expect the load-balancing policy to routinely triggeclassify the events into four categories: (i) correlatedyon
some small shifts in traffic. Figure 6 plots the distributioih with latency map changes, (ii) correlated only with load
ALoadBal for all client regions for a single day in June 2010balancing changes, (iii) correlated with both latency-map
as shown in the “Normal Cases” curve. As expected, mastanges and load balancing; and (iv) unknown. We choose the
clients are directed to the closest front-end server, asatetl 85th-percentile and 90th-percentile in the distribution the
by the clustering of the distribution aroutiLoadBal = 0. normal cases as the thresholdsfobat M ap and A LoadBal.
In the next subsection, we show that the large latency eveitsble VI summarizes the results: 26.7% of the events are
coincide with larger shifts in traffic, as illustrated by thecorrelated with both changes to the latency map and load
“AFFE Events” curve in Figure 6. balancing; 40.8% of the events only with changes in the

A Load Balance
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Threshold (0.27, 0.06)| (0.53, 0.08) 0.45
(Percentile) 85th 90th : ! Normal Cases
Latency Map 40.8% 23.8% 0.4 R R A Lat Events —%—
Load Balancing 8.3% 12.6% ; ; ; ;
Both 26.7% 18.4% 035 % A A T
Unknown 24.3% 45.1% 0.3 X o s e -
w AR VR R S b N
TABLE VI 8 0-25 | | ‘ |
CLASSIFICATIONOFEVENTS WITHAFE > 0.4 o 0.2 [ A .
0.15 [ N R b .
T S .
latency map; 8.3% of the events only with load balancing; 0.05 [t g .
and 24.3% of the events fall into the unknown category. The 0 L i ‘ !
table also shows results for the 90th-percentile threshold 0 0.2 04 06 08 1
Note that in the “unknown” category, although the fraction A Ingress

of traffic shifting FEs is low, this does not mean that the FE
change is not responsible for the latency increases. ThisFIis
because: what matters is the latency difference between the
FEs, not only the fraction of traffic shifting FEs. For these

Ingress router shiftsXIngress)

. . 0.7 T T T T
events in the unknown category, we still need to analyze 3 ‘ Normal Cases
how much the latency differs between the FEs from one 0.6 F S— S— AlatEvents —e— .
day to the next; we suspect that, while the fraction of traffic | | | |

. . . . . 05 P s O — .
shifting is small, the absolute increase in latency may lgé.hi ; ; ; ;
Completing this analysis is part of our ongoing work. L 04 X b T S s |

3} : : : :
- - O 03 X A o e .
D. Inter-domain Routing Changes ‘ ‘ ‘ ‘

In this subsection, we study the events where the round-trip 02 [ X §
time increases to existing front-end servers. We charaeter 01 b e S R |
the events based on these metrics, and classify events dased ;
changes to the ingress router, the egress router and AS path, 0 : : . ‘
or both. 0 0.2 0.4 0.6 0.8 1

L. . . A EgressASPath
For better insight into whether routing changes are respon-

sible for latency increases, we first consider the prevaeric

routing changes foall client regions—when latency doest Fig. 9. Egress router and AS path shifts Egress ASpath)

necessarily increase significantly—for a pair of conseeuti

days in June 2010. Figure 8 shows the CCDF, with the y-axis

cropped at 0.45, to highlight the tail of the distributionavl For the normal cases, 63% of the client regions see no change

clients experience a large shift in ingress routers. Sicanifi in the egress router or the AS path; 91% see less than 10% of

routing changes are relatively rare for the “Normal Casks.” the traffic shifting egress router or AS path. In comparison,

fact, 76.6% of the client regions experienz@ change in the the “ALat Events,” only 39% of the events see no changes in

distribution of traffic across ingress routers. Less thandf% the egress routers and AS paths; 32% of the events see more

the regions experience a shift of more than 10%. As such, wen 10% of the traffic changing egress router or AS path, and

see that shifts in where traffic enters Google’s CDN netwod0% of the events see more thhalf of the traffic shifting

do not occur often, and usually affect a relatively smaltfien egress routers and/or AS paths.

of the traffic. Based on both of the routing indicators, we classify the
However, large shifts in ingress routers are more commenents into four categories: (i) correlated only with irgge

for the events where the round-trip time to a front-end serveouter changes, (ii) correlated only with changes in thesgr

increases significantly (i.eALat > 0.4), as shown by the router and AS path, (i) correlated with both ingress chemg

“ALat Events” curve in Figure 8. The events we study haveand egress/AS-path changes, and (iv) unknown. To identify

much stronger correlation with changes in the ingress reutesignificant shifts, we look to the distributions for “Normal

compared with the normal cases. Though 55% of these eve@tses” and consider the 85th and 95th percentiles for shifts

do not experiencany change in ingress routers, 22.2% ofn both Alngress and AFEgressASPath. Table VII sum-

events see more than a 10% shift, and 6.7% of the events se®izes the results. Based on the 85th-percentile thréshol

more thanhalf of the traffic shifting ingress routers. 23.7% of the events are associated with large shifts in tath t
Similarly, we calculateAEgressASPath for both the ingress routers and the egress/AS-path; 13.9% of the events

normal cases and th& Lat events, as illustrated in Figure 9.are associated with ingress-router shifts; 19.6% of thetsve

Compared with ingress changes, we see more egress arel associated with shifts in the egress router and AS path;

AS path changes, in part because we can distinguish routengd 42.7% of the events fall into the unknown category. We

changes at a finer level of detail since we see the AS patiflso show results using the 90th-percentile thresholds.
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Thresholds | (0.025, 0.05)] (0.06, 0.09) . . . : . .
(Percentile) 85th 90th servers, especially with the increasing use of services lik
Ingress 13.9% 12.6% GoogleDNS and OpenDNS. Similarly, client IP addresses do
Egress/AS-path]  19.6% 17.4% not necessarily fall in the same IP prefix as their local DNS
0, 0, .
Both 23.1% 17.6% server. Further, DNS caching causes the local DNS server to
Unknown 42.7% 52.5% . .
return the same IP address to many clients over a period of
TABLE VI time. All of these limitations of DNS make it difficult for a
CLASSIFICATION OF EVENTS WITH ALat > 0.4 CDN to exert fine-grain control over server selection. Récen

work at the IETF proposes extensions to DNS so requests
from local DNS servers include the client’s IP address [10],
_ which should go a long way toward addressing this problem.
Note that around half of the events fall into the unknowsyjj|, further research on efficient measurement techrsunel

category, where we could not correlate latency increasgficient, fine-grain control over server selection would/bey
with large, visible changes to interdomain routing. Patnt ;sefyl.

explanations include AS-level routing changes on the fodwa

path (from the client to the front-end server) that do n . .

affect where traffic enters Google’s CDN network. Intradtrma%' Flash Crowd Leads to Load Balancing to Distant Front-
routing changes in individual ASes could also cause inesaasEnd Servers
in round-trip time without changing the ingress router,gsgr ~ AS another example, we saw the average round-trip time
router, or AS path seen by the CDN. Finally, congestion am,%)uble for an ISP in Malaysia. The RTT increase was caused
either the forward or reverse path could be responsiblesghdy @ traffic shift to different front-end servers; in partay
results suggest that CDNs should supplement BGP and trafii¢ £ was 0.979. To understand why, we looked at the metrics
data with finer-grain measurements of the IP-level forwagdi for front-end server changes. First, we noticed thatat M ap

path (e.g., using traceroute and reverse traceroute [3}) b¥as0.005, suggesting that changes in the latency map were
for better accuracy in diagnosing latency increases and 118t responsible. Second, we observed th#tE Dist = 0.34
drive new BGP path-selection techniques that make routidd ALoadBal = 0.323, suggesting that load balancing

decisions based on direct observations of performance. Was responsible for the shift in traffic. Looking at the ctien
request rate, we noticed that the requests per day jumped

significantly from the first day to the second; in particular,
RPDy/RPD; = 2.5. On the first day, all requests were
For a better understanding of large latency increases, Wgved as front-end servers close to the clients; however, o
explore several events in greater detail. These case stugig second day, 40% of requests were directed to alternate
illustrate the general challenges CDNs face in minimizingont-end servers that were further way. This led to a large
wide-area latency and point to directions for future workncrease in the average round-trip time for the whole region
Although many of these problems are known already, our caserhjs case study points to a general limitation of relying on
studies highlight that these issues arise in practice ard gund-trip times as a measure of client performance. If, on
responsible for very large increases in latency affected r the second day, Google’s CDN had directed all client reguest

V1. CASE STUDIES

users. to the closest front-end server, the user-perceived pagoce
would likely have beerworse. Sending more requests to an
A. Latency-Map Inaccuracies already-overloaded server would lead to slow downloads for

During one day in June 2010, an ISP in the United statfs"Y large number of cllents.- Directing some requests o
T . nother server—even one that is further away—can result in
saw the average round-trip time increase by 111 msec. Qur . . . L
} . higher throughput for the clients, including the clientsngs
analysis shows that the RTT increased because of a shift .
. . o . the remote front-end server. Understanding these effects r
traffic to different front-end servers; in particulakF'FE was

1.01. These shifts were triggered primarily by a change quires more detailed measurements of download performance

the latency map; in particulaty Lat M ap was 0.90. Looking and agcurate ways to pr_edlct the impact of alterr_late load
: . alancing strategies of client performance. We believedhe

at the latency map in more detail revealed the reason for I

: : are exciting avenues for future work, to enable CDNs to hand|

the change. On the first day, 78% of client requests we

e e .
directed to front-end servers in the United States, and Zirl%Sh crowds and other shifts in user demand as effectively as

were directed to servers in Europe. In contrast, on the $bccpnoss'ble'

day, all requests were directed to front-end servers in firo )

Hence, the average latency increased because the cliergs e Shift to Ingress Router Further Away from the Front-End

directed to servers that were further away. The situation weaerver

temporary, and the clients were soon directed to closet-fron On day in June 2010, an ISP in Iran experienced an increase

end servers. of 387 msec in the average RTT. We first determined that the
This case study points to the challenges of identifying tHeTT was mainly caused by a large increase in latency to reach

closest servers and using DNS to direct clients to serversaparticular front-end server in western Europe. This fiermd

topics explored by several other research studies [6],[4], server handled 65% of the requests on both days. However,

[8], [9]. Clients do not necessarily reside near their IA@BIS A Lat; for this server was 0.73, meaning 73% of the increase
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in RTT was caused by an increase in latency to reach thmstwork introduce two interesting twists on the problem of
front-end server. Looking at the routing changes, we sawirgelligent route control. First, the CDN selects interdom
Alngress of 0.38. Analyzing the traffic by ingress router, waoutes atmultiple egress points, rather than a single location.
found that, on the first day, all of the traffic to this fronteen Second, the CDN cajwintly control server selection and route
server entered the CDN'’s network at a nearby ingress rouseiection for much greater flexibility in directing traffic.
in western Europe. However, on the second day, nearly 40%
of the traffic entered at different locations that were farth VIl. FUTURE RESEARCHDIRECTIONS
away—21% in eastern Europe and 17% of traffic in the United , . . . L

: . ; In this section, we briefly discuss several natural dirextio
States. Thus, the increase in RTT was likely caused by exFra

. or future work on diagnosing wide-area latency increases f
latency between the ingress router and the front-end sery, BNs 9 9 y o€

and perhaps also by changes in latency for the clients tdreac Direct extensions of our measurement studyFirst, we

these ingress routers, lan to extend our design in Section Il to distinguish betwe

This case study points to a larger difficulty in COntrOIIIngfouting changes that affect the egress router from those tha

inbound traffic using BGP. To balance load over the ingres nly change the AS path. Second, as discussed at the end of
routers, and generally reduce latency, a large AS typica

ection V-C, we plan to further explore the unexplainedtshif

announces its prefixes at many locations. This allows othIe,'r :
: . : In traffic from one front-end server to another. We suspedt th
ASes to select interdomain routes with short AS paths and b

nearby peering locations. However, an AS has relativelig lit some of these shifts are caused by a relatively small fractio
contro);c? erl getherlothe'r Asvgsvca'n (and do) make Ivoo d ('jeof_traffic shifting to a much further away front-end serves. T

) verw 9 .%halyze this further, we plan to incorporate the RTT dififees
sions. In some cases, a CDN may be able to use the Multi

Lo . . B&ween front-end servers as part of our metrics for stfdyin
Exit Discriminator (MED) attribute in BGP to control how
individual neighbor ASes direct traffic, or perform seleeti

FE changes. Third, our case studies in Section VI required
AS prepending or selective prefix announcements to maggnyal exploration, after automatically compl_Jting theous
some entry points more attractive than others. Still, tBis etrics. W.e plan to conduct more case studies and automate
an area that is ripe for future research, to givé CDNS moérée analysis to geqerate r_epo_rts for the network opgrators.
control over how clients reach their ser\;ices More accurate diagnosis:First, we plan to wor.k with the

' groups that collect the measurement data to provide theotata

a smaller timescale (to enable finer-grain analysis) aneah r
D. Shorter AS Paths Not Always Better time (to enable real-time analysis). Second, we plan tocegpl
. . - better ways to track the performance data (including RTT and
On another day in June 2010, an ISP in Mauritius eXpEe_PD) separately for each ingress router and egress/AS-path

rienced a 113 msec increase in the average round-trip tinafljrrentl the choice of ingress and egress routers are not
On both days, most client requests were handled by a fron Y 9 g

end server in Asia—60% on the first dav and 74% on tﬁ’ééible to the front-end servers, where the performanca dat
y g collected. Third, we will explore techniques for coatilg
second day. However, on the second day, the latency to reac

this front-end server increased substantially. Lookinghat across latency Increases affectmg multlple_customerormgl
For example, correlating across interdomain routing chang

routing data, we see that traffic shifted to a different egre . . .
router and AS path. On the first day, 56% of the traffi?at affect thg AS_paths for multiple client prefixes may deab
us to better identify the root cause [12].

left Google’s CDN's network in Asia. On the second day, Incoroorating additional data sets: We plan to investigate
this number dropped to 10%, and nearly two-thirds of ﬂ}e porating i : P investg

traffic left the network in Europe over shorter AS path. echnigues for improving the visibility of the routing and

Presumably, upon learning a BGP route with a shorter A&erformance_changes from outside the CDN network. For
{example, active measurements—such as performance probes

path, the routers preferred this route over the “longerhpa : :

through Asia. However, AS-path length is (at best) Ioosefé‘/nd traceroute (including bo_th forward and reverse tracer-

correlated with round-trip time, and in this case the “skidrt ute [13])—would he]p explain the “unknown cat.egor_y.for
the ALat events, which we could not correlate with visible

path had a much higher latency. . o s
This case study points to a larger problem with toolayrsoutlng changes. In addition, measurements from the front

interdomain routing system—routing decisions do not atesi énd servers could help estimate the performance of aleernat

. ths, to drive changes to the CDN'’s routing decisions tédavo

performance. The BGP decision process uses AS-path Ien% . .
nterdomain paths offering poor performance.

as a (very) crude measure of performance, rather than consi
ering measurements of actual performance along the end-to-
end paths. Future work could explore lightweight technique
for measuring the performance along different interdomain CDNs have been widely deployed to serve Web content. In
paths, including the paths not currently selected for ¢agry these systems, clients are directed to different serveesiace
traffic to clients. For example, recent work [11] introducektency and balance load. Our classification reveals th& mai
a “route injection” mechanism for sampling the performanasauses of high latency between the clients and the servers.
on alternative paths. Once path performance is known, CDNsAn early work in [6] studied the effectiveness of DNS redi-
can optimize interdomain path selection based on perfocmanrection and URL rewriting in improving client performance.
load, and cost. However, large CDNs with their own backboriehis work characterizes the size and the number of the web

VIIl. RELATED WORK
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objects CDNSs served, the number of distinct IP addresses use changes in the CDN's own view of the closest server) and
in DNS redirection, and content download time, and comparebdanges in the interdomain paths (to and from the clients). O
the performance for a number of CDN networks. Recent wodnalysis and case studies suggest exciting avenues fae futu
in [14] evaluated the performance of two large-scale CDNs+esearch to make the Internet a better platform for acogssin
Akamai and LimeLight. Instead of measuring CDNs fronand managing online services.

end hosts, we design and evaluate techniques for a CDN to
diagnose wide-area latency problems, using readily-aivksl
traffic, performance, and routing data. 1]
WhyHigh [3] combines active measurements with routing
and traffic data to identify causes of persistent perforraand?!
problems for some CDN clients. For example, WhyHighz
identifies configuration problems and side-effects of taffi
engineering that lead some clients to much higher Iatenix
than others in the same region. In contrast, our work focus ;
on detecting and diagnosing larghanges in performance
over time, and also considers several causes of trafficsshif{[s]
from one front-end server to another. Tdyamics of latency
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