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Abstract— Emerging broadband switches must accommo-
date the diverse traffic parameters and quality-of-service re-
quirements of voice, data, and video applications. End-to-
end performance guarantees depend on connections com-
plying with traffic contracts as their cells travel through
the network. This paper presents a leaky-bucket shaper
architecture that scales to a large number of connections
with diverse burstiness and bandwidth parameters. In con-
trast to existing designs, the proposed architecture arbi-
trates fairly between connections with conforming cells by
carefully integrating leaky-bucket traffic shaping with rate-
based scheduling algorithms. Through a careful combina-
tion of per-connection queueing and approximate sorting,
the shaper performs a small, bounded number of opera-
tions in response to each arrival and departure, indepen-
dent of the number of connections and cells. When the
shaper must handle a wide range of rate parameters, a hier-
archical arbitration scheme can reduce the implementation
overheads and further limit interference between competing
connections. Through simulation experiments, we demon-
strate that the architecture limits cell shaping delay and
traffic distortions, even in periods of heavy congestion. The
efficient combination of traffic shaping and link scheduling
results in an effective architecture for managing buffer and
bandwidth resources in large, high-speed ATM switches.

Keywords— Asynchronous transfer mode, broadband com-
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I. INTRODUCTION

The advent of integrated networks for voice, data, and
video applications introduces new challenges in supporting
performance guarantees. With high-speed links and small
cell sizes, modern ATM (asynchronous transfer mode)
switches require efficient hardware to process cell arrivals
and departures every few microseconds, if not faster; in ad-
dition, these architectures should scale to a large number
of connections with diverse traffic parameters and quality-
of-service requirements. End-to-end guarantees for delay,
throughput, and loss depend on the successful provisioning
of buffer and bandwidth resources in the network, based on
traffic contracts established during admission control. To
regulate connections and avoid buffer overflow, broadband
networks can employ traffic shaping to delay incoming cells
until they conform to connection burst and bandwidth de-
scriptors.

Emerging broadband networks introduce new challenges
in designing high-speed shaper architectures that can scale
to a large number of connections with diverse traffic param-
eters. Many new networking applications, such as large-
scale web or video servers, require traffic shaping for hun-
dreds or even thousands of connections with different burst
and bandwidth descriptors. ATM switches can also amor-
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tize implementation costs across multiple end systems by
providing traffic shaping as a service at the network edge.
In addition to shaping at the network end points, available-
bit-rate connections require traffic enforcement in the in-
terior of the network at each virtual source node, where
a connection’s bandwidth allocation may change over time
in response to feedback from the network [1]. Variable-
bit-rate and constant-bit-rate connections may also be re-
shaped in the interior of the network to limit delay variation
and buffer requirements at the downstream switches [2-5].
Reinforcing the traffic parameters is particularly important
when connections traverse switches with different perfor-
mance characteristics or service providers.

Most existing traffic shapers [6-11] employ some ver-
sion of leaky-bucket control to buffer non-conforming cells
and schedule them for later transmission. Conceptually, a
leaky-bucket controller generates credit tokens at rate p,
where the token bucket holds at most o credits [12]; an
arriving cell must claim a token before receiving service.
Given the status of the token bucket for each connection,
the shaper can determine the conformance time of each ar-
riving cell [13] and arbitrate access to the outgoing link.
Conflicts can arise when multiple cells, from different con-
nections, become eligible for transmission during the same
time slot. As a result, the shaper can develop a backlog
of conforming cells, particularly when traffic arrives from
multiple input links or a single high-speed link. Depending
on how the switch arbitrates amongst conforming cells, col-
lisions can distort connection leaky-bucket parameters and
increase cell shaping delays, even for cells that are conform-
ing on arrival. As a result, the outgoing cells may violate
the traffic descriptors expected by downstream switches,
possibly increasing delay and loss; this is especially prob-
lematic for constant-bit-rate and real-time variable-bit-rate
connections, which have a low tolerance for delay variation.

Minimizing these distortions requires a link-scheduling
policy that controls the interference between competing
connections. In contrast to first-in first-out scheduling,
fair arbitration schemes [14-21] can limit traffic distortions
by guaranteeing that each backlogged connection receives
its share of the link bandwidth on a small time scale. If
the incoming traffic were already leaky-bucket compliant,
weighted fair scheduling would ensure that multiplexing
the connection with other traffic would never inflate the
burst parameter o by more than one cell [15], guarantee-
ing well-behaved input traffic for the next switch in the
route. However, traffic shaping requires the switch to han-
dle a mizture of conforming and non-conforming cells. The
switch can develop backlogs of both conforming and non-
conforming traffic, as shown in Fig. 1; in fact, a spike in
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Fig. 1. Fair Traffic Shaping: Conceptually, a fair traffic shaper di-
vides link bandwidth between connections with conforming cells,
based on their rate parameters. However, this idealized model
requires separate data structures for non-conforming and con-
forming cells; in addition, multiple cells may move between the
two data structures in one time slot, further complicating the
implementation.

the non-conforming backlog can rapidly become a spike in
the conforming backlog, if multiple cells reach conformance
in a small interval of time. These properties introduce new
challenges in designing effective mechanisms that combine
fair link scheduling with traffic shaping, while scaling to
thousands of connections with diverse leaky-bucket param-
eters.

This paper presents a practical shaper architecture that
integrates leaky-bucket traffic shaping and rate-based link
scheduling to reduce both implementation complexity and
traffic distortions [22]. As a result, the architecture can
serve as a leaky-bucket shaper at the ingress or egress of
the network, with a fair division of link bandwidth during
transient overloads of conforming traffic. Alternatively, the
architecture can be viewed as a non-work-conserving, rate-
controlled link scheduler [2-5] for use in the interior of the
network to reduce cell delay jitter and downstream buffer
requirements. After a review of existing shaper designs
in Section II, Section IIT describes how the proposed ar-
chitecture combines per-connection queueing, approximate
sorting algorithms, and hierarchical arbitration. Section IV
extends this architecture to minimize traffic distortions. In-
stead of simply concatenating the traffic shaping and fair
multiplexing operations, as in Fig. 1, the architecture in-
tegrates rate-based scheduling into the shaping logic. The
simulation experiments in Section V demonstrate that the
shaper scales to a large number of connections with diverse
traffic descriptors, even under heavy congestion. Section VI
concludes the paper with a discussion of future research di-
rections.

This paper complements existing work on traffic shaper
architectures for high-speed networks [6-11] by emphasiz-
ing implementation and performance scalability. Ongoing
research on rate-based link-scheduling algorithms [14-21]
motivates the application of weighted fair arbitration to
improve the performance properties of the traffic shaper,
as discussed in Section IV. Recent research on rate-based
scheduling algorithms considers schemes that improve fair-
ness by temporarily “stalling” busy connections that have
received link bandwidth ahead of schedule [23-25]. In
contrast to our leaky-bucket shaper, these link-scheduling
schemes define cell eligibility in terms of the underlying
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Fig.2. Leaky-Bucket Traffic Shaper: To efficiently handle a large
number of connections, a traffic shaper can consist of a table for
storing the traffic parameters and the leaky-bucket status of each
connection, followed by a priority queue that ranks waiting cells
by their conformance times.

fair queueing discipline, without necessarily enforcing burst
and bandwidth parameters for each connection. The hier-
archical arbitration scheme, analyzed and discussed in Sec-
tions III-C and IV-B, extends our earlier work on efficient
link-scheduling algorithms [26]. The contribution of this
paper is a set of effective architectural techniques for in-
tegrating hierarchical arbitration and fair link scheduling
with leaky-bucket traffic shaping.

II. REVIEW OF SHAPER ARCHITECTURES

High-speed shaper designs require simple and efficient
techniques for recognizing when cells conform to their con-
nections’ traffic descriptors. Scalable architectures typi-
cally employ per-connection recurrences to assign a confor-
mance time to each arriving cell, followed by a sorting unit
that schedules cells for departure, as shown in Fig. 2.

A. Connection Recurrences

ATM switches could monitor and regulate connections
by policing the incoming cell streams. When an arriving
cell violates its connection’s contract, a policer either dis-
cards the “non-conforming” cell or marks the cell as low-
priority traffic, permitting downstream switches to drop
the excess cell when the network is congested. This pre-
vents malicious or heavily-loaded connections from compro-
mising the performance of other connections, and signifi-
cantly improves the network’s ability to predict and guar-
antee each connection’s quality of service. However, if a
connection momentarily exceeds its traffic parameters, a
policer may drop or mark several cells, even if the connec-
tion obeys its traffic contract over a larger time interval.
This would require end-to-end protocols to either avoid
short-term violations of connection traffic parameters or
include efficient mechanisms to recover from cell loss.

Instead of dropping or marking non-conforming cells,
a traffic shaper delays incoming cells until they conform
to the connection’s burst and bandwidth descriptors, at
the expense of increased implementation complexity. Al-
though a traffic shaper could conceivably maintain a sepa-
rate leaky-bucket controller and cell buffer for each admit-
ted connection, a scalable design requires a more integrated
approach [6]. Instead, the shaper can maintain a table that
stores the leaky-bucket status of each connection. The
shaper uses this information to compute the time ¢ that
an arriving cell first conforms to its connection’s traffic de-
scriptors. When a new cell arrives, the shaper identifies the



X=X+1/p; // Estimated cell arrival time

if (X <t) // Full token bucket: reset X
c=X=1t

elseif (X <t+og/p) // Partially full token bucket
c=t;

else // Empty token bucket: delay cell
c=X—o/p;

Fig. 3. Computing Cell Conformance Times: An efficient al-

gorithm can compute the conformance time ¢ for an incoming
cell, based on its estimated arrival time X and its actual arrival
time t. Using the connection leaky-bucket parameters ¢ and p,
the algorithm computes X to determine the current status of the
token bucket; initially, X = —1/p to ensure that X =0 after the
first cell arrival

appropriate connection and updates its state. The shaper
can limit its tolerance for non-conforming traffic by dis-
carding an incoming cell if it has a large conformance time
(i.e., ¢ — t larger than some threshold), particularly when
buffer space is limited.

Shapers can employ a variety of algorithms to compute
cell conformance times, based on one or more traffic de-
scriptors. For example, Fig. 3 shows a leaky-bucket shap-
ing scheme based on the virtual scheduling technique in
ATM Forum’s generic cell rate algorithm [13]. The shaper
assigns a conformance time to each incoming cell, using a
state variable X that represents the cell’s estimated arrival
time, based on the connection’s shaping rate p. A cell ar-
riving at most o/p time units ahead of X can still claim
a token; otherwise, the cell must wait until the controller
generates an additional token for the connection at time
X —o/p. To avoid clock wrap-around errors, the shaper
can periodically update each connection’s state, indepen-
dent of cell arrivals; in particular, if an idle connection has
accumulated a full token bucket (i.e., X < t), the shaper
can flag the connection’s table entry to reset X on the next
cell arrival. For a connection with no burst tolerance (i.e.,
o =0), the algorithm reduces to

c=X = maX{X + l/Ppea,kat}

to ensure that consecutive cells have ¢ values spaced by
at least 1/ppeqr time units. The shaper can enforce both
peak and sustainable cell rates by using a dual leaky-
bucket algorithm to assign conformance times, resulting in
a (0, p, Ppear) specification for each connection, with peak
rate Ppeak Z p-

B. Cell Sorting

The shaper uses the cell conformance times ¢ to schedule
traffic for transmission. One approach employs a priority
queue to rank cells in order of increasing ¢ values, as shown
in Fig. 2; during each transmission slot, the shaper trans-
mits the queue’s head cell if its conformance time has been
reached (i.e., t > ¢). High-speed operation typically re-
quires hardware support for cell scheduling. For example,
the priority queue could consist of a large shift register that
keeps the cells (or pointers to the cells) in sorted order [7].
To enqueue an incoming cell with conformance time ¢, each
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Fig. 4. Ranking Cells in Sorting Bins: A traffic shaper can
rank waiting cells using a collection of sorting bins, where each
bin corresponds to a time slot. In (a), an arriving cell locates the
first empty bin at or after its conformance time c. In contrast, the
shaper in (b) places all cells with the same ¢ value in a single bin;
a separate linked list holds any conforming cells awaiting service.
In the figure, the current time is ¢ = 2 and each cell (shaded)
indicates its conformance time

element in the shift register compares its key to ¢; any cells
with larger conformance times shift by one location to make
room for the new cell. However, the hardware costs of the
shift register increase with the number of elements, due to
the parallel comparison operations; in addition, handling
clock rollover requires extensions to the design, to correctly
differentiate between large values of ¢ (before rollover) and
small values of ¢ (after rollover) [6,27].

To avoid the complexity of an exact priority queue im-
plementation, a shaper could dynamically construct a link
transmission schedule as each cell arrives. In this approach,
the schedule consists of a large collection of bins, where
each bin corresponds to a single transmission slot [8], as
shown in Fig. 4(a). The shaper sequences through the bins
at the link rate, transmitting a cell in each time slot unless
the current bin is empty. An arriving cell enters the first
empty location at or after its conformance time ¢, modulo
the number of bins; this requires the design to include com-
plex logic for locating empty bins. The shaper drops the
incoming cell if ¢ — ¢ exceeds the range of the bins. When
the scheduler services a large number of connections, under
heavy load, the shaper may have to schedule a cell for trans-
mission much later than its conformance time ¢. The in-
sertion mechanism favors earlier arrivals, possibly delaying
a well-behaved connection to serve other cells with larger
conformance times.

To transmit cells in order of increasing conformance
times, the shaper can employ a calendar queue [28], as
shown in Fig. 4(b). Instead of storing a single cell in each
bin, this architecture maintains a logical linked list of cells
at each conformance time [9]. Although this requires ad-
ditional memory to store a pointer field with each cell, an
arriving cell can join the linked list that corresponds to its
¢ value without searching for an empty slot in the schedule.
Since the link cannot transmit more than one cell in each
time slot, the shaper maintains a separate FIFO for hold-
ing any cells that have reached their conformance times; in
each time slot, the shaper appends this transmission FIFO



with the contents of the current sorting bin. Hence, under
a backlog of conforming traffic, the shaper transmits cells
in order of increasing ¢ values.

Although the sorting bins obviate the need for a complex
priority queue, cells may have ¢ values ranging far into the
future, particularly when a low-bandwidth connection has
a backlog of non-conforming traffic. This introduces a fun-
damental trade-off between the number of sorting bins and
the likelihood of dropping a non-conforming cell. To reduce
the required number of sorting bins, the shaper could as-
sociate each bin with a range of g consecutive conformance
times; for example, if g = 5, a single bin would handle cells
that have ¢ € {0,1,2,3,4}. However, shaping with a large
bin granularity can introduce excessive jitter that distorts
the leaky-bucket parameters of the outgoing traffic, par-
ticularly for high-bandwidth connections. In addition, the
FIFO service in existing shaper architectures does not con-
trol the interference between competing connections when
multiple conforming cells await service. The next two sec-
tions propose a scalable shaper architecture that addresses
these implementation and performance challenges.

III. SCALABLE LEAKY-BUCKET TRAFFIC SHAPER

Emerging high-speed networks require traffic-shaping
and link-scheduling architectures that can handle a large
number of cells from connections with a wide range of band-
width parameters. This section introduces a new shaper ar-
chitecture that limits implementation complexity by com-
bining per-connection queueing, approximate sorting, and
hierarchical arbitration.

A. Per-Connection Queueing and Approximate Sorting

Although a connection a may have a large backlog of
cells, with a wide range of conformance times, the con-
nection’s head-of-line cell has a ¢ value at most 1/p, time
slots into the future; otherwise, the connection’s previous
cell would still reside in the shaper. Hence, the shaper
can reduce the required number of sorting bins by consid-
ering only the head-of-line cell from each backlogged con-
nection, while holding the connection’s remaining cells in
a FIFO linked list. In addition to limiting sorter complex-
ity, per-connection queueing enhances architectural flexi-
bility by facilitating effective buffer-management and link-
scheduling policies, as well as rapid responses to changes
in connection rate parameters. Although per-connection
queueing can complicate the implementation of exact sort-
ing, approximate schemes can significantly reduce hard-
ware complexity and provide fair service to the busy con-
nections.

To illustrate the difficulty of implementing exact sorting
with per-connection queueing, consider the situation when
a cell enters the sorting unit upon the departure of the
connection’s previous cell. If the shaper has accumulated
a backlog of conforming traffic, this new head-of-line cell
may have already reached its conformance time (i.e., the
cell may have ¢ < t). Then, to transmit cells in order of
their ¢ values, the shaper would have to insert this new
head-of-line cell in between other conforming cells awaiting
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Fig. 5. Scalable Shaper Architecture: The proposed shaper
architecture consists of per-connection FIFO queues, followed by
a sorting unit that consists of a small collection of sorting bins
(with grain ¢ = 1 in this example) and a transmission FIFO
for conforming cells. A cell enters the sorting unit upon arrival
to an idle connection or on the departure of the connection’s
previous cell; a conforming head-of-line cell proceeds directly to
the transmission FIFO, whereas a non-conforming head-of-line
cell joins the sorting bin based on its conformance time c.

service. To handle these cells, the sorting unit can include
extra data structures to hold conforming traffic, in addition
to the bins for the non-conforming head-of-line cells [11].
However, this introduces a potentially large number of ad-
ditional sorting bins, as well as more complicated logic for
sequencing through the data structures. Also, ranking con-
forming cells by their ¢ values complicates the effort to
avoid per-cell timestamps, as discussed in Appendix A.

Approximate sorting algorithms may be necessary to
avoid these overheads in high-speed shaper implementa-
tions. Instead of exact sorting, a shaper can reduce imple-
mentation complexity by placing all conforming head-of-
line cells in a single transmission FIFQO, as shown in Fig. 5.
Since the sorting bins hold only non-conforming head-of-
line cells, the shaper requires at most b = 1/(gpmin) bins,
independent of the number of connections or the amount of
backlogged traffic, where g is the bin granularity. Every g
time slots, the shaper concatenates a single sorting bin with
the transmission FIFO, as in Fig. 4(b). After transmitting
a cell, the connection’s next cell proceeds to a sorting bin
(if ¢ > t) or directly to the transmission FIFO (if ¢ < ),
as shown in Fig. 6. If the new head-of-line cell has already
reached its conformance time, this policy sacrifices accu-
racy in order to reduce implementation complexity. When
connections have similar p values, this approximate scheme
can actually outperform exact sorting by guaranteeing a
minimum service rate to each connection on a small time
scale, as shown in Section V-B.

B. Implementation Complezity

Fig. 7 highlights the main data structures in the approx-
imate shaper architecture, with s cells, v connections, and
b sorting bins. This figure shows a single outgoing link that
services a serialized stream of cells from one or more incom-
ing links; in a larger switch, multiple outgoing links may
share access to a common cell memory [29]. The shaper
consists of v + b+ 1 logical linked lists that represent the
connection FIFOs, the sorting bins, and the transmission
FIFO, where each list consists of a head pointer, a tail
pointer, and an empty flag; each connection FIFO includes
an additional flag to indicate whether or not the connec-
tion has a head-of-line cell in the sorting unit. To connect



Cell Arrival

compute ¢ for the new cell;
if (connection is currently idle) {
// New head-of-line cell
if (¢ ==t) // Conforming cell
enqueue cell onto transmission FIFO;
else // Non-conforming cell
enqueue cell onto bin |(¢c mod bg)/g];

else // Connection already backlogged
enqueue cell onto connection FIFO;

Cell Departure
if (connection is still backlogged) {
dequeue cell from connection FIFO;
// New head-of-line cell
if (¢ <'t) // Conforming cell
enqueue cell onto transmission FIFO;
else // Non-conforming cell
enqueue cell onto bin |(¢ mod bg)/g];

}

else // Connection now idle
// No action for idle connection

Conforming Bin

if (t mod g ==g—1)

append bin [(t mod bg)/g]| onto transmission FIFO;

Fig. 6. Shaping Algorithm with Per-Connection Queueing: The proposed shaper architecture performs a small, bounded number of
operations in response to each arriving and departing cell. The sorting unit consists of b bins of grain g, as well as a transmission FIFO.

cells in the various linked lists, each buffered cell includes
a small pointer field that consists of [log, s| bits to denote
a location in the cell memory. The shaper also includes a
free list for assigning unused memory locations to arriving
cells; initially, this list includes every element in the mem-
ory, with each entry indicating the next location in the
buffer. To simplify operation, the shaper maintains the
idle addresses as a last-in first-out list, using the pointer
fields associated with each location in the cell buffer, as
shown in Fig. 7. Upon cell departure, the shaper returns
the free memory location to the head of the free list.

As shown in Fig. 6, each cell arrival or departure intro-
duces a small, bounded number of enqueue and dequeue
operations on these linked lists, independent of s and wv.
The shaper can use simple pointer manipulations to add
and delete entries in the logical FIFO queues [30]. If the
design includes separate memory modules for each data
structure, as shown in Fig. 7, the shaper can overlap oper-
ations on different units to achieve greater concurrency in
processing cell arrivals and departures. Depending on the
link speed and the size of the various data structures, the
cell buffer may employ a slower memory technology than
the other units, for reduced cost, area, and power require-
ments. Through per-connection queueing and approximate
sorting, the architecture tightly bounds the number of the
scheduling bins, independent of the number of cells and
the number of connections. As discussed in Appendix A,
the approximate sorting scheme also allows the switch to
avoid the overhead of storing the conformance time ¢ of
each cell; this additional optimization is not possible under
exact sorting.

C. Hierarchical Architecture With Bandwidth Groups

Although per-connection queueing can reduce scheduling
complexity in the shaper, handling a wide range of connec-
tion rate parameters still requires a large number of sorting
bins. For a low-rate connection, even the head-of-line cell
could have a conformance time far into the future. Al-
though low-bandwidth traffic requires the sorting unit to
handle a wide range of ¢ values, these connections can tol-
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Fig. 7. Efficient Hardware Implementation: The proposed
shaper architecture has an efficient hardware implementation
that supports v connections and s cells, with b sorting bins. The
buffered cells each include a pointer field for constructing logical
linked lists in the connection FIFOs, the sorting bins, and the
transmission FIFO. A separate memory stores the cells awaiting
service

erate some inaccuracy in cell scheduling, permitting coarse-
grain sorting bins. On the other hand, a large bin gran-
ularity g can introduce significant shaping delay and jit-
ter to high-rate connections. To reconcile these conflicting
requirements, the shaper can group connections based on
their bandwidth requirements, allowing each sorting unit
to select a different grain (g) and range (bg) for its bins.
As shown in Fig. 8, this results in a two-level architecture,
where each group consists of a sorting unit that handles
a large number of connections with similar rates; an ad-
ditional arbiter services the small number of groups with
diverse bandwidth requirements as discussed in Section IV.

With a hierarchical architecture, the shaper can select a
small sorting granularity (g) for high-rate connections to
reduce delay and jitter, relative to the existing architec-
tures in Section II. To formalize these trade-offs, consider
a shaper with connection bandwidth parameters that can
vary from ppin t0 pmax, Where each group handles rates
within a factor m >1 of each other. As a result, the shaper
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Fig. 8. Hierarchical Shaper Architecture: In the hierarchical ar-
chitecture, the shaper consists of connection FIFOs and n sorting
units that each consist of sorting bins and a transmission FIFO.
Each sorting unit ¢ tailors its bin granularity g; to a small range
of connection bandwidth parameters.
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consists of n = 10g,,{Pmax/Pmin} groups, where any con-
nections po; € [M Pmin, M+ pmin) belong to group i, for
i = 0,1,...,n — 1; for example, if m = 16, the shaper
can support rates ranging from 1 kilobit/second to 1 giga-
bit/second with just five groups (since log;{23°/219} = 5).
To perform the operations in Fig. 6, the shaper can have
dedicated logic for each group or share a single controller
across the multiple groups, as discussed in Appendix B.
In each group, the low-bandwidth connections dictate the
range of the sorting bins; for group ¢, a head-of-line cell
can have a ¢ value at most 1/(mfpmi,) time units into
the future. To prevent delay and traffic distortions for the
high-bandwidth connections, each group should select a bin
granularity ¢; based on the requirements of its largest pos-
sible rate; i.e., g; = 1/u(m** ' pmin), where a larger value of
u corresponds to more precise sorting.
As a result, each group i requires at least

_range of the bins _ 1/(m’pmin)
"~ grain of each bin ~ 1/u(m* puin)

= Tmu

sorting bins, for a total of mnu bins in the shaper. As
expected, the number of bins increases under more pre-
cise scheduling (larger u) or a wider range of connection
rates (larger n or m). However, if the shaper did not di-
vide connections into groups, a single sorting unit would
have to handle the maximum range of 1/pmin and the min-
imum granularity of 1/(upmax), for a total of m™u bins,
where m™ = pmax/Pmin- In the example with rates rang-
ing from 1 kilobit/second to 1 gigabit/second, this single
sorting group would require over 13,000 times more sort-
ing bins than a hierarchical architecture with m = 16, for
the same value of u. Hence, a hierarchical architecture
has the potential to significantly reduce the memory re-
quirements of the shaper’s sorting logic, particularly when
connections have diverse rate parameters. Alternatively,
for the same number of sorting bins, the hierarchical archi-
tecture can support much more precise scheduling for the
high-rate traffic; this can significantly reduce cell shaping
delay and jitter, relative to existing approaches.

IV. INTEGRATING FAIR LINK SCHEDULING

The architecture in Fig. 8 scales well with the num-
ber of connections, the number of cells, and the range of
connection rate parameters. However, good performance
depends on how well the switch arbitrates between con-
nections when multiple conforming cells await service. By
carefully multiplexing cells from different connections, the
switch can ensure that each connection receives a fair share
of the link bandwidth on a small time scale, even during
periods of heavy congestion.

A. Fair Arbitration Within a Group

Ideally, a traffic shaper schedules an arriving cell for
transmission at its conformance time ¢, forwarding con-
forming cells directly to the outgoing link. However, since
the link carries traffic for multiple connections, several cells
may become eligible for transmission at the same time; as
a result, the switch can develop a backlog of conforming
traffic, especially during periods of heavy congestion; this
is particularly likely in switches with a large number of in-
put ports and connections. As discussed in Section IT, most
existing traffic shapers transmit conforming cells in order
of increasing conformance times. Under a backlog of con-
forming cells, this “exact sorting” favors connections with
larger o values since these connections can have multiple
cells in a small range of ¢ values. These bursts restrict
link access for connections with smaller o values; by the
time this transient congestion begins to dissipate, a low-o
connection can have a large backlog of conforming traffic,
which may generate an unexpected burst on the output
link, as shown in Section V-B.

The shaper can mitigate these collision effects by inter-
leaving the conforming cells from competing connections,
based on the connection rate parameters. The approxi-
mate architecture in Fig. 5 suggests an efficient mecha-
nism for fair link scheduling when the shaper consists of
a single group. As discussed in Section ITI, the shaper in-
cludes a transmission FIFO for scheduling all conforming
head-of-line cells. For connections with a backlog of con-
forming traffic, each cell transmission triggers the insertion
of the connection’s next cell into the transmission FIFO.
By transmitting cells from this FIFO, the link implicitly
sequences through the backlogged connections, effectively
providing round-robin service to the connections with con-
forming cells. Consequently, the shaper guarantees a min-
imum bandwidth to each connection on a relatively small
time scale. This reduces worst-case shaping delay and traf-
fic distortions, particularly for connections with small o
values.

However, round-robin arbitration does not provide truly
“fair” service when connections have different p values,
since low-rate and high-rate connections receive the same
share of the link bandwidth. Instead, the shaper should
employ weighted round-robin scheduling, where each con-
nection « receives service based on its bandwidth parame-
ter po. With a small extension, the architecture in Fig. 5
can achieve weighted round-robin service of conforming
cells by allowing connections to insert multiple cells into the



sorting unit; in particular, the shaper should allow connec-
tion a to have up to | pa/pmin] consecutive cells in the sort-
ing unit. This allows a high-bandwidth connection to have
several conforming cells in the transmission FIFO, ahead
of conforming traffic from low-bandwidth connections, even
if the low-bandwidth connections have cells with smaller ¢
values. When the shaper has a backlog of conforming traf-
fic, this ensures that connections are served in proportion
to their bandwidth requirements.

Even though some connections have multiple cells in the
sorting unit, the weighted round-robin architecture does
not require additional sorting bins, since these cells have
conformance times at most 1/pq - [pa/Pmin| time units
into the future, where the sorting bins handle a range
of 1/pmin values of ¢. For an efficient implementation of
the weighted round-robin service, each connection should
maintain a count of the number of cells it has in the sorting
unit; in effect, this converts the bit flag f in Fig. 7 into a
counting semaphore that is incremented (decremented) as
the connection’s cells enter (leave) the sorting unit. When
the count reaches |pq/pPmin], the connection cannot insert
another cell into the sorting unit until a cell departs. This
results in an efficient architecture that integrates traffic
shaping and fair link scheduling to ensure that each con-
nection receives sufficient bandwidth on a small time scale.

B. Fair Arbitration Between Groups

The weighted round-robin arbitration can provide fair
service to connections in a single group, but the hierarchi-
cal shaper architecture requires an effective mechanism for
interleaving conforming cells from different groups. For
an efficient implementation, the shaper can apply fair,
rate-based scheduling algorithms to divide link bandwidth
between groups; within each group, the weighted round-
robin arbitration ensures that each connection receives a
“fair share” of the group’s bandwidth. Weights ¢; coordi-
nate bandwidth sharing between competing groups, where
i = 0,1,...,n — 1. These weights represent the aggre-
gate bandwidth requirements of each group; in the sim-
plest case, ¢; is the sum of p,, across all connections a;
in group ¢. A variety of rate-based link-scheduling algo-
rithms [14-21] can guarantee that group i receives a fair
portion

i

Yo b
of the link bandwidth. The various link-scheduling algo-
rithms differ in terms of implementation complexity and
the ability to achieve fairness on a small time scale.

With static weights ¢; = > pa,, an idle connection di-
vides its excess bandwidth amongst the busy connections in
the same group, instead of sharing with other connections
in different groups. This type of hierarchical link-sharing
model is particularly useful when groups correspond to dif-
ferent institutions, traffic classes, or protocol families [23,
31,32], and can ensure that the link guarantees a mini-
mum bandwidth to each connection. As a heuristic ex-
tension [26], the hierarchical arbitration could share ex-

cess bandwidth between individual connections by altering
the group ¢; values to reflect the aggregate throughput
requirements of the backlogged connections in each group
over time. That is, a group could assign

$i(t) = Z Pa;

a; €B;(t)

where B;(t) is the set of backlogged connections in group
i at time ¢t. Changes to B;(t) occur upon cell arrivals and
departures, facilitating efficient updates to ¢; by adding
(subtracting) p,, when connection a; becomes backlogged
(empty). By extending existing fair queueing schemes
to employ these dynamic weights, the group arbitration
scheme can efficiently apportion excess bandwidth more
fairly at the connection level, as described in Appendix C.

V. PERFORMANCE EVALUATION

This section focuses on how the various shaper archi-
tectures affect cell delay and the leaky-bucket descriptors
of the outgoing cell streams. Inherently, the architectures
have similar performance under low traffic loads, since the
shaper does not develop a significant backlog of conforming
traffic. Hence, most of the experiments consider the effects
of moderate or heavy congestion on connection quality-
of-service parameters, particularly when the shaper han-
dles traffic with different bandwidth and burstiness require-
ments.

A. Traffic Model and Performance Metrics

The simulation experiments evaluate connections sharing
access to a single link that can transmit one cell in each
time slot; for stability, the link bandwidth must exceed
the sum of the connections’ sustainable cell rates. Each
connection generates periodic bursts of cells according to
an on/off model with leaky-bucket parameters (o;n, pin),
with a peak-rate equal to the link bandwidth; the burst
length o, could correspond to the packet or message size
in a data transmission. The simulation experiments can
generate a temporary backlog of non-conforming cells by
allowing o, to exceed the burstiness parameter o enforced
by the shaper. To control the interaction between cell
streams, each connection has an independent starting time,
uniformly distributed in an interval [0,z]; the length of
this interval can vary from 0 to the connection’s on/off
period. Smaller values of x generate periods of heavier
congestion and can capture the effects of multiple input
links (or one high-speed input link) entering the switch.
Although extremely small values of z are not necessarily
realistic, varying = enables the experiments to identify per-
formance trends under challenging traffic patterns where a
large number of connections turn on or off at nearly the
same time.

With this parameterized model of incoming traffic, the
simulation experiments can evaluate the performance scal-
ability of the shaper architectures under different arrival
patterns (o;n, Pin), shaping parameters (o, p), and degrees
of congestion . When the shaper accumulates a backlog



of conforming traffic, link arbitration policies can affect the
leaky-bucket parameters of the outgoing cell streams. Mul-
tiplexing a connection with other network traffic results in
an outgoing stream that is (0 gy, p)-compliant, where oy
may exceed the shaping parameter o. These traffic dis-
tortions violate the expectations of downstream nodes in
the network, possibly increasing cell loss rates and end-
to-end delay. To evaluate the burstiness of the output
stream, the simulator feeds a connection’s outgoing cells
to a hypothetical link of rate p; gour (Tout) represents the
worst-case (average) queue length encountered by the con-
nection’s cells. Ideally, the switch produces a well-shaped,
(o, p)-compliant stream, resulting in o,,¢ < o. The experi-
ments compare the proposed shaper architecture against a
traditional shaper that transmits conforming traffic in or-
der of increasing conformance times (FIFO service of con-
forming cells). In experiments with multiple bandwidth
groups, the shaper employs the dynamic hierarchical arbi-
tration scheme in Fig. 14.

B. Mizing Different Burstiness Parameters

The architecture in Fig. 5 reduces implementation com-
plexity through per-connection queueing and approximate
sorting of backlogged conforming cells. Fig. 9 compares the
architecture to a shaper that always transmits cells in order
of their conformance times. In this experiment, the input
traffic consists of 80 connections with large o values and 10
connections with small o values, for a total link utilization
of 81%:

Arrival Shaping
N | oin Pin g P
80 | 300 0.009 | 100 0.010
10 | 50 0.009 5 0.010

To generate periods of congestion in the shaper, the ex-
periment varies the phase of the 80 high-o connections
from 0 to their on/off period, while the low-¢ connections
have uniform random start times during their on/off pe-
riod. With an on period of length ¢;,/(1 — p;in) and an off
period of length 64y, /pin, the high-o connections have an
on/off period of 33636 time slots, as shown by the z-axis
in Fig. 9.

Under exact sorting, this congestion can have an adverse
effect on the leaky-bucket parameters of the low-o connec-
tions; the high-o connections do not experience significant
traffic distortion under either shaper architecture. Fig. 9(a)
considers the performance of one of the low-o connections,
where the high-o connections select their start times ran-
domly within one-third of their on/off period (i.e., uni-
formly distributed in the interval [0,11211]). In Fig. 9(a),
the “input traffic” curve shows the on/off pattern of cell ar-
rivals, while the “conforming traffic” curve indicates when
these cells become eligible for transmission. Ideally, the
link would transmit each cell at its conformance time,
but collisions with other connections disrupt this service.
Hence, the “output” curves deviate from the “conforming”
curve, introducing shaping delay and traffic distortions; the

difference along the y-axis represents the connection’s back-
log of conforming cells, while the difference along the z-axis
denotes cell shaping delay.

Exact sorting favors connections with larger o values,
which can inject a burst of cells with a small range of con-
formance times. In times of congestion, these bursts can
restrict link access for connections with smaller o values;
by the time this transient congestion begins to dissipate,
a low-o connection can have a large backlog of conforming
traffic, which can then generate an unexpected burst on the
output link. This can introduce significant traffic distor-
tions in the outgoing cell streams, particularly when multi-
ple high-o connections are active simultaneously, as shown
in Fig. 9(b). In contrast, the fair arbitration scheme effec-
tively interleaves backlogged connections in a round-robin
fashion, resulting in virtually no inflation in g4, even un-
der heavy load. Since this experiment assigns the same p
value to all connections, the weighted and unweighted fair
architectures have identical performance.

C. Mizing Different Bandwidth Parameters

Although the unweighted fair architecture guarantees a
minimum bandwidth to each backlogged connection, on a
small time scale, round-robin arbitration does not provide
fair service when connections have different bandwidth pa-
rameters. To demonstrate this effect, Fig. 10 shows the
performance of high-rate connections in the presence of a
large number of low-rate connections, with a total link uti-
lization of 79%:

Arrival Shaping
N Oin Pin 4 P
320 | 50 0.0022 | 25 0.0025
10| 50 0.0090 | 5 0.0100

The experiment varies the phase of the 320 low-rate connec-
tions from 0 to their on/off period (22644), while the high-
rate connections have uniform random start times during
their on/off period. Fig. 10(a) plots the average output
burstiness of the ten high-rate connections, while Fig. 10(b)
plots the average delay in servicing conforming cells.
Although all three shaper architectures perform well un-
der low levels of congestion, unweighted fair arbitration
significantly inflates the burstiness of the high-rate connec-
tions during periods of heavy load, as shown in Fig. 10(a);
the low-rate connections have o,y =~ o throughout the ex-
periment. Exact sorting also introduces traffic distortions,
since the shaper services connections with different bursti-
ness parameters. The high-rate connections also experience
high cell shaping delays under these two architectures, as
shown in Fig. 10(b); compared to exact sorting, the un-
weighted fair scheme has lower average delay by provid-
ing a minimum bandwidth to each high-rate connection.
In contrast, weighted fair arbitration successfully preserves
the leaky-bucket descriptors and limits cell shaping delay,
even under extremely heavy congestion, by guaranteeing
sufficient bandwidth to each connection on a small time
scale. All three configurations have large shaping delays
under small values of z, since all 320 low-rate connections
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Fig. 10. Mixing Different Rate Parameters: This experiment compares the weighted fair traffic shaper to exact sorting and unweighted
(round robin) arbitration amongst connections with conforming cells. The plots highlight the performance of ten high-rate connections,
which are mixed with 320 bursty, low-rate connections. The weighted fair arbitration scheme performs well, even under heavy congestion,
by guaranteeing sufficient bandwidth to the high-rate traffic on a small time scale.

have cells with nearly the same conformance times; hier-
archical arbitration avoids this interference by segregating
high-rate traffic into a separate group that receives its min-
imum bandwidth on a smaller time scale.

D. Hierarchical Arbitration

Although the weighted fair architecture performs well
under diverse leaky-bucket parameters, handling a wide
range of connection rates requires a large number of sort-
ing bins. To quantify this cost-performance trade-off,
Fig. 11 compares four different configurations of the pro-
posed shaper, serving a mixture of connections that em-
ploy weighted fair arbitration, with a total link utilization
of nearly 90%:

Arrival Shaping
N | o Pin g 14
5| 10 0.0909 | 0 0.1000
10 | 50 0.0094 | 25 0.0100
70 | 40 0.0048 | 20 0.0050

The experiment varies the phase period of the 70 low-rate
connections from 0 to their on/off period (8528) to study
the effects of congestion in the shaper; the other 15 connec-
tions have uniform random start times during their on/off
periods.

The low-rate connections dictate the required range of
the sorting bins, since a head-of-line cell can have a ¢ value
up to 200 time slots into the future. With coarse-grain
sorting, the shaper can limit the number of bins:
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Fig. 11. Hierarchical Fair Arbitration: This experiment com-
pares four configurations of the fair leaky-bucket traffic shaper
handling a diverse mixture of connection burstiness and band-
width parameters. The graph highlights the performance of five
high-rate, constant-bit-rate connections, which are mixed with
eighty low-rate, bursty connections.

Symbol Configuration

O Single group with 201 bins of grain 1

a Single group with 10 bins of grain 21

< High-rate group with 11 bins of grain 1;
low-rate group with 201 bins of grain 1

X High-rate group with 5 bins of grain 3;
low-rate group with 5 bins of grain 41

at the expense of the burstiness parameters for the high-
bandwidth traffic, as shown by comparing the top two
curves in Fig. 11. To highlight the differences in the four
configurations, the graph omits the “exact sorting” config-
uration, which performs dramatically worse, particularly
for small values of z. For example, when z =4000, exact
sorting has an output burstiness of 7,,; = 60, in contrast
to values of less than 8 for each of the configurations in
Fig. 11. The low-rate connections do not experience signif-
icant traffic distortions under any of the shaper architec-
tures. By dividing connections into two groups, the hierar-
chical architecture can reduce the number of sorting bins
without distorting the high-bandwidth traffic, even under
heavy congestion. In this configuration, one group services
the 5 high-rate connections, while the second group handles
the remaining traffic. Even with just 10 sorting bins, the
coarse-grain hierarchical architecture has small 7,,; values,
since each group tailors its bin granularity to the connec-
tion bandwidth parameters.

Interestingly, the two hierarchical architectures even out-
perform the more expensive, fine-grain sorting scheme.
This occurs because, even with weighted fair arbitration, a
group can have multiple cells, from different connections,
within a small range of sorting bins. Hence, when all con-
nections share a single group, a high-rate connection may
wait behind a long FIFO of low-bandwidth traffic before
receiving service. In contrast, hierarchical arbitration lim-
its the number of low-rate connections that can receive
service between visits to the high-rate group, providing
a minimum bandwidth to the high-rate connections on a

smaller time scale. Such fair arbitration permits the hier-
archical architecture to mix bursty, variable-bit-rate traffic
with constant-bit-rate connections, without distorting the
leaky-bucket parameters of the outgoing cell streams.

VI. CONCLUSION

Modern ATM switches require efficient traffic-shaping
and link-scheduling hardware that can service a large num-
ber of connections with a wide range of bandwidth and
burstiness parameters. High-speed links, coupled with
small packet/cell sizes, require efficient architectures that
can handle cell arrivals and departures every few microsec-
onds, or faster. To reduce implementation complexity
and improve performance, switches can incorporate per-
connection queueing, approximate sorting algorithms, and
hierarchical arbitration policies. With careful selection of
sorting and arbitration schemes, these designs can also
limit the traffic distortions that arise when multiple con-
forming cells await service. This is particularly important
for shaping at the egress of a network, where the incoming
traffic rate may temporarily exceed the capacity of the out-
going link, and in large-scale switches with multiple ports.

The paper addresses both implementation and perfor-
mance scalability by presenting a logical progression of re-
alizable shaper architectures. As discussed in Section II,
most existing shapers include a sorting mechanism for
ranking cells by their conformance times. Per-connection
queueing has the potential to reduce shaper complexity by
limiting the range of conformance times in the sorting logic.
However, under exact sorting, per-connection queueing in-
troduces challenges in handling a backlog of conforming
traffic and avoiding per-cell timestamps. In addition, in
times of congestion, exact sorting can unduly penalize con-
nections with low ¢ values. The architecture in Fig. 5 re-
duces implementation complexity by placing all conforming
head-of-line cells in a single FIFO queue, instead of ranking
these cells by conformance time. Under congestion, this ef-
fectively provides round robin service to connections with
conforming cells.

In contrast to exact sorting, round robin service enables
the shaper to mix connections with different burstiness pa-
rameters without distorting the leaky-bucket descriptors
of the outgoing cell streams. By allowing high-rate con-
nections to insert multiple cells into the sorting unit, the
shaper can also handle connections with a mix of differ-
ent bandwidth parameters. This design effectively relegates
part of the link-scheduling function into the shaping logic
by implementing weighted round robin arbitration amongst
connections with conforming cells. To efficiently handle a
wider range of rate parameters, Fig. 8 groups connections
based on their bandwidth requirements. Then, a second
scheduler divides link bandwidth fairly among a small num-
ber of groups, avoiding the overhead of arbitrating between
a large number of connections in the second stage. Heuris-
tic group arbitration schemes, based on dynamic weights,
can provide a fairer division of excess link bandwidth be-
tween individual backlogged connections.

This integrated approach to traffic shaping and link



scheduling has general utility in designing switch archi-
tectures that reshape traffic at each link, to reduce delay
jitter and downstream buffer requirements. Ultimately, ef-
fective traffic shaping and link scheduling require a care-
ful balance between implementation complexity and accu-
racy in approximating an idealized scheme. In contrast
to the conceptual model in Fig. 1, the proposed architec-
ture avoids both the replication of complex sorting logic
and the expensive movement of cells between two separate
priority queues. As future work, we are further analyz-
ing the properties of the integrated architecture, through
additional simulation experiments with more realistic traf-
fic patterns. Finally, we are considering extensions to the
hierarchical traffic-shaping and link-scheduling framework,
including arbitration schemes that differentiate between
ATM traffic classes, as well as support for connections that
do not require reshaping at every switch.

APPENDIX
I. AvoIDING PER-CELL TIMESTAMPS

In leaky-bucket traffic shaping, a cell’s conformance time
¢ depends on the status of the connection’s token bucket
on cell arrival. This suggests that a shaper must store the
¢ value of each buffered cell to schedule access to the out-
going link. The shapers in Fig. 4 do not require such times-
tamps, since each arriving cell immediately enters a sorting
bin. However, if the shaper employs per-connection queue-
ing, incoming cells often wait in a connection FIFO before
proceeding to the sorting unit. As a result, the shaper must
have a mechanism for determining where to insert a new
head-of-line cell in the sorting unit. For an exact sorting
scheme, this requires the shaper to determine the ¢ value of
each head-of-line cell. In contrast, the approximate archi-
tecture in Fig. 5 places all conforming head-of-line cells in
a single FIFO queue, obviating the need to recall their pre-
cise ¢ values; hence, the shaper only needs to reconstruct ¢
for non-conforming head-of-line cells.

Since a connection can store and consume credit tokens,
the shaper should track the status of the token bucket over
time. When a connection’s token bucket is empty, arriving
cells are non-conforming and have ¢ values that are spaced
1/p apart, as in a peak-rate shaper. The shaper can re-
construct these cell conformance times by maintaining a
small amount of per-connection state, as shown in Fig. 12.
When a connection has exhausted its token bucket, the
next arriving cell triggers the algorithm to save the state
X of this “boundary cell,” as shown in Fig. 13; this en-
ables the shaper to reconstruct the ¢ values for subsequent
non-conforming arrivals. Whenever a cell arrives already
conforming at time ¢, any earlier cells in that connection
must also have ¢ < ¢t. Hence, when a conforming cell ar-
rives, the algorithm resets the boundary position to null;
this ensures that a connection has at most one boundary
cell, even if the shaper falls behind in servicing conforming
traffic.

Using the algorithm in Fig. 12 under per-connection
queueing, the shaper can respond quickly and efficiently
to dynamic changes in connection bandwidth parameters,

I

non-conforming  conforming

Fig. 13. Boundary Between Conforming/Non-Conforming
Cells: Instead of storing the conformance time c¢ of each cell,
the shaper maintains the state of the leaky-bucket controller at
two points for each connection. Variable X represents the state
at the tail of the connection, as in Fig. 3, and X} represents the
state at the boundary between conforming and non-conforming
cells

based on feedback from the network or renegotiation from
the source. The shaper can implicitly adjust conformance
times by always applying the current value of p when com-
puting ¢ and updating X;. The current leaky-bucket state
X depends on X3 and the number of non-conforming cells
in the connection FIFO; as a result, the shaper can adjust
the leaky-bucket state

X« Xp+ (X_Xb)pold/pnew

to capture the effects of the rate change on the connection
token bucket. This applies the new rate p™®" to any non-
conforming cells that have not already entered the sort-
ing bins, instead of waiting for the connection’s backlog
to clear the shaper. Otherwise, when p"¢% < p°¢ the
shaper would reward the connection by assigning smaller
conformance times to these early arrivals; cells that were
already conforming under rate p°/¢ remain conforming un-
der the new rate, since the burstiness parameter o does not
change.

II. SCHEDULING CONCATENATION OPERATIONS

Although hierarchical arbitration reduces the number of
sorting bins, the shaper must periodically move cells from
the sorting bins to the transmission FIFO in each group.
As shown in the bottom of Fig. 6, this background oper-
ation requires only a simple concatenation of two linked
lists, without initiating any data transfer on the link. In
a scheduler with n groups, at most n such operations can
occur in the same time unit ¢ (i.e., when every group ¢ has
tmodg; = ¢g;—1 simultaneously). To further reduce this
overhead, particularly in a software implementation of the
shaper, the architecture can tighly bound the number of
groups that require a concatenation operation in the same
time slot. This optimization is possible because each group
1 only requires a concatenation operation once every g; time
units. The shaper can limit the number of sorting bins that
become conforming simultaneously by staggering the con-
formance times of each group’s bins, allowing the groups
to share a single controller for appending the transmission
FIFOs.

The shaper can handle each of the n groups by construct-
ing a periodic schedule that performs a concatenation op-
eration for group i once for every m operations for group
1+1; this can be cast as a special case of the pinwheel prob-
lem [33]. For example, m =2 and n =3 result in an 8-slot
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X =max{X + 1/p,t};
if (X <t+0/p){// Conforming cell
boundary = §;
if (connection is idle)
cell has ¢ <t;
else // Connection is backlogged
can reconstruct c later;
}
else { // Non-conforming cell
if (boundary == 0) // New boundary
boundary = current_cell;
Xp =X —1/p;
if (connection is idle)
cell has c = X —o/p;
else // Connection is backlogged
can reconstruct c later;

transmit current_cell;
if (connection is idle)
boundary = 0;
else { // Connection is still backlogged
if (boundary != current_cell)
next_cell has ¢ < t;
else{ // Update for boundary cell
boundary = next_cell;
Xp = Xp +1/p;
if (Xy —o/p<t)
next_cell has ¢ < t;
else // Reconstruct conformance time
next_cell has ¢ = X}, — o/p;

Fig. 12. Avoiding Per-Cell Timestamps: The proposed shaping algorithm can employ per-connection queueing without requiring per-cell
timestamps. Instead, the shaper can reconstruct conformance times based on per-connection state. Initially, X =—1/p and boundary=1{.

schedule:

(2[1]2]0[2]1]2]-]
0 1 2 3 4 5 6 7

For an efficient hardware implementation, the shaper can
include a 3-bit counter, selecting a group based on the bit
string (e.g., xx0 for group 2, x01 for group 1, and 011 for
group 0); in particular, the shaper visits group ¢ when-
ever the counter’s least significant 0-bit is in position 1.
For general values of m and n, the schedule has m™ en-
tries, represented by an n-digit, base-m number; group i is
scheduled every m™~¢ slots, when the counter has value

x..x01...1
D
2 n—1
in base m. The shaper must sequence through this peri-
odic schedule quickly enough to visit each group i every
g; time units, requiring the schedule to operate at rate
r= mnil/g’ia

r=m""

um™ pmin) = um ! pmin = UM pPmax-

For reasonable values of m, u, and ppax, the shaper can
perform operations on conforming bins at the link’s cell
transmission rate, or even slower. Otherwise, the shaper
can have dedicated logic to perform concatentation opera-
tions in each group.

III. GROUP ARBITRATION WITH DYNAMIC WEIGHTS

Most rate-based scheduling algorithms arbitrate between
busy sources based on virtual finishing times F;, ¢ =
0,1,...,n—1; the link transmits a cell from the backlogged
group with the minimum F; value in each transmission slot.
To demonstrate the use of dynamic group weights, Fig. 14
shows a variation of the self-clocked fair queueing [17-20]
algorithm. Self-clocked fair queueing employs a relatively

simple recurrence for computing F; values and closely ap-
proximates the more complicated weighted fair queueing
algorithm, particularly for small values of n [19,20]. To
reflect the bandwidth consumed by each group, the algo-
rithm increments F; by 1/¢; after each transmission from
group i. To arbitrate fairly based on weights ¢;, the ar-
biter assigns F; = F*¢"Y 4+ 1/¢;, whenever group ¢ becomes
backlogged, where F*¢™ is the virtual finishing time of the
group currently in service; this ensures that a previously
idle group cannot claim credit for past bandwidth.

The switch can employ a small tree of comparators to ef-
ficiently identify the backlogged group with the minimum
virtual finishing time; the server handles a bounded range
of group F' values, permitting modulo arithmetic and regis-
ters that store values ranging from 0 to 1/min;{¢;}. Since
the algorithm in Fig. 14 permits the ¢; values to change
over time, the arbiter may need to adjust F; when con-
nection a; becomes busy (causing an increase in ¢;). This
heuristic portion of the algorithm [26] maintains the value
#%', the value of ¢; the last time F; was assigned; ¢¢' is set
to ¢; whenever F; changes. When ¢; becomes sufficiently
larger than ¢¢!?, due to one or more newly backlogged con-
nections, the algorithm decreases the value of F; to serve
group ¢ sooner. The server never decreases F; below F*¢™;
otherwise, group ¢ would unnecessarily penalize the other
backlogged groups. The algorithm first tries to recompute
F; based on the previous departure from the group, at vir-
tual time F; — 1/¢¢!4 as long as the new F; value would
not be smaller than F*¢™.

If the existing value of F; is too close to F*¢™" the algo-
rithm then computes a virtual finishing time as if the group
had just received service, resulting in F*¢"™ + 1/¢;. The
group settles for this new virtual finishing time, unless it
exceeds the previous value of F;. This approach reduces F;
to respond quickly to newly backlogged connections with-
out unduly delaying service to other groups. Although this
heuristic arbitration scheme can sometimes deviate from



Fig. 14.

Cell Arrival
cell arrives for connection o; in group g;
if (connection ¢ is currently idle) {
¢i = ¢i + pa;; // Update group weight
if (group 1 is currently idle)
F; = Fserv 4 1/¢“ ¢old = ¢33
else { // Group is already backlogged
// Might adjust F; for higher rate
if (Fserv < F; — 1/¢old + 1/¢ )
Fy = Fy — /629 4+ 1/gy; 04 = g;
else if (F; > Ferd | 1/é:)
Fi = Fo™ +1/¢5; ¢9'% = ¢i;
else
// F; and ¢¢'? stay the same

add new cell to group ¢;

Cell Departure

find group ¢ with min F; and non-empty TXFIFO;
transmit head cell from group #’s TXFIFO;

Fserv — Fy.
if (connection o; is now idle)
$i = ¢i = pay;

else // Connection is still backlogged
// No need to change group weight ¢;
if (group 1 is still backlogged)
Fi = Fo™ +1/¢; ¢2'% = ¢i;
else // Group ¢ is now idle
// No need to assign F; for an idle group

Conforming Bin

if (bin non-empty) and (TXFIFO empty)
if (F; < Fsemv)
Fy = <72 4 1/¢5 670 =
else
// No need to reset F;
concatenate bin with group ¢’s TXFIFO;

Dynamic Hierarchical Arbitration: By allowing the group weights ¢; to change over time, the shaper can approximate

connection-level fairness with a heuristic group arbitration scheme, based on self-clocked fair queueing. The weight ¢;, representing the
aggregate rate of all backlogged connections in group ¢, is adjusted whenever a connection «; becomes backlogged or idle. Initially,

¢ = ¢9¢ = 0, F; =0, and Fs¢™V = (.

connection-level fairness [26], the shaping function ensures
that each connection makes forward progress based on the
leaky-bucket conformance times of its incoming cells; a
group continues to compete for link access until it clears its

temporary backlog of conforming cells.

Ultimately, static

weights ¢; can provide a minimum rate to each connection
on a small time scale, while dynamic weights can provide
a fairer division of excess link bandwidth on a coarser time

scale.

Both approaches provide an efficient, event-driven

way to multiplex a large number of connections with di-
verse bandwidth requirements.
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