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Abstract— In the Internet today, traffic engineering is per-
formed assuming that the offered traffic is inelastic. In reality,
end hosts adapt their sending rates to network congestion, and
network operators adapt the routing to the measured traffic. This
raises the question of whether the joint system of congestion
control (transport layer) and routing (network layer) is stable
and optimal. Using the established optimization model for TCP
and that for traffic engineering as a basis, we find the joint
system is stable and typically maximizes aggregate user utility,
especially under more homogeneous link capacities. We prove
that both stability and optimality of the joint system can be
guaranteed for sufficiently elastic traffic simply by tuning the
cost function used for traffic engineering. Then, we present a new
algorithm that adapts on a faster timescale to changes in traffic
distribution and is more robust to large traffic bursts. Uniting
the network and transport layers in a multi-layer approach,
this algorithm, Distributed Adaptive Traffic Engineering (DATE),
jointly optimizes the goals of end users and network operators
and reacts quickly to avoid bottlenecks. Simulations demonstrate
that DATE converges quickly.

Keywords: Congestion control, Traffic Engineering, Network util-
ity maximization, Optimization, Robustness, Routing.

I. INTRODUCTION

In the Internet today, end hosts running the Transmission
Control Protocol (TCP) adapt their sending rates in response
to network congestion. Separately, network operators monitor
their networks for signs of overloaded links and adapt the
routing of traffic to alleviate congestion, in a process known
as traffic engineering. TCP congestion control assumes that the
network paths do not change, and traffic engineering assumes
that the offered traffic does not change. Due to the layered
network architecture, congestion control and routing operate
independently, though their individual decisions are coupled.
In this paper, taking a multi-layer approach, we investigate
whether the joint system is stable and optimal, then propose
a good alternative system.

Traffic engineering and congestion control both solve, ex-
plicitly or implicitly, optimization problems defined for the
entire network. Traffic engineering consists of collecting mea-
surements of the traffic matrix—the observed load between
each pair of entry and exit points—and performing a cen-
tralized minimization of a cost function that considers the
resulting utilizations on all links (e.g., [1], [2]). In contrast,
TCP congestion control can be viewed as implicitly solving
an optimization problem in a distributed fashion (e.g., [3], [4],
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[5], [6]), where the many variants of TCP differ in the shape
of user utility as a function of the source rate.

Our study proceeds in two phases, first taking a “bottom
up” approach that analyzes and characterizes the interaction
between TCP congestion control and conventional traffic-
engineering practices, followed by a “top down” approach
where we design and evaluate a new, multi-layer, dynamic,
distributed algorithm starting from a set of key design goals.
The two systems differ in four ways, summarized in Table I.

TE Model DATE
Focus analysis design
Approach bottom-up top-down
Timescale of route adaptation offline online
Computation of routes centralized distributed

TABLE I
DIFFERENCES BETWEEN “TE MODEL” IN SECTIONS III-IV AND “DATE”

IN SECTIONS V-VI.

For our “bottom up” approach, we use the established
optimization model of congestion control and that of traffic
engineering to study the interaction between them. We ex-
amine the following key questions through both analysis and
simulation:
• Stability: Do the joint dynamics of congestion control

and routing converge to an equilibrium?
• Optimality: If the joint system does converge, does the

equilibrium maximize the aggregate user utility, over both
the routing parameters and source rates?

In today’s backbone networks, routing can be abstracted
as shortest path based on link weights. Network operators
compute optimal settings of the link weights in a centralized
fashion based on a network-wide view of the offered traffic.
Consistent with operational practices, our Traffic Engineering
model (TE Model) has a distinct time-scale separation, where
TCP converges under a fixed routing configuration, before any
routing changes are made. Our model differs substantially
from previous work that assumes each link weight is set
locally, and dynamically, based on the congestion price [7],
[8]. Our simulation results show the TE Model is stable for a
variety of topologies. In addition, the equilibrium point typ-
ically maximizes aggregate user utility. When link capacities
have significant spread, however, the TE Model may deviate
from this solution. These observations are rigorously explained
where we prove that a modification to the cost function used



in the TE Model can indeed guarantee stability and optimality
(Theorems 1 and 2), but unfortunately at the expense of
robustness.

To provide both performance and robustness, we then take
a “top down” approach with the following design goals:

1) Distributed: in order to adapt on a fast timescale, the
algorithm should not require centralized computation.

2) Robust: the algorithm must be robust to traffic changes
on a fast timescale.

3) Implementable: for deployment to be feasible, only a
limited number of changes to a limited number of routers
should be required for the algorithm to run.

4) Efficient: the computations should be efficient enough
to allow the routers to perform their other functions.

In developing an algorithm that jointly optimizes rates and
routes in a way that satisfies all of the above design criteria,
we first identify an objective function that balances the goals
of end users and network operators, and then explore how to
construct a stable, dynamic, distributed system that optimizes
for this objective. In the resulting Distributed Adaptive
Traffic Engineering (DATE) algorithm, edge routers compute
the sending rate per source per path, and each link computes
its effective capacity. Congestion price is fed back from the
links to the sources to prevent the source rates from exceeding
the effective capacity. On each link, we introduce consistency
price to force the effective capacity to stay below the actual
capacity. We prove that DATE is guaranteed to converge and
jointly optimizes the goals of users and operators. Simulations
further demonstrate that DATE converges fast and is robust
with respect to parameter settings.

The following general conclusions are obtained as a result
of our investigation of both the TE Model and DATE:
• Confirming the intuition of network operators: Our

simulation results show the TE Model is stable for a
variety of topologies (Section III).

• Tension between performance and robustness: A mod-
ification to the TE Model can guarantee stability and
optimality (Theorem 1), but at the cost of robustness.

• A dynamic, distributed algorithm can converge to a
jointly optimal solution: A stable, optimal, distributed
algorithm exists (Theorems 2 and 3).

The rest of the paper is organized as follows. Section II
introduces the network topology, routing model, congestion-
control models and the TE Model. We first simulate the TE
Model in Section III, and provide the analytic results and
proofs in Section IV. Section V discusses the design goals
for the joint system, and Section VI proposes, analyzes and
simulates DATE. Section VII discusses related work, including
a comparison of DATE with similar approaches in [9], [10],
[11], [12], [13]. Section VIII concludes the paper and points to
future work. To enhance smoothness of the flow of ideas, we
collect the proofs of the two main theorems in an Appendix
at the end of the paper.

II. NETWORK MODEL

We focus on routing and congestion control in a single
Autonomous System, where the operator has full view of

the offered traffic load and complete control over routing,
and a multipath routing model where traffic between source-
destination pairs can be split arbitrarily across multiple paths.
This is not the OSPF [14] or IS-IS [15] protocols used today,
but can be implemented using MPLS [16]. While a session-
level stochastic model is incorporated into our analysis of
DATE, it is not explicitly considered for the TE Model, where
we consider average TCP traffic profiles.

Our notation follows the work in [7], [8]: in general,
boldface are used to denote vectors and small letters are used
to denote its components, e.g., x with xi as its ith component;
capital letters to denote matrices, e.g., R, or constants, e.g.,
L and N . Superscript is used to denote vectors, matrices, or
constants pertaining to source i, e.g., wi and Hi. Also t is
used to denote the iteration number, e.g., x(t), in iterative
algorithms. Table II presents a summary of the notation used
in Sections II–IV.

Symbol Meaning
xi Rate of source i.
Rli Fraction of traffic on link l for source i.
wi

j The fraction of source i on its jth path.
cl Capacity of link l.
Ui(xi) Utility function for source i.
α Parameterizing the TCP utility function.
Uα(x) Utility function modeling α-fairness.
β Step size of the TCP algorithm.
ul Utilization of link l.
f(ul) Cost function.

TABLE II
SUMMARY OF NOTATION USED IN SECTIONS II–IV

A. Network Topology and Routing

A network is modeled as a set of L bidirectional links with
finite capacities c = (cl, l = 1, . . . , L), shared by a set of
N source-destination pairs, indexed by i; we often refer to a
source-destination pair simply as “source i.” 1

We consider a routing model for best-effort packet-switched
networks that closely reflects the operational practices in In-
ternet Service Provider (ISP) backbones [1], [2]. We represent
the current routing through a matrix Rli that captures the
fraction of i’s flow that traverses each link l; as such, we do
not explicitly model the assignment of link weights, which has
been explored in depth in previous work [1], [2]. The operators
measure the offered load between each ingress-egress pair xi.
Based on the known network topology and the traffic matrix,
the operators try to find the best routing matrix R to minimize
network congestion2.

For a given routing configuration, the utilization of link l
is ul =

∑
i Rlixi/cl. To penalize routing configurations that

congest the links, candidate routing solutions are evaluated
based on a cost function f(ul) that is strictly convex and

1Index i here refers to a TCP session between two physical nodes in a
topology where there could be multiple sessions between two physical nodes.

2By focusing on the operational practices in IP networks, our model differs
substantially from earlier work on quality-of-service routing in connection-
oriented networks (e.g. [17], [18] and references therein), where arriving
connections are routed dynamically and each link performs admission control.

2



increasing. In a recent comparison study [19], the cost function
we consider is found to be the best network-wide traffic-
engineering objective for a range of traffic conditions and
performance metrics. The following optimization problem over
R, for fixed x and c, captures the traffic-engineering practices:

minimize
∑

l f(
∑

i Rlixi/cl). (1)

This optimization problem avoids solutions that operate near
the capacity of the links and shifts flows to less utilized links
where they can increase more freely. In practice, the network
operators often use a piecewise-linear f for faster computation
time [1], [2].

B. TCP Congestion Control

While the various TCP congestion-control algorithms were
originally designed based on engineering heuristics, recent
work, such as those surveyed in [5], [6], has shown through
reverse engineering that they implicitly solve a convex opti-
mization problem in a distributed fashion. Consider a network
where each source i has a utility function Ui(xi) as a function
of its total transmission rate xi. The basic network utility
maximization problem over source rate vector x, for a given
fixed routing matrix R, is:

maximize
∑

i Ui(xi)
subject to Rx ¹ c. (2)

The goal is to maximize aggregate user utility by varying x
(but not R), subject to the linear flow constraint that link loads
cannot exceed capacity. TCP congestion-control algorithms
implicitly solve (2), with different TCP variants maximizing
different (increasing and concave) utility functions.

It is well-known that the utility functions can be picked
based on several different grounds. First, a utility function
can capture a user’s degree of satisfaction with a particular
throughput. Second, a utility function can be viewed as a
measure of the elasticity of the traffic. Third, the aggregate
utility captures the efficiency of the system in allocating
bandwidth to the traffic. Fourth, some utility functions can
lead to fair resource allocation. A particular family of widely-
used utility functions is parameterized by α ≥ 0 [20]:

Uα(x) =
{

log x, α = 1
(1− α)−1x1−α, α 6= 1.

(3)

Maximizing these α-fair utilities over linear flow constraints
leads to rate-allocation vectors that satisfy the definitions of
α-fairness in the economics literature.

The notion of α-fairness from [20] led to many TCP variants
with different α-fairness interpretations. A utility function with
α = 2 was linked to TCP Reno. Through reverse engineering,
TCP Vegas can be interpreted as α = 1, as can STCP and
FAST. XCP is shown to be maximizing for Uα as α → ∞
in the single-link case. One exception to this family of α-fair
utility functions is TCP Tahoe, which has been shown to be
maximizing the utility function U(x) = arctan x [5].

xi Rlimax ∑i Ui(xi), s.t. ∑i Rlixi ≤ cl
min ∑l f(∑i Rlixi/cl)

Fig. 1. A detailed view of the TE Model of joint congestion control and
routing system.

C. Traffic Engineering Model of Joint System

Our TE Model of the joint congestion control and routing
system has two steps in a feedback loop, as shown in Figure 1.
At time t+1, the congestion-control step computes new source
rates based on the routing configuration from time t:

x(t + 1) = argmaxx

∑

i

Ui(xi), subject to R(t)x ¹ c. (4)

Then the routing step computes new paths based on the source
rates:

R(t + 1) = argminR

∑

l

f

(∑

i

Rlixi(t + 1)/cl

)
. (5)

The iterations of (4,5) repeat over time, with congestion
control adapting the source rates to the new routes, and traffic
engineering adapting the routes to the measured traffic.

III. SIMULATION OF THE TE MODEL

We first illustrate some interesting numerical observations
before presenting theorems on stability and optimality in the
next section. Our numerical experiments use a combination of
the Matlab and MOSEK [21] environments.

A. Simulation Set-up

We evaluate two variants of TCP congestion control: α = 2
(e.g., TCP Reno) and α = 1 (e.g., TCP Vegas). For the cost-
function f(ul), we use an exponential function, which is the
continuous version of the function used in various studies of
traffic engineering [1], [2].

Our initial experiments evaluate a simple N -node ring
topology, where we can easily scale the size of the network. To
evaluate the influence of the traffic patterns, we consider two
scenarios. In the first scenario, each node is a source sending
to its clockwise neighbor; each source has two possible paths:
a direct one-hop path and an indirect (N−1)-hop path. In the
second scenario, node 1 is the destination and the remaining
N − 1 nodes are sources; each source xi has an i-hop path
and an (N − i)-hop path. Our experiments vary the number of
nodes N and the capacity of link 1 (between nodes 1 and N ).

To study realistic topologies with greater path diversity, we
also experiment with the two networks in Figure 3. On the left
is a tree-mesh topology, which is representative of a common
network structure. In the middle is a full mesh representing
the core of the network with rich connectivity. On the edge are
three access tree subnetworks. Of the twelve possible source-
destination pairs, 1 − 3, 1 − 5, 2 − 4, 2 − 6, 3 − 5, and

3



x2x3 x4
xN xN-1 xN-2xN-3

l=1l=2l=3l=4
l=N l=N-1l=N-2l=N-3xN-4x5 xN-5l=5 l=N-4

x1 path 1

path 2
x2x3 x4

xN-1 xN-2xN-3
l=1l=2l=3l=4

l=N l=N-1l=N-2l=N-3xN-4x5 xN-5l=5 l=N-4
x1path 1

path 2

Only Destination

(a) N nodes, N sources (b) N nodes, 1 destination
Fig. 2. Two N -node ring topologies with different traffic patterns.

123 564 9 8
11

76 34 25 110
(a) Access-Core topology (b) Abilene topology

Fig. 3. Two realistic topologies.

4 − 6 are chosen, and for each source-destination pair, the
three minimum-hop paths are chosen as possible paths. On
the right is the Abilene backbone network [22]. Of the many
possible source-destination pairs, we choose 1−6, 3−9, 7−11,
and 1 − 11. For each source-destination pair, we choose the
four minimum-hop paths as possible paths. For the access-
core and Abilene topologies, the simulations assume the link
capacities follow a truncated (so as to avoid negative values)
Gaussian distribution, with an average of 100 and a standard
deviation that varies from 0 to 50. We simulate twenty random
configurations for each value of the standard deviation. In
all experiments, we start with an initial routing configuration
that splits traffic evenly among the paths for each source-
destination pair.

B. Suboptimality Gap Simulations

Given the structure of (2), it is natural to wonder if the inter-
action of congestion control and traffic engineering maximizes
aggregate user utility. Previous work [11], [7] has proposed the
following joint optimization problem:

maximize
∑

i Ui(xi)
subject to Rx ¹ c, x º 0 (6)

where both R and x are variables.
Our experiments quantify the gap in aggregate utility be-

tween that at the equilibrium of the joint system and the
optimal aggregate utility of (6). Such a gap between the
achieved utility and the maximum utility signifies a loss in
user satisfaction, and often implies also a loss in fairness or

Figure(s) Key Message
4a versus 5a Traffic pattern can have a significant effect.
4a versus 4b TCP variants give the same trend.
5a versus 5b
All figures Relatively small suboptimality gap.
All figures Homogeneity minimizes suboptimality gap.

TABLE III
SUMMARY OF RESULTS ON SUBOPTIMALITY GAP.

efficiency. Table III summarizes the key observations from the
numerical experiments.

In Figure 4, we vary the capacity of link 1 and plot
the gap in aggregate utility for ring topologies with three,
five, and ten nodes, where each node communicates with its
clockwise neighbor. The two graphs plot results for α = 1
(e.g., TCP Vegas) and α = 2 (e.g., TCP Reno), respectively.
The graphs show trends that are very similar across a range
of topology sizes, suggesting that the number of sources alone
does not have a significant influence on the suboptimality gap.
Similarly, the two TCP variants lead to very similar results.

The vertical line in the middle of the two graphs high-
lights the configuration where all links have unit capacity.
The suboptimality gap is zero for a wide range of capacity
configurations. When one link has much lower capacity than
the other links, a suboptimality gap emerges. This occurs
because the traffic-engineering step in the joint system stops
making use of this low-capacity link, since the penalty for
placing even a small amount of load on this link exceeds the
cost of forcing the traffic on a longer path that places load on
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(a) α = 1 (e.g., TCP Vegas) (b) α = 2 (e.g., TCP Reno)

Fig. 4. Aggregate utility gap for the N -node, N -source ring.
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Fig. 5. Aggregate utility gap for the N -node, 1-destination ring.
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(a) Access-core topology (b) Abilene topology
Fig. 6. Aggregate utility gap for two realistic topologies (with α = 1). A -x- marker denotes an individual test point and a -o- marker denotes the average.

multiple links. When link 1 has an extremely low capacity,
even the optimal solution cannot place much traffic on this
link, leading to a small suboptimality gap.

The graphs in Figure 5 confirm that variations in link
capacities affect the suboptimality gap. These graphs evaluate
the N -node ring with one destination node, for two values
of N and two TCP variants. In contrast to Figure 4, having
either a smaller or a larger capacity on link 1 leads to a
suboptimality gap. This is not surprising because link 1 is
a bottleneck link for this traffic pattern. If the link has a small
capacity, the traffic-engineering step does not make use of the
link, making the left part of these curves closely resemble
the plots in Figure 4. If the link has a high capacity, the
traffic-engineering step tries to direct more sources through the
link; however, this is not the best solution when the capacity
of link 1 is just slightly larger than the other links because

traffic traverses longer paths, placing load on a larger number
of links. Comparing Figures 4 and 5 illustrates the important
role the traffic pattern plays in determining whether the joint
system successfully maximizes aggregate utility.

The graphs in Figure 6 illustrate the effects of a variation
in link capacities on realistic topologies. We show how the
suboptimality gap depends on the standard deviation of the
link capacities, which are all varied according to a truncated
Gaussian distribution. We plot separate points for each of the
500 experiments for each value of standard deviation, as well
as a curve that highlights the mean values. The trend that
a more homogeneous capacity distribution (smaller standard
deviation) would lead to a smaller suboptimality gap exists,
but it is much more subdued than in the ring topology and
it is dominated by the variance. This suggests with realistic
topologies, the relationship between link capacity and utility
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gap is more complex. One possible explanation is that the
bottleneck link on each path is what matters, and, while that is
easily correlated with varying a single link in the ring topology,
the effect is coupled in a more complex topology. In addition,
for the Abilene topology, a suboptimality gap exists even
for a homogenous capacity distribution. While the results for
the ring topology suggest that network operators could favor
network configurations that enable (near) optimal solutions,
the results for the access-core and Abilene networks suggest
this may be quite challenging for more realistic topologies.

IV. ANALYSIS OF THE TE MODEL

Our simulations showed that the TE Model (4,5) is stable
and close to optimal for a range of topologies. We speculate,
but have not yet shown it is provably stable for general topolo-
gies. In this section, we show how relaxing the constraint for
(4) can lead to a provably stable and optimal joint system.
By imposing conditions on f , the joint system can be brought
arbitrarily close to optimality with respect to (6). This comes at
the expense of robustness, however, and is not recommended
for implementation.

Theorem 1: If (4) is replaced by the following uncon-
strained problem:

x(t + 1) = argmaxx

∑

i

Ui(xi)−
∑

l

f

(∑

i

Rli(t)xi/cl

)
,

(7)
then the TE Model converges to the optimum of

argmax(x,R)

∑

i

Ui(xi)−
∑

l

f

(∑

i

Rli(t)xi/cl

)
, (8)

for sufficiently concave utilities (i.e., sufficiently elastic traf-
fic): U

′′
i (xi) ≤ −U ′i(xi)

xi
. In particular, it converges for α-fair

utilities when α ≥ 1 and for arctan utility of TCP Tahoe.
Outline of the Proof: The proof consists of three main

steps. First we show that the joint modified congestion control
and routing system is equivalent to a successive, alternating
optimization over x and then R (i.e., a Gauss-Siedel type of
algorithm) of (8). In particular, we need to modify (4) so
that the congestion-control update corresponds exactly with
the optimization over x in Gauss-Siedel algorithm. Then we
provide a sufficient condition to guarantee convergence to the
solution of (8). Finally the condition is examined for α-fair
utilities and arctan utility. See Appendix I for the detailed
proof.

Theorem 2: The cost function f can be chosen so that (8)
is arbitrarily close to (6). In this asymptote, the TE model (4,
5) converges to the global optimum (R∗,x∗) of (6).

Proof: From Theorem 1, the joint system (5,7) converges
to (8). If (8) is arbitrarily close to (6), and (4) to (7) then (4,
5) will converge to the solution of (6).

By the penalty-function method (see [23] for details), there
exists a penalty function P and a constant γ so that (6) is
equivalent to (9):

maximize(x,R)

∑

i

Ui(xi)− γ
∑

l

P

(∑

i

Rlixi/cl

)
, (9)

and (4) is equivalent to (7) provided that γ is sufficiently large,
and P is convex, increasing, and zero for Rx ¹ c (positive
otherwise). Essentially, in (9) and (7), −γ

∑
l P (

∑
i Rlixi/cl)

in the objective function replaces the constraint Rx ¹ c
when γ is sufficiently large. If the operators choose a cost
function f which is zero until ul = 1, and sufficiently large
afterwards, then it can match γP exactly. Such a function can
be approximated as closely as desired by choosing sufficiently
large n in f(ul) = nun

l where n > 0 is a parameter that
modulates the approximation accuracy with respect to the
original TCP model.

10
0

10
1

10
2

−1.4

−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

n

ag
gr

eg
at

e 
ut

ili
ty

 g
ap

Fig. 7. Using the function f(ul) = nun
l in the TE model (5) and alternating

iterations with TCP (4) results in a arbitrarily small gap in utility as n →∞.

Simulations confirm that the joint model converges arbi-
trarily closely to the optimum of (6) when the TE penalty
function in (5) is replaced by f(ul) = nun

l and n is allowed
to go to infinity. For example, Figure 7 plots the utility gap
as a function of n for the Abilene topology with a standard
deviation of 50. For larger values of n, the utility gap grows
arbitrarily small, in contrast to the large gap seen earlier in
Figure 6(b). Although larger values of n narrow the optimality
gap, we find that the joint system requires more iterations for
convergence, leading to a sometimes substantial increase in
convergence time. For simpler, more uniform topologies, we
find that even small values of n suffice to close the optimality
gap. These plots are omitted due to space limitations.

While modifying the traffic-engineering penalty function f
will allow us to be arbitrarily close to the optimum of (6),
it will also drive the network increasingly close to a solution
with multiple links operating near capacity. This is a fragile
point of operation for the network since a small burst in traffic
would cause the traffic on certain links to exceed capacity.
Once the traffic exceeds capacity, congestion is inevitable and
so is the subsequent packet loss and delay increase. Here we
have a trade-off between stability and optimality (with respect
to (6)) on the one hand and robustness (with respect to short,
high-volume traffic bursts) on the other.

V. DESIGN GOALS FOR MULTI-LAYER TRAFFIC
ENGINEERING

Although the TE model converges and performs well in
practice, we believe that, for robustness, maximizing aggregate
utility is not the most appropriate objective for the joint
system. In addition, the centralized optimization of routing
does not react on a small enough timescale to adapt to shifts
in traffic (unlike the more adaptive TCP which, due to its
decentralized nature, can operate on the time scale of packets).

6



In this section, we first propose an alternative objective for
the joint system that captures the needs of users and operators
alike. Then, we meet the challenges of a creating a dynamic
and distributed algorithm that is guaranteed to converge to the
global optimum of that objective.

A. Satisfying User and Operator Objectives

Theorem 1 shows modifying the TE Model causes the
independent actions of end users and network operators to tend
toward a solution that maximizes the aggregate user utility.
While maximizing aggregate user utility seems like a very
natural objective, and has been used in previous studies [11],
[7], such a solution can be fragile to bursts in traffic. These
observations hint that maximizing the aggregate user utility
enhances performance of the individual users in the short
term, but leaves the network as a whole fragile. One possible
solution is to combine performance metrics (users’ objective)
with network robustness (operator’s objective), leading to the
following formulation as a joint optimization over (x,R):

maximize
∑

i Ui(xi)−
∑

l f(
∑

i Rlixi/cl)
subject to Rx ¹ c, x º 0.

(10)

This objective favors a solution that provides both high aggre-
gate utility and a low overall network congestion, to satisfy
the need for performance and robustness.

In any optimization problem formulation, there are four-
tuples: objective function, constraint set, variables, and con-
stants. By having both R and x as optimization variables,
we can obtain the best combination of source rate control
and load balancing in alleviating bandwidth bottlenecks. In
our problem, the constrain is that link load does not exceed
capacity with the physical topology and the link capacities as
constants. Finally, the objective function reflects a combination
of source utility and operator cost. Solving this problem in a
way that is temporally dynamic and spatially distributed is the
goal of the rest of this paper.

B. Adapting Routing on a Smaller Timescale

Traffic engineering today is centralized, so each iteration
requires at least a few minutes to collect accurate traffic
statistics and perform the necessary computations. In practice,
the offered traffic may change at a smaller timescale, so
having a dynamic, distributed algorithm would be desirable.
Yet previous research [24], [25], [26] has shown that load-
sensitive routing alone is prone to instability. While TCP
congestion control is an example of a stable, dynamic and
distributed system, the combination of congestion control and
adapative routing can result in an unstable system [7], [8].
Designing a stable system that adapts both source rates and
routes requires care.

We introduce DATE (Dynamic Adaptive Traffic Engineer-
ing) to react on a fast timescale while ensuring stability. To
prevent the typical oscillatory behavior, we take inspiration
from the original TCP congestion-control algorithm while
extending it to include traffic-engineering objectives. Like TCP
congestion control, DATE uses congestion price to provide

feedback about network conditions. To ensure network robust-
ness, congestion price in DATE plays the role of ensuring
DATE does not exceed the effective capacity rather than the
actual capacity of the links. Each link updates its effective
capacity to take into account a penalty imposed by traffic
engineering. Finally, we introduce consistency price to ensure
the effective capacity stays below the actual capacity.

The major architectural difference between DATE and
traditional traffic engineering is that DATE shifts some of the
management tasks directly into the routers. In today’s traffic-
engineering practices, the management system determines link
weights in a centralized fashion, and link-weight based routing
is done via OSPF or IS-IS in a distributed manner. For DATE,
the management system is only responsible for choosing f
and determining the Label Switched Paths (LSPs) needed to
forward the traffic over multiple paths. In DATE routers are
responsible both for determining how much traffic each path
should carry and for forwarding the data packets on these
paths. This is an alternative allocation of functionality between
the network-management system and the routers.

VI. DISTRIBUTED ADAPTIVE TRAFFIC ENGINEERING

In this section, we describe the Distributed Adaptive Traffic
Engineering (DATE) algorithm in Section VI-A, which is
derived in Section VI-B from Equation (10). In Section VI-C,
we evaluate DATE’s convergence rate and robustness.

A. DATE Algorithm

DATE is a multipath routing protocol where the edge routers
split traffic for each source-destination pair over multiple
paths. In particular, the edge router computes a rate zi

j for
TCP session i on path j, and polices the incoming traffic to
obey the rate limit. The key challenge in designing DATE is
to determine how the edge routers should set the zi

j values
to ensure the resulting system is both stable and optimal. We
illustrate the interplay between the edge routers (that compute
the rates zi

j) and the network links (that provide feedback sl

about network conditions) in Figure 8; the full list of notation
is provided in Table IV.Edge Routers- Calculate zijusing sl- Rate limit incoming traffic Links- Calculate yl*- Update pl,sl using yl*sl

Link load
Fig. 8. A graphical view of DATE algorithm.

The edge router updates zi
j based on explicit feedback from

the links, in the form of congestion prices sl. In particular,
the edge router maximizes the utility for TCP session i, while
balancing the price of using path j. The path price is the
product of the source rate with the price per load for path j
(computed by summing sl over the links in the path), as shown
in Table V. This is very similar to the standard TCP dual
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Symbol Meaning
zi
j Rate of source i on its jth path.

H Network topology as the set of all paths.
yl Effective capacity on link l.
sl Congestion price on link l.
pl Consistency price on link l.
βs Step size for update of congestion price.
βp Step size for update of consistency price.
Tp Time it takes for feedback.

TABLE IV
SUMMARY OF NOTATION FOR DATE.

algorithm in [5] except the local maximization is conducted
over a vector zi, as opposed to only a scalar xi, to capture the
multipath nature of DATE. The parameter Tp represents the
propagation delay for the edge router to receive the congestion-
price information from the links.

Edge Routers:

zi
j(t + Tp) = maximizezi

j
Ui(1

T zi)− zi
j

∑
l

sl(t)H
i
lj

where zi
j is the amount of load that TCP session i places on its jth path

where xi =
∑

j
zi
j .

Links:
• Congestion price Update:

sl(t + Tp) = sl(t)− βs

(
yl(t)−

∑
i

∑
j

Hi
ljzi

j(t)

)
,

where βs is the congestion price step size.
• Consistency price Update:

pl(t + Tp) = [pl(t)− βp(cl − yl(t))]
+,

where βp is the consistency price step size. Since, pl ≥ 0, it must be
mapped to a non-negative value.

• Effective Capacity Update:

yl(t + Tp) = minimizeylf(yl/cl)− (sl(t) + pl(t))yl.

where yl is the effective capacity.

TABLE V
THE DATE ALGORITHM.

The assignment of the zi
j values at the edge routers deter-

mines the total traffic that traverses each link. The resulting
load on link l is

∑
j Hi

ljz
i
j , which serves as implicit feedback

that the link uses to compute the congestion price sl. To avoid
driving the link to full utilization, we base the congestion price
on an effective capacity yl that stays below the actual link
capacity cl. The equation for congestion price here is similar
to [5], except for using the effective capacity rather than actual
capacity; the congestion price is updated over time using a
gradient method.

The effective capacity is kept below the actual capacity by
a consistency price pl that enforces the capacity constraint;
as with sl, the consistency price is updated over time using a
gradient method. Then, the effective capacity yl is updated

per link using information from both prices and the cost
function f . An economic interpretation is that the effective
capacity balances the cost of using a link (represented by f )
and revenue of using a link (represented by the product of the
total price per load with the effective capacity). In this system,
since all the constraints are linear, the prices are additive.

The computations at the edge routers are linear with the
number of sources, while the computations at the link do
not grow with the number of sources or the number of
links. In addition to computation overhead, there are three
new functionalities required by DATE that are not standard
today. First, DATE will require MPLS for splitting traffic over
multiple paths. Second, DATE will require frequent link-load
measurements which is possible using the Simple Network
Management Protocol (SNMP). Finally, DATE requires ex-
plicit rate limiting of the incoming traffic; this can be done by
dropping packets sent above the allowed rate.

B. Stability and Optimality Results
In this subsection and Appendix II, we provide the analytical

derivation and theoretical foundation of the DATE algorithm.
Theorem 3: The distributed algorithm DATE converges to

the joint global optimum (R,x) of (10) for sufficiently small
step sizes βp and βs.

Outline of the Proof: The key idea to arrive at a
distributed algorithm is to decouple the coupled objective
function (coupled over R and x) in problem (10) by in-
troducing an auxiliary variable and an additional constraint,
and then use Lagrange dual decomposition to decouple both
constraints. First we rewrite (10) as a convex problem by
introducing new variable z, which is a stacked vector with
entries zi

j = xiw
i
j . Then we have introduced a new variable

yl =
∑

i

∑
j Hi

ljz
i
j , ∀l to enable decoupling. Finally, we use

dual decomposition and the gradient descent method to derive
the DATE algorithm. See Appendix II for the detailed proof.

Given the dynamic nature of DATE, it is natural to wonder
whether it would behave well with stochastic variations in
traffic. Consider sessions (equivalent to logical “sources”)
arriving according to a Poisson process with exponentially-
distributed file sizes. A session leaves the network after it
finishes transmitting a file. The service rates are determined
by the solution of DATE algorithm. Note that sessions may
arrive and depart even before the DATE algorithm converges,
i.e., we do not assume time-scale separation between algorithm
convergence and stochastic arrivals. The key question becomes
one on the stochastic stability of DATE: whether the number of
active sessions and the sizes of queues in the network remain
finite for DATE in such dynamic environment. The answer
is positive, as summarized in the following theorem, whose
proof is to be found in [27].

Theorem 4: The DATE algorithm is stochastically stable
if the average arrival load on each link is smaller than its
capacity, i.e., the stochastic stability region of DATE is the
largest possible one: the interior of the feasible region of
problem (10).

Outline of the Proof: The key idea is to show that dual
variables as scaled versions of queue lengths, and then show
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Fig. 9. Plots of source rate and aggregate utility versus time for source pair 7-11 with step sizes: βp = 2× 10−5, βs = 4× 10−5.
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Fig. 10. Two plots of rate of convergence versus step size with standard deviation of 10 and one plot of rate of convergence versus standard deviation.

that the DATE algorithm follows as a special case of dual-
based algorithm for generalized Network Utility Maximization
whose stochastic stability has been recently established.

C. Simulation

Following the experimental set-up in section III, we use the
Abilene topology in Figure 3(a). In all cases, the capacity dis-
tribution is a truncated Gaussian distribution with an average
value of 100 and standard deviation is 10 unless otherwise
specified. We define convergence to have occurred when the
aggregate utility is within 0.001 of the global optimum of (10).

The graphs in Figure 9 illustrate both the rates and the
aggregate utility converges within 30 iterations. In addition,
the aggregate utility in Figure 9(b) follows an increasing
concave trajectory, converging close to the optimum in less
than 10 iterations. While the graphs in Figure 9 are for one
particular initial condition, we have done simulations for a
variety of initial conditions to verify that convergence time is
independent of the initial conditions.

Figure 10(a) illustrates the rate of convergence is fairly
insensitive to the step sizes within one order of magnitude.
Further, Figure 10(b) shows the rate of convergence is also
insensitive to the ratio between the step sizes within one
order of magnitude. Practically, this implies it would be
relatively easy for operators to find step sizes that work well
for their networks. Figure 10(c) illustrates that the rate of
convergence depends on the underlying capacity distribution.

Luckily, most real backbone networks have relatively uniform
capacity distributions, leading to very fast convergence.

VII. RELATED WORK

While there are cross-layer studies which bear some re-
semblance to our TE model, they share only the congestion
control model or the routing model, but not both. A detailed
analytic model of congestion control exists in [7], [8], [28],
but they do not take the operator’s perspective into account.
In addition, [7], [8] find convergence to equilibrium is not
guaranteed when congestion price used as link weights. In
[29], the authors consider a related routing model based on
centrally minimizing the maximum link utilization, but do not
model congestion control analytically. There are a few papers
e.g., [30], [31], [32] that use the same routing model as in this
paper, but the user’s adaptation is modeled by overlay routing
rather than TCP congestion control.

The DATE algorithm described in Section VI bears similar-
ity to MATE [9], TeXCP [10] and REPLEX [13]. All four are
traffic-engineering schemes that balance load across multiple
paths using feedback from the links. The key difference is
that the other schemes do not consider congestion control
explicitly. In contrast, we start with a joint optimization
problem and derive an algorithm that maximizes aggregate
user utility and minimizes network congestion. The solution
approach is also different. MATE and TeXCP start with a
heuristic and then prove convergence using control-theoretic
tools, while REPLEX uses an algorithm derived from a game-
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theoretic approach. While DATE and TeXCP are quite differ-
ent approaches, they both fix the usable paths and measure link
utilization. TeXCP is a simpler algorithm, due to its simpler
objective (to minimize the maximum link utilization); hence,
TeXCP can be thought of as an incremental step towards
deploying DATE. While REPLEX also covers multi-domain
traffic engineering and has been more extensively simulated
than DATE, it does not provide any guarantees regarding the
efficiency of the equilibrium point.

There is a body of work on dynamic multipath routing
algorithms from a control-theoretic approach studying stability
through Lyapunov functions, e.g., [11], [12], [33], [34]. The
seminal work in [3] considers the effect of multipath routing
but does not optimize over routing decision. Both [12] and [11]
consider dynamic multi-path routing with utility maximization
as the model. In [11], they choose (6) as the joint optimization
problem, hence their objective function does not take into
account the operator’s needs explicitly and is different from
that in our new design. In [12], log utility is used whereas we
allow general concave utility functions. The link cost model
in [12] and [34] is based on link load, whereas our link
cost is based on link utilization (as motivated by the practice
of network operators), and does not explicitly consider the
capacity constraints. Another difference is that [12] and [34]
use the solution approach of differential equations based on
general price feedback, while we use dual decomposition to
derive DATE. While both approaches have similar overhead
in terms of message passing and computation overhead, the
model in [12] and [34] lets users determine their price rather
than their throughput, which may be harder to implement in
practice given ISPs tend to charge customers for their traffic
on a much longer timescale, such as weeks or months.

VIII. CONCLUSION

We studied the multi-layer interaction of congestion con-
trol and routing under two models. Congestion control by
TCP and route adaptation by traffic engineering both try to
make efficient use of link bandwidth to improve network
performance for end users. In today’s IP networks, however,
these two mechanisms operate independently, though they are
coupled because they both adapt to and also alleviate network
congestion. In the first half of this paper, we first find through
simulation that TCP and traffic engineering work effectively
together to reach a stable equilibrium that maximizes aggre-
gate user utility under most network configurations. Analytic
study then proves that a modification to the operator’s cost
function indeed leads to a provably stable and optimal system,
but at the expense of robustness. This highlights the potential
tension between performance and non-performance metrics.

Turning from analysis to design in the second half of the
paper, we have defined an optimization problem where the
objective includes end-user utilities and the network operator
cost function. A distributed solution (DATE) to this problem
balances the tension between robustness and optimality in two
ways. First, by incorporating the operator’s cost function into
the objective, DATE protects the network from short traffic
bursts. Second, by finding a distributed solution, the algorithm

can react to traffic shifts on a smaller timescale. Stability (both
convergence in the deterministic fluid model and stochastic
stability when session-level arrivals are considered), optimal-
ity, and robustness of DATE are proved and illustrated.

In our ongoing work, we will consider the effects of
feedback delay using the control-theoretic tools that have
successfully shown local asymptotic stability under delay for
other network resource-allocation models [11], [12], [33]. We
are in the process of evaluating DATE in the ns-2 simulator
under realistic topologies and workloads. In particular, we are
testing how DATE reacts to packet-level, session-level, and
topology-level stochastics. We suspect that DATE will perform
better for the long-lived flows (“elephants”) that carry that
bulk of Internet traffic than for the many short TCP flows
(“mice”). If analysis and simulations confirm this intuition,
we plan to explore a hybrid architecture similar to [35] where
short-lived flows are routed statically and long-lived flows are
routed dynamically using DATE.
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APPENDIX I
PROOF OF THEOREM 1

Proof: First we show that the joint routing and modified
congestion control system (5,7) is equivalent to a successive,
alternating optimization of (8) over R and then x. Then we
provide a sufficient condition to guarantee convergence to
optimality. Finally the condition is examined for α-fair utilities
and arctan utility.

Consider the unconstrained minimization of

g(x,R) = −
∑

i

Ui(xi) +
∑

l

f

(∑

i

Rlixi/cl

)
, (11)

which is equivalent to (8). The two steps in the alternating
optimization method of Gauss-Siedel algorithm [36] are as

follows:

x(t + 1) = argminx −
∑

i

Ui(xi) +
∑

l

f(
∑

i

Rli(t)xi/cl)

R(t + 1) = argminRg(x(t + 1),R(t))

= argminR

∑

l

f(
∑

i

Rli(t)xi(t + 1)/cl).

The minimization of g(x,R) over R is clearly equivalent
to (1).

So far we have constructed an optimization problem (min-
imization of g(x,R)) whose Gauss-Siedel solution algorithm
is equivalent to the system model of joint routing and modified
congestion control. Now we will examine the conditions for
convergence of this Gauss-Siedel Algorithm. From [36], the
Gauss-Siedel Algorithm will converge to the minimizer of g
if g is bounded from below, differentiable, marginally strictly
convex in x and R, and jointly convex in x and R.

The first three conditions are already satisfied through the
constraints placed in the system model definition. Condition
1 is satisfied since x º 0, R º 0 by definition. Condition 2
is satisfied since U and f are differentiable, so is g. The third
condition is satisfied since U is strictly concave in x, and f
is marginally strictly convex in x and R. The last condition
is not satisfied in general since the function f(

∑
l Rlixi/cl)

is not jointly convex in R and x.
In order to satisfy the condition on joint convexity in x and

R, consider a log change of variable. Let x̃i = log xi, R̃li =
log Rli, then Rlixi = exp(R̃li + x̃i). With the change of
variable, it can be readily verified that f is still jointly convex
in x̃i and R̃li, but the utility function may no longer be
concave in x̃. If the utility function is concave in x̃, then
g would be strictly convex in x̃ since f is strictly convex in
x̃. Denote the new utility function (after the log change of
variable) as Wi(x̃i). A sufficient condition for convergence of
the Gauss-Siedel algorithm is for W to be concave in x̃. A
simple derivation shows that such a condition reduces to the
following simple bound on the curvature of the utility function:
U
′′
i (xi) ≤ −U ′

i(xi)/xi.
Now we specialize to the α-fairness model for U which

covers TCP Reno (currently deployed) and several proposed
variants. In this case, Wα(x̃) can be written as follows:

Wα(x̃) =
{

x̃, α = 1
(1− α)−1 exp(x)1−α, α 6= 1.

(12)

Examining W
′′
(x̃) shows that W (x̃) is concave for α ≥ 1.

Finally, TCP Tahoe is examined. Recall that U(x) =
arctan(x) for TCP Tahoe, and W

′′
(x̃) = arctan(x). It

follows that W
′′
(x̃) = (exp(x̃) − exp(3x̃))/(1 + exp(2x̃))2

and W is concave. Therefore, convergence of (8) is guaranteed
for TCP algorithms with α ≥ 1 and TCP Tahoe.

APPENDIX II
PROOF OF THEOREM 3

Proof: First we rewrite (10) as a convex problem by
introducing new variable zi

j = xiw
i
j :

maximize
∑

i Ui(1T zi)−∑
l f(yl/cl)

subject to y ¹ c,
yl =

∑
i

∑
j Hi

ljz
i
j , ∀l.

(13)
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In order to enable decoupling, we introduce a new variable
yl =

∑
i

∑
j Hi

ljz
i
j , ∀l, which also resulted in an additional

constraint. Since (13) is a convex optimization problem satis-
fying Slater’s condition, the duality gap is zero. Therefore, a
distributed algorithm for (13) can be derived through the La-
grange dual problem. First we form the following Lagrangian:

L(z,y,p, s) =
∑

i Ui(1T zi)−∑
l f(yl/cl)

+
∑

l pl(cl − yl)
+

∑
l sl(yl −

∑
i

∑
j Hi

ljz
i
j).

where pl ≥ 0 is the Lagrange multiplier associated with the
capacity constraint on link l and sl is the Lagrange multiplier
associated with the equality constraint on link l. Additivity
of total utility and linearity of flow constraints lead to a
Lagrangian dual decomposition into two sub-problems:

1) Per Source i:

argmaxzi
j
Ui(1T zi)− zi

j

∑

l

slH
i
lj .

2) Per Link l:

argminyl
f(yl/cl)− (sl + pl)yl.

The Lagrangian dual function h(p, s) is defined as the
maximized L(z,y,p, s) over z and y for given p and s. Each
source can compute an optimizer zi∗(s) and each link can
compute an optimizer y∗l (pl, sl). The Lagrange dual problem
of (13) is:

minimize h(p, s) = L(z∗(s),y∗(p, s),p, s)
subject to p º 0,

(14)

where (p, s) are the dual variables. Note that (14) is a convex
minimization. Since h(p, s) may be non-differentiable, an
iterative subgradient method can be used to update the dual
variables (p, s) to solve (14):

1) Consistency Price Update:

pl(t + 1) = [pl(t)− βp(t)(cl − y∗l (t))]+,

βp(t) represent the consistency price step size.
2) Congestion Price Update:

sl(t + 1) = sl(t)− βs(t)


y∗l (t)−

∑

i

∑

j

Hi
ljz

i
j


 ,

βs(t) represent the congestion price step size.
This is precisely the distributed algorithm described in

SectionVI.A. Certain choices of step sizes, such as β(t) =
β1/t, βs(t) = β2/t where β1 > 0, β2 > 0, guarantee that this
algorithm will converge to the joint optimum [23]. In this case,
the convergent point is a globally optimal (R,x) to problem
(10) since we have shown that the problem can be written as
convex optimization.
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